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Purpose: An intraluminal coronary stent is a metal scaffold deployed in a stenotic artery during percuta-
neous coronary intervention (PCI). In order to have an effective deployment, a stent should be optimally
placed with regard to anatomical structures such as bifurcations and stenoses. Intravascular ultrasound
(IVUS) is a catheter-based imaging technique generally used for PCI guiding and assessing the correct
placement of the stent. A novel approach that automatically detects the boundaries and the position of the
stent along the IVUS pullback is presented. Such a technique aims at optimizing the stent deployment.
Methods: The method requires the identification of the stable frames of the sequence and the reli-
able detection of stent struts. Using these data, a measure of likelihood for a frame to contain a stent
is computed. Then, a robust binary representation of the presence of the stent in the pullback is
obtained applying an iterative and multiscale quantization of the signal to symbols using the Sym-
bolic Aggregate approXimation algorithm.
Results: The technique was extensively validated on a set of 103 IVUS of sequences of in vivo coro-
nary arteries containing metallic and bioabsorbable stents acquired through an international multicen-
tric collaboration across five clinical centers. The method was able to detect the stent position with
an overall F-measure of 86.4%, a Jaccard index score of 75% and a mean distance of 2.5 mm from
manually annotated stent boundaries, and in bioabsorbable stents with an overall F-measure of
88.6%, a Jaccard score of 77.7 and a mean distance of 1.5 mm from manually annotated stent bound-
aries. Additionally, a map indicating the distance between the lumen and the stent along the pullback
is created in order to show the angular sectors of the sequence in which the malapposition is present.
Conclusions: Results obtained comparing the automatic results vs the manual annotation of two
observers shows that the method approaches the interobserver variability. Similar performances are
obtained on both metallic and bioabsorbable stents, showing the flexibility and robustness of the
method. © 2018 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13273]
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1. INTRODUCTION

An intraluminal coronary stent is a metal mesh tube deployed
in a stenotic artery during percutaneous coronary intervention
(PCI) in order to restore blood flow. The assessment of the
stent location and extension along the vessel axis is relevant for
PCI planning, implantation, and patient follow up. In order to
have an effective deployment, a stent should be optimally
placed with regard to anatomical structures such as bifurcations
and stenoses. The deployment of a stent in an incorrect location
may lead to restenosis1 or bifurcation side branch occlusion.2

Although the current reference image modality for verify-
ing the correct positioning of a stent is intravascular optical
coherence tomography (OCT), a potential alternative is
intravascular ultrasound (IVUS). IVUS is a catheter-based
imaging technique that provides the sequence of tomographic
images (pullback) of the internal vessel morphology [see
Fig. 1(a)]. The stent placement can be deduced by the posi-
tion of its struts, [see Fig. 1(b)].3 The main advantage of OCT
over IVUS is that the resolution is 10-fold higher, easing the
visualization of the stent for the physician. However, OCT
remains inferior to IVUS in matters of depth of penetration

484 Med. Phys. 46 (2), February 2019 0094-2405/2019/46(2)/484/10 © 2018 American Association of Physicists in Medicine 484

 24734209, 2019, 2, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.13273 by U

niversitat de B
arcelona, W

iley O
nline L

ibrary on [08/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/mp.13273
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmp.13273&domain=pdf&date_stamp=2018-12-14


(1.5 vs 5 mm),4 which limits its ability to assess plaque bur-
den, bifurcation angles5, and vessel remodeling. Moreover,
the guiding OCT catheter requires the intubation of the coro-
nary ostium in order to effectively provide contrast injection,
limiting the analysis of ostial and occlusive lesions. Conse-
quently IVUS is regarded as either complementary or prefer-
able to OCT in complex lesions.6–8

The IVUS images can be visualized in a long-axis view,
allowing a pullback-wise analysis and in short-axis view for
frame-wise analysis [see Figs. 1(a) and 1(b)]. The physician
examines both views in order to perform a diagnosis of the
correct stent deployment. On one hand the pullback-wise
analysis allows the physician to localize the position of the
stent within other vascular structures and produce a rough
estimate of stent length. On the other hand, the frame-wise
analysis allows a refinement of the assessment by detecting
the initial and the final frame in which the stent is present, by
assessing if struts appear in a frame. Some struts might not
be visible in the long-axis view of the pullback because of the
chosen angle for the visualization.

