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ON THE MODULARITY LEVEL OF MODULAR ABELIAN

VARIETIES OVER NUMBER FIELDS

ENRIQUE GONZÁLEZ–JIMÉNEZ AND XAVIER GUITART

Abstract. Let f be a weight two newform for Γ1(N) without complex mul-
tiplication. In this article we study the conductor of the absolutely simple

factors B of the variety Af over certain number fields L. The strategy we
follow is to compute the restriction of scalars ResL/Q(B), and then to apply
Milne’s formula for the conductor of the restriction of scalars. In this way we
obtain an expression for the local exponents of the conductor NL(B). Under
some hypothesis it is possible to give global formulas relating this conductor
with N . For instance, if N is squarefree we find that NL(B) belongs to Z and
NL(B) f dimB

L = NdimB , where fL is the conductor of L.

1. Introduction

Let C be an elliptic curve defined over Q. The Shimura-Taniyama-Weil conjec-
ture, also known as the modularity theorem after its proof by Wiles et al. [15, 3]
asserts that there exists a surjective morphism J0(N)→C defined over Q, where
J0(N) is the Jacobian of the modular curve X0(N). Moreover, the minimum N
with this property is equal to NQ(C), the conductor of C.

A generalization of the modularity theorem, which as Ribet showed in [12] is a
consequence of the recently proved Serre’s conjecture on residual Galois represen-
tations, characterizes the modular abelian varieties over Q; that is, the Q-simple
abelian varieties A defined over Q with a surjective morphism J1(N)→A. They are
the so-called (simple) varieties of GL2-type: those whose endomorphism algebra
Q⊗ EndQ(A) is a number field of degree over Q equal to dimA.

From the modular form side, one can start with a weight two newform f for
Γ1(N). A construction of Shimura attaches to such an f an abelian variety Af
over Q, which is a quotient of J1(N); in fact, all quotients of J1(N) over Q are
of this form. For these varieties Carayol [5] proved that NQ(Af ) = NdimAf . The
generalization of Shimura-Taniyama-Weil asserts that each abelian variety of GL2-
type is isogenous overQ to an Af for some f , therefore the formulaNQ(A) = NdimA

is valid for all A of GL2-type.
The modular abelian varieties Af are simple over Q, but they are not absolutely

simple in general: they are isogenous over Q to a power of an absolutely simple
variety, which is called a building block for Af . To be more precise, if L is the
smallest number field where all the endomorphisms of Af are defined, then Af is
isogenous over L to a variety of the form Bn, for some absolutely simple variety
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B defined over L. In this article we discuss possible generalizations of Carayol’s
formula for these modular abelian varieties over number fields B/L, in the case
where they do not have CM.

More concretely, in section 2 we recall the notation and basic facts regarding
modular abelian varieties and building blocks. Afterwards, we give the explicit
decomposition of the restriction of scalars ResL/Q(B) as as product of modular
abelian varieties up to isogeny over Q. We use this in section 3 in order to give an
expression for the local exponents of NL(B), in terms of the levels of certain twists
of f by Dirichlet characters related to the field L. In some cases, the conductor
NL(B) turns out to be a rational integer and we obtain similar formulas to the ones
for the varieties Af ; we remark that in this situation the conductor of L, that we
denote by fL, also appears in the expressions. We have collected all these formulas,
that appear in the text as propositions 8, 10 and 11, in the following

Main Theorem. Let f ∈ S2(N, ε) be a weight two newform for Γ1(N) with

Nebentypus ε and without complex multiplication. Let Af be the modular abelian

variety attached to f , let L be the smallest field of definition of the endomorphisms

of Af , and let B/L be a simple quotient of Af over L.

(1) Suppose that one of the following conditions is satisfied:

• N is odd and ord(ε) 6 2,
• N is squarefree.

Then NL(B) belongs to Z and

NL(B) fdimB
L = N dimB.

(2) If f is a newform for Γ0(N), that is if ε = 1, then NL(B) belongs to Z.
Moreover,

(a) if v2(fL) = 3 and v2(fK) = 2 for some K ⊆ L then

2 NL(B) fdimB
L = NdimB ,

(b) in the remaining cases for L then

NL(B) fdimB
L = NdimB.

