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Abstract. In this paper we show that if b ∈ L2(Rn), then the bilinear form defined on

the product of the non-homogeneous Sobolev spaces H2
s (Rn)×H2

s (Rn), 0 < s < 1 by

(f, g) ∈ H2
s (Rn)×H2

s (Rn)→
∫
Rn

(Id−∆)s/2(fg)(x)b(x)dx,

is continuous if and only if the positive measure |b(x)|2dx is a trace measure for H2
s (Rn).

1. Introduction

The space of pointwise multipliers between non-homogeneous Sobolev spaces H2
s (Rn)

has been object of great atention both for its intrinsic interest and for the study of the

operators in which they are involved, in particular in some partial differential equations,

[14], [15]. The study and description of these spaces of multipliers from H2
s (Rn) and

H2
t (Rn) when s ≥ t ≥ 0 can be found, for instance, in the book by V.G. Maz’ya and T.O.

Shaposhnikova ( [12]).

The space H2
s (Rn), s ∈ R is the completion of the space of compactly supported C∞

functions f on Rn, D(Rn) (or the Schwartz class S(Rn)), with respect to the norm

‖f‖H2
s (Rn) = ‖(Id−∆)

s
2f‖L2(Rn).

Here (Id−∆)
s
2 is the Fourier multiplier defined by the function (1− |ξ|2)

s
2 .

Observe that via Plancherel’s formula the space H2
−t(Rn), t > 0, can be identified as

the dual of the space H2
t (Rn). Hence, the space of pointwise multipliers (non regular)

from H2
s (Rn) to H2

−t(Rn) can be described as the subspace of distributions m such that

〈mf, g〉 = 〈m, fg〉, f, g ∈ D(Rn), defines a continuous bilinear form, i.e.,

|〈mf, g〉| ≤ C‖f‖H2
s (Rn)‖g‖H2

t (Rn).

In particular, the pointwise multipliers from H2
s (Rn) to H2

−s(Rn) are the weights m (or

more generaly the distributions) such that∣∣∣∣∫
Rn
m(x)f(x)g(x)dx

∣∣∣∣ ≤ C‖f‖H2
s (Rn)‖g‖H2

s (Rn),

which by polarization, is equivalent to

(1.1)

∣∣∣∣∫
Rn
m(x)|f(x)|2dx

∣∣∣∣ ≤ C‖f‖2
H2
s (Rn).
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The first known result in this context is due to Verbitsky and Maz’ya ([14]), who gave

a complete characterization of the space of multipliers from H2
1 (Rn) to H2

−1(Rn)). In [15],

the same authors considered this problem for s = 1
2
.

In [8] (see also the thesis [7]), Lemarié-Rieusset and Gala gave a characterization for

the space of multipliers from homogeneous and non homogeneous Sobolev spaces for the

case 0 < r < s < n/2. They also state a sufficient condition for a distribution ϕ to be a

multiplier for r = s and conjectured that this necessary condition was also necessary.

The purpose of this paper is to give a description for the space of multipliers from the

non-homogeneous Sobolev space H2
s (Rn) to its dual H2

−s(Rn). The main result that we

obtain is

Theorem 1.1. Let 0 < s < 1 and b ∈ L2(Rn). The following assertions are equivalent:

(i) For any f, g ∈ D∣∣∣∣∫
Rn

(Id−∆)s/2(fg)(x)b(x)dx

∣∣∣∣ . ‖f‖H2
s (Rn)‖g‖H2

s (Rn).

(ii) dν(x) := |b(x)|2dx is a trace measure for H2
s (Rn), that is, H2

s (Rn) ⊂ L2(dν).

Observe that (i) is equivalent to

(i’) ∣∣∣∣∫
Rn
f(x)g(x)(Id−∆)s/2(b)(x)dx

∣∣∣∣ . ‖f‖H2
s (Rn)‖g‖H2

s (Rn),

that is, (Id−∆)s/2b is a pointwise multiplier from H2
s (Rn) to its dual H2

−s(Rn).

We also observe that assertion (ii) can be reformulated by the condition that b ∈
Mult(H2

s (Rn)→ L2(Rn)).

The first difficulty when dealing with this problem is that, if it is a function, the symbol

(Id−∆)s/2(b) in condition (i) in Theorem 1.1 may change sign. Observe that the condition

(ii) is given in terms of the nonnegative measure |b(x)|2dx. The characterization of such

positive measures is well known (for example in terms of capacities, see for instance [13]).

The second difficulty is to obtain accurate estimates of the norms of functions inH2
s (Rn).

This is due to the fact that the operator (Id−∆)
s
2 is non local. To avoid this fact we will

use a generalization of the extension operators from Rn to Rn+1
+ , introduced by Caffarelli

and Silvestre [2]) due to Stinga and Torrea in [17] that reduces the calculus od the non

local operator (Id−∆)
s
2 to a limit of local operators. An essential tool here was to obtain

an explicit formula for the extension operator.

For the homogeneous Sobolev spaces, this problem was studied by Cascante, Fabrega

and Ortega in [3]. Among the main technical differences with the homogeneous case,

we first mention that the explicit formula for the kernel of the extension operator Qs

corresponding to (Id − ∆)
s
2 is given by Qs(x, y) = Cn,sPs(x, y)G2n+2s+1(x, y), where Ps

is the extension kernel for the homogeneous case and G2n+2s+1 is the Bessel function.

Secondly, we prove a weighted Lp estimate for an area function for some general kernels.

Finally, we use a procedure of localization in order to substitute the Bessel kernel for the

Riesz kernel, that permits to apply the weighted estimate.

The paper is organized as follows. In Section 2 is devoted to an extension theorem.

Each function f in Rn in the domain of (Id − ∆)s can be extended to a function u in



BILINEAR FORMS ON NON-HOMOGENEOUS SOBOLEV SPACES 3

Rn × [0,∞) in such a way that

lim
y→0+

1

2s
y1−2suy(x, y) =

Γ(−s)
4sΓ(s)

(Id−∆)sf(x).

This extension gives an isomorphism from H2
s (Rn) in a subspace of a weighted Sobolev

space W 2
1,1−2s(Rn+1

+ ).

Sections 3 and 4 are instrumental and give the assymptotic behaviour at infinity of the

extended functions and its derivatives of the previous section.

In Section 5 we give a theorem on weighted estimates for an area function. This type

of results are well known for extensions of functions in terms of a kernel which come from

a function in Rn with integral 0, but we need a version for a more general class of kernels.

This theorem may be of interest in other contexts.

In Section 6 it is shown that the kernels that appear naturally as a convolution of the

kernel defining the extension given in Section 2 (or its derivatives), with the Bessel kernel

are in the conditions of the theorem on weighted estimates for an area function of Section

5. This will be a fundamental step to prove our main result.

Finally, Section 7 is devoted to the proof of Theorem 1.1. By the result in [7], we only

have to prove that (i)⇒(ii). It is shown that the measure |b(x)|2dx is a trace measure by

checking that it satisfies the capacitary condition. This property will follow by applying

the hypothesis (i) to suitable test functions. One of the main steps is the estimate of the

norm in H2
s (Rn) of these test functions. In doing this, we use a localization process that

allows to substitute the Bessel potential by the Riesz potential. We apply the results of

Sections 5 and 6 to a power of the Riesz potential which is in the Muckenhoupt class A2.

Notations: Throughout the paper, the letter C may denote various non-negative

numerical constants, possibly different in different places. The notation f(z) . g(z) means

that there exists C > 0, which does not depends of z, f and g, such that f(z) ≤ Cg(z).

2. An extension operator

We recall that the Fourier transform of an integrable function is defined by

F(f)(z) = f̂(z) =

∫
Rn
f(x)e−ix·zdx

The fractional Laplacian is defined for f ∈ S and s > 0

(−∆)
s
2f := F−1(|z|sF(f)).

We also consider the operator defined by

(Id−∆)
s
2f := F−1

(
(1 + |z|2)

s
2F(f)

)
,

the homogeneous Sobolev space Ḣ2
s (Rn) is the completion of the space of compactly

supported C∞ functions on Rn, D(Rn) with respect to the norm

‖u‖Ḣ2
s (Rn) = ‖(−∆)

s
2u‖L2(Rn).

The non-homogeneous Sobolev space H2
s (Rn) is the completion of D(Rn) with respect to

the norm

‖u‖H2
s (Rn) = ‖(Id−∆)

s
2u‖L2(Rn).
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The Riesz kernel Is, 0 < s < n, is defined by

Is(x) = as

∫ ∞
0

δ
s−n
2 e−

π|x|2
δ
dδ

δ
, x ∈ Rn,

where as =
(
(4π)

s
2 Γ(s/2)

)−1
.

For s > 0, the Bessel function is defined by

Gs(x) = as

∫ +∞

0

δ
s−n
2 e−

π|x|2
δ e−

δ
4π
dδ

δ
, x ∈ Rn.

The operator given by the convolution with Is, 0 < s < n is the inverse of (−∆)s/2 on

S, whereas the operator given by the convolution with Gs, is the inverse of (Id − ∆)s/2

(see [16]).

When 0 < 2s < n, the homogeneous Sobolev space Ḣ2
s (Rn) coincides with the space

Is(L
2(Rn)) of functions Is(g), g ∈ L2(Rn) where

Is(g)(x) :=

∫
Rn
Is(x− t)g(t)dt.

The space H2
s (Rn), 0 < s, coincides with the space Gs(L

2(Rn)) of functions Gs(g), g ∈
L2(Rn), defined by

Gs(g)(x) :=

∫
Rn
Gs(x− t)g(t)dt.

For this reason they are called the space of Riesz and Bessel potentials respectively.

If 0 < s < 1, we define the Sobolev space with weights

W 2
1,1−2s := W 2

1,1−2s(Rn+1
+ ) where Rn+1

+ := {(x, y); x ∈ Rn, y > 0},

as the completion of D
(
Rn+1

+

)
, functions of C

(
Rn+1

+

)
, compactly supported, with respect

to the norm

‖F‖W 2
1,1−2s

:=

∫
Rn+1
+

|∇x,yF (x, y)|2y1−2sdxdy +

∫
Rn+1
+

|F (x, y)|2y1−2sdxdy.

The following proposition is well known (see, for instance Thm 5 in Chapter 10 in [10])

Proposition 2.1. Let 0 < s < 1. We then have: If f ∈ D(Rn), then∫
Rn
|(Id−∆)

s
2f(x)|2dx

= inf
u∈D(Rn+1

+ ), u|Rn=f

∫
Rn+1
+

(
|∇x,yu(x, y)|2 + |u(x, y)|2

)
y1−2sdxdy.

�

If we consider the Euler-Lagrange equation for the functional

J(u) =

∫
Rn+1
+

(
|∇x,yu(x, y)|2 + |u(x, y)|

)
y1−2sdxdy,

that defines ‖u‖W 2
1,1−2s

, we obtain that

(2.2) −(Id−∆x)u(x, y) +
(1− 2s)

y
uy + uyy = 0,

or equivalently, div(y1−2s∇u) = y1−2su.
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On the other hand, in order to study the fractional Laplacian (−∆)s, L. Caffarelli and

L. Silvestre in [2] consider the PDE on Rn × [0,∞) given by div(y1−2s∇u) = 0. If u(x, y)

is a solution of this equation such that u(x, 0) = f(x), x ∈ Rn, then (−∆)sf(x) can be

obtained as − lim
y→0+

y1−2suy(x, y). This fact permits to apply local methods to the study

of the fractional Laplacian, which is a non-local operator.

Later, Stinga and Torrea (see [17]) extended this theory in the following form. They

considered fractional powers of a linear second order partial differential operator L, non-

negative, densely defined, and self-adjoint in L2(Ω), where Ω is an open set in Rn. The

operator Lσ, 0 < σ < 1, is defined in an spectral way. If E is the unique resolution of

the identity, supported on the spectrum of L (which is a subset of [0,∞)]), such that

L =
∫∞

0
λdE(λ), then Lσ =

∫∞
0
λσdE(λ), for 0 < σ < 1. The heat-difussion semigroup

generated by L, for t ≥ 0, is e−tL =
∫∞

0
e−tλdE(λ). They described Lσ as an operator that

maps a Dirichlet condition to a Neumann-type condition via an extension problem anal-

ogous to the one considered by L. Caffarelli and L. Silvestre in [2]. They also obtained a

corresponding Poisson-type formula and introduce the conjugate equation. Precisely they

obtained:

Theorem 2.2 ([17]). Let f ∈ Dom(Lσ) := {f ∈ L2(Rn);
∫∞

0
λ2σdEf,f (λ) < ∞)}. A

solution of the extension problem

(2.3) −Lxu+
1− 2s

y
uy + uyy = 0, u(x, 0) = f(x),

is given by the Poisson-type formula

u(x, y) =
y2s

4sΓ(s)

∫ ∞
0

e−tLf(x)e−
y2

4t
dt

t1+s
,

where e−tL, t > 0 is the heat-difussion semigroup generated by L.

This solution satisfies:

(i) 1
2s

limy→0+ y
1−2suy(x, y) = Γ(−s)

4sΓ(s)
Lσf(x). The limit must be understood in L2(Rn).

(ii) ‖u(·, y)‖L2(Rn) ≤ ‖f‖L2(Rn) and ‖u(·, y)− f‖L2(Rn) → 0 as y → 0+.

(iii) The function v(x, y) = y1−2s ∂u
∂y

(x, y) is a solution of the following “conjugate”

equation:

−Lxv −
1− 2s

y
vy + vyy = 0.

In our situation, L = Id − ∆, which is the infinitessimal generator of the semigroup

Tt = e−tet∆ and the extension problem (2.3) is now

(2.4) −(Id−∆x)u(x, y) +
(1− 2s)

y
uy + uyy = 0, u(x, 0) = f(x).

We then have that if f ∈ Dom((Id−∆)s) (in particular, if f is in the Schwarz class S),

then (see example 2.14 in [17] for the operator −∆), e−t(Id−∆)f is the convolution of the

function f with

gt(x) =
1

(4πt)n/2
e−
|x|2
4t e−t.

