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ABSTRACT. For a fixed analytic function g on the unit disc I, we
consider the analytic paraproducts induced by g7 which are defined
by Tyf(z) = So ¢)d¢, S So ¢)d¢, and Myf(z) =

f(2)g(2). The boundedness of these operators on various spaces of ana-
lytic functions on D is well understood. The original motivation for this
work is to understand the boundedness of compositions of two of these
operators, for example ng, TySy, MyTy, etc. Our methods yield a char-
acterization of the boundedness of a large class of operators contained
in the algebra generated by these analytic paraproducts acting on the
classical weighted Bergman and Hardy spaces in terms of the symbol g.
In some cases it turns out that this property is not affected by cancella-
tion, while in others it requires stronger and more subtle restrictions on
the oscillation of the symbol g than the case of a single paraproduct.

1. INTRODUCTION

Let ‘H(DD) be the space of analytic functions on the unit disc D of the
complex plane. For a > —1 and 0 < p < o, the weighted Bergman space
AL consists of the functions f € H(D) such that

I8, = (@ +1) JD [F(2)P(1 = [2*)* dA(2) < oo,

where dA is the the normalized area measure on D. Let HP, 0 < p < oo,
denote the classical Hardy space of analytic functions in ID. To simplify the
notations, we shall write A” | := HP and || - |-1, := || - |m», 0 < p < 0.
Given g € H(D), let us consider the multiplication operator My f = fg and
the integral operators

Jf ¢)d¢ Sgf(z Jf yd¢ (2 eD).
Due to the integration by parts relation
(1.1) Myf = Tof + S54f + 9(0)£(0),

we call these operators analytic paraproducts.
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It is well-known [2 B3, [4, [10] that T, is bounded on A% if and only if g
belongs to the Bloch space % when o« > —1, and g € BMOA in the Hardy
space case &« = —1. In particular, these results show that cancellation plays
a key role in the boundedness of the integral operator T;. This is very
different from the case of M, and S;, whose boundedness on these spaces is
equivalent to the boundedness of g in D (see Proposition below and the
references following it).

Throughout the paper the spaces of bounded and compact linear oper-
ators on A% are denoted by B(Ah) and KC(AL), respectively. Moreover, if
T : A% — A% is a linear map, we write |Tap = supj gy, <1 [Tfllap, and we
refer to this quantity as the operator norm of 7' on AL, despite that A%, is
not a normed space for 0 < p < 1.

The primary aim of this paper is to study the boundedness of compositions
(products) of analytic paraproducts acting on AL. In order to provide some
intuition and motivation for this circle of problems, let us have a brief look at
compositions of two such paraproducts. Clearly, M 92 = M,M, is bounded
on these spaces if and only if ¢ € H® and we shall show (Theorem
that the same holds for Sg. On the other hand, it turns out that 7, €
B(AL) if and only if T, € B(A%) (Theorem [1.1). Regarding mixed products,
a simple computation reveals that ST, = T,M, = %ng, so that both
compositions are bounded on A if and only if g> € &, when a > —1, or ¢® €
BMOA, when o« = —1. This last condition is strictly stronger than g € £ or
g € BMOA, respectively (see Proposition below). The compositions in
reversed order raise additional problems because they cannot be expressed as
a single paraproduct. They can be related to the previous ones using :

(1.2) MyTy = 54Ty + Tg27 TySy = SgTg — Tg2 — 9(0)(g — 9(0))do,

where dof = f(0). Intuitively, from above it appears that S,T, = %ng
is the “dominant term” in both sums, but a priori it is not clear whether
such sums are affected by cancellation or not. Thus we are led in a natural
way to consider sums of compositions of paraproducts rather than only
compositions. A similar situation occurs when dealing with M,S, and Sy M.
Due to these preliminary observations we turn our attention to the full
algebra .7, generated by the operators My, Sy, and T,. The operators in 47
will be called g-operators. In this general framework we begin by showing
that any g-operator L has a representation

n
(1.3) L= Z SngPk(Tg) + SgPnt1(Sg) + 9(0) Pa2(g — 9(0)) do,
k=0

for some n € N, where the P’s are polynomials. This representation is
essentially unique, see If P, =0, for 0 <k <n+1, we will say that L
is a trivial operator. With this representation in hand we can derive a fairly
surprising necessary condition for the boundedness of general operators in
this algebra.

Theorem 1.1. Let g € H(D), 0 < p < w0 and a« > —1. Let L be a
g-operator written in the form (L1.3). Then:

a) If L is a non-trivial operator and L € B(AL), then T, € B(AL), that is,
g€ B, when a > —1, and ge BMOA, when a = —1.
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b) If L is a non-zero trivial operator, then L € B(AR) if and only if g29Tn+2 ¢
AL,

Note that the result applies directly to 7, S, and M,T, via and jus-
tifies the intuition that these operators are bounded on A% if and only if
g%> € B, when o > —1, or g> € BMOA, when o = —1. In fact, in We
provide a complete characterization of the boundedness of compositions of
two analytic paraproducts (see also Corollary below). The theorem can
be used to characterize the boundedness of more complicated g-operators.
In addition, it provides a crucial preliminary step in the proof of our char-
acterization of boundedness of certain g-operators which we now state.

Theorem 1.2. Let g€ H(D), 0 < p < 0 and a = —1. Let L be a g-operator
written in the form (1.3)). Then:

a) If P,o1 #0, LeB(AY) if and only if ge H®.

b) If Poy1 = 0 and P, = 1, L € B(AR) if and only if Tjnr1 € B(AL),
or equivalently, ¢g"t' € &, when a > —1, and g"*' € BMOA, when
a=—1.

c) Ifa> —1, Pyy1 =0, and P,(0) # 0, L € B(AY) if and only if g"™' € B.

We have not been able to extend part c) of this theorem to the HP-case.
One direction follows directly from Proposition but the remaining one
is, in our opinion, an interesting and challenging open question.

Question 1.3. Let g e H(D), 0 < p < o0, and let L be a g-operator written
in the form (1.3|) with P11 = 0, and P,(0) # 0, which is bounded on HP.
Is it true that g"*' € BMOA?

When dealing with operators in .27, an initial hurdle can be easily recog-
nized, namely that these operators are formally defined as sums of products
of possibly unbounded operators on the spaces in question. One way to
overcome this difficulty is to consider dilations of the symbol g, which are
defined, for A € D, by gx(z) = g(\z). In Proposition we prove that
if Ly € oy n B(AR) then |Lg,llap < [Lglap for all X € D. This fact will
be repeatedly used in the proofs of the results stated above. Other key
ingredients for the proof of Theorem are the estimates

17

which will be established in Proposition together with the analysis of
iterated commutators of T, and SZ;, k € N. A sample of this set of ideas
can be found in Corollary below. The proof of Theorem is somewhat
more involved, in particular, it makes use of the boundary behaviour of
Af-valued functions of the form A — Ly, f, A e D, f e AL.

In order to discuss the class of g-operators covered by Theorem |EZ| it
is convenient to introduce the following terminology. An n-letter g-word is
a g-operator of the form L = Ly --- L,, where each L; is either My, S, or

aw Sl Tg ap,

T,. For n € N, let szg(n) be the linear span of g-words with no more than
n letters and define the order of a g-operator L to be the least n € N such

that L € JZ/g(n). It turns out that if L € %(n) then the words involved in
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its representation (|1.3) have length at most n. For example, g-operators of
order two have the form

(1.4) L= ang + GQTg2 + agSng + CL4Sg + a5S§ + g(O)P(g — g(()))50,

where a; € C, 1 < j < 5, and P is a polynomial of degree smaller than
2. These operators are covered by Theorem and we have the following
complete characterization of their boundedness.

