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Abstract12

An accurate gait characterization is fundamental for diagnosis and treatment13

in both clinical and sportive �elds. Although several devices allow such mea-14

surements, the performance comparison between the acquired signals may be a15

challenging task.16

A novel pipeline for the accurate non-rigid alignment of gait signals is pro-17

posed. In this paper, the measurements of Inertial Measurement Units (IMU)18

and Optical Motion Capture Systems (OMCAP) are aligned using a modi�ed19

version of the Dynamic Time Warping (DTW) algorithm. The di�erences be-20

tween the two acquisitions are evaluated using both global (RMSE, Correlation21

Coe�cient (CC)) and local (Statistical Parametric Mapping (SPM)) metrics.22

The method is applied to a data-set obtained measuring the gait of ten23

healthy subjects walking on a treadmill at three di�erent gait paces. Results24

show a global bias between the signal acquisition of 0.05º.25

Regarding the global metrics, a mean RMSE value of 2.65◦ (0.73◦) and an26

average CC value of 0.99 (0.01) were obtained. The SPM pro�le shows, in27

each gait cycle phase, the percentage of cases when two curves are statistically28

identical and reaches an average of 48% (22%).29

Keywords: Inertial Measurement Units, Dynamic Time Warping, Statistical30

Parametric Mapping, Optical Motion Capture Systems31

1. Introduction32

Gait characterization is an essential part of both clinical evaluation (e.g.33

neuro-musculoskeletal disorders (Paquet et al., 2003) and gait abnormalities34

(Koller and Trimble, 1985)) and improvement of sport performance (Tao et al.,35
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2012). In particular, the knee motion can be acquired along three axes: �ex-36

ion/extension, abduction/adduction and rotation (internal/external). Never-37

theless, for straight walking and running motions, the amplitude of variation of38

the last two angles usually keeps con�ned inside a 10◦ range (Seel et al., 2014).39

Speci�cally, �exion/extension knee angle is commonly de�ned as the di�erence40

in inclination between the thigh and shank (Vanrenterghem et al., 2010).41

Nowadays, optical motion capture systems (OMCAP) are the gold stan-42

dard techniques for gait characterization. These systems use re�ective spherical43

markers that are tracked by multiple video cameras from di�erent angles in44

order to measure body movements. However, the main constraints of such sys-45

tems are the need of experimental laboratories and complex experimental setup.46

To overcome these drawbacks, new measurement devices based on inertial mea-47

surement units (IMU) equipped with tri-axial accelerometers, gyroscopes and48

magnetometers, aroused in the market. However, they su�er some limitations:49

�rstly, integrating the angular rates of the gyroscope results in an error drift in50

the measurement. In addition, it is di�cult to place the sensors accurately on51

the joint axis (Seel et al., 2014).52

The literature o�ers multiple studies in which the measurement error be-53

tween OMCAP and IMU are evaluated (Seel et al., 2014). In (Takeda et al.,54

2009) the segment orientation is estimated from the translational and gravita-55

tional accelerations obtained by the gyroscope and accelerometer. In (Castañeda56

et al., 2017), an Euler-based fusion algorithm combining accelerations, angular57

velocities and magnetic signals is implemented to estimate the sensors orienta-58

tion. In (Watanabe et al., 2011), uses a Kalman �lter to estimate orientation59

from accelerometer and gyroscope signals. The latter methodology can also be60

improved taking pro�t of kinematic constraints of the joint, providing more ac-61

curacy (Cooper et al., 2009). Finally, in other studies, pre-calibration methods62

are utilized to perform the sensor-to-segment transformation (Favre et al., 2008;63

Noort et al., 2013).64

Some clinical scenarios, require the comparison of time-series acquired from65

di�erent kinematic systems. As an example, the gait pattern comparison before66

and after a surgical intervention (Knoll et al., 2004) is a common issue. In67

other cases, the classi�cation of some pathology may require a comparison of68

the acquired signals against the reference curve of healthy subjects. Indeed,69

the temporal distortions that may be present in the compared signals, limit the70

clinic performance in diagnosis and treatment planning (Dobson et al., 2007).71

To overcome these problems, the acquired signals must be aligned in a common72

frame. Some authors, do not mention which alignment method was applied in73

their studies (Takeda et al., 2009; Watanabe et al., 2011; Noort et al., 2013).74