Finally, in section 4 we provide some examples of building blocks of dimension one
and two with their corresponding equations. Concretely, for the case of dimension
one we compute their conductors, in order to show the different behaviors when the
hypothesis of the above theorem are not satisfied. We observe that, although the
conductor can be a rational integer sometimes, formulas as the ones in the theorem
do not always hold; we also give examples where the conductor is not a rational
integer. For the case of dimension two, the level-conductors local formula provided
at Proposition 5 allows us to compute the conductor of the Jacobian of a genus two
curve defined over a number field that corresponds to a building block.

2. Modular abelian varieties

We begin this section by recalling the basic facts about modular abelian varieties
and their absolutely simple factors that we will use. In particular, we introduce the
type of varieties that we will be dealing with in the rest of the article: the building
blocks. Our goal is to prove a formula for the restriction of scalars of building
blocks, which will be the base for our analysis of their conductors in the subsequent
sections.
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Let f =
∑

anq
n ∈ S2(N, ε) be a normalized newform without complex mul-

tiplication of weight 2, level N and Nebentypus ε, and let E = Q ({an}) and
F = Q

(

{a2pε(p)−1}p∤N
)

. These number fields will be denoted by Ef and Ff if we
need to make the newform from which they come from explicit. The extension E/F
is abelian, and for each s ∈ Gal(E/F ) there exists a single Dirichlet character χs
such that sf = f ⊗ χs, where f ⊗ χs is a newform whose p-th Fourier coefficient
coincides with apχs(p) for almost all p (see [11, §3 ]). Since sf has level N , the con-
ductor of χs is divisible only by primes dividing N . We will also consider another

number field attached to f , namely L = Q
∩ kerχs

where s runs through Gal(E/F ).
Shimura [13, Theorem 1] attached to f an abelian variety Af/Q constructed

as a quotient of J1(N), the Jacobian of the modular curve X1(N), and with an
action of E as endomorphisms defined over Q. In fact, Q ⊗Z EndQ(Af ) ≃ E and
since dimAf = [E : Q], the modular abelian varieties Af are of GL2-type; as a
consequence of Serre’s conjecture all varieties of GL2-type are isogenous to some
Af .

The variety Af is simple over Q, but it is not necessarily absolutely simple.

In general, Af is isogenous over Q to a power of an absolutely simple abelian
variety B, which is called a building block of Af . This B has some remarkable
properties; for instance, it is isogenous to all of its Galois conjugates. In addition,
its endomorphism algebra Q⊗ End(B) is a central division algebra over a number
field isomorphic to F , it has Schur index t = 1 or t = 2 and its reduced degree
t[F : Q] is equal to dimB. The building blocks of dimension one are the Q-curves,
i.e. the elliptic curves B/Q that are isogenous to all of their Galois conjugates.

There are infinitely many varieties Af with the same absolutely simple factor
up to isogeny. However, by a result of Ribet [11, Theorem 4.7] if this happens for
two varieties Af and Ag we can suppose that g is the twist of f by some Dirichlet
character. We will need a more precise version of this result, which already appears
implicitly in Ribet’s proof.

Proposition 1. Let f, g be two normalized newforms without complex multiplica-

tion such that Af ∼K Bn and Ag ∼K Bm for some absolutely simple abelian variety

B over a number field K. Then there exists a character χ : Gal(K/Q)→C× such

that g = f ⊗ χ.

Proof. Let Vf = Tℓ(Af )⊗Q and Vg = Tℓ(Ag)⊗Q, where Tℓ(Af ) and Tℓ(Ag) are the

Tate modules attached to Af and Ag respectively, and let H = Gal(Q/K). Under
the hypothesis of the proposition we have HomH(Vf , Vg) 6= 0. By [11, Theorem
4.7], there exists a character χ : GQ→C× such that f = g ⊗ χ. Ribet already
asserts in the proof of his theorem that χ is necessarily trivial on H . Therefore, χ
comes from a character χ : Gal(K/Q)→C×. �

González and Lario proved in [8] that L is the smallest number field where all
the endomorphisms of Af are defined. This implies that Af ∼L Bn, with B/L a
building block with the endomorphisms defined over L and which is L-isogenous
to all of its Galois conjugates. From now on B will denote such a building block
obtained by decomposing Af over the field L defined above, and t will denote the
Schur index of End(B). Using the results in [7] one can show that the restriction
of scalars ResL/Q(B) is isogenous over Q to a product of modular abelian varieties.
Indeed, one has the following
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Proposition 2. The restriction of scalars ResL/Q(B) decomposes into simple abelian

varieties up to isogeny as

(1) ResL/Q(B) ∼Q

∏

(Af1)
t × · · · × (Afr )

t
,

where Af1 , . . . , Afr are non-isogenous modular abelian varieties.

Proof. There exists a map α : Gal(L/Q)→E× such that σϕ = α(σ) ❛ϕ ❛α(σ)−1.
The α(σ) can be identified with an element of Q ⊗ EndQ(Af ), and together with
an isogeny Af ∼L Bn it can be used to construct an isogeny µσ :

σB→B com-
patible with End(Af ) (see [10, Proposition 1.5]). It turns out that µσ ❛σµτ ❛µ−1

στ =
α(σ) ❛α(τ) ❛α(στ)−1 as elements of the center of Q⊗End(B). Therefore, the cocycle
cB/L(σ, τ) = µσ ❛σµτ ❛µ−1

στ is symmetric, since Gal(L/Q) is abelian. Now [7, Theo-
rem 5.3] implies that ResL/Q(B) is isogenous over Q to a product An1

1 × · · · ×Anr
r ,

where the Ai are non-isogenous abelian varieties of GL2-type. But each of these
varieties of GL2-type Ai is isogenous to some modular abelian variety Afi , and by
[7, Lemma 5.1] each ni is equal to t. �

The rest of the section is devoted to give an explicit expression for the modular
forms that appear in (1), in terms of a certain action of Gal(E/F ) on a group of
characters that we now define. For s ∈ Gal(E/F ) let χs be the Galois character such
that sf = f ⊗χs, and let G ⊆ Hom(GQ,C

×) be the group generated by all such χs.

Since L is the fixed field ofQ by ∩s kerχs, it is also the fixed field ofQ by ∩χ∈G kerχ.
However, we remark that a character χ ∈ G is not necessarily of the form χs, but
a product of elements of the form χs in general. An element χ ∈ G is trivial when
restricted to Gal(Q/L), so it can be identified with a character Gal(L/Q)→C×.
In fact, G can be identified with Hom(Gal(L/Q),C×) and therefore we have that
| G |= [L : Q] (cf. [14, pp. 21-22]). We define an action of Gal(E/F ) on G by

Gal(E/F )×G −→ G
(s, χ) 7−→ s · χ = χs

sχ.

The cocycle identity of the characters χs ([11, Proposition 3.3 ]) implies that it is
indeed a group action, since for s, t ∈ Gal(E/F ) we have that s ·(t ·χ) = s ·(χttχ) =
χs
sχt

stχ = χst
stχ = (st) · χ. Let Ĝ be a system of representatives for the orbits of

G, and for χ ∈ G let Iχ be the isotropy subgroup of G at χ.

Lemma 3. dim(Af⊗χ) 6 [Gal(E/F ) : Iχ][F : Q]

Proof. For s ∈ Gal(E/F ) the character χs takes values in E, since χs(p) =
sap/ap

for almost all p. Therefore, any χ ∈ G also takes values in E. This implies that
Ef⊗χ, the field of Fourier coefficients of f ⊗ χ, is contained in E. For any s ∈ Iχ
we have that s(f ⊗ χ) = sf ⊗ sχ = f ⊗ χs

sχs = f ⊗ (s · χ) = f ⊗ χ. By Galois
theory we find that Iχ ⊆ Gal(E/Ef⊗χ) and so | Iχ |6 [E : Q]/[Ef⊗χ : Q], which
gives that

dim(Af⊗χ) = [Ef⊗χ : Q] 6
[E : Q]

| Iχ | =
[E : F ]

| Iχ | [F : Q] = [Gal(E/F ) : Iχ][F : Q].