Hence, the corresponding Poisson-type kernel that solves (2.3) is defined by

(2.5) Qs(x, y) =
y2s

4sΓ(s)

∫ ∞
0

e−
|x|2+y2

4t
e−t

(4πt)
n
2

dt

t1+s
.
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The associated operator is given by

Qs(f)(x, y) =

∫
Rn
Qs(x− u, y)f(u) du

and

(2.6)
1

2s
lim
y→0+

y1−2s∂u

∂y
(x, y) =

Γ(−s)
4sΓ(s)

(Id−∆)sf(x), inL2(Rn).

If we make the change of variables |x|
2+y2

4t
= r in the integral that defines the kernel,

we obtain

Qs(x, y)

=
1

Γ(s)π
n
2

y2s

(|x|2 + y2)
n+2s

2

∫ ∞
0

e−
|x|2+y2

4r e−rr
n+2s

2
dr

r
.

Now, the change l = 4πr gives

Qs(x, y)

=
1

4
n+2s

2 Γ(s)πn+s

y2s

(|x|2 + y2)
n+2s

2

∫ ∞
0

e−π
|x|2+y2

l e−
l
4π l

n+2s
2
dl

l
.

Here, we recall that the Bessel function Gs is a radial function and, with a little abuse

of language, in occasions we will write Gs(|t|) = Gs(t1, . . . , tn). Observe that the function

Gs depends on the dimension n.

We observe that this last integral coincides, up to positive constants, with the Bessel

function in dimension n + 1, which corresponds to the parameter 2n + 2s + 1, evaluated

at the point (x, y). From now on, we will denote the corresponding Bessel function in

dimension n+ 1 by G.

Hence

Qs(x, y) = Cn,s
y2s

(|x|2 + y2)
n+2s

2

G2n+2s+1(x, y),

where

Cn,s =
4
n+1
2 π

1
2

Γ(s)
Γ(n+ s+

1

2
).

Observe that, up to a constant, Gs(t1, . . . , tn) for s > 0, coincides with Gs+1(t1, . . . , tn, 0).

Of course, it can be checked directly, without using the results in [17], that if f ∈
S(Rn), then Qs(f)(x, y) =

∫
Rn Qs(x − v, y)f(v)dv satisfies the differential equation

div(y1−2s∇u) = y1−2su.

Theorem 2.3. (i) lim
y→0+

∫
Rn
Qs(x, y)dx = 1.

(ii) If f ∈ Dom((Id−∆)s) is bounded and uniformly continuous on a neighbourhood

of a compact set K ⊂ Rn, then

lim
y→0+

Qs(f)(·, y) = f,

uniformly on K.

Proof. We begin with (i). We recall (see [17], example 2.14) that if

Ps(x, y) =
y2s

4sΓ(s)

∫ ∞
0

e−
|x|2+y2

4t
1

(4πt)
n
2

dt

t1+s
=

Γ(n
2

+ s)

π
n
2 Γ(s)

y2s

(|x|2 + y2)
n+2s

2

,
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then
∫
Rn Ps(x, y)dx = 1. Since by (2.5),

Qs(x, y) =
y2s

4sΓ(s)

∫ ∞
0

e−
|x|2+y2

4t
e−t

(4πt)
n
2

dt

t1+s
,

we then have that∫
Rn
Qs(x, y)dx− 1

=

∫
Rn

(Qs(x, y)− Ps(x, y)) dx =
y2s

4sΓ(s)

∫ ∞
0

(∫
Rn
e−
|x|2
4t dx

)
(e−t − 1)

(4πt)
n
2

e−
y2

4t
dt

t1+s

=
y2s

4sΓ(s)

∫ ∞
0

(e−t − 1)e−
y2

4t
dt

t1+s

Since
∫∞

0
|e−t−1|dt
t1+s

<∞, the Lebesgue’s Dominated Convergence Theorem concludes the

proof.

Next we prove (ii). We will then have that for x ∈ K,

Qs(f)(x, y)− f(x)

=

∫
Rn
Qs(x− u, y)(f(u)− f(x))du + f(x)

(∫
Rn
Qs(x− u, y)du− 1

)
.

Since f is bounded, (i) gives that the second sumand of the last equality tends to 0 when

y → 0+. For the first summand the argument is straightforward. Indeed, the uniform

continuity of f gives that for ε > 0, there exists δ > 0 such that for |x − u| < δ, then

|f(x)− f(u)| < ε. Then

|
∫
Rn
Qs(x− u, y)(f(u)− f(x))du|

≤ |
∫
|x−u|<δ

Qs(x− u, y)(f(u)− f(x))du|+ |
∫
|x−u|≥δ

Qs(x− u, y)(f(u)− f(x))du|

. ε+

∫
|x−u|≥δ

Qs(x− u, y)du . ε+

∫
|t|≥δ

y2s

(|t|2 + y2)
n+2s

2

G2n+2s+1(|t|+ y)dt

. ε+

∫
|z|> δ

y

dz

(|z|2 + 1)
n+2s

2

.

From the integrability of the function 1

(|z|2+1)
n+2s

2
, we deduce that the above integral tends

to 0 as y → 0+ and that ends the proof. �

Remark 2.4. Observe that since the function y1−2s ∂u
∂y

(x, y) satisfies the conjugate equa-

tion in (iii) in Theorem 2.2 with boundary values Cs(Id − ∆)sf(x), the convergence in

(2.6) is uniform on each compact set where (Id − ∆)sf is uniformly continuous on a

neighborhood of the same compact. In particular, this is the case for each f ∈ S.

The following lemma permits to conclude that the extension operator Qs gives an

isomorphism between H2
s (Rn) and a subspace in W 2

1,1−2s(Rn+1
+ ).
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Proposition 2.5. Let 0 < s < 1. There exists ks > 0 such that for every f ∈ H2
s (Rn)

and G ∈ W 2
1,1−2s(Rn+1

+ ),∫
Rn+1
+

∇G(x, y)∇Qs(f)(x, y)y1−2sdxdy +

∫
Rn+1
+

G(x, y)Qs(f)(x, y)y1−2sdxdy

= ks

∫
Rn

(Id−∆)s/2G(x, 0)(Id−∆)s/2f(x)dx,

In particular, the left hand term only depends on f and the boundary values of G(x, y).

Proof. Since D
(
Rn+1

+

)
and D(Rn) are dense in W 2

1,1−2s(Rn+1
+ ) and in Hs, respectively, it

is enough to prove the result for G ∈ D
(
Rn+1

+

)
and f ∈ D(Rn).

Consider the differential form in R2
+

ω(x, y) = G(x, y)y1−2s

(
n∑
i=1

(−1)i+1∂Qs(f)

∂xi
(x, y)dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn ∧ dy

+(−1)n
∂Qs(f)

∂y
(x, y) dx1 ∧ · · · ∧ dxn

)
.

Since div(y1−2s∇Qs(f))(x, y) = y1−2sQs(f)(x, y), we have

dω(x, y) = ∇x,yG(x, y)∇x,yQs(f)(x, y)y1−2sdxdy +G(x, y)Qs(f)(x, y)y1−2sdxdy.

Thus, Stokes’ theorem applied to the region BR,ε = {(x, y) ∈ B(0, R); y > ε}, with ε > 0

and R are such that the support of G is in B(0, R), gives∫
{y>ε}

∇x,yG(x, y)∇x,yQs(f)(x, y)y1−2sdxdy +

∫
{y>ε}

G(x, y)Qs(f)(x, y)y1−2sdxdy

= −
∫
Rn×{ε}

G(x, ε) ε1−2s∂Qs(f)

∂y
(x, ε) dx.

Since, ∇x,yG(x, y)∇x,yQs(f)(x, y)y1−2s, G(x, y)Qs(f)(x, y)y1−2s ∈ L1(Rn+1
+ ), the domi-

nated convergence theorem implies that the first term in the above equality tends when

ε→ 0 to∫
Rn+1

+

∇x,yG(x, y)∇x,yQs(f)(x, y)y1−2sdxdy +

∫
Rn+1

+

G(x, y)Qs(f)(x, y)y1−2sdxdy.

By (2.6) and Theorem 2.2, (ii), the second term tends to

− 2sΓ(−s)
4sΓ(s)

∫
Rn
G(x, 0) (Id−∆)s(f)(x)dx

= −2sΓ(−s)
4sΓ(s)

∫
Rn

(Id−∆)s/2G(x, 0)(Id−∆)s/2(f)(x),

which proves the result. �

Remark 2.6. The conclusion of the lemma shows that if we take as G(x, y) the function

Qs(f)(x, y), then Qs gives an isomorphism between H2
s (Rn) and a subspace of W 2

1,1−2s(Rn+1
+ ).
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3. Some instrumental lemmas

We begin the section with a recopilation of some of the main properties of the Riesz

and Bessel kernels that can be found, for instance, in [16] or in [1].

We recall that if 0 < s < n, Is(f) = F−1(|z|−sF(f)) and that if γ(s) = π
n
2 2s

Γ( s
2
)

Γ
(
n
2
− s

2

) ,

then

Isf(x) =
1

γ(s)

∫
Rn

f(u)

|x− u|n−s
du.

The following proposition collects the main properties of the Bessel functions that will

be used in the forthcoming sections:

Proposition 3.1. (i) For s, t > 0, Gs ∗Gt = Gs+t.

(ii) For 0 < s < n, 0 < Gs(x) < Is(x).

(iii) Gs ∈ L1(Rn) and ‖Gs‖1 = Ĝs(0) = 1.

(iv) Let s ≥ 0. Then:

(a) Gs(x) ' Is(x) = C 1
|x|n−s as |x| → 0 if 0 < s < n.

(b) Gs(x) ' 1 as |x| → 0 if s > n.

(c) Gs(x) ' ln 1
|x| as |x| → 0 if s = n.

(v) For any 0 < c < 1 and s > 0, Gs(x) = O(e−c|x|), as |x| → ∞. In fact this

estimate can be improved. Namely:

Gs(x) ' Cs|x|(s−n−1)/2e−|x|,

as |x| → ∞, for any s > 0, where Cs is a positive constant depending on s.

(vi) Gs(x) . Gs(x + u), |x| ≥ 2, |u| ≤ 1.

(vii) If we write r = |x|, we have that there exists c > 0, such that lim
r→∞

G′s(r)

Gs(r)
= −c.

If s > 1, lim
r→0

G′s(r)

Gs−1(r)
= −(n− s). In particular, if s > 1,∣∣∣∣∂Gs

∂xi
(x)

∣∣∣∣ . Gs(x) +Gs−1(x).

The next elementary lemma will be used for obtaining estimates for the extension

operator Qs and its derivatives.

Lemma 3.2. For any (x, y) ∈ Rn+1
+ and any t ∈ B(0, 1),

e(|x|2+y2)
1
2 ' e(|x−t|2+y2)

1
2 .

Analogously, e|x|+y ' e|x−t|+y.

Proof. For the proof of the first equivalence, it is enough to show that

(|x|2 + y2)
1
2 − (|x− t|2 + y2)

1
2

is bounded from above and from below for any t ∈ B(0, 1).

Indeed,∣∣∣(|x|2 + y2)
1
2 − (|x− t|2 + y2)

1
2

∣∣∣ ≤ ‖2x− t‖|t|
(|x|2 + y2)

1
2 + (|x− t|2 + y2)

1
2

. 1.

�



10 CARME CASCANTE AND JOAQUÍN M. ORTEGA

In order to state the following proposition, we give the following definition.

Definition 3.3. Let 0 < s < 1. We define the function hs : (0,+∞)→ R given by

hs(y) =



1, if y ≥ 1, or if y ≤ 1, 1− 2s < 0,

1
y1−2s , if y ≤ 1, 1− 2s > 0

1 + ln 1
y
, if y ≤ 1, 1− 2s = 0

Proposition 3.4. Let 0 < s < 1. We then have

(i)
∫
Rn

∂Qs
∂xi

(x, y)dx = 0, i = 1, . . . , n.

(ii)
∣∣∣∫Rn ∂Qs

∂y
(x, y)dx

∣∣∣ . hs(y)e
− 1√

2
y
.

Proof. We begin with (i). We write zi = xi/y, 1 ≤ i ≤ n and ψ(z1, . . . , zn) = 1

(|z|2+1)
n+2s

2
.

Let’s consider ∫
xi∈R

∂Qs

∂xi
dxi =

Cn,s
yn

∫
R

{
∂ψ

∂zi
(z)

1

y
G2n+2s+1((|z|2 + 1)

1
2y)

+ψ(z)G ′2n+2s+1((|z|2 + 1)
1
2y)

zi

(|z|2 + 1)
1
2

}
ydzi.

Now, an integration by parts, using that ψ(|z|)G2n+2s+1((|z|2 + 1)
1
2y) → 0 if |zi| → ∞,

gives that the first sumand equals to

−
∫
R
ψ(z)G ′2n+2s+1((|z|2 + 1)

1
2y)

zi

(|z|2 + 1)
1
2

dzi.

Consequently, ∫
xi∈R

∂Qs

∂xi
dxi = 0,

and ∫
Rn

∂Qs

∂xi
dx = 0.

We now prove (ii). Let (x, y) ∈ Rn+1
+ . If we denote x = zy, we have that dx = yndz.

Observe that if we write |z| = ρ and denote ϕ(ρ) = 1

(ρ2+1)
n+2s

2
, we have that there exists

Cn,s > 0 such that

Qs(x, y) = Cn,s
ϕ(ρ)

yn
G2n+2s+1((ρ2 + 1)

1
2y).

Hence, using n-dimensional polar coordinates in Rn,∣∣∣∣∫
Rn

∂Qs

∂y
(x, y)dx

∣∣∣∣
.

∣∣∣∣∫ ∞
0

{(
−nϕ(ρ)

y
− ϕ′(ρ)

y
ρ

)
G2n+2s+1((ρ2 + 1)

1
2y)

+
ϕ(ρ)

(ρ2 + 1)
1
2

G ′2n+2s+1((ρ2 + 1)
1
2y)

}
ρn−1dρ.