Corollary 1.4. Let ge H(D), 0 < p < o0 and o = —1. If L is a g-operator
of order two written in the form (L.4]), then:

a) When either ay # 0 or as # 0, L € B(A%) if and only if g€ H®.

b) When asz # 0 and ay = a5 = 0, L € B(Ab) if and only if g*> € B, for
a > —1, and g> e BMOA, for o = —1.

c) When az = ay = a5 = 0 and either a1 # 0 or ag # 0, L € B(AL) if and
only if g€ B, for a > —1, and g€ BMOA, for a = —1.

On the other hand, our main result does not cover g-operators with
P,+1 = 0 and P,(0) = 0 in the representation . An example of this
type, where the condition for the boundedness is different, follows from the
second identity in . This together with S,T, = %ng implies

%T;Q = Sy(T,S,)T, = ng; — ng;,

i.e. the operator on the right is the representation (|1.3)) of %Tg%. In view of

Theorem one might expect that the presence of Sg forces the bounded-
ness of T3, but by Theorem this operator is bounded on A%, if and only
if > € B, for a > —1, and ¢° € BMOA, for a = —1.
There are also g-operators of order 3 with P,41 = 0 and P,(0) = 0 in the
representation . The simplest example is the 3-letter-word Sng and in
this case the situation differs even more dramatically to the one described
in Theorem [I.2] The following result shows that the boundedness of such
g-operators cannot be characterized with conditions of the form g € H®, or
g" € B(BMOA), with n e N.

As usual, we denote by log the principal branch of the logarithm on
C\(—0,0], that is, logl = 0. For an open set U < C and an analytic
function h : U — C\(—o0,0], B € C, we define h’ = exp(Slogh).

Theorem 1.5. Consider the function g : D — C\(—0o0,0] defined by

(&

g(z) = 10g<1 - Z) (z € D).

Then:
a) g€ BMOA, but for any o = —1, p > 0, we have Sng2 ¢ B(AL).
b) For 5 < B <3, % ¢ # (and so g*° ¢ BMOA), but SysT7s € K(AR),
for any a = —1 and p > 0.
The paper is organized as follows. Section [2| contains some preliminary
results concerning the Bloch space and BMOA, in particular the condition

g* € B(BMOA), for some k € N. In Section [3| we study the vector space
structure of the algebra .27, and prove the representation ([1.3|). Section {4|is
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devoted to the proof of our main results, Theorems and Finally, in
the last section we prove Theorem

As usual, N is the set of positive integers and T = {z € C : |z| = 1} is
the unit circle. For A€ Cand r > 0, D(\,7) = {z € C: |z = A <r}is
the open disc centered at A with radius r. For two non-negative functions
Aand B, A < B (B 2 A) means that there is a finite positive constant C,
independent of the variables involved, which satisfies A < C'B. Moreover,
we will write A ~ B when A < B and B < A.

2. THE SPACES OF SYMBOLS

In this section we will recall and prove some preliminary results about

BMOA and the Bloch space. For any a € D, define ¢,(z) := ==, and

l1-az’
consider the classical BMOA and Bloch spaces endowed with their Garsia’s
seminorms ||| sar04 @nd |||l (see, for instance, [6] 8] and the references
therein):

BMOA = {1 e H(D) : /a0 = sup | © 6 — F(@)lfya < o0}
#:= A MO WU = o 6n = fle < o}

For a given Banach space (or a complete metric space) X of analytic func-
tions on I, a positive Borel measure p on D is called a g-Carleson mea-
sure for X (vanishing ¢-Carleson measure for X) if the identity operator
I: X — Lu) is bounded (compact). Recall that f € 2 if and only
if |[flz := sup,ep(l — |2[2)|f'(2)] < o, and f € BMOA if and only if
(1 —|2?) |f'(2)|? dA(z) is a Carleson measure for HP, 0 < p < o0, or equiv-
alently

£ 1504 = sup f (1= 6a2) |f' 2 dA < .
acD JD

Moreover, || fllz ~ ]2 and || fllzaroa = | fllBMOA-
We also consider the little-oh subspaces of BMOA and £:

VMOA = {feH: lm |fo6,~ f(a)li =0}
Bo:={Fea: lm |Fo gy~ f)lG =0}

For f € H(D), recall that f € %y if and only if lim,|_,;- (1 — 1z12)|f(2)] =0,
and f € VMOA if and only if (1—|z|?)|f'(2)|> dA(z) is a vanishing Carleson
measure for HP, 0 < p < 00, or equivalently

lim | (1-|¢al?)[f'dA = 0.
la]—>1= Jp

For 0 < p < o and m,n € N, m < n, Jensen’s inequality shows that
L™ a/;n <|f ”Hé/g We will show that this result also holds for the Garsia’s

BMOA and Bloch seminorms.
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Proposition 2.1. Let m,n € N, m <n, and f € H(D). Then,

(2.1) ™ Wimeoa < "1 Enroa
(2.2) ™™ < LI

In particular, if f* € BMOA (f" € #), then f™ € BMOA (f™ € A).
Moreover, if f* € VMOA (f" € %By), then f" € VMOA (f™ e %y).

Bearing in mind that f — f o, maps H? or A? to itself, Proposition
follows from the following lemma.

Lemma 2.2. Let m,n € N, m <n. Then:
(2.3) L™ = FO) [ < " = fHO) s (f € H(D))
(2.4) L™ = O < = o) (f e H(DY).

Proof. We only prove ([2.3)), the proof of (2.4 is completely analogous re-
placing H? by A%. First of all, recall that

(2.5) 151 = 1F15 (f € HD), keN),
and, by Jensen’s inequality,
(2.6) | flzzn 2 [ flgem  (f € H(D)).

Now ([2.3)), in the case f(0) = 0, directly follows from (2.5 and (2.6). Indeed,

we have that

112 = 11 = 112 = IF™ 152 (f € H(D)),
and so
(2.7) Hﬂwywﬂwm (f € H(D)),

which, in particular, gives (2.3) when f(0) =
The general case is a consequence of ([2.6)), , and a simple argument.
First note that

28) I = FHO)Ge = 1 e — PO (f e H(D), keN).
Then, for any f € H(D), we have that

L™ = 02 & — £ O)2"

(*)mnm n
> |G )

© (1™ = FO) % + £ O™ = | £0)
Sy <wwm,

where (%) and () follow from and ([2.7), respectively, while (¢) is a
consequence of the classical superadditivity inequality
(@+y)*=z2"+y*  (z,y=20,a21).

(Recall that any convex function ¢ : [0,00) — R whith ¢(0) = 0 is superad-
ditive, i.e. p(z +y) = o(x) + ¢(y), for any =,y > 0.)
Hence

L7 = RO = ™ = FMO) s (f € H(D)),
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and the proof is complete. O

The final part of this section recalls the descriptions of the symbols g €
H(D) such that the operators T,, S, and M, are bounded, or compact, on
Ab.

Theorem 2.3. Let ge H(D), 0 < p < and a = —1. Then:
a) T, € B(AR) if and only if g € B, when a > —1, and g € BMOA, when

a = —1. Moreover, |Tyllap ~ 9|2, if @ > =1, and |Ty|lap ~ |9]BrOA,
if a =—1.

b) T, € K(AL) if and only if g € By, when a > —1, and g € VMOA, when
a=—1.