�

Now we can give explicitly the modular forms appearing in proposition 2, and
we can also give the dimension of the corresponding modular abelian varieties.
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Proposition 4. The inequality in lemma 3 is in fact an equality and

(2) ResL/Q(B) ∼Q

∏

χ∈Ĝ

(Af⊗χ)
t
.

Proof. Let A = ResL/QB. Since B is L-isogenous to all of its Galois conjugates

and A ≃L
∏

σ∈Gal(L/Q)
σB, we have that A is L-isogenous to B[L:Q]. Therefore, if

Ag is a simple factor of A over Q it isogenous to a power of B over L. Since Af is
also isogenous to a power of B over L, proposition 1 implies that g = f⊗χ for some
Galois character χ ∈ G. Hence, the modular forms fi of the decomposition (1) are
of the form f ⊗χ for some χ belonging to G. But if χ, χ′ ∈ G are in the same orbit
for the action of Gal(E/F ), the varieties Af⊗χ and Af⊗χ′ are isogenous over Q.
Indeed, in this case s · χ = χ′ for some s ∈ Gal(E/F ), and then s(f ⊗ χ) = f ⊗ χ′.
This, together with the fact that the modular abelian variety attached to s(f ⊗ χ)
is isogenous over Q to the one attached to f ⊗ χ implies that Af⊗χ is isogenous to
Af⊗χ′ over Q.

Therefore, proposition 2 implies that there exists an exhaustive morphism over
Q

λ :
∏

χ∈Ĝ

(Af⊗χ)
t −→ A,

so we have that

t[F : Q]|G| = |G| dimB = dimA 6
∑

χ∈Ĝ

dim (Af⊗χ)
t

6 t[F : Q]
∑

χ∈Ĝ

[Gal(E/F ) : Iχ] = t[F : Q]|G|.

We see that each inequality is in fact an equality, and λ is an isogeny since the
dimensions of the source and the target are the same. �

3. Level-conductors formulas

As in the previous section we consider a newform f ∈ S2(N, ε) and a decompo-
sition Af ∼L Bn of Af into a power of a building block B defined over the field
L, and we continue with the same notation as before with respect to the endomor-
phism algebra of B; namely, F is its center and t its Schur index. In this section
we use the decomposition (2) to compute the local exponent of the conductor of
B. In some particular cases we prove that the conductor belongs to Z (i.e. it is
a principal ideal generated by a rational integer), and we are able to give a global
formula for it involving the conductor of L and the level of f . We denote by NL(B)
the conductor of B over L, by fL the conductor of L and by NL/Q the norm in the
extension L/Q. If χ is a character belonging to G, we also denote by Nχ the level
of the newform f ⊗ χ and by fχ the conductor of χ. For a prime q, vq(x) denotes
the valuation of x at q and χq the q-primary component of χ.

Proposition 5. For each rational prime q we have that

(3) vq(NL/Q(NL(B))) + 2 (dimB)
∑

χ∈G

vq(fχ) = (dimB)
∑

χ∈G

vq(Nχ).
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Proof. By applying the formula of [9, Proposition 1] for the conductor of the re-
striction of scalars to (2) we obtain that

NL/Q (NL(B)) (dL/Q)
2 dimB =

∏

χ∈Ĝ

NQ (Af⊗χ)
t
,

where dL/Q is the discriminant of L/Q. By a theorem of Carayol ([5]) the conductor

of a modular abelian variety Ag is N
dimAg
g , where Ng is the level of the newform

g. Using this property and the conductor-discriminant formula (cf. [14, p. 28]) we
find that

NL/Q (NL(B))
∏

χ∈G

(fχ)
2 dimB =

∏

χ∈Ĝ

N t[Gal(E/F ):Iχ][F :Q]
χ .

