This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Monitoring emergence of SARS-CoV-2 B.1.1.7 Variant through the Spanish National SARS-CoV-2 Wastewater Surveillance System (VATar COVID-19)

Journal:	Environmental Science & Technology
Manuscript ID	es-2021-03589a.R2
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Carcereny, Albert; Universitat de Barcelona, Genetics, Microbiology and Statistics; Research Institute of Nutrition and Food Safety (INSA), University of Barcelona, Martínez-Velázquez, Adan; Universitat de Barcelona, Genetics, Microbiology and Statistics; Research Institute of Nutrition and Food Safety (INSA), University of Barcelona Bosch, Albert; Universitat de Barcelona, Department of Genetics, Microbiology and Statistics; Research Institute of Nutrition and Food Safety (INSA), University of Barcelona Allende, Ana; CEBAS CSIC, Department of Food Science & Technology Truchado, Pilar; CEBAS CSIC Cascales, Jenifer; CEBAS CSIC Romalde, Jesús; Universidade de Santiago de Compostela, Departamento de Microbiología Lois, Marta; Universidade de Santiago de Compostela Polo, David; Universidade de Santiago de Compostela Sánchez, Gloria; IATA-CSIC, Biotechnology Pérez-Cataluña, Alba; IATA-CSIC Díaz-Reolid, Azahara; IATA-CSIC Antón, Andrés; Vall d'Hebron Institut de Recerca (VHIR) Gregori, Josep; Vall d'Hebron Institut de Recerca (VHIR); Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas Garcia-Cehic, Damir; Vall d'Hebron Institut de Recerca (VHIR); Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas Quer, Josep; Vall d'Hebron Institut de Recerca (VHIR); Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas Palau, Margarita; Government of Spain Ministry of Health Social Policy and Equality González Ruano, Cristina; MITECO Pintó, Rosa; Universitat de Barcelona, Department of Genetics, Microbiology and Statistics; Research Institute of Nutrition and Food Safety (INSA), University of Barcelona Guix, Susana; Universitat de Barcelona, Genetics, Microbiology and Statistics; Research Institute of Nutrition and Food Safety (INSA), Universitat de Barcelona, Genetics, Microbiology and Statistics; Research Institute of Nutrition and Food Safety (INSA), University of Barcelona

- ¹ Monitoring emergence of SARS-CoV-2 B.1.1.7
- ² Variant through the Spanish National SARS-
- ³ CoV-2 Wastewater Surveillance System

4 (VATar COVID-19)

6	Albert Carcereny ^{1,2†} , Adán Martínez-Velázquez ^{1,2†} , Albert Bosch ^{1,2} , Ana Allende ³ , Pilar
7	Truchado ³ , Jenifer Cascales ³ , Jesús L Romalde ⁴ , Marta Lois ⁴ , David Polo ⁴ , Gloria
8	Sánchez ⁵ , Alba Pérez-Cataluña ⁵ , Azahara Díaz-Reolid ⁵ , Andrés Antón ⁶ , Josep
9	Gregori ^{7,8} , Damir Garcia-Cehic ^{7,8} , Josep Quer ^{7,8} , Margarita Palau ⁹ , Cristina González
10	Ruano ¹⁰ , Rosa M Pintó ^{1,2#*} and Susana Guix ^{1,2#*}
11	
12	¹ Enteric Virus laboratory, Department of Genetics, Microbiology and Statistics, Section
13	of Microbiology, Virology and Biotechnology, School of Biology, University of
14	Barcelona, Barcelona, 08028, Spain.
15	² Research Institute of Nutrition and Food Safety (INSA), University of Barcelona,
16	Santa Coloma de Gramenet, 08921, Spain.
17	³ Research Group on Microbiology and Quality of Fruit and Vegetables, CEBAS-CSIC,
18	Murcia, 30100, Spain.
19	⁴ Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & Institute
20	CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, 15782,
21	Spain.

- ⁵ Department of Preservation and Food Safety Technologies, Institute of Agrochemistry
- and Food Technology, IATA-CSIC, Paterna, 46980, Spain.
- ⁶ Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron
- 25 Barcelona Hospital Campus, Barcelona, 08031, Spain.
- ⁷ Liver Unit, Liver Diseases Viral Hepatitis, Vall d'Hebron Institut de Recerca
- 27 (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, 08035, Spain.
- ⁸ Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas
- 29 (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain.
- ⁹ General Directorate of Public Health, Ministry of Health, Madrid, 28014, Spain
- ¹⁰ Subdirección General de Protección de las Aguas y Gestión de Riesgos, Ministerio
- 32 para la Transición Ecológica y el Reto Demográfico, Madrid, 28003, Spain
- ¹ Equally contributed
- 34 # Address correspondence to Susana Guix (<u>susanaguix@ub.edu</u>) and Rosa Pintó
- 35 (<u>rpinto@ub.edu</u>)
- 36 * Co-corresponding authors
- 37

39 ABSTRACT

41	Since its first identification in the United Kingdom in late 2020, the highly transmissible
42	B.1.1.7 variant of SARS-CoV-2, become dominant in several countries raising great
43	concern. We developed a duplex real-time RT-qPCR assay to detect, discriminate and
44	quantitate SARS-CoV-2 variants containing one of its mutation signatures, the
45	Δ HV69/70 deletion, and used it to trace the community circulation of the B.1.1.7
46	variant in Spain through the Spanish National SARS-CoV-2 Wastewater Surveillance
47	System (VATar COVID-19). B.1.1.7 variant was detected earlier than clinical
48	epidemiological reporting by the local authorities, first in the Southern city of Málaga
49	(Andalucía) in week 20_52 (year_week), and multiple introductions during Christmas
50	holidays were inferred in different parts of the country. Wastewater-based B.1.1.7
51	tracking showed a good correlation with clinical data and provided information at the
52	local level. Data from WWTPs which reached B.1.1.7 prevalences higher than 90% for
53	\geq 2 consecutive weeks showed that 8.1±1.8 weeks were required for B.1.1.7 to become
54	dominant. The study highlights the applicability of RT-qPCR-based strategies to track
55	specific mutations of variants of concern (VOCs) as soon as they are identified by
56	clinical sequencing, and its integration into existing wastewater surveillance programs,