Theorem is originally proved, for & = —1, in [4, Thm. 1, Corollary 1]
(p > 1) and in [2, Thm. 1(ii), Corollary 1(ii)] (0 < p < 1) and, for a > —1,
in [5, Thm. 1] (p > 1) and in [3, Thm. 4.1(i)] (0 <p < 1).

Proposition 2.4. Let ge H(D), 0 <p < 0 and a = —1. Then:

a) Sy e B(AY) (or My € B(AL)) if and only if g€ H*. Moreover, |Sglap =~
1Mgllap > gl

b) S, € K(AL) (or M, e K(AL)) if and only if g = 0.

The characterization of the boundedness for M, follows from a classical
result on pointwise multipliers (see [7, Lemma 11] or [14, Lemma 1.10]). The
remaining part of Proposition [2.4]is well known for the experts, but unfortu-
nately we have not found any explicit reference. For a sake of completeness
we include a sketch of the proof. If g € H® then Mgy, T,,g(0)dy € B(AR),
and so Sy € B(A%), by (L.1)). In order to prove the converse, recall that the
Bergman kernel for A2 is K,(z,A) = (1 — Xz) 2, and, in particular, the
analytic function

(1— A2
ha(z) = ——m (Ae D)
(1—=Xz) »
satisfies ||hy[la,p = 1. Thus if Sy € B(AR) then
Ca CapllSgla
S.hy) (V)] < L Sohlan < PIZ9RP
|( g A)( )| (1_|)\|2)aT+2+1H g /\H »D (1—|)\|2)QT+2+1

from which follows that ||g|g> < Cap|Sgla,p. A similar argument shows
that if M, € B(AR) then g € H®.

Using standard arguments on compact operators between spaces of an-
alytic functions (see Lemma together with the above estimates it is

easy to prove part @ of Proposition

3. THE ALGEBRA &/, GENERATED BY THE OPERATORS T}, S;, AND M,.

The main goal of this section is to show that any operator L € 27, has a
unique representation of the form when ¢ is non constant and ¢g(0) #
0. A powerful purely algebraic machinery which helps dealing with such
questions are the Grobner bases [1], [I3]. However, we have preferred a direct
approach, partly for the sake of completeness, but also because our further
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arguments need some more specific information about this representation,
like for example Proposition [3.7] below.

3.1. Some useful identities. In this section we gather some formulas that
will be used later on.

Proposition 3.1. Let g € H(D), and j,k € N. Then:

(3.1) My =84+ T4+ g(0)do

(3.2) M} = M

(3.3) SF =Sy

(3.4) SyiTyr = 25 Tyren

(3.5) Sgi Mgk = Sgivr + 525 Tyju
(3.6) Ty My = 352 Ty

(3.7) TySg =S4Ty — ng —9(0)(g — 9(0)) o

Proof. Let f € H(D).
Since (gf) = ¢'f + gf', we have

92 1) = 95 0) + [ i

0

Z

7 (OF(C) dC + fo 9(O)F(C) dc,

that is, Myf =T, f +Syf + g(0) éo f.

B2 Myf=g"f=Mguf.

(13.3) We proceed by induction on k. For k& = 1 there is nothing to prove.
Now assume that Sg = Sgr. Then

SEHF(2) = 5,(S,1)(z) = L TGO dC = S £(2),

that is, Sg“ = Syk+1.
(3-4) Tt follows by integration from the identity ¢’(7, o f) = ]% (g7 f.
(3.5) It follows from (3.1)), (3.3) and (3.4]):
ngMgk = ngSgk + ngTgk = ngJrk + j% ng+k
(3.6) It follows by integration from the identity (¢7)' M f = ]]W (g7FY f.
(13.7) It follows from (3.1)), (3.6)) and (3.4]) :
TySy = TyMy — ng — 9(0)(g — 9(0)) do

= Sng—ng—g(O)(g—g(O)) do O
Proposition 3.2. Let g € H(D), then
(3.8) Ty(g — 9(0))" = (g —g(0)™"  (neNu {0})
(3:9)  Sylg —9(0)" = g(0)(g — g(0))" + 45 (g —g(O)"*  (neN)
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Proof. Identity (3.8) is a direct computation, while (3.9)) is easily checked:

Su(g— 9(0)"(2) = n j T 9(Og'(O)(g(0) — g(0))"d¢

0

= | 91060 - a0 d¢
#n9(0) [ 5/(0)0(0) — 0" e
= i 1o(2) - g(0)"* +g(0)(9(2) —g(0)". O
Corollary 3.3. Let g € H(D) and let P be a polynomial of degree n. Then:

a) T,P(g — 9(0)) = Q(g — 9(0)), where Q(z) = §§ P(¢)d( is a polynomial
of degree n + 1.

b) SyP(9—9(0)) = Q(g—9(0)), with Q(z) = g(0)(P(2)—P(0))+§; ¢ P'(¢) dc,
which is a polynomial of degree of n + 1.

Proof. Part @ directly follows from ({3.8)). Part @ is a direct consequence
of (3.9) and the fact that Syl = 0. O

Corollary 3.4. Let g € H(D) and let m,n € N. Then
ST (g—g(0))" = Wm (9—9(0))" " +P(g—g(0)) (0<j<m),

where P is a polynomial of degree less than m + n and whose coefficients
only depend on ¢g(0), m, n and j.

Proof. By it is clear that
T9(9 ~ 9(0)" = Gy (9 — 9(O)™ = Glg(g — g(0)™ .
But gives that
S (g — g(0))" = ZEL (g — g(0))™ ™ + Q(g — 9(0)),

where @) is a polynomial of degree less than m + n whose coefficients only
depend on ¢(0), m, n and j. Hence the proof is complete. O

3.2. Vector space structure of 7.

Definition 3.5. Let L € ;afg(n), where n € N. We say that L admits an S7T'-
decomposition if there exists a polynomial P of degree less than n satisfying

n k
L= ¢;nSITET + g(0)P(g — g(0)) &,
k=1j=0

where c;, € C, for any j, k.

Proposition 3.6. Let g € H(D) and n € N. Then every L € %(n) admits
an ST-decomposition.

Proof. We proceed by induction on n. For n = 1 there is nothing to prove
because holds. Let n > 1. Since, by the induction hypothesis, any
m-letter g-word, with m < n — 1, admits an S7T-decomposition, we will
complete the proof by induction once we have checked that L(") = L,,L("—1)
has an ST-decomposition, when L, is either S,, T,, or M, and L1 g
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either g(0)P(g — g(0)) g, where P is a polynomial of degree less than n — 1,
or Snglf*j, where 0 <j<kand 1 <k<n-—-1.

Assume first that L("D = ¢(0)P(g — ¢(0)) &. By the identity (3.1)
we only need to consider the case when L,, is either T, or S,. Then, by
Corollary LM = ¢(0)Q(g — g(0)) &y, where Q is a polynomial of degree
less than n.