But t[F : Q] = dimB, and the orbit of χ contains [Gal(E/F ) : Iχ] elements, each
one giving a modular abelian variety of the same dimension. Thus we have that

NL/Q (NL(B))
∏

χ∈G

(fχ)
2 dimB =

∏

χ∈G

NdimB
χ

from which (3) follows by taking valuations at q. �

Each prime q dividing q appears in NL(B) with the same exponent (see the proof
of lemma 7). This observation together with (3) gives a way of computing the local
exponents of NL(B) in terms of the levels Nχ. In almost all cases [1, Theorem 3.1]
can be used to compute the levels of the twisted newforms. Under some hypothesis
one can also perform directly the computation, as in the following:

Lemma 6. If ord(ε) 6 2 then for all primes q 6= 2 we have that

(4) vq(NL/Q(NL(B))) + [L : Q] (dimB) vq(fL) = [L : Q] (dimB) vq(N).

Proof. First of all suppose that vq(fL) = 0. Then for each χ ∈ G we have that
vq(fχ) = 0 and (4) follows from (3) since vq(Nχ) = vq(N) for all χ ∈ G and
|G| = [L : Q].

Suppose now that vq(fL) 6= 0. This means that there exists an element s ∈
Gal(E/F ) such that vq(fχs

) 6= 0. But χs is a quadratic character since the relation
sf = f ⊗ χs implies that χ2

s = sε/ε = 1. So χs,q, the q-primary part of χs,
is the unique character of order 2 and conductor a power of q, that we denote
by ξq. Since ξq has conductor q we see that vq(fL) = 1. For i = 0, 1 define
Giq = {χ ∈ G |χq = ξiq}. We have that G = G0

q ⊔G1
q and that the map χ 7→ χχs is

a bijection between G0
q and G1

q . Hence |G0
q| = |G1

q| = |G|/2. For χ ∈ G0
q we have

that vq(fχ) = 0 and vq(Nχ) = vq(N). For χ ∈ G1
q we have that vq(fχ) = 1 = vq(fL)

and vq(Nχ) = vq(Nχs
) = vq(N), because the level of f ⊗χs is the level of sf which

is N . Plugging all this into (3) one obtains (4). �

Lemma 7. NL(B) belongs to Z if and only if [L : Q] divides vq(NL/Q(NL(B))) for
all rational primes q.

Proof. Suppose that q decomposes in L as qe1q
e
2 · · · qeg. For each σ ∈ Gal(L/Q) we

have that σB is L-isogenous to B, soNL(B) = NL(
σB) = σNL(B). This means that

if qn1 exactly divides NL(B) then the rest of qni also exactly divide NL(B) and then
vq(NL/Q(NL(B))) = nfg, where f denotes the residual degree of qi. Now NL(B)
belongs to Z if and only if for all primes q the exponent e divides n, and because
of the relation efg = [L : Q] this is equivalent to the fact that vq(NL/Q(NL(B))) is
divisible by [L : Q]. �
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Proposition 8. If N is odd and ord(ε) 6 2 then NL(B) belongs to Z and

(5) NL(B) fdimB
L = N dimB.

Proof. By lemma 6 for each prime q we have that vq(NL/Q(NL(B))) is multiple of
[L : Q], and by lemma 7 this implies that NL(B) belongs to Z. In consequence,
NL/Q(NL(B)) = NL(B)[L:Q], and using this in (4) we have that vq(NL(B)) +
(dimB) vq(fL) = (dimB) vq(N). Since this holds for all q, the proposition follows.

�

Remark 9. If dimAf = 2 and ord(ε) 6 2, then either Af is absolutely simple or it
is isogenous over a quadratic number field L to the square of a Q-curve B/L. In
the second case it is always true that NL(B) belongs to Z and NL(B)fL = N . This
follows by applying Milne’s formula to the restriction of scalars of B, for which we
have that ResL/Q(B) ∼Q Af .

Proposition 8 might be seen as a generalization of Carayol’s formula NQ(Af ) =
NdimAf for modular abelian varieties. As we will see this formula does not gen-
eralize to arbitrary newforms; in other words, our hypothesis on the parity of N
and on the order of the character are necessary. However, for modular forms on
Γ0(N) and with arbitrary N it is still true except for a factor 2, that appears or
not depending on the field L.

Proposition 10. Suppose that ε = 1. Then NL(B) is an integer and

(1) 2 NL(B) fdimB
L = NdimB if v2(fL) = 3 and v2(fK) = 2 for some K ⊆ L.

(2) NL(B) fdimB
L = NdimB otherwise.