- as a cost-effective approach to complement clinical testing during the COVID-19
- 58 pandemic.
- 59
- 60 Keywords: SARS-CoV-2, COVID-19, B.1.1.7 Variant, Wastewater-based
- 61 Epidemiology (WBE), RT-qPCR, NGS
- 62 Synopsis: The study includes the development of a RT-qPCR assay to discriminate
- 63 SARS-CoV-2 B.1.1.7 variant and its implementation on the Spanish sewage
- 64 surveillance system as a data source to complement clinical pandemic assessment.

65 **INTRODUCTION**

66

67	Environmental surveillance of specimens contaminated by human faeces is used to
68	monitor enteric virus disease transmission in the population, and several countries have
69	implemented SARS-CoV-2 wastewater monitoring networks to inform decision making
70	during the COVID-19 pandemic 1-3. In Spain, a nation-wide COVID-19 wastewater
71	surveillance project (VATar COVID-19) was launched in June 2020
72	(https://www.miteco.gob.es/es/agua/temas/concesiones-y-autorizaciones/vertidos-de-
73	aguas-residuales/alerta-temprana-covid19/default.aspx), and has weekly monitored
74	SARS-CoV-2 levels in untreated wastewater from initially 32 wastewater treatment
75	plants (WWTPs) since then. On March 2021, the European Commission adopted a
76	recommendation on a common approach to establish and make greater use of systematic
77	wastewater surveillance of SARS-CoV-2 as a new source of independent information
78	on the spread of the virus and its variants in the European Union ⁴ . In situations with low
79	or absent SARS-CoV-2 circulation in the community, wastewater surveillance has
80	proven a useful tool as an early warning system ^{5–9} , and several studies have also tried
81	to infer disease incidence in a community, independent of diagnostic testing availability
82	based on SARS-CoV-2 wastewater concentrations, with considerable uncertainties $^{10-12}$.
83	
84	Despite titanic efforts based on confinement measures and mass-vaccination programs,

the emergence of novel variants of concern (VOCs), mainly B.1.1.7, B.1.351 B.1.1.28.1
and recently B1.617.2, so far, suggests that continued surveillance is required to control
the COVID-19 pandemic in the long run. Since January 2021, countries within and
outside Europe have observed a substantial increase in the number and proportion of
SARS-CoV-2 cases of the B.1.1.7 variant, first reported in the United Kingdom ^{13,14}.

90	Since B.1.1.7 variant has been shown to be more transmissible than the previously
91	predominant circulating variants and infections may be more severe ¹⁵ , countries where
92	the variant has spread and become dominant are concerned on whether the occurrence
93	of the variant will result in increases in total COVID-19 incidence, hospitalizations, and
94	excess mortality due to overstretched health systems.
95	
96	The emergence of SARS-CoV-2 variants that may increase transmissibility and/or
97	immune escape, points to an imperative need for the implementation of targeted
98	surveillance methods. While sequencing should be the gold standard for variant
99	characterization, cost-effective molecular assays, which could be rapidly established
100	and scaled up may offer several advantages and provide valuable quantitative
101	information without delay.
102	
103	This study included the development and validation of a one-tube duplex quantitative
104	real-time RT-PCR (RT-qPCR) assay to detect, discriminate and quantitate SARS-CoV-
105	2 variants containing the Δ HV69/70 deletion from variants lacking it, using allelic
106	discrimination probes. Confirmatory sequencing of a subset of samples was performed
107	to be able to ascertain the validity of these assays to trace the community circulation of
108	the B.1.1.7 variant. The RT-qPCR-based assay improved the current variant tracking
109	capability and could be easily implemented for monitoring the emergence of $\Delta HV69/70$
110	containing SARS-CoV-2 variants (mainly B.1.1.7) in Spain through the nation-wide
111	wastewater surveillance network.
112	
113	

115 **METHODS**

116	Wastewater sampling. Influent water grab samples were weekly collected from 32
117	WWTPs (one weekly sample per site) located in 15 different Autonomous Communities
118	in Spain, from middle December 2020 (week 20_51, year_week number) to end of
119	March 2021 (week 21_13) (last week of 2020 was not sampled). All samples were
120	transported on ice to one of the 4 participating laboratories of analysis (A, B, C, D),
121	stored at 4°C and processed within 1-2 days upon arrival. The time between sample
122	collection and arrival to the laboratory ranged between 3-24 hours.
123	
124	Sample concentration, nucleic acid extraction and process control. 200 ml
125	wastewater samples were concentrated by aluminum hydroxide adsorption-precipitation
126	method, as previously described ^{7,16} . Briefly, samples were adjusted to pH 6.0, a 1:100
127	v:v of 0.9 N AlCl ₃ solution was added, and samples were gently mixed for 15 min at
128	room temperature. Precipitate was collected by centrifugation at 1,700×g for 20 min and
129	pellet was resuspended in 10 mL of 3% beef extract (pH 7.4). After a 10- min shaking
130	150 rpm, samples were centrifuged at 1,900×g for 30 min, and concentrates were
131	resuspended in 1-2 ml of phosphate buffered saline (PBS). All samples were spiked
132	with a known amount of an animal coronavirus used as a process control virus. Animal
133	coronaviruses differed between participant laboratories and included the attenuated
134	PUR46-MAD strain of Transmissible Gastroenteritis Enteric Virus (TGEV) ¹⁷ ; Porcine
135	Epidemic Diarrhea Virus (PEDV) strain CV777 (kindly provided by Prof. A. Carvajal
136	from University of Leon) and Murine Hepatitis Virus (MHV) strain ATCC VR-764 ¹⁸ .
137	Depending on each laboratory, between 10-100 μ l of the animal coronavirus stock were
138	added to 200 ml of sample to obtain final concentrations of 2.5×10^4 - 2.5×10^5 copies/ml
139	(PEDV and MHV) or 6.9x10 ³ TCID50/ml (TGEV). Nucleic acid extraction from

