
BOUNDEDNESS OF THE BERGMAN PROJECTION ON
GENERALIZED FOCK-SOBOLEV SPACES ON Cn
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Abstract. In this paper we solve a problem posed by H. Bommier-Hato,

M. Englǐs and E.H. Youssfi in [4] on the boundedness of the Bergman-

type projections in generalized Fock spaces. It will be a consequence of

two facts: a full description of the embeddings between generalized Fock-

Sobolev spaces and a complete characterization of the boundedness of the

above Bergman type projections between weighted Lp-spaces related to gen-

eralized Fock-Sobolev spaces.

1. Introduction

Let dV = dVn be the Lebesgue measure on Cn normalized so that the

measure of the unit ball Bn is 1. If n = 1 we write dA = dV1. Let dσ be the

Lebesgue measure on the unit sphere Sn normalized so that σ(Sn) = 1. We

denote by H = H(Cn) the space of entire functions on Cn.

Let ` > 0. For 1 ≤ p <∞, α > 0 and ρ ∈ R, the space Lp,`α,ρ = Lpα,ρ consists

of all measurable functions f on Cn such that

‖f‖p
Lpα,ρ

:=

∫
Cn

∣∣f(z)(1 + |z|)ρe−
α
2
|z|2`∣∣pdV (z) <∞,

that is, Lpα,ρ = Lp(Cn; (1 + |z|)ρpe−αp2 |z|2`dV (z)).

Moreover, L∞,`α,ρ = L∞α,ρ consists of all measurable functions f on Cn such

that

‖f‖L∞α,ρ = ess sup
z∈Cn

|f(z)|(1 + |z|)ρe−
α
2
|z|2` <∞.

We define the generalized Fock-Sobolev spaces as F p
α,ρ := H ∩ Lpα,ρ.
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When ρ = 0, we obtain the generalized Fock spaces F p
α = F p

α,0. According

to this notation we write Lpα = Lpα,0.

The space L2
α is a Hilbert space with the inner product

〈f, g〉α :=

∫
Cn
f(z)g(z)e−α|z|

2`

dV (z).

and F 2
α is a closed linear subspace of L2

α. Denote by Pα the orthogonal projec-

tion from L2
α to F 2

α, which is usually called the Bergman projection.

In [9, Theorem 9.1] the authors showed that Pα is bounded from Lpβ to F p
γ if

and only if β < 2α and β = γ. In [4] the authors studied the boundedness of Pα
between the spaces Lpb := Lp(Cn; e−b|z|

2`
dV (z)) and Lqd := Lq(Cn; e−d|z|

2`
dV (z)).

Observe that Lpa = Lp2a/p. Since L2
a = L2

a the orthogonal projection Pa from L2
a

onto F2
a := H∩L2

a coincides with Pa. One advantage of considering the spaces

Lpα is that permits us to include the case p = ∞. Their results are given in

terms of a parameter c defined by c := 4d
a2q

(a − b
p
). Rewriting the parameters

as a = α, b = βp/2 and d = γq/2, we have that, in our notations, c = γ 2α−β
α2 .

Then, the main results in [4] on the boundedness of Pα from Lpβ to F q
γ are:

(i) If Pα is bounded, then c ≥ 1.

(ii) If c > 1 then Pα is bounded.

(iii) If c = 1 and ` ≤ 1 then Pα is bounded if and only if q ≥ p.

For c = 1 and ` > 1 the authors only obtain partial results. In particular

they prove that if c = 1 and 2n
2n−1

< ` < 2 then Pα is bounded if and only if

q = p.

The initial motivation of this work was to close the remaining open cases

which will be achieved by proving:

(iv) If c = 1 and ` > 1 then Pα is bounded if and only if q = p.

This result shows that, of the four possible mutually exclusive assertions in

[4, Proposition 17], (a) is the valid option.

Note that if c ≥ 1, then a − b
p
> 0, which in our notation is equivalent

to β < 2α. The latter condition is necessary in order that the ”pointwise

evaluation” of the Bergman projection is bounded on Lpβ (see Lemma 2.12

below).

Our main result is the following theorem for generalized Fock-Sobolev spaces.

Theorem 1.1. Let ` ≥ 1, α, β, γ > 0 and ρ, η ∈ R. For 1 ≤ p, q ≤ ∞, Pα
maps boundedly Lpβ,ρ to Lqγ,η if and only if one of the following conditions holds:

(i) 0 < α2/(2α− β) < γ.
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(ii) α2/(2α− β) = γ, p ≤ q and ρ− η ≥ 2n(`− 1)
(

1
p
− 1

q

)
.

(iii) α2/(2α− β) = γ, q < p and ρ− η > 2n
(

1
q
− 1

p

)
.

In particular for ρ = η we obtain the following generalization of (iv).

Corollary 1.2. Let ` > 1, α, β, γ > 0 and ρ ∈ R. For 1 ≤ p, q ≤ ∞, Pα
maps boundedly Lpβ,ρ to Lqγ,ρ if and only if either 0 < α2/(2α − β) < γ or

α2/(2α− β) = γ and p = q.

Our approach to obtain Theorem 1.1 differs from the one in [4]. Instead of

proving directly the characterizations, we deduce the results as a consequence

of two ingredients: the first is the identity (see Proposition 4.2 below)

(1.1) Pα(Lpβ,ρ) = F p
α2

2α−β ,ρ
(1 ≤ p ≤ ∞, ` ≥ 1, β < 2α, ρ > 0)

and the second one is the following embedding result:

Theorem 1.3. Let ` ≥ 1, β, γ > 0 and ρ, η ∈ R. For 1 ≤ p, q ≤ ∞, the

embedding F p
β,ρ ↪→ F q

γ,η holds if and only if one of the following three conditions

is satisfied:

(i) β < γ.

(ii) β = γ, q ≥ p and 2n(`− 1)
(

1
p
− 1

q

)
≤ ρ− η.

(iii) β = γ, q < p and 2n
(

1
q
− 1

p

)
< ρ− η.

Note that as an immediate consequence of Theorem 1.3 we obtain:

Corollary 1.4.

(i) If ` ≥ 1 and the embedding F p
β,ρ ↪→ F q

β,η holds, then ρ ≥ η.

(ii) For ` = 1, the embedding F p
β,ρ ↪→ F q

β,ρ holds if and only if p ≤ q.

(iii) For ` > 1, the embedding F p
β,ρ ↪→ F q

β,ρ holds if and only if p = q.

The proof of Theorem 1.3 requires of some results which can be of interest

by themselves. For instance, assertions (i) and (ii) follow from precise point-

wise and Lpβ,ρ-norm estimates of the Bergman kernel. As a consequence, we

derive pointwise estimates of the functions in F p
β,ρ and some properties on the

boundedness of the Bergman projection. The most difficult part is the proof

of assertion (iii). In this case, for 1 ≤ q < p < ∞, we use a technique due

to D. Luecking (see [11]), based on Kinchine’s inequality, which permits the

construction of adequate test functions. Then the case 1 ≤ q < p =∞ follows

by extrapolation.
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The paper is organized as follows: In Section 2 we obtain pointwise and

Lpα,ρ-norm estimates of the Bergman kernel, from which the boundedness of

the Bergman projection Pα on Lpα,ρ is deduced. In Sections 3 and 4 we prove

Theorems 1.3 and 1.1 respectively.

Notations: In the next sections we only consider spaces F p,`
α,ρ = F p

α,ρ, with

` ≥ 1, α > 0 and ρ ∈ R. So we omit the conditions on `, α and ρ in the

statement of the results. We denote by p′ the conjugate exponent of p ∈ [1,∞].