To date, several approaches allowing the detection and 3D
reconstruction of stents from OCT images have been pub-
lished,9–11 since the high image resolution allows a detailed
identification of the struts along the pullback. Instead, in
IVUS the visualization and rendering of the 3D shape of the
stent is feasible,12,13 but the accurate strut detection and the
longitudinal localization of the stent along the pullback
remains a challenging task.14,15 In IVUS images, only a few
struts are often visible, due to the inclination of the ultrasonic

probe with regard to the longitudinal axis of the vessel. Sev-
eral regions in the IVUS image may look similar to a strut,
due to their local appearance (guide-wire artifacts, refractions
of ultrasonic waves, reverberations or presence of small calci-
fications or dense fibrotic tissue in contact with the stent) as
illustrated in Figs. 1(b) and 1(c)]. Additionally, the strut tex-
ture and the thickness may vary depending on the type of
implanted stent, which can be either metallic or bioab-
sorbable.16,17 As a consequence, the analysis of a single
short-axis image may not be sufficient for accurately assess-
ing if struts are present. In most of ambiguous cases, the
physician has to scroll the pullback back and forward, analyz-
ing adjacent frames in order to identify the frames defining
the stent boundaries.

Few approaches for automatic stent analysis in IVUS have
been proposed so far.3,18–22 All the existing methods aim at
identifying the struts in the short-axis view of the pullback
assuming that the analyzed frame always contains a stent;
these methods therefore rely on the presence of struts in the
axial frame. Indeed, so far no strategies have been proposed
for detecting if the stent is present in the frame, and for
finding the boundaries and the position of the stent along the
pullback. A possible reason could be that in most of the
published techniques,3,18–22 the number of false positive strut
were too high, making difficult to differentiate a frame
containing a stent (a stent frame) from others in an IVUS
pullback. Instead, this paper extends a strut detection method
for metallic and bioabsorbable stent that results more robust
that previous stent detection approaches,3 and using the struts
detection obtained in successive short-axis views, estimates
the location and extension of the stent along the pullback.

1.A. Our contribution

A novel approach that automatically detects the bound-
aries and the position of the stent along the IVUS pullback is
presented. The pipeline of the method consists of three steps:
(1) the identification of the stable frames of the sequence, (2)
the detection of stent struts, and (3) the assessment of the
stent presence (location and extension) along the pullback. In
this paper, an image-based gating technique23 and a struts
detection method3 were used to obtain (1) and (2), consider-
ing the superior performance of such methods with regard to
other state of the art options, while a novel approach has been
designed for (3). In particular, phase (3) consists of defining
a measure of likelihood for a frame to contain a stent, which
we call stent presence. A temporal series is obtained by com-
puting such a likelihood along the whole sequence. The
mono-dimensional signal is modeled as a train of rectangular
waves by using an iterative and multiscale approximation of
the signal to symbols using the SAX (Symbolic Aggregate
approXimation) algorithm,27 which was initially introduced
as low computational complexity method for classic data
mining tasks such as clustering, classification, and indexing.
In this paper, SAX is used for the first time to obtain an unsu-
pervised and robust binary representation of the signal repre-
senting the stent presence in a pullback.

FIG. 1. Example of IVUS pullback containing a stent (a). In (b) and (c), two
examples of IVUS frames in Cartesian coordinates, and belonging to the
pullback (a), are depicted. The frame (b) corresponds to the green vertical
line in (a), and it does not contain a stent, while (c) corresponds to the verti-
cal line in (a), and it contains a stent. The green circles and the green dotted
line in (c) and (d) represent the estimated position of struts and stent shape
obtained using the technique.3 The classification map (d) of the IVUS frame
(c) is used to guide the struts and stent estimation. [Color figure can be
viewed at wileyonlinelibrary.com]
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The coupling of new strategy for the assessment of stent
location and extension of intracoronary stent with the previ-
ous published methods3,23 provides a complete framework
for detection of intracoronary stents aimed at assisting intra-
operative diagnosis.

Instead, to the best of our knowledge, it is the first time
that a strategy for assessing the stent presence has been pre-
sented. Preliminary results of our approach on a reduced
image dataset was presented in Ref. [24]. This paper
extends24 by focusing on an extensive validation using a set
of 103 IVUS sequences of in vivo coronary arteries contain-
ing metallic and bioabsorbable stents, which are acquired
through an international multicentric collaboration across
five centers. Precision, Recall, F-measure, and Jaccard scores
along with the distance between detected and reference
frames are reported, and compared against inter- and intraob-
server measurements of two experts.

Additionally, applying the framework to each IVUS-gated
frame allows to estimate the lumen and stent contours. Using
such information it is possible to compute the stent malappo-
sition for each angular sector of the frame along the pullback.
As a result, a map indicating the distance between the lumen
and the stent in each angular section of the pullback is created
and the angular sector of the pullback displaying malapposi-
tion is identified.