140	concentrates was performed from 300 μl using the Maxwell® RSC PureFood GMO and
141	Authentication Kit (Promega Corporation, Madison, US), or 150 μ l using the
142	NucleoSpin RNA virus kit (Macherey-Nagel GmbH & Co., Düren, Germany),
143	following the manufacturer's instructions. Each extraction included a negative control
144	and a process virus control used to estimate the virus recovery efficiency. RT-qPCR for
145	process control viruses were performed as previously described ^{19–21} . Parallel to ISO
146	15216-1:2017 ²² for the determination of norovirus and hepatitis A virus in the food
147	chain, samples with a virus recovery $\geq 1\%$ were considered acceptable.
148	
149	SARS-CoV-2 RT-qPCR assays. The N1 assay targeting a fragment of the
150	nucleocapsid gene, as published by US CDC (US-CDC 2020), was used to quantify
151	SARS-CoV-2 RNA in the sewage samples, using PrimeScript [™] One Step RT-PCR Kit
152	(Takara Bio, USA) and 2019-nCoV RUO qPCR Probe Assay primer/probe mix (IDT,
153	Integrated DNA Technologies, Leuven, Belgium). Different instruments were used by
154	different participating labs, including CFX96 BioRad, LightCycler 480 (Roche
155	Diagnostics, Germany), Stratagene Mx3005P (Applied Biosystems, USA) and
156	QuantStudio 5 (Applied Biosystems, USA).
157	The S gene was analyzed by a duplex gene allelic discrimination TaqMan RT-qPCR
158	assay, using 400 nM of the following primers targeting the S gene (For-S21708
159	5'ATTCAACTCAGGACTTGTTCTTACCTT3' and Rev-S21796
160	5'TAAATGGTAGGACAGGGTTATCAAAC3'), and 200 nM of the following probes
161	(S_Probe6970in 5'FAM- TCCATGCTATACATGTCTCTGGGACCAATG BHQ1- 3'
162	and S_Probe6970del 5'HEX- TTCCATGCTATCTCTGGGACCAATGGTACT BHQ1-
163	3'). RT-qPCR mastermix was prepared using PrimeScript [™] One Step RT-PCR Kit

164 (Takara Bio, USA), and temperature program was 10 min at 50°C, 3 min at 95°C, and

165 45 cycles of 3 seconds at 95°C and 30 seconds at 60°C.

166 RT-qPCR analysis for each target included the analysis of duplicate wells containing

undiluted RNA, and duplicate wells containing a ten-fold dilution to monitor the

168 presence of inhibitors. Every RT-qPCR assay included 4 wells corresponding to

169 negative controls (2 nuclease-free water and 2 negative extraction controls).

170 Commercially available Twist Synthetic SARS-CoV-2 RNA Controls (Control 2,

171 MN908947.3; and Control 14, EPI_ISL_710528) were used to prepare standard curves

172 for genome quantitation. Both synthetic RNA controls were quantified by droplet-based

173 digital PCR using One-Step RT-ddPCR Advanced kit for probes in a QX200TM System

174 (Bio-Rad), to estimate the exact concentration of genome copies $(GC)/\mu l$, prior to

175 construction of RT-qPCR standard curves. Limit of detection (LOD) and limit of

176 quantification (LOQ) were determined for each specific target by running a series of

dilutions of the target with 4-10 replicates per dilution. Parameters of all standard

178 curves and estimated LOD and LOQ for the 4 participating laboratories are summarized

in supplementary Table S1.

180

181 RT-qPCR data analysis and interpretation. The following criteria were used to
182 estimate SARS-CoV-2 gene viral titers. For each specific target, Cq values ≤40 were
183 converted into GC/L using the corresponding standard curve and volumes tested.
184 Occurrence of inhibition was estimated by comparing average viral titers obtained from

duplicate wells tested on undiluted RNA with duplicate wells tested on ten-fold diluted

186 RNA. Inhibition was ascertained when difference in average viral titers was higher than

187 $0.5 \log_{10}$, and viral titers inferred from the ten-fold RNA dilution. The percentage of

188 SARS-CoV-2 genomes containing the Δ HV69/70 deletion within the S gene was 189 calculated using the following formula:

% = GC/L (Probe6970del) / [GC/L (Probe6970del) + GC/L (Probe6970in)] x 100. In
cases with one of the concentrations <LOQ, percentage was calculated using the
corresponding LOQ of the assay. Data with both concentrations <LOQ were not
considered.