Now assume that L = SgT ; . As above, we only need to consider
the cases L, = Sy and L, = T,. If L, = S, then L0 = SgHT;_j,
and, in particular, L(™ has an ST-decomposition. Now consider the case
L, =T, If j =0 then L") = Tj“ and we are done. If j = k = 1, then
L™ =T,8, = S,T, — Tg2 — g(0)(g — g(0)) 6o, by (3.7), so we also are done.
Finally, if j > 1 and k£ > 1 then, again by , we have that

(n—1)

L™ = 8,1, 8= k=1 — 728I= k=],

because 9pS; = 0. Since Tgsgfngk*j and TgSﬁfngk*jfl are g-words with
less than n letters, they admit ST-decompositions, by the induction hypoth-
esis. It directly follows that L(™ also has an ST-decomposition. U

From now on, in order to simplify the notation, we will write gg = g—g(0).
By the above proposition, any non-trivial g-operator L can be written as

n
(3.10) L= ST,Pu(Ty) + SgPus1(Sy) + 9(0)Pry2(g0) do,
k=0
where n € Nu {0} and Py,..., P42 are polynomials such that deg P12 <n

and either P, # 0 or P,;1 # 0. In other words, the vector space 7 is
spanned by {SéTgk (5, keNU{0}, j+k=1}U{(g0) b : j € NU{0}} when
g(0) # 0, and by {S;Tgk :j, ke Nu {0}, 7+ k > 1}, when ¢(0) = 0.

Our next goal is proving the uniqueness of the ST-decomposition when

the symbol g is non constant and g(0) # 0. We will need two preliminary
results.

Proposition 3.7. Let g € H(D), and let L = L1+ g(0)P(g— g(0))dg, where

m k

.

Ly= ) cnSiTy
k=1j=0

1s a g-operator of order m € N and P is a polynomial of degree less than
m. Then there ezists an increasing sequence {n;}; in N such that L[(g —
g(0)"] = Pi(g — ¢(0)), where P; is a polynomial of degree m + n;.

Proof. By Corollary for n € N and 0 < k < m, we have

(n+k+1)!

L[(g0)" ™% = L1[(go)" 1] = A R

(g0)™ ™ML 1 Py(go),

where Py is a polynomial of degree less than m +n + k + 1 and

m

Cj7m
Ak,n = 2 ; I
= (n+m—j+k)!
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Since Ly has order m, (¢om,C1,m,"** » Cmm) # (0,0,...,0), so we have that
(@oms @1y - - -y Gmp) # (0,0,...,0), provided that
1 m
3.11 D™ = det ( : ) £ 0,
(3.11) " (n+m—j+k)l/),; o

and, in particular, there is some 0 < k& < m such that ng+k+1 = P(go),
where P is a polynomial of degree m + n + k + 1. Thus we only have
to check (3.11)). In order to do that we recall the so called Pochhammer
symbols:

(k)o=1 (K)e=Fk(k+1)---(k+¢-1) (k,¢ e N).

Since
1 1

m+m—j+k! (n+m+k)
we have that D,(Lm) = bnm A%m), where by, , > 0 and

(n+m+1) (n+m+2)--- (n+2m+ 1)

(n+m—j+k+1);,

Alm) (n+m)y (m+m+1) - (n+2m)
(n+1)n, n+2)ym - (n+m+1),
But (¢)o =1and (¢ +1)j11 — ({)j+1 = ( + 1)(¢ + 1);, we have
In+m+1) -+ 1(n+2m)
Alm — 2(n—|.—m)1 2(n+2.m—1)1 ’
m(n+2)m—1 - mn+m)m,_1
and so AT = m! Aq(ﬁ;l). Since Aflllm =1, we get (3.11]). O

Lemma 3.8. Let g € H(D). If g is not constant then {g" : n € N U {0}}
and {(g — ¢(0))" : n € N u {0}} are bases for the vector space {P(g) :
P polynomial }.

Proof. 1t is clear that {¢g" : n € N U {0}} and {(g0)" : n € N U {0}} span
the vector space {P(g) : P polynomial }. Now we want to prove that {g" :
n € N u {0}} is linearly independent, which means that if P(g) = 0, for
some polynomial P, then P = 0. Thus assume that P(g) = 0, for some
polynomial P. Since g is not constant, g takes infinitely many values. It
follows that P has infinitely many zeros, that is, P = 0. A similar argument
shows that {(go)"” : n € N u {0}} is linearly independent, so the proof is
complete. O

Proposition 3.9. Let g € H(D).

a) If g #£ 0 is constant and I is the identity mapping on H(D), then {I, do}
is a basis for %n)} for every n € N, and so it is also a basis for <.

b) If g is not constant and g(0) = 0, then

(3.12) {(SITy7:1<k<n, 0<j <k}

is a basis for %(n), and so {Sngk 17, ke NU {0}, j +k = 1} is a basis
for <.
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c) If g is not constant and g(0) # 0, then
(3.13) {SIT/7:1<k<n 0<j<k}u{(g—g(0)d:0<j<n}
(n)

is a basis for <"
(SITE ik eN U0}, 5 +k > 1)U {(g— 9(0)d: je N U (0})
is a basis for <.

Proof. a) Assume g =c¢ # 0. Then T, = 0, Sy = ¢I — ¢dp and M, = cI, so
both %(n) and 7, are spanned (as vector spaces) by I and dp. On the other
hand, I and Jy are linearly independent. Indeed, if af + 5dg = 0, for some
a, B € C, then af = (al + ) f = 0, for f(z) = z, so a = 0, and therefore
B = (al + pdp)l = 0.

b) Assume g is not constant and ¢(0) = 0. Then Proposition shows
that 4279(") is spanned by . On the other hand, the linear independence
of follows from Proposition Indeed, if

n k
(3.14) 2 Z ¢ RSyIT =0,
k=1j=0

, and so

where c;;, € C, then ¢j, = 0, for any 1 < k < nand 0 < j < k, since
otherwise Proposition [3.7] shows that there is some £ € N such that

n k
(Z > Cj,kSS‘jTg) 9" = Ply),

k=17=0

where P is a non-constant polynomial, which is absurd, taking into ac-

count (3.14) and Lemma [3.8]
c) Assume g is not constant and ¢g(0) # 0. First, note that (3.1)) shows that

do = ﬁ(Mg — Sy —Ty) € %(1)’ and so (3.8) gives that

(g0)! 80 = j1 (Y1) 6o = j! Tido € (™ (0<j <n).
On the other hand, since Proposition|3.6/shows that %(n) is spanned by (3.13]),

we only have to prove the linear independence of (3.13]). Assume that

k

(3.15) DY eiRSEITI + P(go) do = 0,
k=1j=0

where ¢;; € C and P is a polynomial. Then ¢;; = 0, for any 1 <k <n and
0 < j < k, since otherwise Proposition shows that there is some £ € N
such that

n k
<Z D kST + P(90)50> (90)" = Q(g0),

k=1j=0

where () is a non-constant polynomial, which is absurd, taking into ac-
count (3.17) and Lemma [3.8] Therefore

P(g0) = P(g0) do1 = 0,
and a second application of Lemma 3.8 gives that P = 0. O
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We end this section by giving a second application of Propositions
and (and Lemma which clarifies the concept of trivial g-operator.
We recall that L € < is trivial if L = g(0)P(go)do, for some polynomial P.

Proposition 3.10. Let g € H(D).
a) If g(0) = 0 and L = P(g)do € 7, for some polynomial P, then L = 0.
b) A g-operator L is trivial if and only if L(2*) = 0, for every £ € N.