2. MATERIALS AND METHOD

The three steps of the framework are detailed in the fol-
lowing sections.

2.A. Gating

Let us define an IVUS pullback as a sequence of frames
I ¼ ffig where i is the frame number of the sequence. We
first preprocess the pullback by applying an image-based gat-
ing procedure. Gating allows to reduce the swinging and
roto-pulsation effects3 affecting the reliable identification of
luminal area,25 which is an important factor for the strut
detection.26 In our pipeline, a sequence of gated frames
G ¼ ffgjg is obtained by applying the method presented by
Gatta et al.23 to the IVUS pullback. It is worth noting that
G ⊂ I and that each index gj � 35i, assumes a heart rate of
approximately 60–80 bpm.

2.B. Strut detection

The detection of stent struts was performed by applying
the strut detection method proposed by Ciompi et al.3 to each
gated frame independently. The method identifies the stent
struts by contemporaneously considering the textural appear-
ance of the stent and the vessel morphology. The strut detec-
tion system uses the Multi-Scale Multi-Class Stacked
Sequential Learning (M2SSL) classification scheme to pro-
vide a comprehensive interpretation of the local structure of
the vessel. In the classification problem, the class Strut is
considered as one of the six considered classes (defined as

Blood area, Plaque, Calcium, Guide-wire shadow, Strut, and
external Tissues). For semantic classification purposes, tai-
lored features used for classification to the problem26 are
used.

As a result, for each pixel p(x,y) of a gated IVUS image, a
classification map M is obtained [see Fig. 1(d)]. A curve
approximating the stent shape Sshape is initially estimated con-
sidering vascular constrains and classification results. For
each region of M labeled as stent ðMfSgÞ, a strut candidate is
considered. The selected struts psðx; yÞ were selected among
the candidates, considering both local appearance and dis-
tance with regard to the stent shape Sshape. Consequently
false-positive candidates were discarded, and the regions con-
taining a selected strut M�

fSg are a subset of MfSg.

2.C. Stent presence assessment

The frames of the pullback corresponding to the vessel
positions where the stent begins and ends can be identified
by analyzing the detected struts. We model the presence of
stent as a rectangular function ⊓(t), where the variable t indi-
cates the temporal position in the pullback (see Fig. 1). We
estimate the binary signal ⊓(t) by processing a real-valued
signal c(t), which we define stent presence, corresponding to
the frame-based likelihood of finding a stent in each frame of
the IVUS sequence. The value of c(t) for each position t in
the sequence is computed by considering both the number of
struts and their area, thus negatively weighting small strut
areas of the images which have an high probability to be
incorrect detections.

cðtÞ ¼
X

p2M�
fSg

pjps2M�
fSg

(1)

where ps 2 M�
fSg indicates the pixels of the IVUS frame

labeled as strut containing an selected strut. An example of
signal c(t) is depicted in Fig. 2(c).

The signal c(t) may contain several transitions between low
and high amplitudes, due to the variability in the number of
struts visible in consecutive frames and to suboptimal strut
detection. For this reason, we filter the c(t) signal by consider-
ing its local statistics applying the SAX algorithm.27 SAX is a
symbolic representation algorithm that estimates a quantization
of the time series based on global signal measurements and on
local statistics of subsequent neighbor samples. Given the sig-
nal c(t) and a window size w, the algorithm calculates a Piece-
wise Aggregate Approximation (PAA) dcðtÞ, which is obtained
by computing the local average values of c(t) over nw segments
w-wide. Each average value is then normalized over the signal
c(t). The procedure firstly computes a vector
cðtÞ ¼ ðq1; . . .; qnwÞ where each of qi is calculated as follows:

qi ¼
1
w

Xw�i
j¼w i�1ð Þþ1

qj; (2)

where i; j 2 N. The quantified signal amplitudes bqi are
obtained by normalizing qi by the mean lc and standard devi-
ation rc of the signal c(t):
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bqi ¼ qi � lc
rc

(3)

Then, the bqi amplitudes are mapped to Lsax discrete val-
ues. Considering a Gaussian distribution of the samples
amplitudes, each value Lsax corresponds to an equal-sized
area of the Gaussian curve.