Others, decide to use rigid methods as initial synchronization, axis alignment75

or cross-correlation analysis (Favre et al., 2008; Cooper et al., 2009; Castañeda76

et al., 2017; Seel et al., 2014). When comparing two time series having the77

same length, if the phases of the signals are not aligned, the matching will not78

be locally reliable. In other �elds or applications, non-rigid matching methods79

have been proposed. In (Sessa et al., 2013), A Dynamic Time Warping (DTW)80

algorithm is applied to align IMU and cameras signals in a robotic arm. In81
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(Zhou et al., 2014), DTW is used for human gesture tracking and recognition.82

To quantify the di�erences between two signals, most of the studies in the83

gait analysis domain utilize global metric parameters such as average Root Mean84

Square Error (RMSE) to measure angular error and bias and/or Pearson's Cor-85

relation Coe�cient (CC) to measure waveform similarities (Castañeda et al.,86

2017; Cooper et al., 2009; El-Gohary and McNames, 2015; Engelhard et al.,87

2015; Favre et al., 2008; Takeda et al., 2009; Seel et al., 2014). The main limi-88

tation of only using global metrics is that a small average error along the cycle89

may not re�ect big local errors at some of the cycle phases. Previous studies90

highlighted the importance of indicating the portion of the gait cycle responsible91

for this di�erence (Deluzio et al., 1997). Studies in other biomechanical appli-92

cations introduce the use of local waveform similarity metric tools as Statistical93

Parametric Mapping (SPM) for providing a more detailed signal comparison94

(Robinson et al., 2015), (Pataky et al., 2008).95

In order to properly compare IMU and OMCAP measurements, we propose96

to use, for the �rst time in the gait kinematic �eld, a pipeline allowing the non-97

rigid alignment of the signals based on the DTW algorithm. The metrics used98

in the valuation are the RMSE, the CC and the SPM which is introduced for99

the �rst time in the gait analysis �eld. In our experiments, ten healthy subjects100

were recorded while walking on a treadmill at three di�erent gait paces.101

2. Method102

2.1. Experimental setup103

2.1.1. Material104

In this study, two IMU sensors produced by DyCare® (Barcelona, Spain),105

having a sampling frequency of 104.2 Hz, were used for the measurements.106

Each sensor integrates tri-axis accelerometer, gyroscope and magnetometer. To107

obtain the joint angle, the row signals are transformed into quaternions using a108

Madgwick-based fusion algorithm.109

The OMCAP device consisted of a 3D system with eight infrared cam-110

eras having an image rate of 300 Hz (Prore�ex Qualisys Motion Capture Sys-111

tem, Qualisys AB, Sweden). The movement of each participant was tracked112

with spherical re�ective markers positioned according to a 6-Degrees-of-Freedom113

eight segment �Lower Limb and Trunk� (LLT) (Vanrenterghem et al., 2010)114

(Figure 1). All modeling and analysis were undertaken in Visual3D (Cmotion,115

Germantown, MD, USA) with segmented data based on Dempster's regression116

equations and using geometrical volumes to represent. For both OMCAP and117

IMU acquisitions, only the knee �exion/extension angle was selected and pro-118

cessed, considering the knee as a hinge joint.119

To carry out the measurements, ten healthy subjects (27,3 ± 9.3 years; 1.80120

± 0.10 m; 73.37 ± 7.93 Kg) were evaluated in a treadmill at three di�erent gait121

paces (2km/h, 4km/h and 6km/h).122

Following the same sensor placement proposed in other studies (Castañeda123

et al., 2017; Cooper et al., 2009; El-Gohary and McNames, 2015; Engelhard124
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et al., 2015; Favre et al., 2008; Seel et al., 2014), two IMU sensors were located125

the thigh and shank using two cluster plates rigidly attached to the body using126

straps. In the case of the OMCAP system, four spherical markers were located127

on each cluster plate to ensure co-planar measurements, while the remaining128

markers were placed on the knee and toes as shown in Figure 1.129

The sensor setup utilized to measure the knee �exion-extension angle was130

designed standing for simplicity. To avoid anatomical measurements or calibra-131

tion movements as required in some studies (Donovan et al., 2007; Cutti et al.,132

