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Abstract

An accurate gait characterization is fundamental for diagnosis and treatment
in both clinical and sportive fields. Although several devices allow such mea-
surements, the performance comparison between the acquired signals may be a
challenging task.

A novel pipeline for the accurate non-rigid alignment of gait signals is pro-
posed. In this paper, the measurements of Inertial Measurement Units (IMU)
and Optical Motion Capture Systems (OMCAP) are aligned using a modified
version of the Dynamic Time Warping (DTW) algorithm. The differences be-
tween the two acquisitions are evaluated using both global (RMSE, Correlation
Coefficient (CC)) and local (Statistical Parametric Mapping (SPM)) metrics.

The method is applied to a data-set obtained measuring the gait of ten
healthy subjects walking on a treadmill at three different gait paces. Results
show a global bias between the signal acquisition of 0.05°.

Regarding the global metrics, a mean RMSE value of 2.65° (0.73°) and an
average CC value of 0.99 (0.01) were obtained. The SPM profile shows, in
each gait cycle phase, the percentage of cases when two curves are statistically
identical and reaches an average of 48% (22%).

Keywords: Inertial Measurement Units, Dynamic Time Warping, Statistical
Parametric Mapping, Optical Motion Capture Systems

1. Introduction

Gait characterization is an essential part of both clinical evaluation (e.g.
neuro-musculoskeletal disorders (Paquet et al., 2003) and gait abnormalities
(Koller and Trimble, 1985)) and improvement of sport performance (Tao et al.,
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1 INTRODUCTION 2

2012). In particular, the knee motion can be acquired along three axes: flex-
ion/extension, abduction/adduction and rotation (internal/external). Never-
theless, for straight walking and running motions, the amplitude of variation of
the last two angles usually keeps confined inside a 10° range (Seel et al., 2014).
Specifically, flexion/extension knee angle is commonly defined as the difference
in inclination between the thigh and shank (Vanrenterghem et al., 2010).

Nowadays, optical motion capture systems (OMCAP) are the gold stan-
dard techniques for gait characterization. These systems use reflective spherical
markers that are tracked by multiple video cameras from different angles in
order to measure body movements. However, the main constraints of such sys-
tems are the need of experimental laboratories and complex experimental setup.
To overcome these drawbacks, new measurement devices based on inertial mea-
surement units (IMU) equipped with tri-axial accelerometers, gyroscopes and
magnetometers, aroused in the market. However, they suffer some limitations:
firstly, integrating the angular rates of the gyroscope results in an error drift in
the measurement. In addition, it is difficult to place the sensors accurately on
the joint axis (Seel et al., 2014).

The literature offers multiple studies in which the measurement error be-
tween OMCAP and IMU are evaluated (Seel et al., 2014). In (Takeda et al.,
2009) the segment orientation is estimated from the translational and gravita-
tional accelerations obtained by the gyroscope and accelerometer. In (Castaneda
et al., 2017), an Euler-based fusion algorithm combining accelerations, angular
velocities and magnetic signals is implemented to estimate the sensors orienta-
tion. In (Watanabe et al., 2011), uses a Kalman filter to estimate orientation
from accelerometer and gyroscope signals. The latter methodology can also be
improved taking profit of kinematic constraints of the joint, providing more ac-
curacy (Cooper et al., 2009). Finally, in other studies, pre-calibration methods
are utilized to perform the sensor-to-segment transformation (Favre et al., 2008;
Noort et al., 2013).