The SAX algorithm is iterated Nsax times, until converging
to flat intervals along the signal c(t). The maximum iteration
number Nsax is achieved when the difference between subse-
quent iterations of SAX is zero. Figure 2(c) illustrates the iter-
ation of the SAX algorithm over an exemplar signal c(t). The
other parameters of the SAX algorithm is the number of
quantized values assigned to the signal Lsax. The iterative
SAX algorithm is described by the following equation:

cðtÞkþ1 ¼ SAX cðtÞk; rtrainsaxk ; ltrainsaxk ; Ltrainsax
� �

(4)

where k 2 1. . .Nsax and rtrainsaxk and ltrainsaxk are the mean and
standard deviation computed on the training set at the itera-
tion k, and the number of quantized values Lsax is a constant
that has been optimized by cross-validation using the training
set, as described in the validation section. When the SAX
algorithm reaches the maximum iteration number Nsax, the
binary signal indicating the stent presence of the stent is
obtained as uðtÞ ¼ cðtÞNsax

[ ltrainsaxNsax
.

3. VALIDATION

3.A. Material

A set of 103 sequences of IVUS images was collected
through a multicenter study (see Table I). In this study, we are
interested in assessing the performance of the method at
detecting the presence of stent along the pullback. For this

reason, pullbacks acquired before and after stent deployment
were used, therefore considering also sequences with the
absence of stent. The dataset includes nine pullbacks acquired
before the stent deployment. The remaining 94 pullbacks con-
tain one or more metallic (met) or bioabsorbable (abs) stents.

Data acquisition protocol was approved by the IRB of each
clinical centre. The IVUS sequences were acquired using
iLab echograph (Boston Scientific, Fremont, CA) with a
40 MHz catheter (Atlantis SR Pro, Boston Scientific); no
standardization of the echograph parameters was applied dur-
ing the acquisitions. The pullback speed was 0.5 mm/s and
the IVUS system had a 30 frames per second frame rate. The
model of the metallic and bioabsorbable stents were “Promus
Coronary Stent, Boston Scientific, MN” and “Absorb Biore-
sorbable Vascular Scaffold (BVS), Abbott, IL”, respectively.

Two experts (one clinician and one experienced researcher
in IVUS imaging) manually annotated the beginning and the
end of the stent in each sequence. They were asked to scroll
the pullback back and forward, looking at the short-axis view
only, and analyzing adjacent frames in order to identify the
frames defining the stent boundaries. More than one annota-
tion per pullback was allowed when several stents were
implanted in subsequent segments of the same artery. Two
separate test sets were defined (testmet and testabs), corre-
sponding to pullback containing metallic or bioabsorbable
stents, respectively. When sequences containing a metallic
stent were tested the training was performed using pullbacks
having a metallic stent (trainmet). Instead when sequences
containing bioabsorbable stent were analyzed, the training
was performed separately using metallic (trainmet) or bioab-
sorbable (trainabs) frames. Since the number of sequences
containing a bioabsorbable stent was low, we expect that the
stent detection performance might increase when the system
is trained on a larger dataset. When pullbacks of the same
dataset were used for test and training, a 10-fold cross-valida-
tion strategy was used to compute the results, while all the
metallic pullbacks (trainmet) were used for training purposes
when the test was performed over testabs dataset.

3.B. Experiments on stent presence assessment

The assessment of stent presence is based on the analysis
of the mono-dimensional signal c(t). In order to evaluate the
performance, the manual annotations of the beginning and
end of the stent were converted into binary signals cobsðtÞ
indicating the presence of the stent in the pullback. Succes-
sively, the signals ⊓(t) indicating the segments of the pull-
back in which a stent is likely to be present, were compared
against the sections indicated by the observers cobsðtÞ. The
performance was evaluated by measuring the Precision (P),
Recall (R), F-Measure (F), and Jaccard-index (J). The first
three indices are typically used to evaluate a detection prob-
lem, while the forth index evaluates the overlap between the
ground-truth and the automatically detected signals. Addi-
tionally, the distance between the automatic and the manual
detection expressed as the number of gated frames, in mm,
and as percentage of the stent length.

FIG. 2. In order to illustrate with an example the procedure of SAX algo-
rithm, a Piecewise Aggregate Approximation of a synthetic curve, not related
with any measurement, is depicted in (a) and (b). The method firstly com-
putes the local average values qi of the signal c(t) over nw segment (a). Then,
the algorithm normalizes the samples by the mean and standard deviation of
the signal obtaining the amplitudes q̂i. Considering a Gaussian distribution
of the samples’ amplitudes, the samples q̂i are mapped to Lsax discrete values
having equi-probability (b), that is, the cutoff values are chosen in such way
to separate the area below the Gaussian curve in Lsax equal regions. In the
example of (a) and (b), the signal is quantized using nw = 8 and Lsax = 3.
Then, in another example (c), the SAX algorithm is applied to a signal c(t)
obtained from an IVUS pullback. In this case, the signal c(t) is quantized
using nw = 2 and Lsax = 2. The SAX algorithm is iterated Nsax times over an
exemplar signal cðtÞi , where i s the iteration number. In this second case (c),
the signals cðtÞi obtained in 6 of the 50 iterations (namely i = 1, 2, 12, 22,
32, 42) are illustrated. [Color figure can be viewed at wileyonlinelibrary.com]
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In our experiments, we estimate rtrainsaxk , ltrainsaxk and
Ltrainsax by optimizing the F-measure score by varying Lsax
between 3 and 50. When the optimal value of Lsax = 36 is
set, rtrainsaxk , ltrainsaxk are estimated automatically by the SAX
algorithm.