194

S gene sequencing and single nucleotide polymorphism (SNPs) identification. Full-195 196 length S gene sequencing of wastewater samples was performed following the ARTIC 197 Network protocol (https://artic.network/ncov-2019, with minor modifications) with selected v3 primers (Integrated DNA Technologies) for genome amplification and 198 199 KAPA HyperPrep Kit (Roche Applied Science) for library preparation ²³. Libraries 200 were loaded in MiSeq Reagent Kit 600v3 cartridges and sequenced on MiSeq platform (Illumina). The raw sequenced reads were cleaned from low-quality segments, and 201 202 mapped against the Wuhan-Hu-1 reference genome sequence to find out variant-specific 203 signature mutations (mutations and indels). 204 205 RESULTS Duplex SARS-CoV-2 S gene allelic discrimination RT-qPCR assay validation. 206 To confirm the ability of the RT-qPCR assay to discriminate and estimate the 207

208 proportion of targets containing the Δ HV69/70 deletion in different scenarios, 9

preparations containing 90:10, 50:50 or 10:90 proportions of B.1.1.7 and Wuhan-Hu-1

synthetic control RNAs at 3 different total concentration levels $(1x10^4, 1x10^3 \text{ and } 1x10^2)$

211 GC/rxn) were made and analyzed (Figure 1). Assays performed using B.1.1.7 and

212 Wuhan-Hu-1 synthetic control RNAs did not show cross-reactivity (data not shown).

213	Results showed the ability of the method to detect and quantitatively discriminate
214	sequences containing the Δ HV69/70 deletion from wildtype sequences in mixed
215	samples through a wide range of total RNA concentrations often observed in extracted
216	wastewater samples.
217	
218	Additionally, to confirm that sequences detected in natural samples collected during the
219	study period containing the Δ HV69/70 deletion corresponded to the B.1.1.7 variant, a
220	subset of 8 samples (4 from week 21_11 and 4 from week 21_12), with B.1.1.7
221	proportion estimates ranging between 35% and 100% were analyzed by NGS
222	sequencing of the S gene. Variant analysis showed a total of 12 nucleotide substitutions
223	and 4 deletions in comparison with the reference genome of SARS-CoV-2 isolate
224	Wuhan-Hu-1 (MN908947.3), most of them being specific for B.1.1.7 variant. No strong
225	correlation was observed between coverage and specific amplicons. Between 3 and 7
226	mutation markers out of 9 markers specific for B.1.1.7 variants in the spike region
227	(ΔHV69-70, ΔY144, N501Y, A570D, D614G, P681H, T716I, S982A and D1118H)
228	were detected in all samples, confirming that the RT-qPCR assay could be used to trace
229	the occurrence of B.1.1.7 variant, as suggested by the recently published EU
230	recommendation ⁴ (Figure 2). Seven additional amino acid substitutions/deletions,
231	which were not specific for B.1.1.7 variant, were also detected: G142V, A222V,
232	G257V, S375P, Δ T376, F377L and K537E. Of these substitutions, as of April 28 th ,
233	G142V and G257V had already been reported in 1128 and 259 sequences published at
234	GISAID database, respectively, but the others had only been reported at low
235	frequencies. Substitutions S375P/ Δ T376/F377L affecting 3 consecutive residues within
236	the Receptor Binding Domain (RBD) and identified in 35% of sequences from WWTP-
237	31 in Madrid, have been individually reported less than 15 times in several countries,

238	including Spain. However, our data report the occurrence of the 3 mutations within the
239	same variant. Of note, mutations in these residues have been related to antigenic drift
240	^{24,25} . Substitution K537E had been reported once in a nasopharyngeal specimen
241	belonging to B.1.177 (EPI_ISL_1547898; hCoV-19/Slovakia/UKBA-2586/2021).
242	Marker A222V is also present in B.1.777 variant, which originated in Spain became the
243	predominant variant in most European countries during the second pandemic wave ²⁶ .
244	Sequence data obtained in this study are available at Genbank (SAMN19107574 and
245	PRJNA728923).
246	
247	Temporal and geographical emergence of B.1.1.7 variant in the Spanish territory.
248	Wastewater samples from 32 Spanish WWTPs from mid December 2020 to end of
249	March 2021 were weekly analyzed to monitor the emergence of B.1.1.7 in the territory.
250	Total levels of SARS-CoV-2 RNA were determined by RT-qPCR using N1 target as
251	well as the S discriminatory RT-qPCR, without normalization by the population number
252	(Figure 3). A moderate correlation was observed between both SARS-CoV-2 genome
253	concentration measures between N1 and total S gene titers (R ² =0.303, data not shown).
254	From all samples analyzed for different SARS-CoV-2 RT-qPCR assays, inhibition was
255	observed in 17.4%, 19.5% and 16.1% of samples for N1, S target (wildtype) and S
256	target (B.1.1.7) assays, respectively, without significant differences between targets.
257	Regarding recoveries of the 3 animal coronaviruses used as process control viruses by
258	different participating laboratories, recovery percentages (mean±standard deviation)
259	were of 23.4±16.0%, 24.9±22.6%, and 52.9±29.8%, for TGEV, MHV, and PEDV,
260	respectively. The Kruskal-Wallis test showed significant differences for PEDV
261	(p<0.001).