Proof. Assume that ¢g(0) = 0 and L = P(g)dy € <, for some polynomial
P. If g is constant then g = 0, so My, = S; = T, = 0, and therefore
g = 0, which gives that L = 0. When g is not constant we proceed by

contradiction. Suppose that L # 0. Then L € %(m), for some m € N, so
Propositions and show that there is n € N such that Lg"™ = Q(g),
where @ is a polynomial of degree m + n. But, since ¢g(0) = 0, Lg™ = 0, so
Q(g) = 0, and Lemma implies that ) = 0, which is a contradiction and
finishes the proof of part @

Finally, we prove part @} Now assume that L € «7,. If L is trivial, it is
clear that L(z%) = 0, for every £ € N. On the other hand, if L(z*) = 0, for
any ¢ € N, then LP = L(P(0)) = P(0)(L1), for any polynomial P. Now
the continuity of L : H(D) — H(D) implies that Lf = f(0)(L1), for any
f € H(D), that is, L = (L1) §p. But L1 = P(go), where P is a polynomial,
and, by part EIL we conclude that L is trivial. O

4. MAIN RESULTS

We start this section by studying the behaviour of the iterates of Tj,.

Proposition 4.1. Let g € H(D). Ifn € N, n > 1, and T,' € B(A%), then
T, € B(AL) and there exists a constant ¢, > 0, which only depends on n,
such that

(4.1) 1T flnp < enlTy flaglfln,  fe AR,
and so
(4.2) 1Tollop < en Ty ap-

In particular, Tj} € B(AL), for some n € N, if and only 17 € B(AL), for any
n € N.

In order to prove Proposition we need the following useful result,
which is proved in [2, Thm. 1 (i)] for & = —1, while for & > —1 it is a
direct consequence of Holder’s inequality and the fact that the differentiation
operator f — f’is a topological isomorphism from A% (0) = {f € A}, : f(0) =

0} onto A}, [15, Thm. 4.28].

Lemma 4.2. Letr,q,s > 0, %—i—% = %, and g € Al,. Then T, : A5, — A% is
bounded and there exists a constant ¢ > 0, independent of g, satisfying that
1T 45— a2 < |9
Proof of Proposition Note that T7'1 is a polynomial of degree n in
g, so that g* € A%, 1 < k < n. Inductively it follows easily that ¢* € A%,
for all k& = 1. Then using integration by parts we see that Tgk f e Ab
whenever k£ > 1 and f is a polynomial. For k > 1, we apply Lemma 4.2

a,r-
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with r = s = p, ¢ = p/2, to conclude that if f is a polynomial and h € AL
p
then TTgfh e A3 with

Ty ghlla g S I
Now, for k = 2, let h = Tgk*Qf and note that
Tryh(z) = fo JOT NI Q) dC = (T )2 ().

Since (T3 f)?

aplhllap-

= |} f||2 ,, this leads to the estimate

(4.3) HT’Hf|2,p S HT'“ |a7p|Tk flap — (k=2).

By induction on j > 1, from we obtain
(4.4) 1Ty FI%5 S I\Tgkfla,p (k=j+1).
Indeed, assume that
(4.5) 1Ty 7 o S 1Ty flaplTy (k= j),
and we want to obtain .

By (4.3), for each k > j + 1 we have

1Ty 12, S 1Ty fl )
Now, by (4.5), we obtain
\Ty 7 f12, SIT5 FlaplTy [p

which proves (4.4)).

Finally, the estimates (4.3]) and (4.4]) for £k = 2 and k—j = 2, respectively,
give that

1Ty flap ST fllaplf Imp
17215 STy Fllap (k> 3).
Therefore
| 2RI 1SS ST flapl Ty f i, (k> 3),
and so
1Ty f| ap ~ HTk flap |f 7p , for any polynomial f (k= 2).

In particular, if £ = n, bearing in mind that the polynomials are dense in
AL the preceding estimate shows that (4.1)) holds, and, as a consequence,
([4.2) also holds. Hence Ty, € B(A%). O

For h € H(D) and X € D, let us consider the dilated functions
ha(z) := h(Az), zeD.

The map h + hy is a linear contractive operator on A%L. Moreover,

(4.6) (Mgf)/\ = Mg, fx (ng)A = Sgyfa (Tgf)/\ = Ty, /-
Now a repeated application of shows that
(4.7) Lo, fx = (Lgf)a (Lg € ).

The following result is a key tool in our study of the boundedness of
operators in .27,.
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Proposition 4.3. Let g € H(D) and let Ly € <7,. If L, € B(AL) then Ly, €
B(AR) and || Lg, D

ap < |Lglaps for any A € D. Moreover, if lim || Ly, |ap < o,
r,1

then Ly € B(A%) and |Lgla,p = lim | Ly, [a.p-
r, 1

Proof. First note that, for any A € T, gives that Lg, f = (Lgfy)x and,
since f +— fy is an invertible isometry on A%, it follows that Ly, € B(AR)
and | Lg, [la,p = | Lglap- If X €D, then gy € H(D), so My,, Sy, ,T,, € B(AR),
and, as a consequence, Ly, € B(A%).

In order to estimate the operator norm of Ly, , let f be a polynomial and
observe that, for fixed z € D, the function A — Ly, f(z) is analytic on D.
Indeed, this is an inmediate consequence of the fact that if (X, z) — h(}, z)
is an analytic function on the bidisc D? then

Mg, h(X,-)(2), Sg h(A,-)(2) and Ty h(X,-)(2)

are also analytic functions of (), z) on D2

Next we are going to show that F'(\) = L, f defines a continuous mapping
from D to AZ.

Assume first that ¢ € D. For each z € D the function X\ — Ly, f(2) is
analytic on D, which implies that Ly, f(2) — Lg f(2), as A — (. Since
Ly, [ is uniformly bounded on D, for |\ — ¢| < $(1 — |¢|), the Dominated
Convergence Theorem shows that |F(A) — F(()|ap — 0, as A = (.

If ¢ € T, we write, by abuse of notation, fy/y(2) = f(z/A), which is well
defined for a polynomial f and A € C\{0}. Then, by (4.7)), for any X € D\{0}
we have that

F()\) - F(C) = Lgxf - ngf = (Lgfl//\ - Lng)A + (Lgff)/\ - (Lgff)o

and so
IFO) = FOllap < e[1(Zofin = Lofdrllap + 1(Lofo)r = (Lo o)l
<c|ILofipn = Lafelap + (Lofor = (Laf)clas ]
<c[ILgllfipn = Felaw + 1(Ea S = (Lo fclas]

where ¢ = 1if p > 1, and ¢ = 27 if 0 < p < 1. Recall that f is a
polynomial and use the elementary fact that, for h € A%, [hy — h¢fap — 0,
as A — (, to conclude that the right hand side converges to 0 and therefore
[FO) = F(Qllap = 0, s A > ¢

Hence we have just proved that F : D — AL is continuous, and, as a
consequence, the function wuy : D — C, defined by

urA) = [FN6p = Loy f

is also continuous. Moreover, since, for fixed z € D, Ly, f(2) is an analytic
function on A, it is clear that uy is subharmonic in ID. It follows that uy
attains its maximum at some point ( € T, which gives that

| Loy Fllap = up(N) < Ly fllap < [ Lge [l Flap = 1 LgllLf

for any A € D and for any polynomial f. Since the polynomials are dense in
AL, we conclude that |Lg, [la.p < | Lg

|p
a?p,

,P

a,p
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Finally, for any f € A%, Fatou’s lemma shows that
ILgf ap = lim [ Lg, fr
r, 1

fr

|a,p lim H( fr |a,p
r/1

f

|a7p. D

|l |p

< lim | Ly, ap < lim | Ly,
r,1 r, 1

4.1. Proof of Theorem From now on we shall use repeatedly the

following elementary fact:

Remark 4.4. If a function ¢ : [0,00) — R satisfies lim,_,o ¢(x) = o0, then
the preimage by ¢ of any bounded set of real numbers is bounded.