2010; Ferrari et al., 2010; Roetenberg et al., 2009), the reference sensor was133

attached laterally to the leg, using the cluster plate to maintain it parallel to134

the plane of movement, which is an assumption similar to (Favre et al., 2006).135

Considering the approximation that such an assumption implies, an align-136

ment between both sensors was performed to reduce the measurement error.137

At the beginning of each trial, the couple of sensors were aligned by orienting138

both quaternion to the same angle in space. The change of basis is obtained by139

multiplying one of the two vectors by the conjugated quaternion that describes140

the rotation between them. In such way, the relative translation between the141

two sensors was always co-planar, reducing the assessment of out-of plane mea-142

surements.143

Both systems tracked the movement of the thigh and shank, measuring the144

rotation angles along the three degree of freedom independently. The rotation145

angles of the knee are de�ned considering the relative orientation of the shank146

with respect to the local coordinate system of the thigh. Only the �exion-147

extension plane was extracted and compared between systems, since it corre-148

sponds to the plane with the maximum range of movement (Donovan et al.,149

2007; Cutti et al., 2010; Ferrari et al., 2010; Roetenberg et al., 2009; Favre150

et al., 2006).151

The volunteers were asked to walk for 15-28 gait cycles depending on the152

exercise speed in order to guarantee the repeatability of the measurement.153

2.1.2. Alignment pipeline154

The overall experimental design to compare IMU and OMCAP signals is155

performed in three phases as follows (Figure 2-a):156

1. Assessment of gait kinematic using OMCAP and IMU devices.157

(a) Ten volunteers were recorded while walking on a treadmill. From158

these acquisitions, two data-sets corresponding to OMCAP and IMU159

time-series are obtained.160

(b) Each pair of signals (OMCAP and IMU) are �rstly separated in seg-161

ments, belonging to separate gait cycles. Such a result is obtained162

by identifying the minimum peaks of each repetition (Figure 2-b).163

2. Signal non-rigid alignment:164

(a) For each signal all the segments were aligned to an average one using165

the DTW algorithm. For each OMCAP and IMU signal acquisition,166

an average stride cycle and its standard deviation pro�le are obtained167

(Figure 2-c).168
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Figure 1: Illustration of the experimental set-up. IMU sensors (2 white boxes) and OMCAP
markers (8 gray spheres) were located on the shank and thigh on two cluster plates. Additional
spherical markers were also placed on the knee and toe joints.

(b) Since IMU and OMCAP average pro�les are not in a common tem-169

poral frame, they are compared pair-wise using the DTW.170

(c) Such operations is repeated for each subject and speed acquisition171

(Figure 2-d (left)).172

3. Computation of metrics RMSE, CCa and SPM (Figure 2-d (right))173
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a)

b)

c)

d)

Figure 2: a) General pipeline scheme. b) Stride segmentation by detecting the minimum of
each cycle. Red crosses indicating the signal maximum and minimum are superimposed to
the blue signal. c) Stride alignment obtained by DTW and average signal computation for
each signal. Each gait cycle is represented by a green curve, while a black shape indicates the
average curve (solid black) and the corresponding standard deviation (dotted black). d) Left.
Alignment between IMU (green) and OMCAP (blue) signals obtained by DTW and example
of a SPM assessment. In d) Right, the portion of the signal having statistically similar is
depicted in red.
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a) b)

Figure 3: Comparison between correspondences generated by classical and improved DTW
respectively. As it can be appreciated, the improved DTW allows obtaining a smoother
matching between the samples.