Let N be the set of non-negative integer numbers. For a multi-index ν =

(ν1, · · · , νn) ∈ Nn and z = (z1, · · · , zn) ∈ Cn, we write, as usual, zν =

zν11 · · · zνnn , ν! = ν1! · · · νn! and |ν| = ν1 + · · ·+ νn.

For z, w ∈ Cn, zw =
∑n

j=1 zjwj. If z ∈ Cn and r > 0 then B(z, r) is the

open ball in Cn with center z and radius r. When n = 1, B(z, r) is denoted,

as usual, by D(z, r).

If E ⊂ Cn then XE is the characteristic function of E.

If X, Y are normed spaces, the notation X ↪→ Y means that the mapping

f ∈ X 7→ f ∈ Y is bounded.

For λ ∈ C \ {0}, we denote by arg λ the principal branch of the argument

of λ, that is, −π < arg λ ≤ π. Moreover, λβ = |λ|βeiβ arg λ, for β ∈ R.

The letter C will denote a positive constant, which may vary from place to

place. The notation Φ . Ψ means that there exists a constant C > 0, which

does not depend on the involved variables, such that Φ ≤ C Ψ. We write

Φ ' Ψ when Φ . Ψ and Ψ . Φ.

2. The Bergman projection on Lpα,ρ

2.1. On the two-parametric Mittag-Leffler functions Ea,b.

The two-parametric Mittag-Leffler functions are the entire functions

Ea,b(λ) :=
∞∑
k=0

λk

Γ(ak + b)
(λ ∈ C, a, b > 0).

A good general reference for the Mittag-Leffler functions is the book [8].

In this section we recall the asymptotic expansions of the two-parametric

Mittag-Leffler functions and their derivatives. Those expansions will be useful

to obtain pointwise and norm estimates of the Bergman kernel.
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Theorem 2.1 ([13, Theorem 1.2.1]). Let a ∈ (0, 1) and b > 0. Then, for

|λ| → ∞, we have

(2.2) Ea,b(λ) =

{
1
a
λ(1−b)/aeλ

1/a
+O(λ−1), if | arg λ| ≤ aπ,

O(λ−1), if | arg λ| ≥ a2π
3
.

By Cauchy formula (see [12, Theorem 1.4.2]), the asymptotic expansions

of the m-th derivatives of Ea,b (on “smaller” sectors than the ones involved

in (2.2)) can be obtained by differentiating m times the terms in (2.2), that is,

(2.3) E
(m)
a,b (λ) =

 1
a
dm

dλm

(
λ(1−b)/aeλ

1/a
)

+O(λ−1−m), if | arg λ| ≤ a3π
4
,

O(λ−1−m), if | arg λ| ≥ a3π
4
.

2.2. The Bergman kernel.

The next result, which is obtained in [4], gives a description of the Bergman

kernel. The main tool to compute the norm of the monomials in F 2
α is the

identity

Γ(x) =

∫ ∞
0

tx−1e−tdt = 2`γx
∫ ∞

0

s2`x−1e−γs
2`

ds (x > 0, γ > 0).

Lemma 2.2. The system
{

wν

‖wν‖
F2
α

}
ν∈Nn is an orthonormal basis for F 2

α, so the

Bergman projection from L2
α onto F 2

α is

Pαf(z) = 〈f,Kα,z〉α =

∫
Cn
f(w)Kα(ζ, w)e−α|w|

2`

dV (w),

where

Kα(z, w) = Kα,z(w) =
∑
ν∈Nn

zνwν

‖wν‖2
F 2
α

is the Bergman kernel. Namely, since ‖wν‖2
F 2
α

= α−
|ν|+n
`

`

n! ν! Γ( |ν|+n` )
(n−1+|ν|)! , Kα(z, w) =

Hα(zw), where

Hα(λ) :=
`αn/`

n!

∞∑
k=0

(n− 1 + k)!

k!

αk/`λk

Γ
(
k+n
`

) =
`αn/`

n!
E

(n−1)
1/`,1/`(α

1/`λ).

In particular, for any δ > 0 we have

(2.4) Kα(z, δw) = δ−nKαδ`(z, w).

Remark 2.3. In order to obtain norm estimates of the Bergman kernel it

is useful to make the following change of variables. Given z ∈ Cn, there is

a unitary mapping U : Cn → Cn such that U(z) = (|z|, 0, . . . , 0). Then
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Kα(w, z) = Hα(|z|u1), where U(w) = (u1, · · · , un), so we may assume z =

(|z|, 0, · · · , 0).

The remaining part of this section is devoted to derive pointwise and norm

estimates of the Bergman kernel, which will be the key tools to obtain our

main results.

The following corollaries are consequences of (2.3).

Corollary 2.4. Let n be a positive integer. For |λ| → ∞, we have that

E
(n−1)
1/`,1/`(λ) =

{
`nλn(`−1)eλ

`
(1 +O(λ−`)) +O(λ−n), if | arg λ| ≤ 3π

4`
,

O(λ−n), if | arg λ| ≥ 3π
4`
.

Proof. For ` = 1, E1/`,1/`(λ) = eλ so E
(n−1)
1/`,1/`(λ) = eλ, and the above asymptotic

identity is obvious in this case.

Next assume ` > 1. By induction on n it is easy to check that

`
dn−1

dλn−1

(
λ`−1eλ

`)
= `nλn(`−1)eλ

`

(1 +O(λ−`)) (|λ| → ∞, | arg λ| < π/`).

By combining this identity with (2.3) we obtain the result. �

Corollary 2.5. For any δ > 0 and N > 2, let SδN := D(0, δ) ∪ SN , where

SN := {λ ∈ C \ {0} : | arg λ| ≤ π
N`
}.

Then there exist δ > 0 and N > 2 such that

|Hα(λ)| ' (1 + |λ|)n(`−1)
∣∣eαλ`∣∣χSN (λ) + χD(0,δ)(λ) (λ ∈ SδN),(2.5)

|Hα(λ)| . (1 + |λ|)n(`−1) eα cos( π
N

)|λ|` (λ ∈ C \ SδN).(2.6)

In particular,

(2.7) XSN (λ) . |Hα(λ)| . (1 + |λ|)n(`−1) eα|λ|
`

(λ ∈ C).

Proof. Corollary 2.4 shows that there is a large R > 0 so that

|Hα(λ)| ' (1 + |λ|)n(`−1)
∣∣eαλ`∣∣ (|λ| ≥ R, | arg λ| ≤ π

3`
),(2.8)

|Hα(λ)| . (1 + |λ|)n(`−1)e
α
2
|λ|` (|λ| ≥ R, | arg λ| ≥ π

3`
).(2.9)

Since Hα is a continuous positive function on the interval [0,∞), we have that

there exist a small δ > 0 and a large N > 2 such that

(2.10)

|Hα(λ)| ' 1 ' (1 + |λ|)n(`−1)
∣∣eαλ`∣∣χSN (λ) + χD(0,δ)(λ) (λ ∈ SδN , |λ| ≤ R).

Therefore (2.5) directly follows from (2.8) and (2.10). Moreover, (2.6) is de-

duced from (2.8), (2.9) and the fact that Hα is bounded on D(0, R). �
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As an immediate consequence of the above results we obtain the following

pointwise estimate for the Bergman kernel.

Proposition 2.6. There exist δ > 0 and N > 2 such that

|Kα(w, z)| ' (1 + |zw|)n(`−1) eαRe((zw)`) (zw ∈ SδN),

|Kα(w, z)| . (1 + |zw|)n(`−1) eα cos( π
N

)|zw|` (zw ∈ C \ SδN).

Now we state norm estimates for the Bergman kernel.