∣∣∣∣∣
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Next, we observe that by (iv) and (v) in Propostition 3.1, for each y > 0,

lim
ρ→0+

ρnϕ(ρ)G2n+2s+1((ρ2 + 1)
1
2y) = 0;

and

lim
ρ→+∞

ρnϕ(ρ)G2n+2s+1((ρ2 + 1)
1
2y) = 0.

Hence, an integration by parts gives that

−
∫ ∞

0

(
nρn−1ϕ(ρ)

y
+
ϕ′(ρ)

y
ρn
)
G2n+2s+1((ρ2 + 1)

1
2y)dρ

=

∫ ∞
0

ρn+1ϕ(ρ)G ′2n+2s+1((ρ2 + 1)
1
2y)

1

(ρ2 + 1)
1
2

dρ.

Plugging this formula in the previous sum, we obtain that∣∣∣∣∫
Rn

∂Qs

∂y
(x, y)dx

∣∣∣∣ . ∣∣∣∣∫ ∞
0

(ρ2 + 1)
1
2ρn−1ϕ(ρ)G ′2n+2s+1((ρ2 + 1)

1
2y)dρ

∣∣∣∣ .
Next, by Proposition 3.1, (vii), we have that the above is bounded, up to a constant,

by

(3.7)

∫ ∞
0

ρn−1

(ρ2 + 1)
n−1+2s

2

(
G2n+2s+1((ρ2 + 1)

1
2y) + G2n+2s((ρ

2 + 1)
1
2y)
)
dρ

We split the integral over [0,∞) in two parts:

(i) The set of ρ ≥ 0, such that (ρ2 + 1)
1
2y ≤ 1, i.e. ρ2 ≤ 1

y2
− 1.

(ii) The set of ρ ≥ 0, such that (ρ2 + 1)
1
2y > 1, i.e. ρ2 > 1

y2
− 1.

We begin with the first part. Since n + 1 < 2n + 2s, Proposition 3.1, (iv), gives that

both G2n+2s+1 and G2n+2s are bounded. Observe that in addition, y ≤ 1.∫ ((1/y2)−1)
1
2

0

ρn−1

(ρ2 + 1)
n−1+2s

2

(
G2n+2s+1((ρ2 + 1)

1
2y) + G2n+2s((ρ

2 + 1)
1
2y)
)
dρ

.
∫ ((1/y2)−1)

1
2

0

ρn−1

(ρ2 + 1)
n−1+2s

2

dρ . hs(y) . hs(y)e
− y√

2 ,

since y ≤ 1.

So we are left to estimate the integral over (ρ2 + 1)y > 1 in (3.7). By Proposition 3.1,

(v), the integral in (3.7) is bounded by∫ ∞
((1/y)2−1)

1
2

ρn−1

(ρ2 + 1)
n−1+2s

2

(ρ2 + 1)
n+2s−1

4 y
n+2s−1

2 e−((ρ2+1)
1
2 y)dρ

≤ y
n+2s−1

2 e
− y√

2

∫ ∞
0

ρn−1

(ρ2 + 1)
n−1+2s

4

e
− ρy√

2dρ.

(3.8)

The change of variables ρy = λ gives that this is estimate by

1

y1−2s
e
− y√

2

∫ ∞
0

λ
n−1
2
−se
− λ√

2dλ . hs(y)e
− y√

2 .

�

Proposition 3.5. Let f ∈ L1(B(0, 1)) and 0 < s < 1. Let k > 1. Then, if |x|+ y > k,
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(i)

|Qs(Gs(f))(x, y)| . e
− 1√

2
(|x|+y)

∫
B(0,1)

|f(w)|dw.

(ii)

|∇x,yQs(Gs(f))(x, y)| . hs(y)e
− 1√

2
(|x|+y)

∫
B(0,1)

|f(w)|dw.

Proof. We begin with the proof of (i). We first observe that it is enough to prove that for

|u|+ y ≥ k1 = k − 1,

(3.9) |Qs(Gs)(u, y)| . e
− 1√

2
(|u|+y)

.

Indeed, if (3.9) holds, we have that

|Qs(Gs(f))(x, y)| ≤
∫
B(0,1)

|Qs(Gs)(x− t, y)||f(t)|dt

.
∫
B(0,1)

e
− 1√

2
(|x−t|+y)|f(t)|dt

which by Lemma 3.2 is in turn bounded by Ce
− 1√

2
(|x|+y)

∫
B(0,1)

|f(t)|dt, for some C > 0.

So let us prove (3.9). Let |u| + y ≥ k1 = k − 1 and fix 0 < K < k1
8

. We decompose

Qs(Gs)(u, y) as

Qs(Gs)(u, y) = C

∫
|u−t|+y≤K

y2s

(|u− t|2 + y2)
n+2s

2

G2n+2s+1((|u− t|2 + y2)
1
2 )Gs(t)dt

+ C

∫
|u−t|+y≥K

y2s

(|u− t|2 + y2)
n+2s

2

G2n+2s+1((|u− t|2 + y2)
1
2 )Gs(t)dt

= A(u, y) +B(u, y).

Let us estimate A(u, y). We first check that since for |u − t| + y ≤ K < k1
8

, we have

that |u− t| ≤ k1
8

and y ≤ k1
8

, then |u| ≥ k1 − y ≥ 7
8
k1. Consequently,

|t| ≥ |u| − |u− t| ≥ |u| − k1

8
≥ |u| − |u|

7
=

6

7
|u| ≥ 6

8
k1.

By Proposition 3.1, (v),

Gs(t) .
e−|t|

|t|n+1−s
2

. e−
6
7
|u| . e

− 1√
2
|u|
,

Hence, since y is bounded and G2n+2s+1((|u− t|2 + y2)
1
2 ) . 1, we have,

A(u, y) .
∫
|u−t|+y≤K

y2s

(|u− t|+ y)n+2s
e
− |u|√

2 e
−y√

2 e
y√
2dt . e

− 1√
2

(|u|+y)
.

Next we estimate the integral B(u, y). Using (iv) and (v) in Proposition 3.1, for 1√
2
<

c < 1 and c1 = c− 1√
2

we then have that

B(u, y) .
∫
|u−t|+y≥K

y2se
− (|u−t|+y)√

2
e−c|t|

|t|n−s
dt

. e
− 1√

2
(|u|+y)

∫
Rn

e−c1|t|

|t|n−s
dt . e

− 1√
2

(|u|+y)
.
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Now we deal with the estimate of (ii). As in the previous case, it is now enough to

prove that for |u|+ y ≥ k1 = k − 1,

|∇x,y(Qs(Gs))(u, y)| . hs(y)e
− 1√

2
(|u|+y)

.

We begin with the estimates for

∂

∂xi
Qs(Gs(f))(ux, y).

If we deal directly with
∫
Rn |

∂
∂xi
Qs(u − t, y)||Gs(t)|dt, we would not obtain the de-

sired estimate. We must try to reduce the “singularity” of ∂
∂xi
Qs(u − t, y) in t = u,

independently of y. We will use that by Proposition 3.4,∫
Rn

∂Qs

∂xi
(u− t, y)dt = 0.

As before, let K ≤ k1
8

. We have that

∂

∂xi
Qs(Gs)(u, y)

=

∫
Rn

∂

∂xi
Qs(u− t, y)

(
Gs(t)−Gs(u)χ|u|>k1/8

)
dt

=

∫
|u−t|+y≤K

∂

∂xi
Qs(u− t, y)

(
Gs(t)−Gs(u)χ|u|>k1/8

)
dt

+

∫
|u−t|+y>K

∂

∂xi
Qs(u− t, y)

(
Gs(t)−Gs(u)χ|u|>k1/8

)
dt = C(u, y) +D(u, y).

(3.10)

We begin with the estimate of C(u, y). Now |u−t|+y ≤ K. We have that |u−t| ≤ k1
8

and y < k1
8

. As before, |u| ≥ 7k1
8

and |t| ≥ 6
8
k1. Hence, observing that Gs(t) ' Gs+1(t, 0),

Proposition 3.1 (vii), gives that∣∣∣Gs(t)−Gs(u)χ|u|> k1
8

∣∣∣ = |Gs(t)−Gs(u)| ≤ |u− t| sup
v=u+ρ(t−u); 0≤ρ≤1

|∇Gs+1(v, 0)|

. |u− t| sup
v=u+ρ(t−u); 0≤ρ≤1

(
e−|v|

|v|n+1−s
2

+
e−|v|

|v|n+1−s−1
2

)
.

Since |v| ≥ |u| − ρ|t− u| ≥ 7k1
8
− k1

8
= 6k1

8
we have that

∣∣Gs(t)−Gs(u)χ|u|>k1/8
∣∣ . |u− t|e−|u|.

Since y is bounded, we have that e
y√
2 ' 1. Hence

C(u, y) .
∫
Rn

y2s

(|u− t|+ y)n+2s
e−|u|dt . e

− 1√
2

(|u|+y)
.
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In order to estimate D(u, y), we use Proposition 3.1, (iv) and (v) for c > 0 such that

1/
√

2 < c < 1. We have∣∣∣∣∫
|u−t|+y≥K

∂

∂xi
Qs(u− t, y)

(
Gs(t)−Gs(u)χ|u|>k1/8

)
dt

∣∣∣∣
.
∫
|u−t|+y≥K

e−(|u−t|2+y2)
1
2
(
Gs(t) +Gs(u)χ|u|≥k1/8

)
dt

.
∫
|u−t|+y≥K

e
− |u−t|+y√

2

(
e−c|t|

|t|n−s
+ e−c|u|

)
dt

. e
− (|u|+y)√

2

(∫
Rn

e
−(c− 1√

2
)|t|

|t|n−s
dt +

∫
Rn
e
− |u−t|√

2 dt

)
. e

− (|u|+y)√
2 .

We next deal with the derivative with respect to y. In the corresponding step in (3.10)

when we now reduce the “singularity” of ∂
∂y
Qs(u− t, y), it appears a suplementary term,

that by Propositions 3.1 (v) and 3.4, satisfies∣∣∣∣∫
Rn

∂

∂y
Qs(u− t, y)Gs(u)χ|u|>k1/8dt

∣∣∣∣ . hs(y)e
− 1√

2
(|u|+y)

.

Arguing as in (3.10), we observe that the terms when we derivate with respect to y the

denominator of Ps or G2n+2s+1, are completely analogous to the derivatives with respecto

to xi. So, in order to finish the proof of the proposition, we need to estimate the derivative

with respect to y of the numerator of Ps. We then have to estimate

1

y1−2s

∫
Rn

1

(|u− t|2 + y2)
n+2s

2

G2n+2s+1((|u− t|2 + y2)
1
2 )|Gs(t)−Gs(u)χ|u|>k/8|dt.

Spliting again the integral in two terms, when |u− t|+ y ≤ K and when |u− t|+ y > K,

and denoting each integral by C1(u, y) and D1(u, y) respectively, we have that

C1(u, y) .
1

y1−2s

∫
|u−t|+y≤K

1

(|u− t|+ y)n+2s
|Gs(t)−Gs(u)χ|u|>k/8|dt,

that arguing as before is bounded by hs(y)e
− 1√

2
(|u|+y)

.

Next,

D1(u, y) .
1

y1−2s

∫
|u−t|+y≥K

e−(|u−t|2+y2)
1
2

(
e−c|t|

|t|n−s
+ e−c|u|

)
dt,

that with analogous arguments, is bounded by hs(y)e
− 1√

2
(|u|+y)

.

�

Proposition 3.6. Let 0 < s < 1 and let µ be a nonnegative Borel measure. For each

λ > 1, there exists k > 0 such that if |x|+ y ≥ k, then

|Qs(G2s(µ))(x, y)| & e−λ(|x|+y)µ(B(0, 1)).

Proof. We consider first the case n − 2s > 0. Observe that since we are assuming that

s < 1, n− 2s ≤ 0 is only possible when n = 1. Let |u|+ y ≥ k > 2.
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If y ≥ k/4, then using (v) in Proposition 3.1 and Lemma 3.2, we have

|Qs(G2s)(u, y)| &
∫
|t|≤1

y2s(|u− t|+ y)
2n+2s−n−1

2

(|u− t|+ y)n+2s
e−(|u−t|2+y2)

1
2 dt

|t|n−2s

=

∫
|t|≤1

y2s

(|u− t|+ y)
n+2s+1

2

e−(|u−t|2+y2)
1
2 dt

|t|n−2s

' y2s

(|u|+ y)
n+2s+1

2

e−(|u|2+y2)
1
2

∫
|t|≤1

dt

|t|n−2s
& e−λ(|u|2+y2)

1
2 & e−λ(|u|+y),

for any λ > 1.

Assume now that y < k/4. Since |u| + y ≥ k, we have that |u| > 3k/4. We also have

that if |u−t| < y, then |u−t|+y . y < k/4 and consequently, G2n+2s+1((|u−t|+y)
1
2 ) ' 1.

Hence,

|Qs(G2s)(u, y)| &
∫
|u−t|≤y

y2s

yn+2s
G2s(t)dt.

But, we observe that in this region |t| ' |u|. Indeed,

|t| ≥ |u| − |u− t| ≥ |u| − y ≥ |u| − k/4 ≥ |u| − |u|
3

=
2|u|

3
.

Conversely,

|t| ≤ |u|+ |u− t| ≤ |u|+ y ≤ |u|+ k/4 ≤ (1 + 1/3)|u|.

Note that, in particular, |t| ≤ |u|+ y and |t| ≥ 2
3

3k
4

, then by (v) in Proposition 3.1

|Qs(G2s)(u, y)| &
∫
|u−t|≤y

y2s

yn+2s
|u|

−n−1+2s
2 e−(|u|+y)dt

&
e−(|u|+y)

|u|n+1−2s
2

& e−λ(|u|+y),

for any λ > 1.