We will also need a couple of preliminary results.

Lemma 4.5. Let g € H(D) and let P be a polynomial of degree n > 1. If
P(g) € H®, then g € H®.

Proof. Assume that P(g) € H®, where P(z) = > ,axz" is a polynomial
of degree n = 1. Then

|anllg(2) Z larllg)IF < P9l (2€D),

and so Remark [4.4] completes the proof. O

Lemma 4.6. Let g € H(D) and let P be a polynomial of degree n > 1. If
P(Ty,) € B(AY), then T, € B(AL).

Proof. Assume that P(T,) € B(ARL), where P(2) = Y.}_,axz" is a polyno-
mial of degree n > 1. Then, by Proposition

janl| < [PT)lap (0<r<1).

n—1
Tolap = cnp ) el Ty, lap < 1P(Ty,) o
k=0
Now Proposition shows that [T} [la,p = cnlTy,[n , for some constant
¢, > 0 only dependent on n. Thus ¢(|Ty, |ap) < |P(Ty)|ap, for every
0 < r < 1, where p(z) = cplan|z™ — cnyp ZZ;& lax|z*. Hence Remark
and Proposition end the proof.

Proof of Theorem [1.1]p)} Let be P(z) = amz™ + Q(z), where Q is a
polynomial of degree less than m. Then, by (4.7)
9(0)* P((g0)r) = (Lgg)r = Lg,90 (0 <7 <1)

so, since |Lg, grllap < [|IL (see Proposition [£.3), we obtain the

estimate

|04717 |gr «o,p

= I\Lgygr —9(0)*Q((g0))

m—1
Z I(g0) e S D g
7=0

Therefore Remark implies that supg.,.1[|(90)7*|a,p < 0, and hence
Fatou’s lemma shows that gf* € A%, which means that g™ € A%, (]

19(0)*lam] || (90)7" o

|ovp
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Prior to proving Theorem Eﬂ some definitions and results about the
theory of iterated commutators are needed. Let A, B : H(D) — H(D) be
two linear operators. The commutator of A and B is the linear operator
[A,B] := AB — BA. If C,D : H(D) — H(D) are linear operators which
commute with B then
(4.8) [CAD, B] = C[A, B]D
The iterated commutators |A, Bk, k € N, are defined inductively as follows:

[A, B]; := [A, B] and [A, Blg+1 :=[[A, Blg, B], for keN.

We will use the following formula

(4.9) [4, B, Z < )BJABk I (keN).

Proposition 4.7. Let g € H(D) and k € N, then
(4.10) (S5, Tyl = Ty Ty + 9(0)" (g — 9(0)) do
Proof. By (3.4) and (3.6) we have that S;“Tg = SgpTy = TyMyr, so (3.1)
gives that

STy = TyTyx + TySye + 9(0) Tydo = TyT + TySk + g(0)* go do,
which is just (4.10]). O

Proposition 4.8. Let g € H(D) and k € N, then

_ k P (g— k+j .
(4.11) [=9O 5y, Ty); = (1)) LD 5, (ke N).

Proof. Observe that (4.11)) follows by induction on j from (3.8). Indeed,
(3.8]) directly shows (4.11]) for j = 1:

k k+1
[(go') 00, Tg] = ~T, (( o )do = _((1311)! do-

Moreover, if [( ) 80, Tyl; = (—1)7 (ggij) o holds, then (3.8) gives that
90)

k+j+1
[(go) 50, g]y+1 ( )]+1T (((kﬂ)r )50 ( )J+1(&Olf:1)r do- g
Corollary 4.9. Let g€ H(D) and k € N, then
(4.12) [SE,T,); = iy TISET] - S g(0) (g —9(0)) 60 (1< j < k).

(k— J)'

Moreover,
(413) 85T = -5 00 g -9y % (> k).
Proof. We prove (4.12) by induction on j. For j = 1, (4.12)) is just (4.10)).

Now fix 1 < j < k and assume that
[S§7Tg]j = iy Ty SEIT] — 52 9(0)*(90) b0
Then (4.8) and ) show that
+1 .
[s;f,Tg]jH T TYLSE I, T — s 9(0)F(90)7 ! .




18  A. ALEMAN, C. CASCANTE, J. FABREGA, D. PASCUAS, AND J. A. PELAEZ

Therefore (4.10) implies that

T]-HSk j— 1Tj+1 ( ‘1)1+1 (O)k(go)j—i-l 5o.

(S5, Tylj+1 = Gior 9

(k— J 1)'
Thus (4.12)) is proved. In particular,

CN\E
(S5, Tyl = kLT3 = 5= 9(0)*(g0)* o,

and so, for j > k, (4.11)) implies that

(S5 T]; = —(~D*g O [ 60, 7,15 1 = — X 9(0) (90) 6. O

Proof of Theorem [1.1] !Eﬂ. First of all, we observe that if L is not trivial
and L € B(AY), then g" € Ab, for any k € N. Indeed, Propositions
and [3 n show that there is an strictly increasing sequence {k;} in N such

that L(ggj) = Pj(go), where P; is a polynomial of degree d; > k;. Then
arguing as in the proof of part [b) we obtain that ¢% € A%, and consequently,
g* € AL, for every k € N.

Now we prove part Eﬂ Taking into account Proposition Lemma
and the above observation, we may assume that

Ly = PO(TQ) + Z Sgpk(Tg)

where Py, ..., P, are polynomials, and P, has degree m > 1.
On the other hand, since Py (7}, ) commute with Ty, , (4.8)), (4.12)) and (4.13])
give that

[LgMTgr]n =n! Tg:lpn(Tgr) + Q(U)Qo(gr - 9(0)) 0o
= Qn(Ty,) + 9(0)Qo(gr — g(0)) do,

where @, and Qg are polynomials and @, has degree N = 2n + m > n.
Now (4.9) and Proposition imply that

Zg, Ty Jullow < cnpl Lo lapl T 125 < cnpl Lolal Ty, I
Moreover, |Qo(g: —9(0)) follp < 1 Qu(g0) ol = €' < 0, by Theorem L]

and Proposition On the other hand, if Q,(z) = Zk:() apz", then,
taking into account Proposition we have

N-1

N
|a,p - c?V,p Z |a’k|HTgr|
k=0

k
a,p < HQn(Tg,«) |O<7P‘

enlan||Ty,

Therefore, putting all that together, we get that ¢(||T}, [a,p) < C, where

N-1

SO(JJ) = CN|aN|xN - CIN,p Z |ak’|xk - Cn,p|
k=0

Hence Remark and Proposition conclude the proof. O

Ly|

n
apl -
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4.2. Proof of Theorem In order to give the proof, we need the fol-
lowing well known characterization of compact operators.

Lemma 4.10 ([I12] Lemma 3.7]). Let X and Y be two Banach (or quasi-
Banach) spaces of analytic functions on D, and let T : X — Y be a linear
operator. Suppose that the following conditions are satisfied:

(a) The point evaluation functionals on'Y are bounded.

(b) The closed unit ball of X is a compact subset of H(D), where H(D)
is endowed with the topology of uniform convergence on compacta.

(c) T: X - Y is continuous, where both X and Y are endowed with the
topology of uniform convergence on compacta.