262	Lockdown measures in Spain during the study period were remarkable (mandatory use
263	of face mask, nighttime curfews, restrictions regarding bar and restaurant opening times,
264	social gathering restrictions, restricted opening hours and attendance, municipality of
265	residence confinement implemented in most regions, etc.) and were associated to the
266	nationwide State of Alarm, in place since October 2020. As most European countries, at
267	the clinical level, a peak in COVID-19 cases occurred between the end of December
268	2020 (week 20_52) and early February 2021 (week 21_05). As measured through the
269	N1 target, a peak in SARS-CoV-2 genome levels in wastewater was observed in week
270	21_01 in 9 regions including Zaragoza (Fig 3B; WWTP-15), Las Palmas in Canary
271	Islands (Fig 3D; WWTP-18), 3 cities in Catalonia (Fig 3H; WWTP-26, 27 and 28) and
272	Madrid (Fig 3I; WWTP 07, 08, 31 and 32); in week 21_02 in regions including
273	Córdoba and Granada in Andalucía (Fig 3A; WWTP03 and WWTP-04), Palma de
274	Mallorca (Fig 3C; WWTP-17), Santander (Fig 3E; WWTP-20), Cuenca (Fig 3F;
275	WWTP-29), Madrid (Fig 3I; WWTP-30) and Logroño (Fig 3M; WWTP-14); in week
276	21_03 in Guadalajara (Fig 3F; WWTP-25), Segovia (Fig 3G; WWTP-21), Soria (Fig
277	3G; WWTP-22), Madrid (Fig 3I; WWTP-09), Valencia (Fig 3J; WWTP-01) and
278	Ourense (Fig 3L; WWTP-05); in week 21_04 in Málaga (Fig 3A; WWTP_06),
279	Albacete (Fig 3F; WWTP-24), Valladolid (Fig 3G; WWTP-23), Bilbao (Fig 3N;
280	WWTP-13) and Oviedo (Fig 3O; WWTP-16) and, and in week 21_05 in Sevilla (Fig
281	3A ; WWTP-10) and Vitoria (Fig 3N ; WWTP-12). SARS-CoV-2 genome titers in
282	Tenerife (Canary Islands) (Fig 3D; WWTP-19), were already at peak titers in the first
283	week of the study (Figure 3).
284	

- First detection of B.1.1.7 variant in wastewater samples occurred in the Southern city of
- 286 Málaga (Andalucía) in week 20_52 (Figure 4). The first week of January 2021, it could

287	also be detected in the 2 largest cities (Madrid and Barcelona), in 2 Northern cities
288	(Santander and Vitoria), another city in Andalucía (Córdoba) and in Tenerife (Canary
289	Islands), suggesting that multiple introductions occurred during Christmas holidays in
290	different parts of the Spanish territory, and representing 20% of all sampled WWPTs.
291	B.1.1.7 levels detected in week 21_01 were lower than 10% in most WWTPs, with the
292	exception of WWTP-32 in Madrid, which was of 22.9%. Percentages of WWTPs with
293	B.1.1.7 detection increased progressively, up to 56% by week 21_04, 91% by week
294	21_08, and 97% by week 21_13. Our data also showed that while total level of SARS-
295	CoV-2 RNA genomes measured by N1 target showed a slight decline for several weeks
296	after the first peak observed during early 2021, this negative trend was slowed or
297	reversed in most WWTPs from the time when the proportion of B.1.1.7 became more
298	abundant (Figure 3). In 6 cities, a significant increase of N1 RNA titers higher than 1
299	log_{10} with respect to preceding week, as adopted by the VATar COVID-19 Spanish
300	Reporting System (available at https://www.miteco.gob.es/es/agua/temas/concesiones-
301	y-autorizaciones/nota-tecnica-vatar-miterd_tcm30-517518.pdf), was observed in the last
302	week of the study (Fig 3E WWTP-20, Fig 3F WWTP 29, Fig 3G WWTP 23, Fig 3I
303	WWTP07, 08 and 30).

ACS Paragon Plus Environment

312 weeks with B.1.1.7 percentages near fixation (90-100%) as a confirmation of

predominance (**Table S2**), we could estimate that approximately 8.1±2.0 weeks-time

were required for B.1.1.7 variant to become predominant in sewage. This would

correspond to an average increase rate of 11.7% (9.6-15.1%) per week.

316

The proportion of B.1.1.7 was compared to the prevalence detected at the clinical level. 317 318 The abundance of B.1.1.7, as a fraction of all sequenced clinical specimens by the local 319 authorities in each Autonomous Community, was obtained from update reports of the 320 epidemiological situation of the variants of SARS-CoV-2 of importance published by 321 the Spanish Ministry of Health ²⁷. When comparing the proportion of B.1.1.7 estimated 322 from wastewater with the proportion estimated from sequencing of clinical isolates, a good correlation was observed (R²=0.5012) (Figure 5A). Analysis comparing B.1.1.7 323 324 prevalence estimate from clinical specimens with prevalence estimated from wastewater 325 one or two weeks before did not increase the correlation determinant (data not shown), 326 suggesting that wastewater analysis did not allow us to anticipate the increase in B.1.1.7 proportion. On a geographical/temporal analysis, wastewater testing allowed to confirm 327 328 circulation of B.1.1.7 variant before its identification in clinical specimens, especially in 329 part due to a noticeable clinical undertesting in most regions. Data for 3 selected weeks are shown in Figure 5B. By week 21 04 at the end of January, at the clinical level the 330 331 variant was only detected, on clinical samples, in Galicia and País Vasco, mainly due to 332 the low number of sequenced isolates in most regions, while it was detected in 18/32 (56%) WWTPs. At the end of the study, all Autonomous Communities Public Health 333 334 departments reported percentages higher than 60%, but while some WWTPs showed very high percentages some others showed relatively lower proportions, indicating 335 336 differences at the local level.