Hence, in any case,

|Qs(G2s)(u, y)| & e−λ(|u|+y),

and, consequently,

|Qs(G2s(µ))(x, y)| & |
∫
B(0,1)

e−λ(|x−t|+y)dµ(t)| & e−λ(|x|+y)µ(B(0, 1)),

where we have used Lemma 3.2 since |t| ≤ 1 .

The remaining case 1 − 2s ≤ 0 is proved with minor changes using the corresponding

estimates in Proposition 3.1, (iv). �

4. Capacities, trace measures and potentials of equilibrium measures

Definition 4.1. Let E ⊂ Rn. The Bessel capacity of E is defined by

Caps(E) := inf{‖f‖2
L2(Rn) : Gs(|f |) ≥ 1 on E}.

We list some properties of the equilibrium measure for a compact set in Rn, which will

be used below and that can be found, for instance, in [1], Thm. 2.2.7.
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Theorem 4.2. Given a compact set E ⊂ Rn, there exists a positive measure νE on Rn

(that is called capacitary or equilibrium measure), such that:

(i) νE is supported on E and νE(E) = Caps(E).

(ii) pE := G2s(νE) ≥ 1 a.e. on E.

(iii) pE ∈ H2
s (Rn) and ‖pE‖2

H2
s (Rn) . Caps(E).

(iv) There is a constant C > 0 independent of E, such that pE(x) ≤ C for any x ∈ Rn.

The following result is well known (see Theorem 3.1.4 and Remark 3.1.1 in [12]) and

gives a characterization of the positive trace measures on the space of Bessel potentials.

Proposition 4.3. Let µ be a positive Borel measure on Rn. Then, µ is a trace measure for

H2
s (Rn), that is,

∫
Rn |f |

2dµ . ‖f‖2
H2
s (Rn) for every f ∈ H2

s (Rn), if and only if there exists

Cµ > 0 such that for any compact set E of diameter less or equal to 1, µ(E) ≤ CµCaps(E).

Let ϕ : Rn → [0,∞) be a C∞ radial function, nonincreasing in |x|, with support on

B(0, 1) and such that
∫
ϕ = 1. For δ > 0, let ϕδ(x) = 1

δ
ϕ(x/δ). We write νE,δ = νE ∗ ϕδ,

the regularizations of the measure νE. We then have that νE,δ are functions in D satisfying

that dνE,δ := νE,δ dx→ νE in the sense of distributions and such that ‖νE,δ‖1 = Caps(E).

We denote by

pE,δ := G2s ∗ νE,δ, δ > 0.

As a corollary of Proposition 3.5 we have that

Proposition 4.4. Let νE be the equilibrium measure of E and 0 < s < 1. If |x| + y >

k > 1, then

(i) |Qs(pE)(x, y)| . e
− 1√

2
(|x|+y)

νE(E).

(ii) |∇Qs(pE)(x, y)| . hs(y)e
− 1√

2
(|x|+y)

νE(E).

We also have that if δ > 0, then

(i) |Qs(pE,δ)(x, y)| . e
− 1√

2
(|x|+y)

νE(E).

(ii) |∇Qs(pE,δ)(x, y)| . hs(y)e
− 1√

2
(|x|+y)

νE(E),

with constants independent of δ > 0.

We will need the following result:

Proposition 4.5 ([11], Chapter 2, Lemma 3). If 2s < n and β ∈ (1, n
n−2s

), ν a non-

negative Borel measure on R. We then have that if I2s(ν) is the Riesz potential of the

measure ν, then I2s(ν)β is in the Muckenhoupt class A1, with A1-constant independent of

ν. For n = 1 and s = 1
2
, we must replace I2s by the logarithmic potential.

Remark 4.6. We observe that if we instead consider the Bessel potential of a nonnegative

measure, proposition 4.5 is no longer true. In fact Gβ
2s is not even a doubling weight for

any β > 0, since the exponential function is not a doubling weight. For instance, if n = 1,

G2s(x) ' e−|x|

|x|
2−2s

2
, when |x| → ∞. Then, for any R > 0(∫ 5R

R

e−βx

xβ(1−s)dx

)(∫ 4R

2R

e−βx

xβ(1−s)dx

)−1

' e−βR − e−β5R

e−β2R − e−β4R
→∞,

when R→∞.
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Theorem 4.7. Let E ⊂ Rn be a compact set, νE its capacitary measure and let pE =

G2s(νE) be its capacitary or equilibrium potential and pE,δ its regularization Then, if α >

1/2, pαE,δ ∈ H2
s (Rn) and ‖pαE,δ‖2

H2
s (Rn) . Caps(E).

Proof. It is enough to show (see Proposition 2.1) that

∫
Rn+1
+

|∇(Qs(pE,δ))
α|2y1−2sdxdy +

∫
Rn+1
+

|(Qs(pE,δ))
α|2y1−2sdxdy . Caps(E).

In order to estimate the first integral over Rn+1
+ , we apply Stoke’s Theorem to the

following domain and form. Let η > 0 and R > 0 and let Ωη,R be the region in Rn+1
+

defined by

Ωη,R = {(x, y) ∈ B(0, R) ; y ≥ η}.
Let ωδ be the form defined by

ωδ = (Qs(pE,δ))
2α−1y1−2s

(
n∑
i=1

(−1)i+1∂Qs(pE,δ)

∂xi
(x, y)dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn ∧ dy

+(−1)n
∂Qs(pE,δ)

∂y
(x, y) dx1 ∧ · · · ∧ dxn

)
.

Since div(y1−2s∇Qs(pE,δ))(x, y) = y1−2sQs(pE,δ)(x, y), we have

dω(x, y)

= (2α− 1)(Qs(pE,δ))
2α−2(x, y)|∇Qs(pE,δ)(x, y)|2y1−2sdxdy

+ (Qs(pE,δ))
2α(x, y)y1−2sdxdy.

To conclude the proof we need the following lemmas.

Lemma 4.8.

lim
R→∞

∫
∂Ωη,R

ωδ =

∫
Rn×{η}

ωδ.

Proof. By Proposition 4.4, we have that, provided |x|+ y is big enough,

|(Qs(pE,δ))
2α−1y1−2s|∇Qs(pE,δ)(x, y)| . y1−2shs(y)e

− ((2α−1)+1)(|x|+y)√
2 ν(E).

Hence, for R→∞, ∣∣∣∣∣
∫
∂Ωη,R∩{y>η}

ωδ

∣∣∣∣∣ . Rn+1e
− ((2α−1)+1)R√

2 → 0.

Analogously,
∫
∂Ωη,R∩{y=η} ωδ →

∫
Rn×{η} ωδ as R→∞. �

Lemma 4.9. There exists a positive constant C > 0 such that

lim
η→0

∫
Rn×{η}

ωδ = (−1)nC

∫
Rn

(pE,δ)
2α−1dνE,δ.

Proof. Assume that ν is supported in B(0, k) and let K = k+2. We write R×{η} = I1∪I2,

where I1 = {|x| ≤ K} × {η} and I2 = {|x| > K} × {η}.
We have that by Theorems 2.3 and 2.2, lim

η→0
Ps(pE,δ)(x, η) = pE,δ(x), and

lim
η→0

η1−2s ∂

∂y
Qs(pE,δ)(x) = −C(Id−∆)spE,δ(x) = −CνE,δ(x),
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where C > 0.

On I1, Theorem 2.3 gives that lim
η→0

Qs(pE,δ)(x, η) = pE,δ(x), uniformly on B(0, K) and

by Remark 2.4,

(−1)n(Qs(pE,δ))
2α−1η1−2s ∂

∂y
Qs(pE,δ)(x, η)→ −(−1)nCp2α−1

E,δ νE,δ(x),

when η → 0, uniformly on B(0, K). We then have that

lim
η→0

∫
I1

ωδ = (−1)n+1C

∫
|x|≤K

(pE,δ)
2α−1dνE,δ = (−1)n+1C

∫
R
(pE,δ)

2α−1dνE,δ.

If x ∈ I2 and 0 < η < 1,

|(Qs(pE,δ))
2α−1η1−2s ∂

∂y
Qs(pE,δ)(x, η)| . e

− ((2α−1)+1)(|x|+η)√
2 .

And this last function is integrable on |x| ≥ K. In addition, since supp νE,δ ⊂ I1, we

have that for x ∈ I2, limη→0 η
1−2s ∂

∂y
Qs(pE,δ)(x, η) = 0. Hence, Lebesgue’s Dominated

Convergence Theorem gives that

lim
η→0

∫
I2

ωδ = 0.

This concludes the proof of Lemma 4.9. �

Now, we continue with the proof of Theorem 4.7, proving first that∫
Rn+1
+

|∇x,y(Qs(pE,δ)
α)|2y1−2sdxdy +

∫
Rn+1
+

|Qs(pE,δ)
α|2y1−2sdxdy .

∫
Rn

(pE,δ)
2α−1dνδ.

Using Lebesgue’s Monotone Convergence Theorem, Stoke’s Theorem, and Lemmas 4.8

and 4.9, we have that∫
Rn+1
+

|∇x,y(Qs(pE,δ)
α)|2y1−2sdxdy +

∫
Rn+1
+

|Qs(pE,δ)
α|2y1−2sdxdy

= lim
η→0,R→∞

∫
Ωη,R

(
|∇x,y(Qs(pE,δ)

α)|2 + |Qs(pE,δ)
α|2
)
y1−2sdxdy

. lim
η→0

lim
R→∞

∫
∂Ωη,R

ωδ = C

∫
Rn

(pE,δ)
2α−1dνE,δ.

Using that pE,δ . 1, and that 2α > 1, we deduce that this integral is bounded, up to a

constant by ∫
Rn
νE,δ = Caps(E).

�

5. Weighted Lp-estimates for an area function

Let K : Rn × [0,∞) → Rm be a vector-valued kernel (in fact we will consider only

two type of kernels, one a vector-valued kernel in Rn+1 and the other a scalar one). This

kernel defines a vector valued operator from functions on Rn to vector-valued functions

on Rn × [0,∞) given by

K(f)(x, y) =

∫
Rn

K(x− z, y)f(z)dz.
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The area function associated to K is

AK(f)(t) :=

(∫
Γ(t)

|K(f)(x, y)|2dxdy

yn+1

) 1
2

,

where Γ(t) = {(x, y) ∈ Rn+1
+ ; |x− t| < y} is the cone with vertex t.

We will need a result on a weighted L2- estimate for the area function associated to

some convenient kernels.

We will work with a class of vector-valued kernels that with a little abuse of notation

we will denote by AK-Calderón-Zygmund type kernels, defined by:

Definition 5.1. A vector-valued kernel K : Rn × [0,+∞) → Rm is an AK-Calderón-

Zygmund type kernel if it satisfies that there exist constants ε, η > 0 such that:

(i) ‖AK(f)‖L2(Rn) . ‖f‖L2(Rn).

(ii) |K(x, y)| . yη

(|x|2+y2)
n+η
2

.

(iii) For |x− x̃| ≤ ε(|x|2 + y2)
1
2 ,

|K(x, y))−K(x̃, y)| . yη|x− x̃|η

(|x|2 + y2)
n+2η

2

.

For a function g defined on Rn × [0,∞), we define

‖g‖2

L2
(

Γ(0), dudy
yn+1

) :=

∫
Γ(0)

|g(u,y)|2dudy
yn+1

Theorem 5.2. Let K : Rn × [0,+∞)→ Rn+1 be an AK-Calderón-Zygmund type kernel.

Then, for any ω ∈ Ap(Rn), p > 1, we have that,

‖AK(f)‖Lp(ωdx) . ‖f‖Lp(ωdx).

The proof is based in the ideas in [5], where the authors obtain a weighted Lp-estimate

for a Littlewood-Paley square function associated to a function ϕ ∈ S with zero integral.

We also use some results in [9]. We recall that the Fefferman-Stein sharp function f ] is

given by

f ](x) = sup
x∈Q

inf
c

1

|Q|

∫
Q

|f(y)− c|dy.

If 0 < δ < 1, we write f ]δ(x) = supx∈Q infc

(
1
|Q|

∫
Q
|f(y)− c|δdy

) 1
δ
. Applying [9], Theorem

3.1 together with (4.1) in the same paper, we have that:

Theorem 5.3 ([9]). Let 1 < p < ∞. For any ω ∈ Ap, δ < 1 and for any compactly

supported function f , integrable on Rn, we have

‖Mf‖Lp(ωdx) . ‖|f |]δ‖Lp(ωdx),

where Mf is the usual Hardy-Littlewood maximal function and the constants depend only

on p, n and the weight ω. In particular,

(5.11) ‖f‖Lp(ωdx) . ‖|f |]δ‖Lp(ωdx)
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5.1. Proof of Theorem 5.2. If we denote K(f)t((x, y)) := K(f)((x + t, y)), we have

AK(f)(t) =

(∫
Γ(t)

|K(f)((x, y))|2dxdy
yn+1

) 1
2

=

(∫
Γ(0)

|K(f)((x + t, y))|2dxdy
yn+1

) 1
2

=

(∫
Γ(0)

|K(f)t((x, y))|2dxdy
yn+1

) 1
2

.

We claim that it is enough to show that for 0 < δ < 1,

(5.12) AK(f)]δ .M(f).

Postponing the proof of the claim, we first finish the proof of the theorem. By (5.11) and

(5.12), we have that if ω ∈ Ap,

‖AK(f)‖Lp(ω) . ‖AK(f)]δ‖Lp(ω) . ‖Mf‖Lp(ω) . ‖f‖Lp(ω),

which gives the desired estimate.

So, we are left to prove (5.12), or equivalently, we will show that for any cube Q, with

sides paralels to the coordinate axes, and centered at t0, there exists a constant cQ such

that (
1

|Q|

∫
Q

|AK(f)(t)− cQ|δdt
) 1

δ

.Mf(t0).

We need a lemma that shows that AK is of (1, 1)-weak type and which is based in a

well known technique of splitting functions of A.P. Calderon and A. Zygmund.