Then T : X — Y 1is a compact operator if and only if for any bounded
sequence {f;} in X such that f; — 0 uniformly on compacta, the sequence
{T'f;} converges to zero in the norm of Y.

It is worth mentioning that conditions @ and @ of the previous lemma
hold when X =Y = A%, and in such a case any g-operator satisfies

Proof of Theorem [1.2][)} If g € H®, then S,,T, € B(A%), by Theo-
rem and Proposition and so L, € B(A%). Conversely, assume
that L, € B(A%L) and apply Proposition to conclude that for r € (0, 1),
we have Ly € B(A%) with |Ly, |ap < |Lgla,p- From

Lgr = Z SnggrPk(Tgr) + Sgrpn+1(sgr) + gT(O)Pn+2(gr - gT(O)) do,
k=0

we see that for fixed r € (0, 1), all operators on the right are compact, except

SonPrt1(Sg,) = Sy, Psi(9) = My, Pusatar) = Lo Pasatg) — 9r Prs1(9r)(0)o-
By Theorem |EI| we conclude that
Lg’r‘ = MgT‘P7L+l(g7‘) + K’

where K € K(Ab) is compact.
Now, for any A € D, we consider the functions

ha(zy = LZRO 7
(1—=Xz) »

Since (1 —Xz)"®"2, X\, z € D, is the Bergman kernel for A2, |hy|a,p = 1, for
any A € D. (Note that for &« = —1 the corresponding Bergman kernel is the
classical Cauchy kernel.) Moreover, it is clear that, for any ¢ € T, hy — 0,
as A — (, uniformly on compacta. So, by Lemma | Khxlap — 0. On
the other hand, note that if G, = g, P,+1(g,) then

IMeally = (@41) [ Bale 0GP dAG) (€D, a> 1),

and

d
il = [ PENIGOF L (e)
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1=\ 2yo+2 1=\ 2
& and P((,\) = 4 are the Poisson-
|1 — \z|2ot4 |1 — X(|?
Bergman (or Berezin) kernel and the classical Poisson kernel, respectively.
Thus, since |G| = |grPn+1(gr)| € C(D), we have that (see, for instance, [9,

Prop. 8.2.7))
>1\1_}H2 HM Tan(gr)h,\Hg,p = |grPn+1(gT)(C) |p (C € T)

where B,(z,\) =

Hence

9P (9) ()" = lim | Lo half < |

ap = IlLg

|P

-
ap )I\I_)HE | a,p’

for all ( € T and 0 < r < 1, which implies that gP,+1(g) € H*, and so
g € H® by Lemma |4 Thus the proof is finished. (]

Proof of Theorem (1 - First of all observe that if L € B(AL) then
Theorem|[L.1]a)| gives that gF € A% for any k € N, s0 g(0) Py11(go) o € B(AR)
and therefore

> SET,Pu(Ty) = L — g(0)Pu1(g0) 60 € B(AR).

k=0
Moreover, if either g"*' € &, if a > —1, or ¢"T' € BMOA, if « = —1, then
Proposition shows that g € AL, and we deduce that g(0)P,+1(g0) do €
B(AY).

Thus, without loss generality, from now on we assume that

n
L= SIT,Py(Ty).
k=0

If ¢" € B when @ > —1, or ¢" € BMOA when a = —1, then, by Proposi-
tion the same holds for g¥, 1 < k < n, and all the operators involved in
the definition of L are bounded, hence so is L.

Conversely, if L = L, is bounded, then by Theorem @ we have that
T, is bounded. Now, by applying Proposition Proposition [2.1] and The-
orem for every 0 < r < 1, we obtain

n—1
|Tynea] < c (ILgr B IPk(TgT)IIITg;mI)

k=1

n—1
k41
< d(g,n,p) <|Lg| + Z |ng+1|”+1> :

where 0 < ¢ = ¢ (g,n p) < o because T, is bounded. Then Remark -
and Proposmon complete the proof.

We will use Proposition [2.1] and the following result in the proof of The-
orem [1.2][c)}
Lemma 4.11. Let g € %, and, for any A € D\{0} and v > 0, let
z

fialz) = m (z € D).

Then:
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a) For any ke N and t € [0,1], we have that

k
Tk i) < HQH@ .
s AN < Sisr— ey

b) If ag,...,an € C and || > ||g| 2, then

" 7k Al lgll
Syt a0 < ol + 5104

Proof. First we prove @ by induction on k. If £k = 1 and s € [0, 1], we use
the estimates

_ sl !
|[fya(sA)] = (1= sA2) < (1 —s[A]2)”

M) < lgls < lgll
NS T S T

to conclude that

1
T, fy (V)] < £ j Fan(st)lg (st0)|ds

L A ds l9lz
< Jglls < A2
|g|,AJ0 (1 — st|AP2)r+1 Ay (1 — ¢|A2)7

If the statement holds for some k > 1 and all ¢ € [0, 1], then, as above,

1
TE )] < O [ T a0 (st ds

loll™ LT lglls
AR Jo (1= stAR)YEL T AR LRI — ¢A2)7
and the result follows. Finally, b)is a straightforward application ofp)] O

Proof of Theorem If gt € A, then ¢F € B, for 1 <k <n+1,
by Proposition and the boundedness of L, follows from the identity
SkT = k+1Tg’“+1 and Theorem

Conversely, assume without loss of generality that P,(0) = n+ 1. If
L, € B(AL) then g € %, by Theorem |l Moreover, Propositionshows
that Ly, € B(AR) and ||Ly, |ap < |Lg Hap, for any 7 € (0,1). Now we write
P,(z) = (n+1)(1 4+ 2Qn(2)), and using again the identity S""T = k+1T k1
we obtain that

n—1

Ly, = Tpsr +T 1Ty, Qn(Ty,) + 2 ﬁTgfﬂP]q(Tgr)—l—gT(O)Q(gr— g,(0)) do.
k=0

For v > and A € D\{0}, we apply L, to the function f, ) from
Lemma Since do(fy,x) = 0, we obtain that

n—1
Ly, fyx= Tg?ﬂf%,\ + Tglw—ngrQn(Tgr)f%)\ + Z %HTngPk(Tgr)f%)\'
k=0
Now we use the standard estimates
calhla, Ca,
|h,()‘)| < = L ) va,)\ |Oc,p < —

(1— AR5

(1— AR5
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where ¢, > 0 and ¢,y > 0 are constants which depend only on «, and «
and -, respectively, and Proposition [4.3] to infer that

[(Lg, fr2) (V)] < W'
Since
(0 ) = GO 00 + 020 25 @l ) )

- k+1 )

Z R ICICRTAN SV

by the triangle inequality we have

Al (V)] n—+ caCayy| Lglap
TA-PP) < (g™ MLy, @n(Ty,) fral (V)] + =R+t

(4.14)

k+1 ()

+Z o O, ) 1,01

We want to estimate the terms on the right with the help of Lemma @
To this end, note that n, @, and Py, for 0 < k < n—1, depend only on L,
so there exists a constant ¢ = ¢(Ly) > 0 depending only on L, such that,
for v|\| > ||g||#, we have that

s
[T, Qn(Ty,) A A1 (V)] < |)\|7(1— A[2)7”

and

) £l < e (s + oo dl2 ) 0<han-,

Using these inequalities in (4.14])) we obtain

n+ n+1y/ CHQH@ Ca
O @Y )] lg]l
) (1 102)