The quantitative results for the pullback-wise analysis for
the three experiments are reported in Table II. In the first
experiment, the system is trained and tested using metallic
pullbacks. In the second and the third, the test is performed
over bioabsorbable frames, and the training is obtained using
metallic and bioabsorbable data, respectively. As IVUS is
highly challenging to interpret, the two observers sometimes
disagree as shown in Table II (rows 5, 8, and 11).

In the case of bioabsorbable stents, the best performances
are obtained when the framework is trained using metallic
frames. All the performance metrics (excepts the Precision)
of the second experiment, that is, training using metallic
frames (rows 6, 7), are higher with respect to the results
obtained in the third experiment, that is, training using bioab-
sorbable frames (rows 9, 10). In particular, a 10% of differ-
ence between the Recall and Jaccard measure of the two
experiments can be noticed. This confirms that the bioab-
sorbable dataset is too small for training purposes.

If we focus on the first two experiments (rows 3–8), in both
datasets, the precision approaches the interobserver variability,
while the recall is in general between 10% and 20% lower than
the results of the manual annotation. The obtained F-measure
and the Jaccard measure of the automatic performance show
satisfactory results when compared with manual annotations
(about 5% and 7% lower than the ground truth score).

Such results are confirmed by analyzing the distance
between the boundary assessed with our method and the man-
ual annotations, as illustrated in the last two columns of
Table II. In the case of metallic stents, the error in the bound-
ary assessment ranges between 4 and 5.3 gated frames (about
2 and 2.5 mm, respectively). It is interesting to note that such
errors correspond in average to 4.2% and 5.8% of the stent
length. In the case of metallic stents, the error in the boundary
assessment is about 3.4 gated frames (about 1.5 mm). In this
case, such an error corresponds in average to 10% of the stent
length, given that the length of the bioabsorbable stents com-
posing our dataset was in general smaller than the metallic
ones. The results shown in Table II illustrate that the method is
flexible and can be applied to a pullback containing either
metallic or bioabsorbable stents with similar results.

In order to analyze if the scores obtained by the automatic
method were statistically different from the performance of
the manual annotation, an ANOVA test was performed over
the results reported in Table II. As can be observed in
Table III, the performances of the method were particularly
satisfying, since in the case of metallic stent the automatic
method approaches the performances of one observer. The
error of boundary detection committed by the automatic
method was found to be comparable with respect to the errors
committed by the first observer, and the difference of F-mea-
sure and Jaccard scores committed by the automatic method
with respect to the manual annotation, was statistically weak
(0.01 <P < 0.05). On the other hand, the results were found
to be statistically different (P < 0.01) when the automatic
method was compared against the manual annotation of the
second observer.

In the case of bioabsorbable frames trained using metallic
pullbacks, comparable results were found only in the rela-
tive boundary errors, while in the other cases the results

TABLE I. Detailed description of the datasets used in this study.

Dataset type Hospital

Number

of

pullbacks

Stent

deployment

% of stent

frames Training Test

Metallic #1 80 Deployed Roughly 50% trainmet testmet

#2 3 Deployed Roughly 50% trainmet testmet

1 Predeployed 0% trainmet testmet

#3 5 Deployed Roughly 50% trainmet testmet

3 Predeployed 0% trainmet testmet

Bioabsorbable 1 Deployed Roughly 50% trainmet /trainabs testabs

1 Predeployed 0% trainmet /trainabs testabs

#4 4 Deployed Roughly 50% trainmet /trainabs testabs

3 Predeployed 0% trainmet /trainabs testabs

#5 1 Deployed Roughly 50% trainmet /trainabs testabs

1 Predeployed 0% trainmet /trainabs testabs

TABLE II. Quantitative evaluation the pullback analysis stage on both testmet and testabs datasets. For each dataset, the performance of the automatic method vs
each manual annotation is reported. Then the interobserver variability is shown. For each experiment, the Precision, Recall, F-Measure, and Jaccard index are
reported, along with the error in the boundary assessment, expressed in number of gated frames, and in percentage of the stent length.