Proposition 2.7. Let 1 ≤ p ≤ ∞. Then

‖Kα(·, z)‖F pα,ρ ' (1 + |z|)ρ+2n(`−1)/p′e
α
2
|z|2` (z ∈ Cn).

This estimate for 1 ≤ p <∞ and ρ = 0 is stated without a detailed proof in

[4, Section 8.1]. Since this norm estimate of the Bergman kernel is essential in

order to obtain our main theorems and it is deduced from several non-trivial

technical results, we include its proof. The main tool is the pointwise estimate

of Hα given in Corollary 2.5, but we also need the following three technical

lemmas.

Lemma 2.8. Let α > 0 and let β ∈ R. Then

sup
x≥0

(1 + x)βe−α(x−a)2 ' (1 + a)β (a ≥ 0).

Proof. It is clear that the supremum is greater or equal than (1 + a)β. The

converse estimate for a large enough, say a > R, follows by checking that

α(x− a)2−β log(1 +x) attains its minimum value at x = a+O(1/a). Finally,

for a ∈ [0, R] the result is also immediate. �

Lemma 2.9. Let a > 0 and let b ∈ R. Then∫
Cn−1

(1 + y + |w|)be−a(y2+|w|2)`dVn−1(w) ' (1 + y)b−2(n−1)(`−1)e−a y
2`

(y ≥ 0).

Proof. It is clear that the estimate of the statement holds for 0 ≤ y ≤ 1. Thus,

by integration in polar coordinates, we only have to prove that

I(y) :=

∫ ∞
0

(y + r)be−a(y2+r2)` r2n−3dr ' yb−2(n−1)(`−1)e−a y
2`

(y ≥ 1).

The change of variables r = yt shows that I(y) ' yb+2(n−1) e−ay
2`
J(y), where

J(y) :=

∫ ∞
0

(1 + t)be−ay
2`((1+t2)`−1) t2n−3dt.



8 CARME CASCANTE, JOAN FÀBREGA, AND DANIEL PASCUAS

We obtain the lower estimate for I(y) by considering the root ty > 0 of the

equation y2`((1 + t2)` − 1) = 1, that is,

ty =
(
(1 + y−2`)1/` − 1

)1/2 ' y−`,

and observing that

J(y) ≥
∫ ty

0

(1 + t)be−ay
2`((1+t2)`−1) t2n−3dt '

∫ ty

0

t2n−3dt ' y−2(n−1)`.

In order to get the upper estimate, note that if ` ≥ 1 then (1+ t2)`−1 ≥ `t2,

and so

J(y) ≤
∫ ∞

0

(1 + t)be−a`y
2`t2 t2n−3dt ≤ 2max(b,0)(J1(y) + J2(y)),

where

J1(y) :=

∫ 1

0

e−a`y
2`t2 t2n−3dt and J2(y) :=

∫ ∞
1

e−a`y
2`t2 t2n−3+bdt.

By making the change of variables s = y`t, we have that

J1(y) = y−2(n−1)`

∫ y`

0

e−a`s
2

s2n−3 ds . y−2(n−1)` and

J2(y) = y−(2n−2+b)`

∫ ∞
y`

e−a`s
2

s2n−3+bds . y−(2n−2+b)`

∫ ∞
y`

e−a`sds . y−2(n−1)`,

which ends the proof. �

Lemma 2.10. Let a > 0 and let b ∈ R. Then

I(z) = Ia,b(z) :=

∫
C

e−a|v−z|
2

(1 + |v|)b
dA(v) ' 1

(1 + |z|)b
(z ∈ C)

and

J(z) = Ja,b(z) :=

∫
C

e−a(|v|−|z|)2

(1 + |v|)b
dA(v) ' 1

(1 + |z|)b−1
(z ∈ C).

Proof. Since Ia,b(z) ' I1,b(za
1/2) and Ja,b(z) ' I1,b(za

1/2), we may assume that

a = 1. Moreover, I(z) ' 1 ' J(z), when |z| ≤ 1, so we only have to prove

the estimates for |z| ≥ 1. In this case we split each of the above integrals

into the corresponding three integrals on the sets S1 = {v ∈ C : |v| < |z|/2},
S2 = {v ∈ C : |z|/2 ≤ |v| ≤ 2|z|} and S3 = {v ∈ C : |v| > 2|z|}, that is,

I(z) = I1(z) + I2(z) + I3(z) and J(z) = J1(z) + J2(z) + J3(z), where

Ik(z) :=

∫
Sk

e−|v−z|
2

(1 + |v|)b
dA(v) and Jk(z) :=

∫
Sk

e−(|v|−|z|)2

(1 + |v|)b
dA(v).
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If v ∈ S1 then |v − z| ≥ |z| − |v| > |z|/2. Thus

I1(z) ≤ J1(z) . e−|z|
2/4

∫ |z|/2
0

r dr

(1 + r)b
. e−|z|

2/4(1 + |z|)|b|+2 .
1

(1 + |z|)b
.

If v ∈ S2 then (1 + |z|)/2 ≤ 1 + |v| ≤ 2(1 + |z|). Therefore

I2(z) ' 1

(1 + |z|)b

∫
S2

e−|v−z|
2

dA(v) and J2(z) ' 1

(1 + |z|)b

∫
S2

e−(|v|−|z|)2dA(v).

Since D(z, 1/2) ⊂ S2, we have

0 <

∫
D(0,1/2)

e−|w|
2

dA(w) ≤
∫
S2

e−|v−z|
2

dA(v) ≤
∫
C
e−|w|

2

dA(w) <∞,

and so I2(z) ' (1 + |z|)−b. On the other hand, J2(z) ' (1 + |z|)1−b because∫
S2

e−(|v|−|z|)2dA(v) '
∫ 2|z|

|z|/2
e−(r−|z|)2r dr ' |z|

∫ |z|
−|z|/2

e−t
2

dt ' |z|.

If v ∈ S3 then |v − z| ≥ |v| − |z| > |v|/2, and hence

I3(z) ≤ J3(z) .
∫ ∞

2|z|

re−r
2/4

(1 + r)b
dr ≤ e−|z|

2/2

∫ ∞
0

re−r
2/8

(1 + r)b
dr .

1

(1 + |z|)b
. �

Proof of Proposition 2.7. Let p =∞. Then the lower estimate follows from (2.5):

‖Kα(·, z)‖F∞α,ρ ≥Kα(z, z) (1 + |z|)ρ e−
α
2
|z|2` = Hα(|z|2) (1 + |z|)ρ e−

α
2
|z|2`

& (1 + |z|2)n(`−1) (1 + |z|)ρ e
α
2
|z|2` ' (1 + |z|)ρ+2n(`−1) e

α
2
|z|2` .

In order to obtain the upper estimate, first note that (2.7) and the Cauchy-

Schwarz inequality (that is, |zw| ≤ |z||w|, for any z, w ∈ Cn) show that

|Kα(w, z)| = |Hα(zw)| . (1 + |zw|)n(`−1) eα|zw|
`

. (1 + |z|)n(`−1)(1 + |w|)n(`−1) eα|z|
`|w|` .

Therefore ‖Kα(·, z)‖F∞α,ρ . (1 + |z|)n(`−1) e
α
2
|z|2`M(|z|), where

M(|z|) = sup
w∈C

(1 + |w|)ρ+n(`−1)e−
α
2

(|w|`−|z|`)2 ' sup
x≥0

(1 + x)
ρ+n(`−1)

` e−
α
2

(x−|z|`)2 .

Since, by Lemma 2.8, M(|z|) ' (1 + |z|`)
ρ+n(`−1)

` ' (1 + |z|)ρ+n(`−1), we have

just proved the upper estimate in this case.