Some clinical scenarios, require the comparison of time-series acquired from
different kinematic systems. As an example, the gait pattern comparison before
and after a surgical intervention (Knoll et al., 2004) is a common issue. In
other cases, the classification of some pathology may require a comparison of
the acquired signals against the reference curve of healthy subjects. Indeed,
the temporal distortions that may be present in the compared signals, limit the
clinic performance in diagnosis and treatment planning (Dobson et al., 2007).
To overcome these problems, the acquired signals must be aligned in a common
frame. Some authors, do not mention which alignment method was applied in
their studies (Takeda et al., 2009; Watanabe et al., 2011; Noort et al., 2013).
Others, decide to use rigid methods as initial synchronization, axis alignment
or cross-correlation analysis (Favre et al., 2008; Cooper et al., 2009; Castaneda
et al., 2017; Seel et al., 2014). When comparing two time series having the
same length, if the phases of the signals are not aligned, the matching will not
be locally reliable. In other fields or applications, non-rigid matching methods
have been proposed. In (Sessa et al., 2013), A Dynamic Time Warping (DTW)
algorithm is applied to align IMU and cameras signals in a robotic arm. In
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2 METHOD 3

(Zhou et al., 2014), DTW is used for human gesture tracking and recognition.

To quantify the differences between two signals, most of the studies in the
gait analysis domain utilize global metric parameters such as average Root Mean
Square Error (RMSE) to measure angular error and bias and/or Pearson’s Cor-
relation Coefficient (CC) to measure waveform similarities (Castaneda et al.,
2017; Cooper et al., 2009; El-Gohary and McNames, 2015; Engelhard et al.,
2015; Favre et al., 2008; Takeda et al., 2009; Seel et al., 2014). The main limi-
tation of only using global metrics is that a small average error along the cycle
may not reflect big local errors at some of the cycle phases. Previous studies
highlighted the importance of indicating the portion of the gait cycle responsible
for this difference (Deluzio et al., 1997). Studies in other biomechanical appli-
cations introduce the use of local waveform similarity metric tools as Statistical
Parametric Mapping (SPM) for providing a more detailed signal comparison
(Robinson et al., 2015), (Pataky et al., 2008).

In order to properly compare IMU and OMCAP measurements, we propose
to use, for the first time in the gait kinematic field, a pipeline allowing the non-
rigid alignment of the signals based on the DTW algorithm. The metrics used
in the valuation are the RMSE, the CC and the SPM which is introduced for
the first time in the gait analysis field. In our experiments, ten healthy subjects
were recorded while walking on a treadmill at three different gait paces.

2. Method

2.1. Ezperimental setup

2.1.1. Material

In this study, two IMU sensors produced by DyCare®) (Barcelona, Spain),
having a sampling frequency of 104.2 Hz, were used for the measurements.
Each sensor integrates tri-axis accelerometer, gyroscope and magnetometer. To
obtain the joint angle, the row signals are transformed into quaternions using a
Madgwick-based fusion algorithm.

The OMCAP device consisted of a 3D system with eight infrared cam-
eras having an image rate of 300 Hz (Proreflex Qualisys Motion Capture Sys-
tem, Qualisys AB, Sweden). The movement of each participant was tracked
with spherical reflective markers positioned according to a 6-Degrees-of-Freedom
eight segment “Lower Limb and Trunk” (LLT) (Vanrenterghem et al., 2010)
(Figure 1). All modeling and analysis were undertaken in Visual3D (Cmotion,
Germantown, MD, USA) with segmented data based on Dempster’s regression
equations and using geometrical volumes to represent. For both OMCAP and
IMU acquisitions, only the knee flexion/extension angle was selected and pro-
cessed, considering the knee as a hinge joint.

To carry out the measurements, ten healthy subjects (27,3 £ 9.3 years; 1.80
+ 0.10 m; 73.37 + 7.93 Kg) were evaluated in a treadmill at three different gait
paces (2km/h, 4km/h and 6km/h).

Following the same sensor placement proposed in other studies (Castafieda
et al., 2017; Cooper et al.,; 2009; El-Gohary and McNames, 2015; Engelhard
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2 METHOD 4

et al., 2015; Favre et al., 2008; Seel et al., 2014), two IMU sensors were located
the thigh and shank using two cluster plates rigidly attached to the body using
straps. In the case of the OMCAP system, four spherical markers were located
on each cluster plate to ensure co-planar measurements, while the remaining
markers were placed on the knee and toes as shown in Figure 1.