337 DISCUSSION

338

339 As a cost-effective approach to screen thousands of inhabitants, wastewater-based epidemiology (WBE) is a valuable tool to anticipate the circulation of specific 340 pathogens in a community and to closely track their incidence evolution through space 341 and time 28,29 . This surveillance has proven to be extremely useful to monitor the 342 343 circulation of total SARS-CoV-2 in different parts of the world ^{1–3}, and may be effective for tracking novel SARS-CoV-2 VOC. Despite NGS would allow the definitive 344 identification of specific variants and has already been applied on sewage samples ^{30,31}, 345 346 it is resource and time-consuming, thus limiting the number of samples that can be 347 processed and the number of labs which can implement this approach on a regular basis. In addition, most deep sequencing protocols allow the identification of signature 348 349 mutations within short individual reads, which when detected in wastewater samples containing a mixture of different isolates, may not be proof of co-occurrence of such 350 mutations within the same genome, thus providing only an indirect evidence of the 351 presence of a certain variant ³². Finally, the use of NGS is also challenged by the 352 353 presence of inhibitors in samples, limiting its success rate and depth coverage. Given its 354 higher tolerance to inhibitors, droplet digital RT-PCR has been acknowledged as a suitable approach to simultaneous enumerate the concentration of variants with the 355 N501Y mutation and wildtype in wastewater ³³, but droplet digital RT-PCR widespread 356 use may be limited nowadays by the high economic investment in instrumentation. On 357 the other hand, the use of RT-qPCR methods offers the advantage of rapid turnaround 358 359 time, lower cost, and immediate availability in most public health laboratories. In the current study, we validated a duplex RT-qPCR assay to discriminate and enumerate 360 SARS-CoV-2 variants containing the Δ HV69/70 deletion from variants lacking it. 361

Page 18 of 35

Among molecular markers specific for B.1.1.7 variant, the 6-nucleotide deletion corresponding to residues 69/70 was chosen because it offers the possibility to design highly-specific robust probes to be used in wastewater samples, which unlike clinical specimens, will contain mixed sequences in most cases. Similar to the TaqPath COVID-19 assay (Thermo Fisher Scientific) and other RT-qPCR protocols designed for clinical diagnosis ³⁴, the novel duplex RT-qPCR assay developed in this study proved highly specific and discriminatory.

369

370 The Δ HV69/70 deletion is located within the N-terminal domain of the S glycoprotein 371 and has been described to be located at a recurrent deletion region (RDR), and phylogenetic studies showed that it has arisen independently at least 13 times ³⁵. In 372 373 addition to being a signature mutation of highly transmissible B.1.1.7 variant, it has also 374 been described in other lineages, including cluster-5 variant, identified both in minks and humans in Denmark, some isolates belonging to 20A/S:439K variant, which 375 376 emerged twice independently in Europe, B.1.258 and B.1.525 lineages ^{35–39}, although none of these other lineages have been shown to spread widely. According to GISAID, 377 378 from a dataset of 442,175 sequences collected from 1 December 2020 to 31st March 379 2021 containing $\Delta 69$, as a hallmark of $\Delta HV 69/70$ deletion, the proportion of sequences which were classified as B.1.1.7 was of 92.4% (for clinical sequences isolated in Spain 380 during the same period, this percentage was of 98.1%). Among sequences containing 381 382 $\Delta 69$ not classified as B.1.1.7 variant, other lineages including B.1.258, B.1.525, B.1.177, B.1.429+B.1.427, P1, B.1.351 and B.1.617 were observed in a minority of 383 384 cases. Among sequences belonging to the predominant lineage in Spain at the onset of this study, B.1.177, only 0.23% of sequences deposited in GISAID contained $\Delta 69$, 385 confirming that detection Δ HV69/70 is highly indicative of a genome belonging to 386

B.1.1.7 lineage. Finally, in the NGS analysis performed on 8 selected samples with a

388 high proportion of $\Delta HV69/70$ containing genomes, between 3-8 additional B.1.1.7 389 mutation signatures were identified, confirming that the detected genomes very likely correspond to the B.1.1.7 variant. 390 391 During the study period, weekly wastewater estimates of the proportion of B.1.1.7, 392 393 representing a larger and more comprehensive proportion of typed cases including both symptomatic and asymptomatic cases, well reflected the trends in the reported 394 395 sequenced clinical cases in most regions. Despite the number of clinical specimens 396 sequenced from public health laboratories was not high during the study period, and showed strong geographic differences, a correlation was observed between the 397 proportion of B.1.1.7 cases observed at the clinical level and data estimated from 398 399 sewage when using samples from the same week (Figure 5A). Of note, this association was not more robust when using data from 1-2 previous weeks (data not shown). The 400 401 lack of anticipation ability could be due to several unknown factors, including 402 differences in shedding and kinetic levels between variants, differences in the 403 proportion of asymptomatic infections, and differences in environmental stability. 404 Sewage surveillance allowed the identification of B.1.1.7 circulation in the Spanish territory in the Southern city of Málaga before it was confirmed at the clinical level by 405 406 National Public Health Authorities, and allowed us to infer multiple simultaneous 407 introductions during Christmas and New Year's holidays in distant parts of the country (Madrid, Barcelona, Santander, Vitoria, Córdoba and Tenerife). By the end of January 408 409 2021, only 13% (2/15) Autonomous Communities had reported B.1.1.7 clinical cases, while circulation in sewage had been confirmed in 67% (10/15) of them, confirming its 410 use as an early warning approach. Data from 11 WWTPs which reached B.1.1.7 near 411