Now assume that p <∞. By making the change of variables u = Uw, where

U : Cn → Cn is a unitary mapping such that U(z) = (|z|, 0 . . . , 0), we get that

‖Kα(·, z)‖p
F pα,ρ
'
∫
C
|Hα(|z|u1)|p Ψ(u1) dA(u1),
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where

Ψ(u1) :=

∫
Cn−1

(1 + |u1|+ |u′|)ρp e−
αp
2

(|u1|2+|u′|2)` dVn−1(u′).

Then Lemma 2.9 implies that

‖Kα(·, z)‖p
F pα,ρ

'
∫
C
|Hα(|z|u1)|p (1 + |u1|)ρp−2(n−1)(`−1) e−

αp
2
|u1|2` dA(u1).

(2.11)

Now pick N > 2 satisfying the statement of Corollary 2.5. Then note that (2.7)

implies

XSN (u1) . |Hα(|z|u1)|p . (1 + |u1|)np(`−1)eαp2
`|u1|` (|z| ≤ 2, u1 ∈ C).

Thus (2.11) shows that

‖Kα(·, z)‖p
F pα,ρ
' 1 ' (1 + |z|)ρ+2n(`−1)/p′e

α
2
|z|2` (|z| ≤ 2),

so we only have to prove the norm estimate for |z| > 2. In order to do

that, we split the integral in (2.11) as the sum of the three integrals I1(|z|),
I2(|z|) and I3(|z|) on the sets E1 = {u1 ∈ C : |u1| > 1, | arg u1| ≤ π/(N`)},
E2 = {u1 ∈ C : |u1| > 1, | arg u1| > π/(N`)} and E3 = {u1 ∈ C : |u1| ≤ 1},
respectively.

To estimate I1(|z|) recall that (2.5) gives

|Hα(|z|u1)|p ' (|z||u1|)np(`−1)eαp|z|
` Reu`1 (u1 ∈ E1, |z| > 2),

so

I1(|z|) ' |z|np(`−1)e
αp
2
|z|2`
∫
E1

|u1|np(`−1)+ρp−2(n−1)(`−1)e−
αp
2
|u`1−|z|`|2dA(u1).

By making the change of variables v = u`1 we have that

I1(|z|) ' |z|np(`−1)e
αp
2
|z|2`
∫
{|v|≥1,| arg v|≤π/N}

|v|βe−
αp
2
|v−|z|`|2dA(v),

where β := (n(`− 1)(p− 2) + ρp)/`. Since for |z| > 2 we have the inclusions

D(|z|`, sin(π/N)) ⊂ {v ∈ C : |v| > 1} ∩D(|z|`, |z|` sin(π/N))

⊂ {v ∈ C : |v| > 1, | arg v| ≤ π/N},

the preceding integral I ′1(|z|) satisfies

I ′1(|z|) ≥
∫
D(|z|`,sin(π/N))

|v|βe−
αp
2
|v−|z|`|2dA(v) ' |z|β`.
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Moreover, Lemma 2.10 shows that I ′1(|z|) . Iαp/2,−β(|z|`) ' |z|β`. It follows

that I ′1(|z|) ' |z|β` = |z|n(`−1)(p−2)+ρp, and hence

(2.12) I1(|z|) ' |z|np(`−1)e
αp
2
|z|2`I ′1(|z|) ' (1 + |z|)2n(`−1)(p−1)+ρp e

αp
2
|z|2` .

Now we estimate I2(|z|). By (2.6),

|Hα(|z|u1)|p . (|z||u1|)np(`−1)eαp cos( π
N

) |z|`|u1|` (u1 ∈ E2, |z| > 2),

so I2(|z|) . |z|np(`−1)e
αp
2

cos2( π
N

) |z|2`I ′2(|z|), where

I ′2(|z|) :=

∫
E2

|u1|np(`−1)+ρp−2(n−1)(`−1)e−
αp
2
{|u1|`−|z|` cos( π

N
)}2dA(u1)

'
∫ ∞

1

r1+np(`−1)+ρp−2(n−1)(`−1)e−
αp
2
{r`−|z|` cos( π

N
)}2dr.

Then we make the change of variables t = r` to get that

I ′2(|z|) '
∫ ∞

1

tβ+1e−
αp
2
{t−|z|` cos( π

N
)}2dt,

so Lemma 2.10 shows that I ′2(|z|) . Jαp
2
,−β(|z|` cos( π

N
)) ' |z|β`+`. Hence

(2.13) I2(|z|) . |z|np(`−1)+β`+`e
αp
2

cos2( π
N

) |z|2` . (1 + |z|)2n(`−1)(p−1)+ρp e
αp
2
|z|2` .

Finally, since by (2.7) we have that

|Hα(|z|u1)|p . (1 + |z|)np(`−1)eαp|z|
`

(u1 ∈ E3, |z| > 2),

we obtain that

(2.14) I3(|z|) . (1 + |z|)n(`−1)eα|z|
`

. (1 + |z|)2n(`−1)(p−1)+ρpe
αp
2
|z|2` .

Taking into account (2.12), (2.13) and (2.14), we conclude that

‖Kα(·, z)‖p
F pα,ρ
' (1 + |z|)2n(`−1)(p−1)+ρpe

αp
2
|z|2` (|z| > 2),

which ends the proof. �

Corollary 2.11. Let 1 ≤ p ≤ ∞. Then

‖Kα(·, z)‖F pβ,ρ ' (1 + |z|)ρ+2n(`−1)/p′e
α2

2β
|z|2` (z ∈ Cn).

Proof. Since Kα(δz, w) = δ−nKδ`α(z, w), for δ = (β/α)1/`, we have

‖Kα(·, z)‖F pβ,ρ ' ‖Kβ(·, z/δ)‖F pβ,ρ
' (1 + |z|/δ)ρ+2n(`−1)/p′e

β
2
|z/δ|2`

' (1 + |z|)ρ+2n(`−1)/p′e
α2

2β
|z|2` .

This ends the proof. �
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2.3. The Bergman projection.

The next lemma shows that the Bergman projection Pα is pointwise well-

defined on Lpβ,ρ if and only if β < 2α.

Lemma 2.12. Let ζ ∈ Cn and assume 1 ≤ p ≤ ∞.

(i) If for ζ 6= 0 the linear functional Uζ : L2
α → C, defined by Uζ(f) =

Pα(f)(ζ), is bounded on the normed space (L2
α ∩ L

p
β,ρ, ‖ · ‖Lpβ,ρ) then

β < 2α.

(ii) Conversely, if β < 2α then Uζ : Lpβ,ρ → C, defined by

Uζ(f) =

∫
Cn
f(w)Kα(ζ, w)e−α|w|

2`

dV (w),

is bounded and

‖Uζ‖ . (1 + |ζ|)−ρ+2n(`−1)/pe
1
2

α2

2α−β |ζ|
2`

.

Proof. Assume that Uζ is bounded on (L2
α ∩ L

p
β,ρ, ‖ · ‖Lpβ,ρ). Then, by Hahn-

Banach theorem’s, Uζ extends to a bounded operator on Lpβ,ρ, which we also

denote by Uζ .

Let ν be a multi-index. It is clear that the function

(2.15) f(z) :=
zν

(1 + |z|)|ν|+ρ+2n+1
e
β
2
|z|2`

belongs to Lpβ,ρ. Let XR be the characteristic function of the open ball BR

centered at 0 with radius R. Then the function fR = XR · f is in L2
α∩L

p
β,ρ and

‖fR − f‖F pβ,ρ → 0 as R→∞. Since

Kα,z(w) =
∑
µ∈Nn

wµzµ

‖wµ‖2
F 2
α

,

where the series converges in L2
α,

Pα(fR)(z) = 〈fR, Kα,z〉α =
∑
µ∈Nn

zµ

‖wµ‖2
F 2
α

〈fR, wµ〉α.