The sensor setup utilized to measure the knee flexion-extension angle was
designed standing for simplicity. To avoid anatomical measurements or calibra-
tion movements as required in some studies (Donovan et al., 2007; Cutti et al.,
2010; Ferrari et al., 2010; Roetenberg et al., 2009), the reference sensor was
attached laterally to the leg, using the cluster plate to maintain it parallel to
the plane of movement, which is an assumption similar to (Favre et al., 2006).

Considering the approximation that such an assumption implies, an align-
ment between both sensors was performed to reduce the measurement error.
At the beginning of each trial, the couple of sensors were aligned by orienting
both quaternion to the same angle in space. The change of basis is obtained by
multiplying one of the two vectors by the conjugated quaternion that describes
the rotation between them. In such way, the relative translation between the
two sensors was always co-planar, reducing the assessment of out-of plane mea-
surements.

Both systems tracked the movement of the thigh and shank, measuring the
rotation angles along the three degree of freedom independently. The rotation
angles of the knee are defined considering the relative orientation of the shank
with respect to the local coordinate system of the thigh. Only the flexion-
extension plane was extracted and compared between systems, since it corre-
sponds to the plane with the maximum range of movement (Donovan et al.,
2007; Cutti et al., 2010; Ferrari et al., 2010; Roetenberg et al., 2009; Favre
et al., 2006).

The volunteers were asked to walk for 15-28 gait cycles depending on the
exercise speed in order to guarantee the repeatability of the measurement.

2.1.2. Alignment pipeline
The overall experimental design to compare IMU and OMCAP signals is
performed in three phases as follows (Figure 2-a):

1. Assessment of gait kinematic using OMCAP and IMU devices.

(a) Ten volunteers were recorded while walking on a treadmill. From
these acquisitions, two data-sets corresponding to OMCAP and IMU
time-series are obtained.

(b) Each pair of signals (OMCAP and IMU) are firstly separated in seg-
ments, belonging to separate gait cycles. Such a result is obtained
by identifying the minimum peaks of each repetition (Figure 2-b).

2. Signal non-rigid alignment:

(a) For each signal all the segments were aligned to an average one using
the DTW algorithm. For each OMCAP and IMU signal acquisition,
an average stride cycle and its standard deviation profile are obtained
(Figure 2-c).
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Figure 1: Illustration of the experimental set-up. IMU sensors (2 white boxes) and OMCAP
markers (8 gray spheres) were located on the shank and thigh on two cluster plates. Additional
spherical markers were also placed on the knee and toe joints.

(b) Since IMU and OMCAP average profiles are not in a common tem-
poral frame, they are compared pair-wise using the DTW.
(c) Such operations is repeated for each subject and speed acquisition
(Figure 2-d (left)).
3. Computation of metrics RMSE, CCa and SPM (Figure 2-d (right))
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Figure 2: a) General pipeline scheme. b) Stride segmentation by detecting the minimum of
each cycle. Red crosses indicating the signal maximum and minimum are superimposed to
the blue signal. c) Stride alignment obtained by DTW and average signal computation for
each signal. Each gait cycle is represented by a green curve, while a black shape indicates the
average curve (solid black) and the corresponding standard deviation (dotted black). d) Left.
Alignment between IMU (green) and OMCAP (blue) signals obtained by DTW and example

of a SPM assessment. In d) Right, the portion of the signal having statistically similar is
depicted in red.
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DTW corresponcences using classic DTW DTW correspondences using modified DTW

Figure 3: Comparison between correspondences generated by classical and improved DTW
respectively. As it can be appreciated, the improved DTW allows obtaining a smoother
matching between the samples.