In particular, if v2(N) 6 4 the second formula holds.

Proof. Since ε is trivial the character χs is quadratic for all s ∈ Gal(E/F ), so that
any χ ∈ G is quadratic. Define the set P2 = {χ2 |χ ∈ G}, which has cardinal 6 4
because the set of quadratic characters of conductor a power of 2 is isomorphic to
Z/2Z × Z/2Z. Observe that the condition v2(fL) = 3 and v2(fK) = 2 for some
K ⊆ L is equivalent to |P2| = 4. We begin by proving the second formula in the
statement, which corresponds to the case |P2| 6 2.

If 2 ∤ fL then |P2| = 1 and

(6) v2(NL/Q(NL(B))) + [L : Q] (dimB) v2(fL) = [L : Q] (dimB) v2(N).

If 2 | fL, then for each s ∈ Gal(E/F ) the character χs,2 is either trivial or quadratic,
so that the set P2 can have cardinal 2 or 4. Suppose first that |P2| = 2, and fix an
s such that χs,2 ∈ P2. Then for i = 0, 1 define Gi2 = {χ ∈ G |χ2 = χis,2}. Observe

that if χ ∈ G0
2 then v2(fχ) = 0 and if χ ∈ G1

2 then v2(fχ) = v2(fL). Moreover, for all
χ ∈ G we have that v2(Nχ) = v2(N), since v2(Nχ) = v2(Nχs

) = v2(N). Now with
the same reasoning as in lemma 6 we find that (6) also holds in this case. This,
together with lemma 6 implies that the formula

(7) vq(NL/Q(NL(B))) + [L : Q] (dimB) vq(fL) = [L : Q] (dimB) vq(N)

is true for all q. Arguing as in the proof of proposition 8 this implies the second
formula of the statement.

Suppose now that |P2| = 4. If we denote by ξ and ψ the quadratic char-
acters of conductor 8, then ξψ is the quadratic character of conductor 4 and
P2 = {1, ξ, ψ, ξψ}. Define Gξ = {χ ∈ G |χ2 = ξ}, and similarly for the other
characters define Gψ , Gξψ and G1. Each one of these sets has cardinal |G|/4. If χ
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belongs to Gξ or Gψ , then v2(fχ) = 3, while if χ belongs to Gχψ then v2(fχ) = 2.
Therefore the relation (3) gives

v2(NL/Q(NL(B))) + 2 (dimB)

(

2
|G|
4

+ 3
|G|
4

+ 3
|G|
4

)

= |G| (dimB) v2(N),

and since now v2(fL) = 3 we arrive at

v2(NL/Q(NL(B))) + [L : Q] (dimB) (v2(fL) + 1) = [L : Q] (dimB) v2(N).

We see that in this case v2(NL/Q(NL(B))) is also multiple of [L : Q]. As before,
for q 6= 2 formula (7) also holds in this case, so we conclude that now 2NL(B) fL =
NdimB.

To prove the last statement, let s ∈ Gal(E/F ) and let χs be the corresponding
quadratic character. Then v2(Nχs

) = v2(N), and if ε = 1 and v2(N) 6 4 by [1,
Theorem 3.1] this is not possible if the conductor of χs,2 is 8. Therefore χs,2 is either
trivial or the quadratic character of conductor 4, and we see that |P2| 6 2. �

We remark that the first case in (10) does occur. For instance, let f be the unique
(up to conjugation) normalized newform for Γ0(512) such that Af has dimension
4. Using Magma [4] one can compute the characters associated to the inner twists of
f ; it turns out that some of them have conductor divisible by 8 and some of them
have conductor exactly divisible by 4 and therefore |P2| = 4.

Proposition 11. If N is squarefree then for all primes q dividing N we have that

(1) vq(NL/Q(NL(B))) = (dimB)[L : Q] if q ∤ fε.
(2) vq(NL/Q(NL(B))) = 0 if q | fε.

In particular, NL(B) belongs to Z and

(8) NL(B) fdimB
L = NdimB.

Proof. If q ∤ fε then vq(fχ) = 0 for all χ ∈ G and then the formula follows easily
from (3).