By integration in polar coordinates we have 〈fR, wµ〉`α = δµ,νcν(R), where

cν(R) :=

∫
BR

|wν |2

(1 + |w|)|ν|+ρ+2n+1
e(β

2
−α)|w|2` dV (w).

Thus Uζ(fR) = Pα(fR)(ζ) = cν(R) ζν/‖wν‖2
F 2
α
. So, by the hypothesis and the

monotone convergence theorem,

Uζ(f) = lim
R→∞

Uζ(fR) =
ζν

‖wν‖2
F 2
α

∫
Cn

|wν |2

(1 + |w|)|ν|+ρ+2n+1
e(β

2
−α)|w|2` dV (w).
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It follows that for any ν such that ζν 6= 0 we have that the above integral is

finite. Choosing ν such that |ν| ≥ 1 + ρ we obtain that β < 2α.

Next assume β < 2α. Let Fζ(w) := G(w)Hζ(w), where

G(w) := |f(w)|(1 + |w|)ρe−
β
2
|w|2` and

Hζ(w) := |Kα(ζ, w)|(1 + |w|)−ρe−(α−β
2

)|w|2` .

Since ‖G‖Lp = ‖f‖Lpβ,ρ , we obtain

|Uζ(f)| ≤ ‖Fζ‖L1 ≤ ‖Kα(·, ζ)‖
Lp
′

2α−β,−ρ
‖f‖Lpβ,ρ .

Hence Corollary 2.11 ends the proof. �

Remark 2.13. From the pointwise estimate of |Kα(z, w)| with zw ∈ SδN , given

in Proposition 2.6, it is easy to check that if β ≥ 2α and f is the function

defined in (2.15) with ν = 0, then Fζ /∈ L1. So Uζ(f) is not well defined.

Corollary 2.14. Let 1 ≤ p <∞. Then

F p
α,ρ ↪→ F∞α,ρ−2n(`−1)/p,

that is,

|f(z)| . ‖f‖F pα,ρ(1 + |z|)−ρ+(2n(`−1))/peα|z|
2`/2 (f ∈ F p

α,ρ, z ∈ Cn).

Lemma 2.15. Let 1 ≤ p ≤ ∞ and let β < 2α. Then PαL
p
β,ρ ⊂ H(Cn), and

Pαf = f , for every f ∈ F p
β,ρ.

Proof. By Proposition 2.6, if R > 0 there is C > 0 such that |Kα(z, w)| ≤ C |w|
`
,

for every |z| < R and w ∈ Cn. Then it follows that PαL
p
β,ρ ⊂ H(Cn).

Let f ∈ F p
β,ρ. In order to prove that Pαf = f it is enough to check that Pαf

and f share the same Taylor coefficients, that is,

∫
Sn
Pαf(ζ)ζ

γ
dσ(ζ) =

∫
Sn
f(ζ)ζ

γ
dσ(ζ) (γ ∈ Nn).
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Indeed, if f(z) =
∑

γ fγz
γ is the Taylor expansion of f , then, by Fubini’s

theorem and Lemma 2.2,∫
Sn
Pαf(ζ)ζ

γ
dσ(ζ) =

∫
Sn

∫
Cn
f(w)Kα(ζ, w)e−α|w|

2`

dV (w)ζ
γ
dσ(ζ)

=

∫
Cn

f(w)wγ‖ζγ‖2
L2(Sn)

‖wγ‖2
F 2
α

e−α|w|
2`

dV (w)

= fγ
‖ζγ‖2

L2(Sn)

‖wγ‖2
F 2
α

∫
Cn
|wγ|2e−α|w|2`dV (w)

=

∫
Sn
f(ζ)ζ

γ
dσ(ζ). �

Proposition 2.16. For 1 ≤ p ≤ ∞ the Bergman operator Pα is a bounded

projection from Lpα,ρ onto F p
α,ρ.

Proof. By Lemma 2.15 we only have to prove that Pα is bounded on Lpα,ρ.

First we consider the case 1 < p <∞. By Proposition 2.7, the function

Ωα(z, w) := e−
α
2
|z|2` |Kα(z, w)|e−

α
2
|w|2`

satisfies

(2.16)

∫
Cn

Ωα(z, w)(1 + |w|)cdV (w) ' e−
α
2
|z|2`‖Kα(·, z)‖L1

α,c
' (1 + |z|)c.

If ϕ ∈ Lpα,ρ, then Hölder’s inequality and (2.16) with c = 0 give

e−
pα
2
|z|2` |Pα(ϕ)(z)|p ≤

(∫
Cn
|ϕ(w)|e−

α
2
|w|2`Ωα(z, w)dV (w)

)p
.
∫
Cn
|ϕ(w)|pe−

pα
2
|w|2`Ωα(z, w)dV (w).

(2.17)

So Fubini’s theorem and (2.16) with c = ρ p imply ‖Pα(ϕ)‖Lpα,ρ . ‖ϕ‖Lpα,ρ .
If p = 1 then (2.17) is obvious and, as in the above case, we obtain the

result.

If p =∞ then

(1 + |z|)ρe−
α
2
|z|2`|Pα(ϕ)(z)| . ‖ϕ‖L∞α,ρ(1 + |z|)ρ

∫
Cn

Ωα(z, w)

(1 + |w|)ρ
dV (w).

So (2.16) shows that ‖Pα(ϕ)‖L∞α,ρ . ‖ϕ‖L∞α,ρ . �

Corollary 2.17. Let 1 ≤ p < ∞. Then the dual of F p
α,ρ, with respect to the

pairing 〈·, ·〉α, is F p′

α,−ρ.
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Proof. From the classical Lp-duality it is easy to check that the dual of Lpα,ρ,

with respect to the pairing 〈·, ·〉`α, is Lp
′

α,−ρ. This result together with Proposi-

tion 2.16 prove the corollary. �

3. Proof of Theorem 1.3

The case ` = 1 and ρ = η = 0 is well known (see [9]). For n = 1, the theorem

can be deduced from the characterization of Carleson measures obtained in [6,

Theorem 1].

3.1. Necessary conditions for all p and q.

Lemma 3.1. If F p
β,ρ ↪→ F q

γ,η, then either β < γ or β = γ and

2n(`− 1)
(

1
p
− 1

q

)
≤ ρ− η.

Proof. By Corollary 2.11 the ratio

‖Kα(·, z)‖F qγ,η
‖Kα(·, z)‖F pβ,ρ

' (1 + |z|)η+2n(`−1)/q′e
α2

2γ
|z|2`

(1 + |z|)ρ+2n(`−1)/p′e
α2

2β
|z|2`

is bounded if and only if β, γ, ρ and η satisfy the above conditions. �

3.2. Proof of Theorem 1.3 for 1 ≤ p ≤ q ≤ ∞.

The next lemma shows that the necessary conditions obtained in the above

section are also sufficient, which proves Theorem 1.3 for 1 ≤ p ≤ q ≤ ∞.

Lemma 3.2. If either β < γ or β = γ and

2n(`− 1)
(

1
p
− 1

q

)
≤ ρ− η,

then F p
β,ρ ↪→ F q

γ,η, provided that 1 ≤ p ≤ q ≤ ∞.

Proof. If p = q then η ≤ ρ. Hence (1 + |z|)ηe− γ2 |z|2` . (1 + |z|)ρe−β2 |z|2` which

proves the embedding F p
β,ρ ↪→ F p

γ,η.