_l’_
¢ k+1 N2

k=0
when || > |lglz. Now if v satisfies v > 8(c + 1)|g]|=, (4.15) gives for
NES

1 +1 2¢aCaqy| Lgla ap 3C 2: | k+1 ()]
n A g ).
2|(gT ey (1—|\?) k:—i—l

Thus, we either have [[gitl| 4 = sup‘)\|<%(1 —IAA)|(gr 1) (N)|, or, by Propo-
sition 2.1 and the last inequality,

n—1

L e
oo ¢ 3, glof 1

This shows that |g"*!| 4 stays bounded when r — 17, i.e. ¢""te %. O

Hg +1H/3 4,
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4.3. Compositions of two analytic paraproducts. Corollary to-
gether with the identities

M} = S2 +28,T, + g°(0) &

MyTy = SyTy, + T

SgMy = SyTy + S2

TyMy =S4T,

TySg = 54Ty — T92 —g(0)(g — g(0)) do

MySg = SgTg — T92 + S; —9(0)(g — g(0))do
yield a complete characterization of compositions of two analytic paraprod-

ucts. A summary for a« > —1 is provided in the following table. The
analogue for the HP-case can be obtained replacing 4 by BMOA.

H Boundedness of composition of analytic paraproducts on A%, a > —1

|

| L, | S |

M,

|

sgeB SgleR

T, Ty € B(AY) & T, € B(AL) | SyT, € B(AL) © T2 € B(AR) | MyT, € B(AL) < T,2 € B(AR)

S gle R

sdteR &S ge H”

Sy | T,8, € B(AL) & T2 € B(AZ) | S2eB(AL) e S, e B(AL) | M,S, € B(A%) < S, € B(AR)

S geH”

sSg’eR SgeH”

My | TyMy € B(AY) & T,2 € B(AR) | SgMy € B(AR) < Sy € B(AR) | M, € B(AR) < My € B(AR)

& ge H”

5. PROOF OF THEOREM [L3]
The following proposition is strongly used in the proof of Theorem

Proposition 5.1. Let g € H(D). Assume that g is bounded away from zero,

that is, inf,ep |g(2)| > 0. Let h be a branch of the logarithm of g, and, for

any B € R, define the B-power of g as g° := " Then:

a) If ge BMOA (g€ VMOA), then g° € BMOA (¢° € VMOA, resp.),
for any B < 1.

b) If g€ BMOA (9 € VMOA), then ,S'QBT;[3 € B(AL) (SgaT;ﬁ e K(AY),
resp.), for any a = —1, B € (0, %), and p > 0.

A key tool in the proof of Proposition is the following simple compu-
tational lemma.

Lemma 5.2. Let g € H(D) be a zero free function, and, for any B € R, let
g? be as in the statement of the preceding proposition. Then

(5.1) SgBT;ﬁ = @ TnglfsMg2B—2+sTgB + % TnglfeMg3B72+a,
for every 5 € R and € € R\{1}.

Proof. The fact that (¢%)% = ¢*? gives that L := Sg/sTgZ = %Tnggg. Thus,
for any f € H(D), we have that
(Lf) = 3 (%) Tysf = Bg'F,  where F = g* ' Tysf.
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Since Lf(0) = 0, it follows that Lf = T,F. Now F(0) = 0 and

=(28-1)g"" g Tsf+Bg" g f
— (glfs)l (218__51 92672+€ Tgﬁf + 17_5 g3ﬂf2+s f);

for any e € R\{1}. Therefore

F:ZB]'TI sMQB 2+¢ gﬁf‘i‘lﬁ Tl EMSB 2+6f,
and hence ([5.1) holds. O

Proof of Proposition
a) Just observe that, since ¢ is bounded away from zero, ¢?~1 is bounded
for B < 1, and so we have the estimate (1 — |2[2)[(¢®)|? < (1 — |2?)|¢'(2)]?.
b) Let g € BMOA (g € VMOA), a = —1, B € (0,2), and p > 0. Since
8 < %, there is € € R such that 0 < ¢ < min(2 — 343, 1). Taking into account
that 5 > 0, it follows that £ € (0,1) and 28 —2+e <38 -2+ <0. As a
consequence, we have that:

o Ty, Ty, Tys € B(AL) (Ty, Ty—<, Tys € K(AR), resp.), by

o Myos-21c, Myss—2+e € B(AG), since g¥B—2te ¢30-2+e ¢ g% hecause g is

g
bounded away from zero.

Moreover, since ¢ < 1, (5.1)) holds, and we conclude that S gTzﬁ € B(A,)

(SggT;ﬁ € K(AL), resp.). Hence the proof is complete. O

We also need the following auxiliary result.
Lemma 5.3. Let f € C(D\{1}) such that
(5.2) lim(1 —2) f(z) = 0.

z—1

zeD

Then du(z) = (1 — |2?)|f(2)|? dA(2) is a vanishing Carleson measure for
HP, 0 <p<o0.

Proof. Let Qs =D n D(1,4), forevery 0 <6 < 1. Let ae D and 0 < § < 1.
Then

1 —af? {J J } 2
(z) = 1 — |pa(z Ff() dA(z) = 15 + Js.
[T ORS § RS N CRUXCIRHCITEIC
Now, by [11], Proposition 1.4.10], we have that

(5.3) k<<$$UVW>LOﬂ%@WMM@
<O 1—]aP) s [fE)P,
zeD\Qs

where C1 > 0 is an absolute constant. Next recall that, since log(1l — z)
is a function in BM OA (where log denotes the principal branch of the

— |22
|1 2[?

logarithm), dui(z) = 5 dA(2) is a Carleson measure for the Hardy
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spaces, and so

(5:4) i< (s =) [ A g

2€Qs

<o sup L5l >|)

zeQ5

where Cy > 0 is an absolute constant. Since f € C(D\{1}), it is clear that
(5.2)), (5.3)), and (5.4)) imply that u is a vanishing Carleson measure for the
Hardy spaces, i.e.

I —lal® (2) =0 0
im | ——— :
la|>1- Jp |1 —az|? N

Proof of Theorem [1.5l

a) Assume the contrary, i.e. SyT, € B(AL), for some @ = —1, p > 0. Then
a standard estimate yields for every f € AL,

(5.5) (ST2FY (] S (1 =) 5,72

lap (r€]0,1)).

The usual test functions f,x(z) = (1 — rz) %, for 2 € D, with r € (0,1),
+2

o = <1—r> 57, and

7p|

kp > o + 2, satisty | frx

|(SQT92fT’k),(r)| T 1 rjo 1-39)(1 —7“8)’7C

\%

1—7“ rjo 1—7‘3”‘74rl

B k(l—r)lOgl_r ((1_T2>k—1),

which contadicts (5.5 when r — 1.
b) If f € B, then

but

and so g% ¢ A, for any 5 > %
Now let us prove that SggT;B € K(4%), for any a = —1 and p > 0. We know

that g € BMOA. Moreover, since z — = maps the half-disc

={zeC:|lz—1<1+& Rez<1
2

onto the domain {z € C : |z| > 2+e, Rez > 0}, it follows that ¢ is bounded

away from zero and g° extends analytically to D~. In particular, (¢%) e
C(D\{1}) and satisfies

lim (1 - 2)(¢°) (=) = flim g* () =0 (B<1).
zeD zeD
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Then Lemma gives that ¢® € VMOA, for every 8 < 1, and Propo-
sition shows that SggT;B € K(AL), for any o = —1, B € (0, 2), and

3

p > 0. U
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