Suppose that q | fε. Let s ∈ Gal(E/F ) and let χs be the character such that
sf = f ⊗ χs. Observe that vq(N) = vq(Nχs

), and by [1, Theorem 3.1] under our
hypothesis this is possible if and only if χs,q = 1 or χs,q = ε−1

q . This means that for

each χ ∈ G, the character χq is of the form εiq for some i. In particular, vq(fL) =

vq(fε). Let n = ord(εq), and for i = 0, . . . , n − 1 define Giq = {χ ∈ G |χq = εiq}.
The map χ 7→ χε is a bijection between Giq and Gi+1

q , and since G = ⊔n−1
i=0 G

i
q we

see that |Giq| = |G|/n.
If χ ∈ Giq then vq(fχ) = 1 for i = 1, . . . , n − 1, while vq(fχ) = 0 for i = 0. If

χ ∈ Giq for i = 0, n−1 then vq(Nχ) = vq(N); if χ ∈ G0
q this is clear, and if χ ∈ Gn−1

q

this is because vq(Nχ) = vq(Nε−1

q
) = vq(Nε−1) = vq(N) since f = f ⊗ ε−1. On the

other hand, for the rest of the values i = 2, . . . , n− 2 then vq(Nχ) = 2 if χ ∈ Giq;
this follows from [1, Theorem 3.1]. Gathering all this information we can rewrite 3
in this case as

vq(NL/Q(NL(E))) + 2 (dimB)

n−1
∑

i=0

∑

χ∈Gi
q

vq(fχ) = (dimB)

n−1
∑

i=0

∑

χ∈Gi
q

vq(Nχ),

and this gives

vq(NL/Q(NL(E))) + 2 (dimB)
|G|
n

(n− 1) = (dimB)

(

|G|+ |G|
n

(n− 2)

)

,
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which is directly the formula for the second case.
Finally, the two formulas in the statement can be written as the following ex-

pression, which is valid for all q:

vq(NL/Q(NL(B))) + [L : Q] (dimB) vq(fL) = [L : Q] (dimB) vq(N).

This implies that NL(B) belongs to Z and also the formula (8). �

Remark 12. Observe that for squarefree N proposition 11 completely characterizes
the places of good reduction of B: a prime q | q is a prime of good reduction of B
if and only if q ∤ N or q | fε.

4. Examples

In this section we show explicit examples of building blocks of dimension one
and two where we compute their conductors. As in the rest of the paper, all the
newforms we consider are without complex multiplication.

4.1. Q-curves. All the examples in this paragraph come from modular abelian
varieties Af where the corresponding building block B has dimension one. An
algorithm to compute equations of building blocks of dimension one is provided by
González and Lario in [8]. The equations for the first three examples were computed
using that algorithm, and the equations for examples 14 and 15 have been provided
by Jordi Quer. The conductor of these elliptic curves have been computed using
Magma.

Example 13. Let f be the unique (up to conjugation) normalized newform of
weight two, level 42 and Nebentypus of order 2 and conductor 21. We have
dimAf = 4 and L = Q(

√
−3,

√
−7). In [8] it is proved that an equation for B

is given by

B : y2 = x3+
81

4
(69+43

√
−3+29

√
−7+17

√
21)x+162(207−84

√
−3−54

√
−7+46

√
21).

We have NL(B) = 2 and fL = 21. Therefore we have that the Proposition 8 holds
although N is even in this case.

Example 14. Let f be the unique (up to conjugation) normalized newform of
weight two, level 64 and Nebentypus of order 4 and conductor 16. In this case, Af
is an abelian surface and L = Q(α), where α4 − 4α2 + 2 = 0. An equation for B is

B : y2 = x3 − 432(5− 8α+ 14α2 − 6α3)x− 864(−124 + 74α+ 194α2 − 107α3).

We haveNL(B) = 2 and fL = 16. Therefore we have that 2NL(B) fdimB
L = NdimB.

Example 15. Let f be the unique (up to conjugation) normalized newform (with-
out complex multiplication) of weight two, level 81 and Nebentypus of order 3 and
conductor 9. In this case, dimAf = 4 and L = Q(

√
−3, α), where α3 − 3α+ 1 = 0.