The case p < q =∞ is a consequence of Corollary 2.14 and the case p = q.

Indeed, F p
β,ρ ↪→ F∞β,ρ−2n(`−1)/p ↪→ F∞γ,η.

Assume 1 ≤ p < q < ∞ and let f ∈ F p
β,ρ. Consider F the function defined

by

F (z) := |f(z)|(1 + |z|)ηe−
γ
2
|z|2` = G(z)p/qH(z)(q−p)/q,

where

G(z) := |f(z)|(1 + |z|)ρe−
β
2
|z|2`

and

H(z) := |f(z)|(1 + |z|)
ηq−ρp
q−p e−

γq−βp
2(q−p) |z|

2`

.
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By Corollary 2.14 and the hypotheses on ρ and η, we have

|H(z)| . ‖f‖F pβ,ρ(1 + |z|)
ηq−ρp
q−p −ρ+

2n(`−1)
p e

(
− γq−βp

2(q−p)+β
2

)
|z|2`

= ‖f‖F pβ,ρ(1 + |z|)(η−ρ) q
q−p+

2n(`−1)
p e−

(γ−β)q
2(q−p) |z|

2`

. ‖f‖F pβ,ρ .

Hence

‖f‖q
F qγ,η

= ‖F‖qLq . ‖f‖
q−p
F pβ,ρ
‖G‖pLp = ‖f‖q

F pβ,ρ
. �

Observe that, for 1 ≤ p ≤ q ≤ ∞, by Lemmas 3.1 and 3.2, the fact that the

embedding F p
β,ρ ↪→ F q

γ,η holds is only a question of growth, that is, F p
β,ρ ↪→ F q

γ,η

if and only if F∞β,ρ−2n(`−1)/p ↪→ F∞γ,η−2n(`−1)/q.

3.3. Sufficient conditions for 1 ≤ q < p ≤ ∞.

Lemma 3.3. If either β < γ or β = γ and 2n
(

1
q
− 1

p

)
< ρ− η, then we have

F p
β,ρ ↪→ F q

γ,η, provided that 1 ≤ q < p ≤ ∞.

Proof. Let f ∈ F p
β,ρ. Assume first p = ∞. In this case q(ρ − η) > 2n, so the

hypotheses on the parameters give

‖f‖q
F qγ,η

=

∫
Cn
|f(z)|q(1 + |z|)ηqe−

γq
2
|z|2`dV (z)

. ‖f‖qF∞β,ρ

∫
Cn

(1 + |z|)−(ρ−η)qe−
(γ−β)q

2
|z|2`dV (z) . ‖f‖qF∞β,ρ .

Next assume p finite. In this case (ρ− η) pq
p−q > 2n. Consider the function

F (z) := |f(z)|(1 + |z|)ηe−
γ
2
|z|2` = G(z)H(z),

where

G(z) := |f(z)|(1 + |z|)ρe−
β
2
|z|2` and H(z) := (1 + |z|)(η−ρ)e−

γ−β
2
|z|2` .

By Hölder’s inequality with exponent p/q > 1 we have

‖f‖F qγ,η = ‖F‖Lq ≤ ‖G‖Lp‖H‖Lpq/(p−q)

= ‖f‖F pβ,ρ

(∫
Cn

(1 + |z|)−(ρ−η) pq
p−q e−

γ−β
2

pq
p−q |z|

2`

dV (z)

) p−q
pq

.

Therefore ‖f‖F qγ,η . ‖f‖F pβ,ρ . �
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3.4. Necessary conditions for 1 ≤ q < p <∞ and β = γ.

Proposition 3.4. If 1 ≤ q < p <∞ and F p
β,ρ ↪→ F q

β,η then 2n
(

1
q
− 1

p

)
< ρ−η.

The proof of Proposition 3.4 follows from the ideas in [11]. We need some

technical results.

For r > 0, let τr : C→ (0,∞) be the function defined by

(3.18) τr(z) := r(1 + |z|)1−`

and let Br(z) := B(z, τr(z)).

Note that τr is a radius function in the sense of [7, p.1617-1618], that is,

(3.19) 1 + |z| ' 1 + |w| (z ∈ Cn, w ∈ Br(z)).

Then we have:

Lemma 3.5 ([7, Proposition 7]). For any r > 0 there exists a sequence {zk}
in Cn such that the Euclidean balls Bk := Br(zk) satisfy:

(i) ∪kBk = Cn.

(ii) The overlapping of the balls Bk is finite, that is, there exists Nr ∈ N
such that

∑
k XBk(z) ≤ Nr for any z ∈ Cn.

The following lemma states a subharmonic type estimate.

Lemma 3.6.

(i) There exists r > 0 such that

|Kα(z, w)|e−
α
2
|w|2`e−

α
2
|z|2` ' (1 + |z|)2n(`−1) (w ∈ Br(z)).

(ii) Let 1 ≤ p < ∞, ρ ∈ R and r > 0. There exists C = Cα,p,ρ,r > 0 such

that

|f(z)|p(1 + |z|)ρp−2n(`−1)e−
αp
2
|z|2` ≤ C

∫
Br(z)

|f(w)|p(1 + |w|)ρpe−
αp
2
|w|2` dV (w),

for any f ∈ H(Cn) and any z ∈ Cn.

Proof. We begin proving (i). By Remark 2.3, we may assume that z =

(|z|, 0, · · · , 0). Then we have to prove that

(3.20) |Hα(|z|w1)|e−
α
2
|w|2`e−

α
2
|z|2` ' (1 + |z|)2n(`−1) (w ∈ Br(z)).

By Corollary 2.5, there exist δ > 0 and N > 2 satisfying (2.5). For r > 0

small enough we have |z|w1 ∈ SδN , for any z ∈ Cn and w ∈ Br(z). By (2.5),

(3.21) |Hα(|z|w1)| ' (1 + |z||w1|)n(`−1)eα|z|
` Rew`1 (w ∈ Br(z)).



18 CARME CASCANTE, JOAN FÀBREGA, AND DANIEL PASCUAS

In particular for |z| ≤ 2r the terms in (3.20) are comparable to a positive

constant and there is nothing to prove.

Now assume |z| > 2r. In this case, |w1| ' |z| for w ∈ Br(z). Hence, by

(3.21), the equivalence (3.20) will be a consequence of

(3.22) eα|z|
` Rew`1e−

α
2
|w|2`e−

α
2
|z|2` ' 1 (w ∈ Br(z)).

First note that

eα|z|
` Rew`1e−

α
2
|w|2`e−

α
2
|z|2` = eα|z|

` Rew`1e−
α
2

(|w1|2+|w′|2)`e−
α
2
|z|2`

= e−
α
2
||z|`−w`1|2e−

α
2

[(|w1|2+|w′|2)`−|w1|2`].

By mean value theorem, for w ∈ Br(z) we have

0 ≤ ||z|` − w`1| . (|z|+ r(1 + |z|)1−`)`−1(1 + |z|)1−` ' 1

and

(|w1|2 + |w′|2)` − |w1|2` . (|w1|2 + |w′|2)`−1|w′|2 . |z|2(`−1)(1 + |z|)2(1−`) ' 1,

we obtain (3.22).

In order to prove part (ii), note that, by (3.19), the case ρ 6= 0 follows from

the result for ρ = 0. This last case can be deduced using the arguments in the

proofs of Proposition 12 and of Lemma 13 in [7].

Let ϕ be a real C2-function on the closed unit ball B(0, 1) of Cn. It is well

known (see for instance [1]) that there exists a real C2-function ψ on B(0, 1)

such that

∂∂ψ = ∂∂ϕ and ‖ψ‖L∞(B(0,1)) ≤ C‖∂∂ϕ‖L∞(B(0,1)).