Lemma 5.4. There exists C > 0 such that for any λ > 0, f ∈ L1(Rn),

|{x ∈ Rn; AK(f)(x) > λ}| .
‖f‖L1(Rn)

λ
.

Proof. If λ > 0 and f ∈ L1(Rn), we denote Ωλ = {x ∈ Rn; M(f)(x) > λ}.
Since the Hardy-Littlewood maximal operator is of weak type (1, 1), we have that

|Ωλ| .
1

λ

∫
Rn
|f(x)|dx.

We must then estimate

|{x /∈ Ωλ; AK(f)(x) > λ}|.
Let (Qk)k be a Whitney decomposition of the set Ωλ. We write f = g + b, where

g(x) =

{
f(x), x /∈ Ωλ

1
|Qk|

∫
Qk
f(x)dx x ∈ Qk.

Since (Qk)k is a Whitney decomposition of Ωλ, there exists R > 0 such that the dilated

cube RQ satisfies RQ ∩ Ωc
λ 6= ∅. We then have that ‖g‖∞ . λ. We denote bk = bχQk =

(f − fQk)χQk , where fQk =
1

|Qk|

∫
Qk

f(x)dx. We then have that bk is supported in Qk,∫
Qk
bkdx = 0 and ‖bk‖L1(Rn) .

∫
Qk
|f |dx and b =

∑
k bk.

If we decompose

|{x /∈ Ωλ; AK(f)(x) > λ}|
≤ |{x /∈ Ωλ; AK(g)(x) > λ/2}|+ |{x /∈ Ωλ; AK(b)(x) > λ/2}| = A+ B,
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Chebyshev’s inequality, (i) in Definition 5.1 and the fact that ‖g‖∞ . λ gives easily

that

A . 1

λ

∫
Rn
|f(x)|dx,

We now estimate B. Let Ω∗ = ∪kQ∗k, where Q∗k is the cube with the same center that

Qk and such that |Q∗k| = Rn|Qk|. We then have that |Ω∗| . |Ω| and

|{x /∈ Ωλ; AK(b)(x) > λ/2}| . 1

λ

∫
Rn\Ω∗

AK(b)(x)dx

≤ 1

λ

∑
k

∫
Rn\Q∗k

AK(bk)(x)dx.

So, it is enough to prove that∫
Rn\Q∗k

AK(bk)(x)dx . ‖bk‖L1(Rn).

Let x ∈ Rn \Q∗k. Denote by xk the center of Qk, k ≥ 1. The fact that for each k ≥ 1,∫
Rn bk = 0, gives that

K(bk)(x) =

∫
Qk

(
K(x− u, y)−K(x− xk, y)

)
bk(u)du.

Next, observe that if we choose R big enough so that for any u ∈ Qk and x ∈ Rn \ Q∗k,
we have that by (iii) in 5.1,∣∣K(x− u, y)−K(x− xk, y)

∣∣ . |u− xk|ηyη

(|x− xk|+ y)n+2η
.

Thus, the above integral is bounded by∫
Qk

|u− xk|ηyη

(|x− xk|+ y)n+2η
|bk(u)|du .

rηQky
η

(|x− xk|+ y)n+2η

∫
Qk

|bk(u)|du.

Hence

AK(bk)
2(t) . r2η

Qk
‖bk‖2

L1(Rn)

∫
Γ(t)

y2η

(|x− xk|+ y)2n+4η

dxdy

yn+1
.

But if |x− t| < y, we have that |x− xk|+ y ≥ |xk − t|.
Consequently,

AK(bk)
2(t) . r2η

Qk
‖bk‖2

L1(Rn)

(∫
Rn

dx

(|x− xk|+ |xk − t|)2n+4η|x− t|n−2η

)
.
r2η
Qk
‖bk‖2

L1(Rn)

|xk − t|2n+2η

and

∫
Rn\Q∗k

AK(bk)(x)dx . rηQk‖bk‖L1(Rn)

∫
Rn\Q∗k

dt

|xk − t|n+η
. ‖bk‖L1(Rn).

�

We need a second lemma:



22 CARME CASCANTE AND JOAQUÍN M. ORTEGA

Lemma 5.5. Let K : Rn × [0,+∞) → Rm be an AK-Calderón-Zygmund type kernel.

Then there exists 0 < η such that if |r− t| ≤ ε|r|,

‖K(u + t, y)−K(u + r, y)‖2

L2
(

Γ(0), dudy
yn+1

) . |r− t|2η

|r|2n+2η
.

Proof. Let |r− t| ≤ ε|r|. We then have that for any |u| < y, |u + r− (u + t)| = |r− t| ≤
ε|r| ≤ ε(|u + r|+ y). Since K is an AK-Calderón-Zygmund type kernel, we have that by

(iii) in 5.1,

‖K(u + t, y)−K(u + r, y)‖2

L2
(

Γ(0), dudy
yn+1

) .
∫
|u|<y

|t− r|2ηy2η

(|u + r|+ y)2n+4η

dudy

yn+1
.

It is easy to check that∫
|u|<y

1

(|u + r|+ y)2n+4η

dudy

yn+1−2η
.

1

|r|2n+2η
.

And that ends the lemma. �

Now we prove (5.12). Let f = f1 + f2, where f1 = fχQ∗ and where, as before, Q∗ is

the cube with the same center that Q and such that |Q∗| = Rn|Q|. If we denote as usual

gQ = 1
|Q|

∫
Q
g(t)dt, let

cQ := ‖ 1

|Q|

∫
r∈Q

(∫
z∈Rn\Q∗

K(u + r− z, y)f2(z)dz

)
dr‖

L2
(

Γ(0), dudy
yn+1

), .
which we wil write briefly as ‖(K(f2))u+Q‖L2

(
Γ(0), dudy

yn+1

). We then have,

(
1

|Q|

∫
Q

|AK(f)(t)− cQ|δdt
) 1

δ

=

(
1

|Q|

∫
Q

∣∣∣∣‖K(f)t‖L2
(

Γ(0), dudy
yn+1

) − ‖(K(f2))u+Q‖L2
(

Γ(0), dudy
yn+1

)∣∣∣∣δ dt
) 1

δ

.

(
1

|Q|

∫
Q

‖K(f1)t‖δ
L2
(

Γ(0), dudy
yn+1

)dt
) 1

δ

+

(
1

|Q|

∫
Q

‖K(f2)t − (K(f2))u+Q‖δ
L2
(

Γ(0), dudy
yn+1

)dt
) 1

δ

= I + II.

The estimate of I follows from Kolmogorov’s inequality, since by Lemma 5.4, AK(f) is

of weak-type (1, 1). We then have,

1

|Q|

∫
Q

‖(K(f1))t‖δ
L2
(

Γ(0), dudy
yn+1

) . 1

|Q|

∫
Rn
|AK(f1)(t)|δdt .

(
1

|Q∗|

∫
Q∗
|f1(t)|dt

)δ
and consequently,

I .
1

|Q∗|

∫
Q∗
|f1(t)|dt .Mf(t0).
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Let us now estimate II. We have that since δ < 1

II

≤ 1

|Q|

∫
Q

‖
∫
z∈Rn\Q∗

(
K(u + t− z, y)−

(
1

|Q|

∫
r∈Q

K(u + r− z, y)dr

))
f(z)dz‖

L2
(

Γ(0), dudy
yn+1

)dt
≤ 1

|Q|

∫
t∈Q

∥∥∥∥ 1

|Q|

∫
z∈Rn\Q∗

∫
r∈Q
|K(u + t− z, y)−K(u + r− z, y)| |f(z)|dzdr

∥∥∥∥
L2
(

Γ(0), dudy
yn+1

) dt

≤ 1

|Q|2

∫
t∈Q

∫
z∈Rn\Q∗

∫
r∈Q
‖K(u + t− z, y)−K(u + r− z, y)‖

L2
(

Γ(0), dudy
yn+1

)|f(z)|drdzdt,

(5.13)

where in the last estimate we have used Minkowski’s inequality. Next, Lemma 5.5 gives

that there exists 0 < η < 1 such that

‖K(u + t− z, y)−K(u + r− z, y)‖2

L2
(

Γ(0), dudy
yn+1

) . |r− t|2η

|r− z|2n+2η

Hence, (5.13) is bounded, up to a constant, by

1

|Q|2

∫
t∈Q

∫
z∈Rn\Q∗

∫
r∈Q

|r− t|2η

|r− z|2n+2η
|f(z)|drdzdt ≤Mf(t0),

where the last inequality follows easily by a standard discretization method.

6. The kernels Ks and Js

Let Ks(x, y) and Js(x, y) be the kernels defined respectively by

Ks(x, y) = y1−s
∫
Rn
∇x,yQs(x− u, y)Gs(|u|)du,

Js(x, y) = y1−s
∫
Rn
Qs(x− u, y)Gs(|u|)du,

and the associated integral operators Ks(f)(x, y) =
∫
Rn Ks(x−z, y)f(z)dz and Js(f)(x, y) =∫

Rn Js(x− z, y)f(z)dz respectively.

Theorem 6.1. Let 0 < s < 1. Let Ts be either Ks or Js. We then have that for some

η > 0,

(i) ‖ATs(f)‖L2(Rn) . ‖f‖L2(Rn).

(ii) |Ts(x, y)| . yη

(|x|2+y2)
n+η
2

.

(iii) If |x− x̃| ≤ ε(|x|2 + y2)
1
2 , for some ε > 0,

|Ts(x, y)−Ts(x̃, y)| . yη|x− x̃|η

(|x|2 + y2)
n+2η

2

.

Proof of (i).

We start with the kernel Ks. Observe that Fubini’s Theorem and Remark 2.6 give that

‖AKs(f)‖2
L2(Rn) =

∫
Rn

∫
Γ(t)

|y1−s∇Qs(Gsf)(x, y)|2dxdy
yn+1

dt

=

∫
Rn+1
+

y1−2s|∇Qs(Gsf)(x, y)|2dxdy . ‖Gsf‖2
H2
s (Rn) = ‖f‖2

L2(Rn).
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The estimate (i) for Ts = Js is analogously a consequence of Fubini’s Theorem and

Remark 2.6.

Proof of (ii).

First, we obtain the estimate for the kernel Ks. We consider two cases: |x| ≤ y and

|x| ≥ y.

We prove (ii) for Ks when |x| ≤ y. We will check that

|Ks(x, y)| . 1

yn
=

ys

yn+s
' ys

(|x|2 + y2)
n+s
2

.

We have that

Ks(x, y)

= y1−s
∫
Rn
∇x,y

(
y2s

(|x− u|2 + y2)
n+2s

2

)
G2n+2s+1((|x− u|2 + y2)

1
2 )Gs(|u|)du

+ y1−s
∫
Rn

y2s

(|x− u|2 + y2)
n+2s

2

∇x,y

(
G2n+2s+1((|x− u|2 + y2)

1
2 )
)
Gs(|u|)du

We observe that by Proposition 3.1, G2n+2s+1 and∇G2n+2s+1 are bounded functions. Hence

|Ks(x, y)| .
∫
Rn

ys

(|x− u|2 + y2)
n+2s

2

Gs(|u|)du.(6.14)

Next, ∫
Rn

ys

(|x− u|2 + y2)
n+2s

2

Gs(|u|)du

.
∫
|x−u|≤2y

ys

yn+2s

1

|u|n−s
du +

∫
|x−u|>2y

ys

|x− u|n+2s

1

|u|n−s
du .

1

yn
.

(6.15)

Now, we prove (ii) for Ks when y ≤ |x|. We will check that in this case,

|Ks(x, y)| . yη

|x|n+η
,

for some η > 0. In order to avoid the “singularity” of the integral near x, indepently of

y, of the term 1
(|x−u|+y)n+1+2s , we write

Ks(x, y) = y1−s
∫
Rn
∇x,yQs(x− u, y)Gs(|x|)du

+ y1−s
∫
Rn
∇x,yQs(x− u, y) (Gs(|u|)−Gs(|x|)) du = I1(x, y) + I2(x, y).

We begin estimating I1(x, y). By Proposition 3.4, we have that∣∣∣∣∫
Rn
∇x,yQs(x, y)dx

∣∣∣∣ . hs(y)e
− 1√

2
y
.

Hence, for any 0 < c < 1, |I1(x, y)| . y1−shs(y)e
− y√

2 e
−c|x|

|x|n−s .
ys

|x|n+s .

Now, we deal with I2(x, y). We recall that y ≤ |x|.
We consider first the integral in |x−u| ≥ |x|

2
. Here there is no singularity near x, and it

is enough to estimate separately each of the two integrals, corresponding to Gs(|u|) and
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Gs(|x|) respectively. Indeed,∣∣∣∣∣y1−s
∫
|x−u|≥ |x|

2

∇x,yQs(x− u, y)Gs(|u|)du

∣∣∣∣∣
.
∫
|x−u|≥ |x|

2

ys

|x− u|n+2s

1

|u|n−s
du =∫

|x−u|≥ |x|
2
, |u|≤2|x|

ys

|x− u|n+2s

1

|u|n−s
du +

∫
|x−u|≥ |x|

2
, |u|>2|x|

ys

|x− u|n+2s

1

|u|n−s
du

.
ys

|x|n+2s

∫
|u|≤2|x|

1

|u|n−s
du + ys

∫
|u|>2|x|

1

|u|2n+s
du .

ys

|x|n+s
.

Next, consider the integral corresponding to Gs(|x|), if 0 < c < 1∣∣∣∣∣y1−s
∫
|x−u|≥ |x|

2

∇x,yQs(x− u, y)Gs(|x|)du

∣∣∣∣∣
.

e−c|x|

|x|n−s

∫
|x−u|≥|x|/2

ys

(|x− u|2 + y2)
n+2s

2

du .
ys

|x|n+s
.

So, in order to finish the estimate of I2(x, y), we are left to obtain the estimate when

we integrate in |x− u| ≤ |x|
2

. By the mean value theorem,

|Gs(|u|)−Gs(|x|)| ≤ |x− u| sup
z=x+λ(u−x); 0≤λ≤1

|∇Gs(z)| .