2.2. Non-rigid alignment strategy174

The DTW is a technique allowing the point-wise synchronization between175

the samples. The algorithm computates a local cost similarity between the176

two signals (of n and m the lengths), leading to a cost matrix (C ∈ Rn×m). A177

warping between the signal is obtained from an accumulated matrix AC in a178

non-rigid fashion. The classical implementation of the DTW (see (Keogh and179

Ratanamahatana, 2005)) allows the local alignment but it doesn't guarantee180

the smoothness and continuity of the synchronization. For instance, multiple181

correspondences of a single point might appear leading to a non-physiologic182

behavior (Figure 3-a). In order to improve the DTW algorithm performance,183

in this speci�c gait analysis, the following modi�cations are implemented:184

Kernel: The computation of each element of AC is obtained using an improved185

kernel proposed in (Müller, 2007). Such change, allows to reduce dupli-186

cated correspondences between samples.187

AC(i, j) = C(i, j) +min{C(i− 1−, j − 1), C(i− 1, j − 2), C(i− 2, j − 1)} (1)

Smoothing: Once computed, the warping path is also smoothed using a Gaus-188

sian kernel. This operation reduces the number of consecutive vertical189

or horizontal samples of the warping path. Figure 3 illustrate how the190

smoothing of the warping path a�ect the alignment.191

2.3. Comparison metrics192

The comparison between the IMU and OMCAP gait signals is performed193

by computing several metrics, each of them speci�cally devoted to analyzing a194

di�erent aspect of the curve alignment. All the metrics are calculated for each195

subject and exercise speed independently, and subsequently combined to report196

global results.197

The RMSE (Cooper et al., 2009; Cuesta-Vargas et al., 2010; Takeda et al.,198

2009; Seel et al., 2014; Favre et al., 2008; El-Gohary and McNames, 2015) pro-199

vides the global distance between two data-sets, computing the average error of200

the residuals as follows:201
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RMSE =

√√√√√ N∑
t=1

(yIMU (t)− yOMCAP (t))2

N
(2)

where yOMCAP is the reference signal (OMCAP) and yIMU is the IMU202

signal. N is the total number of samples in each average stride, after aligning203

both signals.204

The Correlation coe�cient (CC) compare waveform similarity (Watanabe205

et al., 2011; Takeda et al., 2009; Picerno et al., 2008; Cooper et al., 2009; Favre206

et al., 2008). The CC is computed as follows:207

CC =
σyIMU yOMCAP

σyIMU
σyOMCAP

=

N∑
t=1

yIMU (t)yOMCAP (t)−N(yIMUyOMCAP )

σyIMU
σyOMCAP

(3)

Where: σyimuyOMCAP
is the covariance of the two measurements, σy the vari-208

ance, yIMU and yOMCAP the mean signal values.209

When conducting statistical tests using time series, statistical parametric210

mapping (SPM) (J.., 2007) is a technique commonly used to test the null-211

hypothesis between each pair of samples of the two curves. SPM performs a212

p-value correction using Random Field Theory to consider the the temporal213

smoothness of the data (Pataky et al., 2013).214

For the purpose of this study, SPM quanti�es local waveform similarity215

through calculating a p-value between IMU and OMCAP in each phase using a216

two-tailed paired t-test with a p-value=0.01.217

3. Results218

Table 1 summarizes the computed metrics for every subject and exercise219

speed, obtained using without DTW, with the classical and with the improved220

version of the DTW.221
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Table 1 compares the results obtained without DTW, and using the classical222

or the improved DTW. The last row shows that the proposed technique reaches223

a lower RMSE (2.65◦), the Correlation improves (0.99) and the SPM increases224

(0.48). The superior performance of the proposed method with respect to second225

most performant approach are statistically illustrated in Figure 4, and the p-226

values are signi�cant (< 0.01) for all the metrics.227

Regarding the angular error and bias, a mean RMSE value of 2.65◦ (0.731◦)228

is obtained. This value corresponds to a 5.61% of the total range of movement229

(62.74◦) showing that the amplitude of the bias between the measurement is low.230