By rescaling, we get that if ϕ is a real C2-function on the closed ball B(z,R),

then there is a real C2-function ψ on B(z,R) such that

∂∂ψ = ∂∂ϕ and ‖ψ‖L∞(B(z,R)) ≤ CR2‖∂∂ϕ‖L∞(B(z,R)).

Applying this result to the function ϕ(w) = |w|2` and to the ball Br(z) there

exists a real C2-function ψz on Br(z) such that ∂∂ψz = ∂∂ϕ and, by (3.19),

‖ψz‖L∞(Br(z)) ≤ Cr2(1 + |z|)2(1−`) sup
w∈Br(z)

|w|2(`−1) ≤ C ′ r2.
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Since ψz − ϕ is a pluriharmonic function on Br(z), it is the real part of a

holomorphic function hz on Br(z). Thus we have

|f(z)|pe−
αp
2
|z|2` ' |f(z)e

α
2
hz(z)|p ≤ 1

|Br(z)|

∫
Br(z)

|f(w)e
α
2
hz(w)|p dV (w)

' (1 + |z|)2n(`−1)

∫
Br(z)

|f(w)|pe−
αp
2
|z|2`dV (w). �

Lemma 3.7. Let {zk} be a sequence satisfying the properties in Lemma 3.5.

Then, for 1 ≤ p <∞ the map

{ck} 7−→ Φ({ck})(z) :=
∑
k

ck
Kβ(z, zk)

‖Kβ(z, zk)‖F pβ,ρ
is bounded from the sequence space `p to F p

β,ρ.

Proof. For p = 1 the result is clear. Assume p > 1. By Corollary 2.17, the

dual of the space F p′

β,−ρ with respect to the pairing 〈·, ·〉β is F p
β,ρ. Since the

overlapping of the balls Bk is finite, Proposition 2.7 and Lemma 3.6(ii) show

that the map

g 7−→ Tp′(g) :=
{
g(zk)/‖Kβ(z, zk)‖F pβ,ρ

}
is bounded from F p′

β,−ρ to `p
′
. Indeed,

‖Tp′(g)‖p
′

`p′
'
∑
k

|g(zk)|p
′
(1 + |zk|)−ρp

′−2n(`−1)e−
β
2
|zk|2`

.
∑
k

∫
Br(zk)

|g(z)|p′(1 + |z|)−ρp′e−
β
2
|z|2`dV (z) ' ‖g‖p

′

F p
′

β,−ρ

So the adjoint map T ∗p′ of Tp′ , with respect to the pairing 〈·, ·〉β, is bounded

from `p to F p
β,ρ. We are going to show that T ∗p′ = Φ. For {ck} ∈ coo (the space

of sequences with a finite number of non-zero terms) and g ∈ F p′

β,−ρ we have

〈T ∗p′{ck}, g〉β = 〈{ck}, g(zk)/‖Kβ(z, zk)‖F pβ,ρ〉`2

=
〈∑

k

ckKβ(z, zk)/‖Kβ(z, zk)‖F pβ,ρ , g
〉
β
,

since g(zk) =
∫
Cn g(z)Kβ(zk, z)e

−β
2
|z|2`dV (z). Therefore

T ∗p′{ck} =
∑
k

ck
Kβ(z, zk)

‖Kβ(z, zk)‖F pβ,ρ
({ck} ∈ coo).

Since coo is dense in `p we conclude that T ∗p′ = Φ. �
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Proof of Proposition 3.4. Pick r > 0 satisfying Lemma 3.6 (i), and let {zk} be

a sequence as in Lemma 3.5. Let {ck} ∈ `p and consider the function

Φt({ck})(z) :=
∑
k

ckrk(t)
Kβ(z, zk)

‖Kβ(z, zk)‖F pβ,ρ
, 0 ≤ t ≤ 1,

where {rk(t)} is a sequence of Rademacher functions (see [11, p.336]). By the

hypothesis and Lemma 3.7,

‖Φt({ck})‖F qβ,η . ‖Φt({ck})‖F pβ,ρ . ‖{ckrk(t)}‖`p = ‖{ck}‖`p .

So, by Fubini’s theorem and Khinchine’s inequality (see [11, p.336])∫
Cn

(∑
k

|ck|2
|Kβ(z, zk)|2

‖Kβ(z, zk)‖2
F pβ,ρ

(1 + |z|)2ηe−β|z|
2`

)q/2

dV (z)

'
∫ 1

0

‖Φt({ck})‖qF qβ,ηdt . ‖{ck}‖
q
`p .

By Proposition 2.7 this is equivalent to the fact that I({ck}) . ‖{ck}‖q`p , where

I({ck}) :=

∫
Cn

(∑
k

|ck|2
|Kβ(z, zk)|2e−β|zk|

2`
e−β|z|

2`

(1 + |zk|)2(ρ−η)+4n(`−1)/p′

)q/2

dV (z).

Now

I({ck}) &
∫
Cn

(∑
k

|ck|2
|Kβ(z, zk)|2e−β|zk|

2`
e−β|z|

2`

(1 + |zk|)2(ρ−η)+4n(`−1)/p′
XBk(z)

)q/2

dV (z).

Since, by Lemma 3.5, any point z ∈ Cn is at most inN ballsBk, the equivalence

of the `2-norm and `q/2-norm on CN give

I({ck}) &
∑
k

|ck|q
∫
Bk

|Kβ(z, zk)|qe−
βq
2
|zk|2`e−

βq
2
|z|2`

(1 + |zk|)(ρ−η)q+2n(`−1)q/p′
dV (z).

By Lemma 3.6(i)

|Kβ(z, zk)|qe−
βq
2
|zk|2`e−

βq
2
|z|2` ' (1 + |zk|)2n(`−1)q (z ∈ Bk).

Hence

‖{ck}‖q`p &
∑
k

|ck|q(1 + |zk|)−(ρ−η)q−2n(`−1)(q/p′−q+1)

=
∑
k

|ck|q(1 + |zk|)−(ρ−η)q−2n(`−1)(p−q)/p,
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and consequently for any {dk} ∈ `p/q,∑
k

|dk|(1 + |zk|)−(ρ−η)q−2n(`−1)(p−q)/p . ‖dk‖`p/q .

By the duality of the sequence spaces (`p/q)∗ = `p/(p−q), we obtain∑
k

(1 + |zk|)−(ρ−η) pq
p−q−2n(`−1) <∞

Since

∞ >
∑
k

(1 + |zk|)−(ρ−η) pq
p−q−2n(`−1) '

∑
k

∫
Bk

(1 + |z|)−(ρ−η) pq
p−q dV (z)

'
∫
Cn

(1 + |z|)−(ρ−η) pq
p−q dV (z),

we conclude that −(ρ− η) pq
p−q < −2n. This ends the proof. �

3.5. Necessary condition for 1 ≤ q < p =∞ and β = γ.

In this section we extend Proposition 3.4 to the case p =∞.

Proposition 3.8. If 1 ≤ q <∞ and F∞β,ρ ↪→ F q
β,η then 2n

q
< ρ− η.

The necessary condition will be obtained from the case 1 ≤ q < p < ∞ by

complex interpolation. In particular we will use the Riesz-Thorin theorem and

the following well-known result (see for instance [10, Lemma 7.11]).

Lemma 3.9. Let (Y0, Y1) and (X0, X1) be admissible pairs of Banach spaces.

Assume that (Y0, Y1) is a retract of (X0, X1), that is, there exist bounded linear

operators E : Yj → Xj and R : Xj → Yj such that R◦E is the identity operator

on Yj, j = 0, 1. Then (Y0, Y1)[θ] = R((X0, X1)[θ]).