Applying (vii) in Proposition 3.1, and using that since |x−u| ≤ |x|
2

, we have that for any

z = x + λ(u− x), 0 ≤ λ ≤ 1, |z| ' |x|, we deduce that for some c > 0,

|∇Gs(z)| . 1

|x|n+1−s e
−c|x|.

Let 0 < η < min(s, 1− s). We then have

∫
|x−u|≤ |x|

2

ys

(|x− u|2 + y2)
n+2s

2

|Gs(|u|)−Gs(|x|)| du

.
yη

|x|n+1−s

∫
|x−u|≤ |x|

2

du

|x− u|n+2s−(s−η)−1
.

yη

|x|n+η
,

Estimate (ii) for the kernel Js.

If |x| ≤ y, we have that since

|Qs(x, y)| . y2s

(|x|2 + y2)
n+2s

2

e−cy,

|Js(x, y)| .
∫
Rn

ys

(|x− u|2 + y2)
n+2s

2

Gs(|u|)du

and we can continue arguing as in (6.14).

If |x| ≥ y, an analogous argument to the one used for the derivatives of Qs gives the

desired estimate, using that now ∫
Rn
Qs(x, y)dx . e−cy
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and taking into account that in comparison with the estimate of ∇x,yQs, in the estimate

of Qs appears in the numerator an extra y, that together with e−cy gives that ye−cy . 1.

As before, this observation allows to reduce the arguments to estimate Js to the ones used

in the estimates of Ks.

Proof of (iii).

Let’s begin with the kernel Ks. We must show that for |x − x̃| ≤ ε(|x|2 + y2)
1
2 and

some η > 0,

|Ks(x, y)−Ks(x̃, y)| . yη|x− x̃|η

(|x|2 + y2)
n+2η

2

.

We consider separately, as before, the cases |x| ≤ y and |x| > y.

If |x| ≤ y, it is enough to see that for any |x− x̃| ≤ εy, we have that

|Ks(x, y)−Ks(x̃, y)| . |x− x̃|s

yn+s
.

Indeed,

Ks(x, y)−Ks(x̃, y)

= y1−s
∫
Rn
{∇x,yQs(x− u, y)−∇x,yQs(x̃− u, y)}Gs(|u|)du

= y1−s
∫
|x−u|≤Cy

{∇x,yQs(x− u, y)−∇x,yQs(x̃− u, y)}Gs(|u|)du

+ y1−s
∫
|x−u|>Cy

{∇x,yQs(x− u, y)−∇x,yQs(x̃− u, y)}Gs(|u|)du

= A1(x, x̃, y) + A2(x, x̃, y).

We begin with the estimate of A1(x, x̃, y). Since |x− x̃| ≤ εy and |x− u| ≤ Cy, we have

that for any z = λx + (1− λ)x̃, |z− u| . y and, in particular, |z− u|2 + y2 ' y2. On the

other hand, if |x− u| ≤ Cy, we have that |u| ≤ |x− u| + |x| ≤ C1y Hence, Mean Value

Theorem applied to the functions x→ ∇x,yQs(x− u, y) gives that

|A1(x, x̃, y)| . ys

yn+2s+1
|x− x̃|

∫
|u|≤C1y

du

|u|n−s
.

ys

yn+2s+1
|x− x̃|ys . |x− x̃|s

yn+s
.

Next, we estimate A2(x, x̃, y). Since |x| ≤ y and |x− u| ≥ Cy, if we choose C > 0 big

enough, we deduce that |u| ≥ C1y, with C1 > 1. We also have since |x− x̃| ≤ εy that for

any z = λx + (1− λ)x̃, 0 < λ < 1, |z− x| ≤ εy and

|z− u| ≥ |x− u| − |z− x| ≥ |x− u| − εy ≥ (1− ε

C
)|x− u|.

Proceeding as in the previous case, we have that

|A2(x, x̃, y)|

.
∫
|x−u|>Cy

ys|x− x̃|
|x− u|n+2s+1

1

|u|n−s
du .

ys|x− x̃|
yn−s

∫
|x−u|>C2y

1

|x− u|n+2s+1
du

' ys|x− x̃|
yn−s+2s+1

.
|x− x̃|s

yn+s
.
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Assume now that |x| ≥ y. We must show that for |x− x̃| ≤ ε|x| and some 0 < η,

|Ks(x, y)−Ks(x̃, y)| . yη|x− x̃|η

|x|n+2η
.

The change of variables u = x− v and u = x̃− v respectively, give that

|Ks(x, y)−Ks(x̃, y)| =
∣∣∣∣y1−s

∫
Rn
∇v,yQs(v, y) {Gs(|v − x|)−Gs(|v − x̃|)} dv

∣∣∣∣ .(6.16)

Since |y1−s∇v,yQs(v, y)| . ys

(|v|+y)n+2s , and in order to avoid the eventual “singularity”when

integrating with respect to v indepoendent of y, we bound the expression (6.16) by

y1−s
∣∣∣∣∫

Rn
∇v,yQs(v, y) (Gs(|x|)−Gs(|x̃|)) dv

∣∣∣∣
+ y1−s

∣∣∣∣∫
Rn
∇v,yQs(v, y) {(Gs(|v − x|)−Gs(|v − x̃|))− (Gs(|x|)−Gs(|x̃|))} dv

∣∣∣∣
= B1(x, x̃, y) +B2(x, x̃, y).

Let us begin with the estimate of B1(x, x̃, y). By the mean value theorem,

|Gs(|x|)−Gs(|x̃|)| ≤ |x− x̃| sup
z=λx+(1−λ)x̃; 0≤λ≤1

|∇Gs(z)‖ .

But since |x− x̃| ≤ ε|x|, we have that for any z = λx + (1− λ)x̃, 0 ≤ λ ≤ 1, |z| ' |x|.
Hence, for some c > 0,

|Gs(|x|)−Gs(|x̃|)| .
|x− x̃|
|x|n+1−s e

−c|x|,

Applying Proposition 3.4 we have that

B1(x, x̃, y)

. |Gs(|x|)−Gs(|x̃|)|y1−s
∣∣∣∣∫

Rn
∇v,yQs(v, y)dv

∣∣∣∣
. y1−shs(y)

e
− 1√

2
y|x− x̃|

|x|n+1−s e−c|x| .
yη|x− x̃|η

|x|n+2η
,

for some η > 0.

Now we estimate B2(x, x̃, y). In the following arguments we will see why we choose the

next decomposition of the integral that defines B2(x, x̃, y).
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We recall that we are assuming that |x− x̃| ≤ ε|x| and in addition |x| ≥ y. We write

|B2(x, x̃, y)|

≤ y1−s
∫
|v|≥ 1

2
|x|
|∇v,yQs(v, y)| |Gs(|x|)−Gs(|x̃|)| dv

+ y1−s
∫
|v|≥2|x|

|∇v,yQs(v, y)| |(Gs(|v − x|)−Gs(|v − x̃|))| dv

+ y1−s
∫

1
2
|x|≤|v|<2|x|

|∇v,yQs(v, y)| |(Gs(|v − x|)−Gs(|v − x̃|))| dv

+ y1−s
∫
|v|< 1

2
|x|
|∇v,yQs(v, y)| |(Gs(|v − x|)−Gs(|v − x̃|))− (Gs(|x|)−Gs(|x̃|))| dv

= B2,1 +B2,2 +B2,3 +B2,4.

The estimates of B2,1 and B2,2 are similar. Applying the Mean Value Theorem in B2,1,

|Gs(|x|)−Gs(|x̃|)| .
|x− x̃|
|x|n−s+1

and in B2,2, for some z in the segment with extrems x and x̃,

|Gs(|v − x|)−Gs(|v − x̃|)| . |x− x̃|
|v − z|n−s+1

.
|x− x̃|
|x|n−s+1

.

We then have

B2,1 +B2,2 . ys|x− x̃| 1

|x|n−s+1

∫
|v|≥ 1

2
|x|

dv

|v|n+2s
.
ys|x− x̃|s

|x|n+2s
.

Next we deal with the term B23. If we just argue as in the case B21, the intermediate

point that appear when we apply the Mean Value Theorem to

Gs(|v − x|)−Gs(|v − x̃|)

is not easy to estimate when 1
2
|x| ≤ |v| < 2|x|. For this reason, we will use a different

argument, approximating the Bessel kernels by Riesz kernels, approximation that allows

a more precise estimate.

We express Gs(|v−x|)−Gs(|v−x̃|) as a sum of the difference between the corresponding

Riesz kernels and the difference of the remaining parts. Due to the simmetry of the

position of the points x and x̃, we will just consider the part of the integral where |v−x̃| ≥
|v − x|. We will assume from now on that we have this extra assumption. We have that

there exist as, bs > 0 such that

Gs(v − x)−Gs(v − x̃) = as

∫ ∞
0

(
e−π

|x−v|2
δ − e−π

|x̃−v|2
δ

)(
e−

δ
4π − 1

)
δ
−n+s

2
dδ

δ

+ bs

(
1

|x− v|n−s
− 1

|x̃− v|n−s

)
= D1 +D2.

We begin with the estimate of D1. We have that∣∣∣e− δ
4π − 1

∣∣∣
δ

.


1, if δ ≤ 1,

1
δ
, if δ ≥ 1.
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We write∣∣∣∣e−π |v−x|2
δ − e−π

|x̃−v|2
δ

∣∣∣∣
= e−π

|v−x|2
δ

(
1− e−

π
δ

(|v−x̃|+|v−x|)(|v−x̃|−|v−x|)) ≤ e−π
|v−x|2

δ

(
1− e−

2π
δ
|v−x̃||x−x̃|

)
Next, since 1− e−λ ≤ λ if λ ≥ 0,∣∣∣∣e−π |v−x|2

δ − e−π
|x̃−v|2

δ

∣∣∣∣ . e−π
|v−x|2

δ
2π

δ
|v − x̃||x− x̃|.

Then

D1 . |x− x̃|
∫ 1

0

e−π
|v−x|2

δ |v − x̃|δ
−n+s

2
−1dδ

+ |x− x̃|
∫ ∞

1

e−π
|v−x|2

δ |v − x̃|δ
−n+s

2
−2dδ.

The change of variables λ = π |v−x|
2

δ
, dδ = − π

λ2
|v − x|2dλ gives that the above coincides,

up to a constant, with

D1 . |x− x̃||v − x̃||v − x|−n+s

∫ ∞
|v−x|2π

e−λλ
n−s
2
dλ

λ

+ |x− x̃||v − x̃||v − x|−n+s−2

∫ |v−x|2π
0

e−λλ
n−s
2

+1dλ

λ

. |x− x̃||v − x̃|
(
|v − x|−n+s + 1

)
.

(6.17)

For the estimate of D2, we will use the following lemmas to estimate the integrals

involving
(

1
|v−x|n−s −

1
|x̃−v|n−s

)
.

Lemma 6.2. Let n ≥ 1 and 0 < s < 1. We then have that if |h̃| ≥ |h|,∣∣∣∣∣ 1

|h|n−s
− 1

|h̃|n−s

∣∣∣∣∣ . |h− h̃| 1

|h̃||h|n−s
.

Proof. The case n = 1 was proved in [4]. If n ≥ 2, Mean Value Theorem gives that∣∣∣∣∣ 1

|h|n−s
− 1

|h̃|n−s

∣∣∣∣∣ =

∣∣∣|h̃|n−s − |h|n−s∣∣∣
|h|n−s|h̃|n−s

. sup
z=λh+(1−λ)h̃; 0≤λ≤1

|h− h̃||z|n−s−1

|h|n−s|h̃|n−s
.

But any z = λh + (1 − λ)h̃, 0 ≤ λ ≤ 1 satisfies that |z| ≤ sup
(
|h|, |h̃|

)
= |h̃|. Since

n− s− 1 > 0, we deduce that the above is bounded by

|h− h̃| 1

|h̃||h|n−s
.

�

The estimate (6.17) together with Lemma 6.2 and that we are assuming that |v− x̃| ≥
|v − x| give that
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∫
1
2
|x|≤|v|≤2|x|; |v−x̃|≥|v−x|

(D1 +D2)dv

. |x− x̃|
∫

1
2
|x|≤|v|≤2|x|; |v−x̃|≥|v−x|

(
|v − x̃|
|v − x|n−s

+ |v − x̃|+ 1

|v − x̃||v − x|n−s

)
dv

. |x− x̃|
(
|x|1+s + |x|n+1 +

1

|x− x̃|1−s

)
.

Then, for some 0 < c < 1,

B23 .
yse−c|x||x− x̃|
|x|n+2s

(
|x|1+s + |x|n+1 +

1

|x− x̃|1−s

)
.
ys|x− x̃|s

|x|n+2s
.

Now we estimate B24. Here we are assuming that |v| ≤ 1
2
|x|, |x− x̃| ≤ ε|x| and |x| ≥ y.

Assume first that |x− x̃| ≤ |v|.
We apply the Mean Value Theorem to both Gs(|v − x|) − Gs(|v − x̃|) and Gs(|x|) −

Gs(|x̃|). Let z1 and z2 be intermediate points corresponding to the intervals of extreme

points v− x and v− x̃ and x and x̃ respectively. We then have that any point w in the

interval joinning z1 and z2 will satisfy that |w| ' |x| and |z1 − z2| . |x− x̃|+ |v| . |v|.
Applying again the Mean Value Theorem, we will get

B24 .
∫
|v|≤ 1

2
|x|

ys

(|v|+ y)n+2s

|v||x− x̃|
|x|n+2−s dv.

We arrive to the same estimate if |v| ≤ |x− x̃| applying first the Mean Value Theorem

to both Gs(|v − x|)−Gs(|x|) and Gs(|v − x̃|)−Gs(|x̃|).
Next, let 0 < η < s and η < 1− s. We then have

B24 .
∫
|v|≤ 1

2
|x|

yη

(|v|+ y)n+s+η−1

|x− x̃|
|x|n+2−sdv .

yη|x|1−s−η|x− x̃|
|x|n+2−s .

yη|x− x̃|η

|x|n+2η
.