Precision Recall F-measure Jaccard Boundary err.(gatedfr.) Boundary err., relative
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

testmet /trainmet auto vs obs-1 91.0% (15.8%) 87.4% (14.5%) 87.5% (12.0%) 79.6% (17.6%) 4.0 (5.6) 4.2% (3.8%)

auto vs obs-2 94.3% (12.2%) 79.3% (16.4%) 84.6% (11.9%) 75.0% (16.9%) 5.3 (6.0) 5.8% (4.4%)

obs-1 vs obs-2 96.8% (14.1%) 99.3% (5.4%) 92.1% (10.5%) 86.7% (14.5%) 3.2 (5.0) 3.9% (2.2%)

testabs/trainmet auto vs obs-1 91.8% (12.8%) 86.9% (13.4%) 88.6% (11.1%) 77.7% (13.7%) 3.4 (4.8) 10.4% (5.2%)

auto vs obs-2 91.8% (12.5%) 87.4% (12.7%) 88.9% (10.4%) 78.1% (12.8%) 3.3 (4.9) 10.3% (5.7%)

obs-1 vs obs-2 99.5% (1.8%) 99.0% (1.9%) 99.2% (1.2%) 98.5% (2.4%) 2.9 (6.2) 8.4% (7.4%)

testabs/trainabs auto vs obs-1 97.0% (9.0%) 75.6% (22.9%) 83.4% (16.5%) 64.3% (15.6%) 5.5 (7.5) 17.8% (7.0%)

auto vs obs-2 97.4% (7.7%) 76.3% (22.9%) 84.0% (16.2%) 65.1% (15.9%) 5.3 (7.2) 16.9% (7.0%)

obs-1 vs obs-2 99.5% (1.8%) 99.0% (1.9%) 99.2% (1.2%) 98.5% (2.4%) 2.9 (6.2) 8.4% (7.4%)
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between automatic and manual detection was considered sta-
tistically different. Finally, in the case of bioabsorbable
frames trained using bioabsorbable pullbacks, all the tests
reported a statistical difference between the automatic and the
manual detection.

3.C. Malapposition analysis

Malapposition happens when at least one stent strut is sep-
arated from the intimal surface of the arterial wall and it is
generally computed as the distance between the malapposed
struts and the vessel wall, and the area is measured.

In particular, the thresholds of malapposed struts depends
on the stent type and brand28 ranging from 100 lm to
160 lm. In the case of the Boston Scientific brand, we con-
sider the stent malapposed when the distance to the lumen is
higher than 130 lm. The frame-wise analysis obtained by
applying the framework to each IVUS-gated frame allows to
estimate the lumen and stent contours. Using such informa-
tion, it is possible to compute the stent malapposition for each
angular sector of the frame along the pullback. As can be
seen in Fig. 3 (top) an exemplar IVUS pullback is analyzed.
The framework provides a map indicating the distance
between the lumen and the stent in each angular section of
the pullback. Then a plot, as shown in Fig. 3 (middle), illus-
trates the maximum amplitude of the distance along the pull-
back. Finally, a third plot indicates the percentage of the stent
displaying malapposition 4 (bottom).

4. RESULTS

4.A. Metallic stents

Examples of processed signals for the detection of a
metallic stent in the IVUS frame are depicted in Fig. 4. In
Figs. 4(a1) and 4(b1), both the initial and final frame of the
sequence are accurately identified. The result is not obvious
since in (a) the amplitude of the signal c(t) is almost null in
two sections of the pullback. However, the SAX algorithm
allowed to detect the presence of a stent, based on the

statistics of the frames in the neighborhood. On the other
hand, in Fig. 4(a2), the central section of the pullback where
cautoðtÞ is almost null is correctly classified by the SAX algo-
rithm as the absence of stent. This is coherent with the man-
ual annotation of the two observers, where two stents are
labeled. It must be noted that in this paper no constrain on
the minimum length of the stent is applied. In 4(b2), we
observed a case in which the absence of the stent is correctly
identified. Indeed, observing 4(b2), it can be noticed that the
quantification of the signal is below the global threshold
ltrainpullNsax

. In Figs. 4(a3) and 4(b3), regions of high signal sepa-
rated from the main stent have been identified as a secondary
implanted stent. It might be noticed that this error happens
only when a strong spike in the signal is present, for instance
when a calcified plaque is mistaken for a deployed stent. In
Figs. 4 (a4) and 4(b4), the initial and final frame of the stent
are incorrectly identified since the amplitude of c(t) is low and
comparable with the noise at the proximity of the stent area.