Lemma 3.10. Let 1 ≤ q <∞ and let θ ∈ (0, 1). If 1
s

= 1−θ
q

then

(F q
β,ρ, F

∞
β,ρ)[θ] = F s

β,ρ and (F q
β,ρ, F

q
β,η)[θ] = F q

β,(1−θ)ρ+θη.

Proof. Observe that the map Φ(f)(z) := f(z)e
β
2
|z|2`(1 + |z|)−ρ is a linear isom-

etry from Lr onto Lrβ,ρ, 1 ≤ r ≤ ∞. So by Lemma 3.10 and the Riesz-Thorin

theorem, we obtain

(Lqβ,ρ, L
∞
β,ρ)[θ] = Φ((Lq, L∞)[θ]) = Φ(Ls) = Lsβ,ρ

By Proposition 2.16, for 1 ≤ r ≤ ∞, (F q
β,ρ, F

∞
β,ρ) is a retract of (Lqβ,ρ, L

∞
β,ρ) and

so

(F q
β,ρ, F

∞
β,ρ)[θ] = Pβ((Lqβ,ρ, L

∞
β,ρ)[θ]) = Pβ(Lsβ,ρ) = F s

β,ρ,

which proves the first interpolation identity.
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In order to prove the second identity, by Theorem [3, Theorem 5.5.3] we

have

(Lqβ,ρ, L
q
β,η)[θ] = (Lq(e−

qβ
2
|z|2`(1 + |z|)qρ), Lq(e−

qβ
2
|z|2`(1 + |z|)qη))[θ]

= Lq(e−
qβ
2
|z|2`(1 + |z|)q((1−θ)ρ+θη)) = Lqβ,(1−θ)ρ+θη.

Therefore, as above,

(F q
β,ρ, F

q
β,η)[θ] = Pβ(Lqβ,(1−θ)ρ+θη) = F q(e−

β
2
|z|2`(1 + |z|)1−θ)ρ+θη).

This ends the proof. �

Proof of Proposition 3.8. Assume F∞β,ρ ↪→ F q
β,η. By Lemma 3.10,

F s
β,ρ = (F q

β,ρ, F
∞
β,ρ)[θ] ↪→ (F q

β,ρ, F
q
β,η)[θ] = F q

β,(1−θ)ρ+θη,

with 1
s

= 1−θ
q

. Since q = (1− θ)s < s <∞, Proposition 3.4 gives

2n(1
q
− 1

s
) < ρ− ((1− θ)ρ+ θη) = q(1

q
− 1

s
)(ρ− η),

and so 2n
q
< ρ− η. �

3.6. Proof of Theorem 1.3 for 1 ≤ q < p ≤ ∞.

The sufficient conditions follow from Lemma 3.3.

If β 6= γ the necessary condition β < γ follows from Lemma 3.1. If β = γ

the necessary condition follows from Propositions 3.4 and 3.8.

4. Proof of Theorem 1.1

First we prove the necessary condition β < 2α. For the case ρ = 0 next

lemma corresponds to [4, Lemma 3].

Lemma 4.1. Let 1 ≤ p, q ≤ ∞. If Pα is bounded from (L2
α ∩ L

p
β,ρ, ‖ · ‖Lpβ,ρ) to

Lqγ,η then β < 2α.

Proof. For any ζ ∈ Cn, the linear form g 7→ g(ζ) is bounded on F q
γ,η (see

Corollary 2.14). Then the boundedness of Pα : (L2
α ∩ L

p
β,ρ, ‖ · ‖Lpβ,ρ) 7→ Lqγ,η

implies the boundedness of the form Uζ(f) = Pα(f)(ζ) on (L2
α ∩L

p
β,ρ, ‖ · ‖Lpβ,ρ).

Hence Lemma 2.12 gives β < 2α. �

Now the proof of Theorem 1.1 follows from the next proposition and its

corollary.

Proposition 4.2. Let 1 ≤ p ≤ ∞. If 0 < β < 2α then the Bergman projection

Pα is bounded from Lpβ,ρ onto F p
α2/(2α−β),ρ.
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Corollary 4.3. Let 1 ≤ p, q ≤ ∞ and let 0 < β < 2α. Then the Bergman

projection Pα is bounded from Lpβ,ρ to Lqγ,η if and only if F p
α2/(2α−β),ρ ↪→ F q

γ,η.

Taking for granted these results, we finish the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 4.1 it is clear that β < 2α is a necessary

condition for the boundedness of Pα from Lpβ,ρ to Lqγ,η.

If β < 2α, Corollary 4.3 shows that Pα is bounded from Lpβ,ρ to Lqγ,η if and

only if F p
α2/(2α−β),ρ ↪→ F q

γ,η. Thus Theorem 1.1 is a consequence of Theorem

1.3. �

We conclude this section with the proofs of Proposition 4.2 and Corollary

4.3. To do so, we introduce the following notations which will used in the next

results. For β < 2α, let

δ :=
(

α
2α−β

)1/`
and κ := αδ` = α2

2α−β .

The next lemma follows from (2.4).

Lemma 4.4. If f ∈ Lpβ,ρ, then Pα(f) = Pκ(Tδ(f)), where

Tδ(f)(z) = δnf(δz)e(α−β)|δz|2` .

Proof. Using the change of variables w = δu and (2.4), we obtain

Pα(f)(z) = δ2n

∫
Cn
f(δu)Kα(z, δu)e−α|δu|

2`

dV (u)

= δn
∫
Cn

[f(δu)e(−α+κδ−2`)|δu|2` ]Kκ(z, u)e−κ|u|
2`

dV (u).

Since −α+κδ−2` = −α+αδ−` = −α+2α−β = α−β we obtain the result. �

Lemma 4.5. The operator Tδ is a topological isomorphism from Lpβ,ρ onto

Lpκ,ρ.

Proof. Since α− β = −β
2

+ 2α−β
2

= −β
2

+ κ
2
δ−2`, we have

Tδ(f)(z) = δnf(δz)e−
β
2
|δz|2`e

κ
2
|z|2` .

Therefore

‖Tδ(f)‖Lpκ,ρ ' ‖f(δz)e−
β
2
|δz|2`(1 + |z|)ρ‖Lp

' ‖f(δz)e−
β
2
|δz|2`(1 + |δz|)ρ‖Lp ' ‖f‖Lpβ,ρ .
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So to conclude the proof we only need to show that the operator Tδ is

surjective. This follows from the fact that the unique solution of the equation

Tδ(f) = g is f(z) = δ−ng(z/δ)e(β−α)|z|2` and

‖f‖Lpβ,ρ ' ‖Tδ(f)‖Lpκ,ρ = ‖g‖Lpκ,ρ . �

Proof of Proposition 4.2. By Proposition 2.16, Pκ is a bounded operator from

Lpκ,ρ onto F p
κ,ρ. So Lemmas 4.4 and 4.5 give

Pα(Lpβ,ρ) = Pκ(Tδ(L
p
β,ρ)) = Pκ(L

p
κ,ρ) = F p

κ,ρ. �

Proof of Corollary 4.3. By Proposition 4.2, it is clear that if F p
α2/(2α−β),ρ ↪→

F q
γ,η, then Pα is bounded from Lpβ,ρ to Lqγ,η.

Conversely, if Pα is bounded from Lpβ,ρ to Lqγ,η then, by Proposition 4.2,

F p
α2/(2α−β),ρ = Pα(Lpβ,ρ) ↪→ F q

γ,η. �
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Barcelona, Gran Via 585, 08071 Barcelona, Spain

Email address: cascante@ub.edu
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