We finish with the proof of estimate (iii) for Js. We also consider the cases |x| ≤ y and

|x| ≥ y.

If |x| ≤ y, we have that

y1−s |Qs(x− u, y)−Qs(x̃− u, y)|
. |x− x̃| sup

v=x+λ(x−x̃); 0≤λ≤1

y1−s ‖∇v,yQs(v − u, y)‖ ,

and use this estimate to proceed analogously to the case of the kernel Ks.

Finally, if |x| ≥ y, a simmilar type of arguments, absorving the bigger powers of y with

the exponential e−cy give the desired estimate for the kernel Js. �

7. Proof of Theorem 1.1

7.1. Proof of (ii) ⇒ (i).

In [7], Theorem 3.1.5, it is proved that if f ∈ D′(Rn) and 0 < s < 1 and we have that

f = (Id−∆)
s
2F with F ∈M(H2

s (Rn)→ L2(Rn)), then f ∈M(H2
s (Rn)→ H2

−s(Rn)).
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Hence, if (ii) in Theorem 1.1 holds, i.e., b ∈M(H2
s (Rn)→ L2(Rn)), this theorem gives

that (Id−∆)s/2b ∈M(H2
s (Rn)→ H2

−s(Rn)). Equivalently,∣∣∣∣∫
Rn
fg(Id−∆)s/2bdx

∣∣∣∣ . ‖f‖H2
s (Rn)‖g‖H2

s (Rn),

which gives (i).

7.2. Proof of (i) ⇒ (ii).

We begin the proof assuming first that n− 2s ≥ 0.

We will show that the measure dµ = |b(x)|2dx satisfies the capacitary condition given

in Proposition 4.3, i.e. there exists C > 0 such that for any compact set E ⊂ Rn with

diamE ≤ 1, then µ(E) ≤ CCaps(E). This will be a consequence of the hypothesis (i)

applied to adequate test functions. We consider suitable regularizations associated to
Gs(χE b)

pαE
and to pαE. We notice that in Theorem 4.7, we have already obtained an estimate

of the norm of some regularizations of pαE. The following step is to give an estimate of

the norm of some regularizations of the function Gs(χE b)
pαE

.

Theorem 7.1. Let 0 < s < 1 and n− 2s ≥ 0 and fix α ∈ (1
2
, 1

2
n

n−2s
) and α < 1√

2
. Let E

be a compact set of diameter less than or equal to one. Let b ∈ L2(Rn), and consider the

function gE = χE b. For ε > 0 and δ > 0, let gE,ε = gE ∗ ϕε and pE,δ = G2s ∗ νE,δ, where

νE,δ is the regularization of the extremal capacitary measure ν of E. Let fE,ε,δ =
Gs(gE,ε)

pαE,δ
.

Then,

‖fE,ε,δ‖2
H2
s (Rn) .

∫
Rn

|gE,ε|2

p2α
E,δ

.

Proof. We have that by Proposition 2.1

‖fE,ε,δ‖2
H2
s (Rn) .

∥∥∥∥Qs (Gs (gE,ε))

Qs(pE,δ)α

∥∥∥∥2

W 2
1,1−2s

.

∥∥∥∥Qs (Gs (gE,ε))

Qs(pE,δ)α

∥∥∥∥2

L2(Rn+1
+ ,y1−2sdxdy)

+

∥∥∥∥∇Qs (Gs (gE,ε))

Qs(pE,δ)α

∥∥∥∥2

L2(Rn+1
+ ,y1−2sdxdy)

+

∥∥∥∥Qs (Gs (gE,ε))

Qs(pE,δ)α+1
∇Qs(pE,δ)

∥∥∥∥2

L2(Rn+1
+ ,y1−2sdxdy)

=: A+ B + C.

We will estimate separately each term A, B, C.

7.2.1. Estimate of the term A.

Here we use a localization argument in order to substitute the Bessel kernel by the Riesz

kernel, togeher with the results obtained in Section 5 and refsection 6. Since diam(E) ≤ 1,

E ⊂ B(x0, 1) and without restriction we may assume that x0 is 0.
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∫
Rn+1
+

|Qs(Gs(gE,ε))|2

|Qs(pE,δ)|2α
y1−2sdxdy =

∫
Rn

∫
Γ(u)

|Qs(Gs(gE,ε))|2

|Qs(pE,δ)|2α
y1−n−2sdxdydu

=

∫
Rn\B(0,2k)

∫
Γ(u)

|Qs(Gs(gE,ε))|2

|Qs(pE,δ)|2α
y1−n−2sdxdydu

+

∫
B(0,2k)

∫
Γ(u)

|Qs(Gs(gE,ε))|2

|Qs(pE,δ)|2α
y1−n−2sdxdydu

= A1 +A2,

where k is as in Propositions 3.5 and 3.6. Let us begin estimating A1. We first observe

that if u /∈ B(0, 2k) and (x, y) ∈ Γ(u), then |x|+ y ≥ k.

Hence, applying Propositions 3.5 and 3.6 and using that νE,δ is supported in B(0, 1) if

δ is small enough, we have that for any λ > 1

A1 .

(∫
B(0,1)

|gE,ε|
)2

νE,δ(E)2α

∫
Rn\B(0,2k)

∫
Γ(u)

y1−n−2s e
− 2√

2
(|x|+y)

e−2λα(|x|+y)
dxdydu.

Choosing λ > 1, so that ρ = 1√
2
− λα > 0 (which is possible since α < 1√

2
), we deduce

that the above is bounded by(∫
B(0,1)

|gE,ε|
)2

νE,δ(E)2α

∫
Rn

∫
Γ(u)

y1−n−2se−2ρ(|x|+y)dxdydu

.

(∫
B(0,1)

|gE,ε|
)2

νE,δ(E)2α

∫
Rn+1
+

y1−2se−2ρ(|x|+y)dxdy .

(∫
B(0,1)

|gE,ε|
)2

νE,δ(E)2α
.

But Hölder’s inequality, together with Minkowski’s inequality (1 < 2α < n
n−2s

) give

that (∫
B(0,1)

|gE,ε|
)2

≤
∫
B(0,1)

|gE,ε|2

p2α
E,δ

∫
B(0,1)

p2α
E,δ . νE,δ(E)2α

∫
B(0,1)

|gE,ε|2

p2α
E,δ

.

Hence, A1 .
∫
Rn
|gE,ε|2
p2αE,δ

.

We now estimate

A2 =

∫
B(0,2k)

(∫
Γ(u)

|Qs(Gs(gE,ε))|2

|Qs(pE,δ)|2α
y1−n−2sdxdy

)
du

=

∫
B(0,2k)

(∫
(x,y)∈Γ(u); y>k

|Qs(Gs(gE,ε))|2

|Qs(pE,δ)|2α
y1−n−2sdxdy

)
du

+

∫
B(0,2k)

(∫
(x,y)∈Γ(u); y≤k

|Qs(Gs(gE,ε))|2

|Qs(pE,δ)|2α
y1−n−2sdxdy

)
du = A21 +A22.

To estimate A21, simmilar arguments to the ones used for A1 give, since |x|+ y ≥ k, that

A21 .
∫
Rn
|gE,ε|2
p2αE,δ

.

Now we estimate A22. Denote Γk(u) = Γ(u) ∩ {y ≤ k}. Let (x, y) ∈ Γk(u). We then

have,

Qs(pE,δ)(x, y) &
∫
v∈B(x,y)

y2s

(|v − x|2 + y2)
n+2s

2

G2n+2s+1(v − x, y)pE,δ(v)dv.
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But for any v ∈ B(x, y), |v − x| ≤ y. Hence, since in the integral defining A22, u ∈
B(0, 2k),

|v| ≤ |v − x|+ |x− u|+ |u| . 1.

Consequently, we have that for any v ∈ B(x, y), pE,δ(v) ' I2s(νE,δ)(v) (when n−2s = 0,

we have that n = 1 and s = 1
2

and I2s(νE,δ) must be replaced by the logarithmic potential

of the measure νE,δ). We also have that for |v − x| ≤ y < k, G2n+2s+1(v − x, y) ' 1 .

Thus,

Qs(pE,δ)(x, y) &
∫
v∈B(x,y)

y2s

(|v − x|2 + y2)
n+2s

2

I2s(νE,δ)(v)dv &
∫
B(x,y)

1

yn
I2s(νE,δ)(v)dv.

Hence,

A22 =

∫
B(0,2k)

(∫
Γk(u)

|Qs(Gs(gE,ε))|2

|Qs(pE,δ)|2α
y1−n−2sdxdy

)
du

.
∫
B(0,2k)

∫
Γk(u)

|Qs (Gs (gE,ε)) |2y1−n−2s

(
1

|B(x, y)|

∫
B(x,y)

I2s(νE,δ)(v)dv

)−2α

dxdydu

.
∫
B(0,2k)

∫
Γk(u)

|Qs (Gs (gE,ε)) |2y1−n−2s

(
1

|B(x, y)|

∫
B(x,y)

I2s(νE,δ)
−1(v)dv

)2α

dxdydu

.
∫
u∈B(0,2k)

∫
Γk(u)

|Qs (Gs (gE,ε)) |2y1−n−2s 1

|B(x, y)|

∫
v∈B(x,y)

I2s(νE,δ)
−2α(v)dv dxdydu

.
∫
Rn+1
+

|Qs (Gs (gE,ε)) |2y1−2s 1

yn

∫
v∈B(x,y)

1

I2s(νE,δ)2α(v)
dvdxdy

.
∫
Rn

∫
Γ(v)

|Qs (Gs (gE,ε)) |2y1−n−2s 1

I2s(νE,δ)2α(v)
dxdydv.

Next, Lemma 4.5 gives that I2s(νE,δ)
2α is in A2, with constants independent of δ > 0 and

consequently, I2s(νE,δ)
−2α is also in A2. Hence, Theorem 6.1 applied to the operator Js

gives that the above is bounded by

∫
Rn

|gE,ε|2

I2s(νE,δ)2α
'
∫
Rn

|gE,ε|2

p2α
E,δ

,

since gE,ε is supported in a set with diameter less than or equal to 2, then, I2s(νE,δ) ' pE,δ.

7.2.2. Estimate of the term B.

As in the estimate of A, we decompose B in two integrals. Namely

B =

∫
Rn+1
+

|∇Qs(Gs(gE,ε))|2

|Qs(pE,δ)|2α
y1−2sdxdy =

∫
u∈Rn

∫
Γ(u)

|∇Qs(Gs(gE,ε))|2

|Qs(pE,δ)|2α
y1−n−2sdxdydu

=

∫
Rn\B(0,2k)

∫
Γ(u)

|∇Qs(Gs(gE,ε))|2

|Qs(pE,δ)|2α
y1−n−2sdxdydu

+

∫
B(0,2k)

∫
Γ(u)

|∇Qs(Gs(gE,ε))|2

|Qs(pE,δ)|2α
y1−n−2sdxdydu = B1 + B2.
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We begin estimating B1. Applying now (ii) in Proposition 3.5 and Proposition 3.6, give

that

B1 .

(∫
B(0,1)

|gE,ε|
)2

νE,δ(E)2α

∫
Rn\B(0,2k)

∫
Γ(u)

hs(y)2y1−n−2s e
− 2√

2
(|x|+y)

e−2λα(|x|+y)
dxdydu

and following the arguments used in the estimate of A1, we get B1 .
(
∫
B(0,1) |gE,ε|)

2

νE,δ(E)2α
.

The estimate of B2 is done as in the estimate of A2 decomposing the integral in two

parts, one corresponding to y ≥ k, which we will denote by B21, and the other corre-

sponding to y < k, which we will denote by B22. The estimate of B21 for y > k it is done

in a simmilar way to the estimate of A21. The estimate of B22, follows exactly as in the

estimate of A22 replacing in the application of Theorem 6.1 the operator Js by Ks.

7.2.3. Estimate of the term C.

We will reduce the estimate the term C to the preceeding two terms A and B, using

Stokes’ Theorem. Given η,R > 0, let Ωη,R the region in Rn+1
+ defined by

Ωη,R = {(x, y) ∈ Rn+1
+ ; (x, y) ∈ B(0, R), y ≥ η}.

Let ω be the form defined by

ωδ,ε(x, y)

=
(Qs(Gs(gE,ε)))

2

(Qs(pE,δ))2α+1
y1−2s

(
n∑
i=1

(−1)i−1∂Qs(pE,δ)

∂xi
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn ∧ dy

+(−1)n
∂Qs(pE,δ)

∂y
dx1 ∧ · · · ∧ dxn

)
.

(7.18)

Using that div(y1−2s∇u) = y1−2su, Stokes’ Theorem (orienting ∂Ωη,R adequately) gives

that ∫
∂Ωη,R∩{y=η}

ωδ,ε(x, y) +

∫
∂Ωη,R∩{y>η}

ωδ,ε(x, y)

= −(2α + 1)

∫
Ωη,R

(Qs (Gs(gE,ε)))
2

(Qs(pE,δ))
2α+2 |∇Qs(pE,δ)|2y1−2sdxdy

+ 2

∫
Ωη,R

Qs (Gs(gE,ε))
∇Qs (Gs) · ∇Qs(pE,δ)

(Qs(pE,δ))
2α+1 y1−2sdxdy

+

∫
Ωη,R

(Qs (Gs(gE,ε)))
2

(Qs(pE,δ))
2α+1 Qs(pE,δ)y

1−2sdxdy

(7.19)

In order to pass to the limit when η → 0 and R → ∞, we will need the following

lemmas:

Lemma 7.2. Let 0 < s < 1, n − 2s > 0, 1/2 < α < min( n
2(n−2s)

, 1
2
( 3√

2
− 1)) and let ωδ,ε

be as in (7.18). Then we have that

lim
R→∞

∫
∂Ωη,R∩{y≥η}

ωδ,ε(x, y) = 0.
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Proof. By Propositions (3.5) and (3.6), we have that, if R is big enough and λ >

1 such that λ(2α + 1) − 3√
2
< 0, the coefficients of the form ωδ,ε are bounded by

hs(y)y1−2se
(λ(2α+1)− 3√

2
)(|x|+y)

and consequently,

lim
R→∞

∫
{(x,y) ; |x|2+y2=R2 , y≥η}

ωδ,ε = 0.