412	fixation rates, defined as higher than 90% for ≥ 2 consecutive weeks, showed that
413	8.1 ± 1.8 weeks were required to reach B.1.1.7 predominance, which would be a slightly
414	shorter time than what has been locally observed at the clinical level. A research
415	publication reported first detection of imported B.1.1.7 clinical cases in Madrid in week
416	20_52 (December 2020), and a proportion of 62% of total newly diagnosed COVID-19
417	cases 10 weeks later ⁴⁰ . Data from other studies are also the UK reported by ECDC
418	show that B.1.1.7 cases went from less than 5% of all positive cases to more than 60%
419	in less than six weeks during November to mid-December 2020 ⁴¹ , and Davies et al.
420	demonstrated that it became dominant throughout the country ¹⁵ . Estimates from the US
421	indicate that B.1.1.7 would become dominant in most states 4 months after its first
422	identification in late November 2020 ¹⁴ .
423	
424	Our data also showed that predominance of B.1.1.7 variant appeared to correspond to a
425	slowdown in the negative trend of total SARS-CoV-2 wastewater levels, which had
426	been observed from early 2021 in most cities, probably due to lockdown measures and
427	the mass-vaccination campaign, which was initiated the last week of 2020. Even in
428	some cities, including Santander (Fig 3E; WWTP-20), Cuenca (Fig 3F; WWTP-29),
429	Valladolid (Fig 3G; WWTP-23) and Madrid (Fig 3I; WWTP-07, 08 and 30), total
430	SARS-CoV-2 levels showed a positive trend at the end of the study. These results
431	suggest that the emergence of B.1.1.7 cases could have produced a higher transmission
432	rate and a slight increase in COVID-19 incidence, as confirmed by clinical
433	epidemiological data reported by the Spanish Ministry of Health, reporting an incidence
434	peak between the end of March and April 2020 ⁴² . Despite this positive trend markedly
435	observed in some regions, the smooth running of the mass vaccination campaign
436	starting on December 27th 2020, in addition to non-pharmaceutical interventions, likely

437 contributed to minimizing the impact of B.1.1.7 emergence. As of end of March 2021,
438 the percentage of the Spanish population who had been partially immunized or totally
439 vaccinated were of 13.2 % and 6.8 %, respectively.

440

Finally, despite the state of alarm decreed by the Spanish government, as a measure to 441 unify confinement and restriction measures across the country, was maintained 442 443 throughout the study period, predominance of B.1.1.7 variant was not homogeneous, 444 and dynamics were variable among cities across the country. For instance, a rapid predominance of B.1.1.7 variant was observed in Granada (WWTP-4) and Cáceres 445 446 (WWTP-36), while in other cities, B.1.1.7 reached prevalences higher than 90% by 447 week 3-6 after first positive detection and decreased thereafter for 2-3 weeks. Several reasons could explain these waves, including differences in regional social distancing 448 449 behaviors, repetitive B.1.1.7 case imports, introduction of additional variants, climatic effect on sewage composition, size of WWTP, or variability related to the use of grab 450 samples instead of composite samples. 451

452

453 This study highlights the use of WBE as a cost-effective, non-invasive and unbiased 454 approach which may complement clinical testing during the COVID-19 pandemic, and demonstrates the applicability of duplex RT-qPCR assays on sewage surveillance as a 455 rapid, attractive, and resourceful method to track the early circulation and emergence of 456 457 known VOC in a population, especially at times when clinical typing is insufficient and when signature mutations can be unequivocally assigned to a specific VOC. The current 458 459 strategy could be readily adaptable to track specific mutations of other VOC as soon as they are identified by clinical genomic sequencing in the future and integrated into 460 461 existing wastewater surveillance programs.

462	
463	Supporting Information: Additional data on parameters defining standard curves,
464	limit of detection (LOD), and limit of quantification (LOQ) for RTqPCR assays used in
465	the study (Table S1), and data used to estimate the time required to reach B.1.1.7
466	prevalence >90% in wastewater (Table S2).
467	
468	
469	ACKNOWLEDGEMENTS
470	This work was partially supported by the COVID-19 wastewater surveillance project
471	(VATar COVID19), funded by the Spanish Ministry for the Ecological Transition and
472	the Demographic Challenge of and the Spanish Ministry of Health; grants from CSIC
473	(202070E101) and MICINN co-founded by AEI FEDER, UE (AGL2017-82909); grant
474	ED431C 2018/18 from the Consellería de Educación, Universidade e Formación
475	Profesional, Xunta de Galicia (Spain); Direcció General de Recerca i Innovació en Salut
476	(DGRIS) Catalan Health Ministry Generalitat de Catalunya through Vall d'Hebron
477	Research Institute (VHIR), and Centro para el Desarrollo Tecnológico Industrial
478	(CDTI) from the Spanish Ministry of Economy and Business, grant number IDI-
479	20200297. Pilar Truchado is holding a Ramón y Cajal contract from the Ministerio de
480	Ciencia e Innovación. Adan Martinez is holding a predoctoral fellowship FI_SDUR
481	from Generalitat de Catalunya.
482	We gratefully acknowledge all the staff involved in the VATar COVID-19 project,
483	working with sample collection and logistics. The authors are grateful to Promega
484	Corporation (Madison, US) for technical advice, and thank Andrea Lopez de Mota for
485	her technical support.

487	CONFLICT OF INTEREST
487	CONFLICT OF INTEREST

488 None declared.

489

490 AUTHORS' CONTRIBUTIONS

- 491 Study design: Rosa M Pintó, Albert Bosch, Susana Guix, Ana Allende, Gloria Sanchez,
- 492 Jesus L Romalde. Data generation and interpretation: Albert Carcereny, Adan Martínez-
- 493 Velázquez, Pilar Truchado, Jenifer Cascales, Marta Lois, David Polo, Alba Pérez-
- 494 Cataluña, Azahara Díaz-Reolid, Josep Gregori, Damir Garcia-Cehic. Resources:
- 495 Margarita Palau, Cristina González Ruano. Funding acquisition: Albert Bosch, Ana
- 496 Allende, Gloria Sánchez, Jesus L Romalde, Andres Anton, Josep Quer.
- 497 Conceptualization: Rosa M Pintó, Albert Bosch, Susana Guix. Manuscript writing: Rosa
- 498 M Pintó, Susana Guix. Critically revision of the manuscript: All authors.