2.2. Non-rigid alignment strategy

The DTW is a technique allowing the point-wise synchronization between
the samples. The algorithm computates a local cost similarity between the
two signals (of n and m the lengths), leading to a cost matrix (C' € R**™). A
warping between the signal is obtained from an accumulated matrix AC in a
non-rigid fashion. The classical implementation of the DTW (see (Keogh and
Ratanamahatana, 2005)) allows the local alignment but it doesn’t guarantee
the smoothness and continuity of the synchronization. For instance, multiple
correspondences of a single point might appear leading to a non-physiologic
behavior (Figure 3-a). In order to improve the DTW algorithm performance,
in this specific gait analysis, the following modifications are implemented:

Kernel: The computation of each element of AC' is obtained using an improved
kernel proposed in (Miiller, 2007). Such change, allows to reduce dupli-
cated correspondences between samples.

AC(i,j) = C(i,j) + min{C(i —1—,j —1),C(i — 1,5 = 2),C(i — 2,5 — 1)} (1)

Smoothing: Once computed, the warping path is also smoothed using a Gaus-
sian kernel. This operation reduces the number of consecutive vertical
or horizontal samples of the warping path. Figure 3 illustrate how the
smoothing of the warping path affect the alignment.

2.3. Comparison metrics

The comparison between the IMU and OMCAP gait signals is performed
by computing several metrics, each of them specifically devoted to analyzing a
different aspect of the curve alignment. All the metrics are calculated for each
subject and exercise speed independently, and subsequently combined to report
global results.

The RMSE (Cooper et al., 2009; Cuesta-Vargas et al., 2010; Takeda et al.,
2009; Seel et al., 2014; Favre et al., 2008; El-Gohary and McNames, 2015) pro-
vides the global distance between two data-sets, computing the average error of
the residuals as follows:
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N
> (rmu(t) — yomcar(t))?
RMSE = \| =} 2
- 2)
where yorrcap is the reference signal (OMCAP) and yrpp is the IMU
signal. NV is the total number of samples in each average stride, after aligning
both signals.

The Correlation coefficient (CC) compare waveform similarity (Watanabe
et al., 2011; Takeda et al., 2009; Picerno et al., 2008; Cooper et al., 2009; Favre

et al., 2008). The CC is computed as follows:

M=

yrvmu (t)yomcar(t) — N(UrmuTomcap)

! (3)

Oyrmu9yonmcar Oyrmu9yonmcar

cC = Oyrmuyomoar _ t

Where: 0y,,..vorncaris the covariance of the two measurements, o, the vari-
ance, Yryp and Yoarcap the mean signal values.

When conducting statistical tests using time series, statistical parametric
mapping (SPM) (J.., 2007) is a technique commonly used to test the null-
hypothesis between each pair of samples of the two curves. SPM performs a
p-value correction using Random Field Theory to consider the the temporal
smoothness of the data (Pataky et al., 2013).

For the purpose of this study, SPM quantifies local waveform similarity
through calculating a p-value between IMU and OMCAP in each phase using a
two-tailed paired t-test with a p-value=0.01.

3. Results

Table 1 summarizes the computed metrics for every subject and exercise
speed, obtained using without DTW, with the classical and with the improved
version of the DTW.
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Table 1 compares the results obtained without DTW, and using the classical
or the improved DTW. The last row shows that the proposed technique reaches
a lower RMSE (2.65°), the Correlation improves (0.99) and the SPM increases
(0.48). The superior performance of the proposed method with respect to second
most performant approach are statistically illustrated in Figure 4, and the p-
values are significant (< 0.01) for all the metrics.

Regarding the angular error and bias, a mean RMSE value of 2.65° (0.731°)
is obtained. This value corresponds to a 5.61% of the total range of movement
(62.74°) showing that the amplitude of the bias between the measurement is low.
Observing the average RMSE by exercise speeds, the results are comparable and
are not dependent on the speed scenario as confirmed by the ANOVA tests (p-
values: 0.76 for RMSE;pvs RMSFE,2,0.68 for RMSEvs RMSE,s, 0.91
for RMSEg,2vs RMSEj),;s, respectively).