�

Lemma 7.3. Let 0 < s < 1 and n− 2s > 0, 1
2
< α < min( n

2(n−2s)
, 1

2
( 3√

2
− 1)) and let ωδ,ε

be as in (7.18). Then we have that

lim
R→∞

∫
∂Ωη,R∩{y=η}

ωδ,ε =

∫
∂({(x,y),x∈Rn, y≥η})

ωδ,ε.

Proof. As in Lemma 7.2, let λ > 1 such that λ(2α + 1) − 2√
2
< 0. Then the function

x→ hs(η)η1−2se

(
λ(2α+1)− 3√

2

)
(|x|+η) ∈ L1(Rn) and consequently, the Lebesgue’s Dominated

Convergence Theorem finishes the proof.

�

Lemma 7.4. Let 0 < s < 1, n − 2s > 0, 1/2 < α < min( n
2(n−2s)

, 1
2
( 3√

2
− 1)) and let ωδ,ε

be as in (7.18). Then there exists C > 0 such that

lim
η→0

∫
Rn×{η}

ωδ,ε = −(−1)nC

∫
Rn

(Gs(gE,ε))
2

(pE,δ)2α+1
dνE,δ.

Proof. By Theorem 2.2, we have that there exists a positive constant C > 0 such that for

any x ∈ Rn,

lim
η→0

ωδ,ε(x, η) = −(−1)nC
(Gs(gE,ε)(x))2

(pE,δ(x))2α+1
(Id−∆)s(pE,δ)(x).

In order to finish the proof of the lemma, we denote Iη = I1
η ∪ I2

η , where I1
η =

{(x, η); |x| ≤ k0} and I2
η = {(x, η); |x| ≥ k0}, where k0 is big enough such that Propo-

sition 3.6 holds. We also may assume that for any 0 < δ < 1, the support of νE,δ is in

|x| ≤ k0.

Observe that if |t| ≤ k0 + 1, then

pE,δ(t) =

∫
R
G2s(t− x)dνE,δ(x) & 1.

By continuity, we will have that Qs(pE,δ) & 1 on {(x, y); |x| ≤ k0, y ∈ [0, ρ]}, for some

ρ > 0.

On the other hand, the function Gs(gE,ε) is uniformly continuous on {|x| ≤ k0} (see

Theorem 2.3). Hence,

lim
η→0

Qs(Gs(gE,ε))(x, η) = Gs(gE,ε)(x),

uniformly on {|x| ≤ k0}. Analogously, limη→0Qs(pE,δ)
2α+1(x, η) = p2α+1

E,δ (x) uniformly on

{|x| ≤ k0}.
In addition, (Id−∆)spE,δ = νE,δ ∈ D and by Theorem 2.3,

lim
η→0

η1−2s∂Qs(pE,δ)

∂y
(x, η) = −C(Id−∆)spE,δ(x)
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uniformly on {|x| ≤ k0}, where C > 0. Then, we have that

lim
η→0

∫
I1η

ωδ,ε = −(−1)nC

∫
|x|≤k0

(Gs(gE,ε))
2

(pE,δ)2α+1
(Id−∆)spE,δ dx

= −(−1)nC

∫
|x|≤k0

(Gs(gE,ε))
2

(pE,δ)2α+1
dνE,δ.

Next, if (x, η) ∈ I2
η , and denoting by |ωδ,ε(x, η)| the modulus of the coefficients of the

form ωδ,ε(x, η), we have that

|ωδ,ε(x, η)| . e

(
λ(2α+1)− 3√

2

)
|x|
χ{‖x‖≥k0} ∈ L1(Rn).

Thus, passing to the limit, Lebesgue’s Dominated Convergence Theorem finishes the

lemma.

�

Now we can finish the proof of the boundedness of term C. We have that by (7.19) and

Hölder’s inequality,

(2α + 1)

∫
Ωη,R

(Qs (Gs(gE,ε)))
2

Qs(pE,δ)2α+2
|∇Qs(pE,δ)|2y1−2sdxdy

≤ −
∫
∂Ωη,R∩{y=η}

ωδ,ε(x, y)−
∫
∂Ωη,R∩{y>η}

ωδ,ε(x, y)

+

∫
Ωη,R

(Qs (Gs(gE,ε)))
2

(Qs(pE,δ))
2α+1 Qs(pE,δ)y

1−2sdxdy

+ 2

(∫
Ωη,R

(Qs (Gs(gE,ε)))
2

Qs(pE,δ)2α+2
|∇Qs(pE,δ)|2y1−2sdxdy

) 1
2

×

(∫
Ωη,R

|∇Qs ((Gs(gE,ε)) |2

Qs(pE,δ)2α
y1−2sdxdy

) 1
2

,

Next, we will pass to the limit when R→∞ and η → 0, using Lemmas 7.3, 7.4 and 7.2,

the Lebesgue’s Monotone Convergence Theorem. Observe that the orientation on ∂ΩR,η

given by Stokes’s Theorem when passing to the limit corresponds to the usual orientation
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on Rn with a factor (−1)n+1. We will then have that:

(2α + 1)

∫
Rn+1
+

(Qs (Gs(gE,ε)))
2

Qs(pE,δ)2α+2
|∇Qs(pE,δ)|2y1−2sdxdy

= −C
∫
Rn

(GsgE,ε)
2

(pE,δ)2α+1
dνE,δ +

∫
Rn+1
+

(Qs (Gs(gE,ε)))
2

(Qs(pE,δ))
2α+1 Qs(pE,δ)y

1−2sdxdy

+ 2

(∫
Rn+1
+

(Qs (Gs(gE,ε)))
2

Qs(pE,δ)2α+2
|∇Qs(pE,δ)|2y1−2sdxdy

) 1
2

×

(∫
Rn+1
+

|∇Qs (Gs(gE,ε)) |2

Qs(pE,δ)2α
|y1−2sdxdy

) 1
2

≤
∫
Rn+1
+

(Qs (Gs(gE,ε)))
2

(Qs(pE,δ))
2α+1 Qs(pE,δ)y

1−2sdxdy

+ 2

(∫
Rn+1
+

(Qs (Gs(gE,ε)))
2

Qs(pE,δ)2α+2
|∇Qs(pE,δ)|2y1−2sdxdy

) 1
2

×

(∫
Rn+1
+

|∇Qs (Gs(gE,ε)) |2

Qs(pE,δ)2α
y1−2sdxdy

) 1
2

,

since

∫
Rn

(Gs(gE,ε))
2

(pE,δ)2α+1
dνE,δ ≥ 0.

We have proved then that C . A+ C 1
2B 1

2 and consequently, that C2 . A2 + C B. Thus,

either 1
2
C2 ≤ kC B or 1

2
C2 ≤ kA2. Equivalently, either 1

2
C ≤ kB or 1√

2
C ≤

√
kA. Hence,

using the estimates obtained for A and B,

C . A+ B .
∫
E

|gE,ε|2

p2α
E,δ

.

�

7.2.4. End of proof of (i) ⇒ (ii) for n− 2s ≥ 0.

We begin with a technical lemma.

Lemma 7.5. Let R > 0 and let φR(x, y) = φ(|x|2 + y2) be a C∞(Rn+1
+ ) function such that

φR ≡ 1 on D(0, R) ∩ Rn+1
+ , φR ≡ 0 on R2

+ \ D(0, 2R), and 0 ≤ φR ≤ 1 on Rn+1
+ , such

that for R < |x|2 + y2 < 2R, |∇φR(x, y)| . 1
R

, with constants independent of R. We then

have,

(i) lim
R→∞

φRfE,ε,δ = fE,ε,δ in H2
s (Rn).

(ii) lim
R→∞

φRpE,δ = pE,δ in H2
s (Rn).

Proof. We begin with (i). We must show that

‖(φR − 1)fE,ε,δ‖H2
s (Rn) → 0 R→∞.
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But,

‖(φR − 1)fE,ε,δ‖2
H2
s (Rn) ≤ ‖(φR − 1)

Qs(Gs(gE,ε))

(Qs(pE,δ))α
‖2
L2(Rn+1

+ ,y1−2sdxdy)

≤ ‖(φR − 1)
Qs(Gs(gE,ε))

(Qs(pE,δ))α
‖2
L2(Rn+1

+ ),y1−2sdxdy)

+ ‖(φR − 1)∇
(
Qs(Gs(gE,ε))

(Qs(pE,δ))α

)
‖2
L2(Rn+1

+ ,y1−2sdxdy)

+ ‖∇φR
Qs(Gs(gE,ε))

(Qs(pE,δ))α
‖2
L2(Rn+1

+ ,y1−2sdxdy)
= A(R) +B(R) + C(R).

Since |φR − 1| ≤ 1, the Lebesgue’s Dominated Convergence Theorem together with The-

orem 7.1 gives that limR→∞A(R) = 0 and limR→∞B(R) = 0. Finally, since for R <

|x|2 + y2 < 2R, |∇φR(x, y)| . 1
R

, and φR is supported in D(0, 2R), we deduce, using

Propositions 3.5 and 3.6 that limR→∞C(R) = 0.

A similar argument, using now Proposition 4.4 and Theorem 4.7, proves (ii). �

Assume that (i) holds. If we apply this hypothesis to φR
Gs(gE,ε)

pαE,δ
(see notations in

Theorem 7.1) and to φRp
α
E,δ, we obtain∣∣∣∣∫

Rn
(Id−∆)s/2

(
φ2
RGs(gE,ε)

)
(x)b(x) dx

∣∣∣∣ . ‖φRfE,ε,δ‖H2
s (Rn)‖φRpαE,δ‖H2

s (Rn).

We claim that

(7.20)

∣∣∣∣∫
Rn

(Id−∆)s/2
((
φ2
R − 1

)
Gs(gE,ε)

)
(x)b(x) dx

∣∣∣∣→ 0, R→∞.

Indeed, using Hölder’s inequality, it is enough to show that∫
Rn

∣∣(Id−∆)s/2
((
φ2
R − 1

)
Gs(gE,ε)

)
(x)
∣∣2 dx→ 0, R→∞.

But, the above is bounded by∫
Rn+1
+

∣∣(φ2
R − 1)Qs(Gs(gE,ε))(x)

∣∣2 y1−2sdxdy

+

∫
Rn+1
+

∣∣∇ ((φ2
R − 1)Qs(Gs(gE,ε))

)
(x)
∣∣2 y1−2sdxdy.

A similar argument to the one used in Lemma 7.5, finishes the proof of (7.20).

Using (7.20) and Lemma 7.5, we deduce that∣∣∣∣∫
Rn

(Id−∆)s/2 (Gs(gE,ε)) (x)b(x) dx

∣∣∣∣ . ‖fE,ε,δ‖H2
s (Rn)‖pαE,δ‖H2

s (Rn).

By Theorems 7.1 and 4.7, we have that ‖fE,ε,δ‖2
H2
s (Rn) .

∫
n

|gE,ε|2
p2αE,δ

and ‖pαE,δ‖2
H2
s (Rn) .

Caps(E). Hence, using that since gE,ε is compactly supported in a neighborhood of E of
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diameter les that or equal to 1,we have that in its support, pE,δ ' I2s(νE,δ),∣∣∣∣∫
Rn
gE,ε(x)b(x) dx

∣∣∣∣
.

(∫
Rn

|gE,ε(x)|2

p2α
E,δ(x)

dx

)1/2

Caps(E)1/2 '
(∫

Rn

|gE,ε(x)|2

I2s(νE,δ)2α(x)
dx

)1/2

Caps(E)1/2.

(7.21)

But gE,ε . MHL(gE) = MHL(χE b). Hence, since I2s(νE,δ)
−2α ∈ A2 with constant

independent of δ, the integral
∫
Rn

|gE,ε|2
I2s(νE,δ)2α

can be bounded by∫
Rn

(MHLχE b)
2(x)

I2s(νE,δ)2α(x)
dx .

∫
E

|b(x)|2

I2s(νE,δ)2α(x)
dx .

∫
E

|b(x)|2

p2α
E,δ(x)

dx.(7.22)

In addition limε→0 gE,ε = χE b in L2. Consequently, from (7.21) and (7.22) we deduce,

(7.23)

∣∣∣∣∫
E

|b(x)|2dx
∣∣∣∣ .

(∫
E

|b(x)|2

p2α
E,δ(x)

dx

)1/2

Caps(E)1/2.

Next, recall that for t ∈ E, pE,δ(t) ' I2s(νE,δ)(t) and
∫
I2s(t− v)νE,δ(v)dv & ν(E).

Consequently, the Lebesgue’s Dominated Convergence Theorem gives that,

lim
δ→0

∫
E

|b(x)|2

p2α
E,δ(t)

dx =

∫
E

|b(x)|2

p2α
E (t)

dx ≤
∫
E

|b(x)|2 dx,

where in the last estimate we have used that by Theorem 4.2, (ii), a.e. on E, pE(x)2α ≥ 1.

Hence, from (7.23) we have that∫
E

|b(x)|2dx . Caps(E).

And that proves (ii) for n− 2s ≥ 0. �

7.2.5. The case n− 2s < 0.

Observe that since s < 1, we have that n − 2s < 0 implies that n = 1. In this case

the proof is much easier since all the functions in Hs
2(R) are bounded and continuous.

In the choice of the test functions we simply take α = 1. The same arguments of the

previous case give the estimates of all the terms except the ones corresponding to A22,

that in this particular case is, in fact, easier. Indeed, if E ⊂ B(0, 1) and v is bounded,

then pE,δ(v) ' Cap(E) ' 1 and consequently, Qs(pE,δ)(v) & 1. Then, the estimate of the

term A22 follows directly from the unweighted L2-estimate of the involved area functions.

And the conclusion of the proof is then analogous to the case n− 2s ≥ 0.
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