An equation for the building block is:

B : y2 = x3−81

2
(−54+14

√
−3+2(12+5

√
−3)α+(27−7

√
−3)α2)x+729(37+19

√
−3).

We have NL(B) = 3 and fL = 9. Therefore we have that 3 NL(B) fdimB
L = NdimB.

In the above examples the conductors NL(B) turned out to be rational integers.
The following example shows that this is not always the case.
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Example 16. There are two normalized newforms of weight two, level 98 and
Nebentypus ε of order 3 and conductor 7 such that the the associated abelian
variety is a surface. In both cases L = Q(α), where α3 + α2 − 2α − 1 = 0. To
obtain an equation for the building block we are going to proceed in a different
way than above. Let f be one of these two newforms. Then, Af ∼L B2 and by
Proposition 4 we have that ResL/Q(B) ∼Q Af × Af⊗ε. Therefore dimAf⊗ε = 1.
In particular, B ∼L Af⊗ε. Then, instead of computing an equation of B/L using
the González-Lario algorithm [8] we are going to compute an equation of Af⊗ε over
Q. In this case the results of Atkin and Li [1] do not provide the exact level of
f ⊗ ε, althought they assert that the level is a divisor of 98 of the form 2 · 7n. One
of the twisted newforms corresponds to the unique (up to Q-isogeny) elliptic curve
defined over Q of level 14 and the other one to the unique (up to Q-isogeny) elliptic
curve defined over Q of level 98 (they are labelled as 14A and 98A respectively in
Cremona’s tables [6] or in Antwerp tables [2]). The equations for these building
blocks are:

B1 : y2 + xy + y = x3 + 4x− 6,
B2 : y2 + xy = x3 + x2 − 25x− 111.

For i = 1, 2, we have NL(Bi) = 2(α2 −α− 2)i · OL, which is not an ideal generated
by a rational integer.

4.2. Genus 2 curves. In the opposite to the elliptic curve case, there is no im-
plementation of an algorithm to compute the conductor of a genus 2 curve over a
number field. For that purpose, Proposition 5 allows us to compute the conductor
of a genus 2 curve that corresponds to the building block of a modular abelian
variety.

Example 17. Let C be the genus 2 curve defined over Q(
√
−6) defined by

C : y2 =(27
√
−6− 324)x6 − 15876x5 + (−7938

√
−6− 222264)x4 − 345744x3

+(−259308
√
−6 + 7260624)x2 − 16941456x+ 941192

√
−6 + 11294304.

The jacobian B = Jac(C) is a building block with quaternionic multiplication, and
in [7] it is proved that ResL/Q(B) is isogenous to a product of modular abelian

varieties over Q, where L = Q(
√
2,
√
−3). In fact, there are numerical evidences

suggesting that ResL/Q(B) ∼Q A2
f , where f is a newform of level N = 2835 and

Nebentypus ε of order 2 and conductor 8 with dimAf = 4. Assuming this we are go-
ing to prove thatNL(B) = 21038, and therefore the formulaNL(B) fdimB

L = NdimB

would hold again. The subfields of L are the quadratic fields Q(
√
2), Q(

√
−3) and

Q(
√
−6), and they correspond to the non-trivial homomorphisms from G to C×.

Therefore the conductors of these quadratic fields correspond to the conductors
of the non-trivial elements at G. On the other hand, by the decomposition of
ResL/Q(B) given above and by [1, Theorem 3.1] we have that Nχ = N for all
χ ∈ G. Now, Proposition 5 at the primes q = 2 and q = 3 give us the stated
conductor of B over L.

Acknowledgements. We thank A. Brumer for useful discussion on conductors of
abelian varieties and J. Quer for providing us equations for some of the examples
of Section 4.
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Duke Math. J. 59 (1989), no. 3, 785–801.
[6] J. E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press 1992.
[7] X. Guitart, J. Quer, Modular abelian varieties over number fields. Submitted.

arXiv:0905.2550.
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53–79, Korea Adv. Inst. Sci. Tech., Taejŏn, 1992. Reprinted on Modular curves and abelian

varieties, 241–261, Progr. Math. 224, Birkhäuser, Basel, 2004.
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