Regarding the global waveform similarity, an average CC of 0.99 (0.01) is
obtained. This value indicates that in all the cases there is a faithful matching
between the shape of the curves.

With respect to the local waveform similarity, the SPM represents, per each
point of the stride cycle, the similarity between the two waveforms. Figure 5
allow to assess in which part of the cycle the similarity between the two signal
is higher.

The percentage of p-values above the threshold varies from 18% to 80% (see
Figure 5) along the stride cycle. Then, if we study the variability among cases
(varying the subject and exercise speed), the SPM reaches an average value of

48% (22%).

SPM analysis for the average of the 3 speeds

80 —— OMCAP

B'E ----- std(OMCAP)
! o -IMU
60 -, ste(IMU)

60 = p=0.01 (%)
—~ 407 =
> a
(o7} I -
< 20 40 5
£ g
Vi 120 8
=
=20+ g
. . 2 g @
0 20 40 60 80 100 o

Cycle percentage (%)

Figure 5: Gait profiles (blue and green solid lines) superimposed to the statistical results
(p-values), averaged for all the subjects and exercise speeds. The left axis represents the angle
acquired using the two systems.The time-wise percentage of p-values above the 0.01 threshold
per each phase of the stride cycle is represented by a blue histogram (right axis).

Finally, to assess qualitatively the results, Figure 6 shows some exemplary
cases of IMU and OMCAP signals aligned used the proposed technique. Each
row of Figure 6 illustrates cases showing good, average and poor performances,
while each column corresponds to a different exercise velocity. In the first row
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Figure 4: Statistical comparison between the classical and the improved DTW alignment. The
boxplot reports the RMSE, CC and SPM percentage for all the subjects and exercise speeds,
respectively. The p-value obtained by the ANOVA analysis is reported as title of each figure.
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(a), it can be appreciated how, after the alignment, the acquisitions performed
251 using the IMU sensor matches the OMCAP measurement along the whole cy-
22 cle. The RMSE obtained in these cases is lower than 2°, indicating an excellent
253 performance. In the second row (b) three cases having average performances,

are illustrated. In this case, at specific phases of the cycle, it can be observed
2ss  differences between the two acquisitions. However, in average, the IMU mea-
256 surements are substantially accurate. Finally, in the third row (c) higher errors

are present during segments of the cycle, particularly in the first half of the

cycle or in the maximum peak. These curves correspond to the cases having an
250 RMSE of 6° in Table 1.
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Figure 6: Results of signal comparisons from different subjects and speeds. Each column
corresponds to a different experiment velocity, while on each row, exemplar curve representing
a) a good b) average and c) poor agreement between the measurements are shown, respectively.
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260 4. Conclusion

261 This study aims at introducing a pipeline for the non-rigid alignment of
262 gait signals. In this study IMU and OMCAP acquisitions are aligned using,
263 for the first time in gait analysis, a modified version of the DTW algorithm.
26a  As illustrated in Section 2.2, the modification of the classical DTW algorithm
265 introduced in this paper allows obtaining a smoother matching between the
266 signals, hence a more faithful signal synchronization.

267 The errors measured between IMU and OMCAP signals are in line with the
26s  bibliography, reaching a mean RMSE value of 2.65° (0.73°) and an average CC
260 value of 0.99 (0.01). Such results, show that IMU devices may be considered as
270 a cheaper, lighter and simpler alternative to OMCAP systems.

271 As a novelty, the SPM analysis conducted allows quantifying the measure-
272 ment performances of the IMU in a phase-wise way. Scores obtained range from
a3 18% to 80% along the gait cycle with an average of 48% (22%).

274 As a final remark, in this study, we are considering the OMCAP system as
275 the gold standard, even if the system itself has an intrinsic measurement error
a7e  (which is not declared by the producer). It also has to be contemplated that the
277 knee considered as a pure hinge joint is an acceptable simplification for healthy
a7s subjects but also a limitation for expanding this work to pathological subjects.
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