TABLE III. ANOVA statistical analysis of the results reported in Table 2, indicating when the performances of the automatic stent detection are significantly dif-
ferent with respect to the manual annotations. A strong or weak statistical difference between the results is considered when the P < 0.01 or between
0.01 < P< 0.05, respectively. Otherwise, when the P > 0.05, the null hypothesis of statistical difference between the results cannot be rejected, hence indicating
that the two performances can be considered comparable. The second column indicated which performances of Table 2 are considered in the ANOVA analysis.

Precision Recall F-measure Jaccard Boundary err. (gatedfr.) Boundary err., relative
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

testmet
trainmet

ðauto vs obs�1Þ
ðobs�1vs obs�2Þ P < 0.01 P > 0.05 0.01 < P< 0.05 0.01 < P < 0.05 P > 0.05 P > 0.05

ðauto vs obs�2Þ
ðobs�1vs obs�2Þ P < 0.01 P < 0.01 P < 0.01 P < 0.01 P < 0.01 P > 0.05

testabs
trainmet

ðauto vs obs�1Þ
ðobs�1vs obs�2Þ P < 0.01 0.01 < P < 0.05 P < 0.01 P < 0.01 P < 0.01 P > 0.05

ðauto vs obs�2Þ
ðobs�1vs obs�2Þ P < 0.01 0.01 < P < 0.05 P < 0.01 P < 0.01 P < 0.01 P > 0.05

testabs
trainabs

ðauto vs obs�1Þ
obs�1 vs obs�2Þ P < 0.01 P < 0.01 P < 0.01 P < 0.01 P < 0.01 P < 0.01

ðauto vs obs�2Þ
ðobs�1 vs obs�2Þ P < 0.01 P < 0.01 P < 0.01 P < 0.01 P < 0.01 P < 0.01

FIG. 3. Malapposition analysis of an IVUS pullback. The top image repre-
sents a distance map between the stent and the lumen. The vertical axis repre-
sents the angular section of the IVUS image, while the horizontal axis
displays the position of the frame. The intensity of the map corresponds to the
distance in lm. When the distance is superior to the malapposition threshold,
a red color is displayed. The second plot displays the maximum amplitude of
the distance between stent and lumen, along the frames of the pullback; a hor-
izontal line indicates the malapposition threshold. The third plot displays the
percentage of the stent malapposed in each frame of the pullback. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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4.B. Bioabsorbable stents

Examples of processed signals for the detection of a
bioabsorbable stent in the IVUS frame are depicted in Fig. 5.
In Figs. 5(a1) and 5(b1), we observe two cases of accurate
stent detection. In the rest of cases the performance of the
stent detection decreases. In Figs. 5(a2), 5(b2), 5(a3), the
main stent was accurately detected, however one or more
small peaks in the signal, having high magnitude, are incor-
rectly classified. In Fig. 5(a3), it is interesting to note how the
algorithm is able to recover the whole stent longitude at the
right side of the image, even if the signal amplitude is low at
the middle of the stent area. Finally, Figs. 5(b3), 5(a4), 5(b4)
show a pullback not containing a stent in which short but
intense peaks in the signal are misclassified.

5. DISCUSSION

In this paper, for the first time, a framework for the auto-
matic identification of stent presence along the pullback (lo-
cation and extension) has been presented.

The methodology described in the paper is based on three
main steps (1) a gating technique and (2) a stent strut detec-
tion technique used to obtain a measure of likelihood for a
frame to contain a stent. The paper introduces (3) a new strat-
egy for obtaining a robust binary representation of the pres-
ence of the stent in the pullback using the SAX algorithm.
The stages (1) and (2) of the pipeline, can be computed using
similar method proposed in the state of the art.3,18–22 How-
ever, since the reliability of the strut detection is a critical step
of the pipeline, the influence of using a method less reliable
might have a negative impact over the performances of the
whole framework.

In clinical practice, the presented system could be used
intraoperatively to perform automatic analysis of the stent
position and placement. This would ease the task of physi-
cians, by reducing the burden of manual search and measure-
ments of the deployed stent via inspection of the IVUS
sequence. In order to show how the result can be represented
in a clinical application, in Fig. 6, two exemplar IVUS long-
axis views of the stent detection are depicted, superimposed
with vertical lines representing the boundaries of the stent
manually labeled by the physician.