Observing the average RMSE by exercise speeds, the results are comparable and231

are not dependent on the speed scenario as con�rmed by the ANOVA tests (p-232

values: 0.76 for RMSEsp1vs RMSEsp2,0.68 for RMSEsp1vs RMSEsp3, 0.91233

for RMSEsp2vs RMSEsp3, respectively).234

Regarding the global waveform similarity, an average CC of 0.99 (0.01) is235

obtained. This value indicates that in all the cases there is a faithful matching236

between the shape of the curves.237

With respect to the local waveform similarity, the SPM represents, per each238

point of the stride cycle, the similarity between the two waveforms. Figure 5239

allow to assess in which part of the cycle the similarity between the two signal240

is higher.241

The percentage of p-values above the threshold varies from 18% to 80% (see242

Figure 5) along the stride cycle. Then, if we study the variability among cases243

(varying the subject and exercise speed), the SPM reaches an average value of244

48% (22%).245

Figure 5: Gait pro�les (blue and green solid lines) superimposed to the statistical results
(p-values), averaged for all the subjects and exercise speeds. The left axis represents the angle
acquired using the two systems.The time-wise percentage of p-values above the 0.01 threshold
per each phase of the stride cycle is represented by a blue histogram (right axis).

Finally, to assess qualitatively the results, Figure 6 shows some exemplary246

cases of IMU and OMCAP signals aligned used the proposed technique. Each247

row of Figure 6 illustrates cases showing good, average and poor performances,248

while each column corresponds to a di�erent exercise velocity. In the �rst row249
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Figure 4: Statistical comparison between the classical and the improved DTW alignment. The
boxplot reports the RMSE, CC and SPM percentage for all the subjects and exercise speeds,
respectively. The p-value obtained by the ANOVA analysis is reported as title of each �gure.
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(a), it can be appreciated how, after the alignment, the acquisitions performed250

using the IMU sensor matches the OMCAP measurement along the whole cy-251

cle. The RMSE obtained in these cases is lower than 2◦, indicating an excellent252

performance. In the second row (b) three cases having average performances,253

are illustrated. In this case, at speci�c phases of the cycle, it can be observed254

di�erences between the two acquisitions. However, in average, the IMU mea-255

surements are substantially accurate. Finally, in the third row (c) higher errors256

are present during segments of the cycle, particularly in the �rst half of the257

cycle or in the maximum peak. These curves correspond to the cases having an258

RMSE of 6◦ in Table 1.259

2 km/h 4 km/h 6 km/h

a

b

c

Figure 6: Results of signal comparisons from di�erent subjects and speeds. Each column
corresponds to a di�erent experiment velocity, while on each row, exemplar curve representing
a) a good b) average and c) poor agreement between the measurements are shown, respectively.
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4. Conclusion260

This study aims at introducing a pipeline for the non-rigid alignment of261

gait signals. In this study IMU and OMCAP acquisitions are aligned using,262

for the �rst time in gait analysis, a modi�ed version of the DTW algorithm.263

As illustrated in Section 2.2, the modi�cation of the classical DTW algorithm264

introduced in this paper allows obtaining a smoother matching between the265

signals, hence a more faithful signal synchronization.266

The errors measured between IMU and OMCAP signals are in line with the267

bibliography, reaching a mean RMSE value of 2.65◦ (0.73◦) and an average CC268

value of 0.99 (0.01). Such results, show that IMU devices may be considered as269

a cheaper, lighter and simpler alternative to OMCAP systems.270

As a novelty, the SPM analysis conducted allows quantifying the measure-271

ment performances of the IMU in a phase-wise way. Scores obtained range from272

18% to 80% along the gait cycle with an average of 48% (22%).273

As a �nal remark, in this study, we are considering the OMCAP system as274

the gold standard, even if the system itself has an intrinsic measurement error275

(which is not declared by the producer). It also has to be contemplated that the276

knee considered as a pure hinge joint is an acceptable simpli�cation for healthy277

subjects but also a limitation for expanding this work to pathological subjects.278
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