The presented framework processes a sequence of gated
frames. Due to the catheter swinging effect, nongated frames
might be analyzed multiple times along the sequence. Apply-
ing gating has the advantage of providing frames that are less
affected by motion artifacts, in which the analysis of blood
texture can be done in a more robust and reproducible way.
Moreover, gating reduces the amount of frames to be ana-
lyzed by approximately a factor 30, which also benefits the
system in terms of computation time. Using gated frames
does not limit the applicability of the proposed system, which
can potentially work on nongated frames as well. However, in
this case a reduction in performance can be expected.

The analysis of the stent presence signal has been per-
formed using the SAX algorithm which provides an

unsupervised classification of the stent location in a fast and
statistically robust fashion.

Since the proposed system is meant to be used in an intra-
operative fashion, it is important to evaluate the computa-
tional cost in order to assess its real impact during clinical
practice. For this purpose, we evaluated the computation time
of the system. The method has been implemented in Matlab
(The MathWorks, Natick, MA, USA, 2011) and the computa-
tion time of the pullback analysis is one order of magnitude
lower than the time required for detecting the stents.3 Indeed
the pullback-wise analysis took about 4.1 s per pullback vs
0.33 s per frame (around 33 s per pullback) required for a
stent detection (measured on a Intel i7 quad-core processor).

6. CONCLUSION

We presented a new strategy for the assessment of stent
location and extension of intracoronary stent in intravascular
ultrasound sequences. Such a technique, when coupled with
previous published methods,3,23 provides a complete frame-
work for the intracoronary stents aimed at assisting intra-
operative diagnosis. The results obtained from a hetero-
geneous dataset, containing both metallic and bioabsorbable
stents collected through a multicentric collaboration, are close
to the interobserver variability and suggest that the system has
the potential to be used during percutaneous interventions.

In the case of metallic stent, the performances have an
overall F-measure of 87.4% and 86.4% and a Jaccard score of
76.6% and 75.0% obtained by comparing the automatic
results against the manually annotated struts of the two obser-
vers, respectively. For bioabsorbable stents, the overall F-mea-
sure of 88.6%, and 88.9% was obtained, with a Jaccard score
of 77.7% and 78.1% obtained by comparing the automatic
results against the manually annotated struts. Such values
approached the interobserver variability which corresponded
to a F-measure of 92.1% and a Jaccard score of 86.7% in the
case of metallic stents, and a F-measure of 99.2% and a Jac-
card score of 98.5% in the case of bioabsorbable stents.

With regard to the distance between the automatic and the
manual detection, the error in case of metallic stents is of 4.0
and 5.3 gated frames (corresponding to about 2 and 2.5 mm,
respectively) from the manually annotated struts of the two
observers, while in case of bioabsorbable stents the error is
3.4 and 3.3 gated frames (corresponding to about 1.5 mm).
These results are satisfying considering that the interobserver
error of the manual annotation is 3.2 and 2.9 gated frames, in
case of metallic and bioabsorbable stents, respectively.

The system has been validated using cases of both metallic
and bioabsorbable stents. The performances of the system were
evaluated when metallic or bioabsorbable stents were used for
training, and the best performances were obtained using data
from cases with metallic stents, since dataset was larger. Bioab-
sorbable stents are used less often during PCIs, therefore finding
a large set of examples was hard. However, good performance
can be observed also in the presence of bioabsorbable stents,
showing the capability of the system to generalize well to the
detection of unseen examples, including other types of stents.
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Future work will be addressed toward comparing the per-
formance of the current pipeline against the assessment of
stent location and extension obtained using deep learning

(DL) techniques. In particular, artificial neural networks
(ANN) might improve the classification on both frame-wise
and pullback-wise analyses. ANNs are well known for

FIG. 4. Qualitative evaluation on testmet . The signal c(t) is illustrated in the first row, while in the second the result of the SAX quantization is reported. Finally
in the third row, three binary signals representing the presence or the absence of the signal are compared: the first corresponds to the automatic results, while the
second and the third are the annotations of the two observers. [Color figure can be viewed at wileyonlinelibrary.com]
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providing state-of-the-art classification performances, how-
ever, it should be noted that ANN are currently affected by
some limitations: (a) a large dataset (of the order of 10000

samples) is usually required for training purposes. (b) in liter-
ature there is not a clear consensus about how to find the opti-
mal parameter for the network fine-tuning. Such limitations

FIG. 5. Qualitative evaluation on testabs dataset. The signal c(t) is illustrated in the first row, while in the second, the result of the SAX quantization is reported.
Finally in the third row, three binary signals representing the presence or the absence of the signal are compared: the first corresponds to the automatic results,
while the second and the third are the annotations of the two observers. [Color figure can be viewed at wileyonlinelibrary.com]
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should be carefully studied in order to analyze if a deep learn-
ing strategy could be successfully applied to IVUS pullbacks.
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