499

500 **REFERENCES**

- Medema, G.; Been, F.; Heijnen, L.; Petterson, S. Implementation of Environmental
 Surveillance for SARS-CoV-2 Virus to Support Public Health Decisions: Opportunities and
 Challenges. *Current Opinion in Environmental Science and Health*. Elsevier B.V. October
 1, 2020, pp 49–71. https://doi.org/10.1016/j.coesh.2020.09.006.
- Frado, T.; Fumian, T. M.; Mannarino, C. F.; Resende, P. C.; Motta, F. C.; Eppinghaus, A. L.
 F.; Chagas do Vale, V. H.; Braz, R. M. S.; de Andrade, J. da S. R.; Maranhão, A. G.;
 Miagostovich, M. P. Wastewater-Based Epidemiology as a Useful Tool to Track SARSCoV-2 and Support Public Health Policies at Municipal Level in Brazil. *Water Research* **2021**, *191*, 116810. https://doi.org/10.1016/j.watres.2021.116810.
- 511 (3) Wastewater Surveillance of SARS-CoV-2 across 40 U.S. States.
 512 https://doi.org/10.1101/2021.03.10.21253235.
- 513 (4) EC. COMMISSION RECOMMENDATION of 17.3.2021 on a Common Approach to
 514 Establish a Systematic Surveillance of SARS-CoV-2 and Its Variants in Wastewaters in
 515 the EU. 2021.
- 516 (5) Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O'Brien, J. W.; Choi, P. M.;
 517 Kitajima, M.; Simpson, S. L.; Li, J.; Tscharke, B.; Verhagen, R.; Smith, W. J. M.; Zaugg, J.;
 518 Dierens, L.; Hugenholtz, P.; Thomas, K. v; Mueller, J. F. First Confirmed Detection of

519 520 521		SARS-CoV-2 in Untreated Wastewater in Australia: A Proof of Concept for the Wastewater Surveillance of COVID-19 in the Community. <i>The Science of the total environment</i> 2020 , <i>728</i> , 138764. https://doi.org/10.1016/j.scitotenv.2020.138764.
522 523 524 525	(6)	la Rosa, G.; Iaconelli, M.; Mancini, P.; Bonanno Ferraro, G.; Veneri, C.; Bonadonna, L.; Lucentini, L.; Suffredini, E. First Detection of SARS-CoV-2 in Untreated Wastewaters in Italy. <i>Science of the Total Environment</i> 2020 , <i>736</i> , 139652. https://doi.org/10.1016/j.scitotenv.2020.139652.
526 527 528 529	(7)	Randazzo, W.; Truchado, P.; Cuevas-Ferrando, E.; Simón, P.; Allende, A.; Sánchez, G. SARS-CoV-2 RNA in Wastewater Anticipated COVID-19 Occurrence in a Low Prevalence Area. <i>Water Research</i> 2020 , <i>181</i> , 115942. https://doi.org/10.1016/j.watres.2020.115942.
530 531 532 533 534 535	(8)	Chavarria-Miró, G.; Anfruns-Estrada, E.; Martínez-Velázquez, A.; Vázquez-Portero, M.; Guix, S.; Paraira, M.; Galofré, B.; Sánchez, G.; Pintó, R. M.; Bosch, A. Time Evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Wastewater during the First Pandemic Wave of COVID-19 in the Metropolitan Area of Barcelona, Spain. <i>Applied and environmental microbiology</i> 2021 , <i>87</i> (7), e02750-20. https://doi.org/10.1128/AEM.02750-20.
536 537 538 539 540 541	(9)	Wurtzer, S.; Marechal, V.; Mouchel, J. M.; Maday, Y.; Teyssou, R.; Richard, E.; Almayrac, J. L.; Moulin, L. Evaluation of Lockdown Effect on SARS-CoV-2 Dynamics through Viral Genome Quantification in Waste Water, Greater Paris, France, 5 March to 23 April 2020. <i>Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin</i> 2020 , <i>25</i> (50), 2000776. https://doi.org/10.2807/1560-7917.ES.2020.25.50.2000776.
542 543 544 545	(10)	Polo, D.; Quintela-Baluja, M.; Corbishley, A.; Jones, D. L.; Singer, A. C.; Graham, D. W.; Romalde, J. L. Making Waves: Wastewater-Based Epidemiology for COVID-19 - Approaches and Challenges for Surveillance and Prediction. <i>Water research</i> 2020 , <i>186</i> , 116404. https://doi.org/10.1016/j.watres.2020.116404.
546 547	(11)	Rooney, C. M.; Moura, I. B.; Wilcox, M. H. Tracking COVID-19 via Sewage. <i>Current Opinion in Gastroenterology</i> 2021 , <i>37</i> (1).
548 549 550 551 552 553	(12)	Saththasivam, J.; El-Malah, S. S.; Gomez, T. A.; Jabbar, K. A.; Remanan, R.; Krishnankutty, A. K.; Ogunbiyi, O.; Rasool, K.; Ashhab, S.; Rashkeev, S.; Bensaad, M.; Ahmed, A. A.; Mohamoud, Y. A.; Malek, J. A.; Abu Raddad, L. J.; Jeremijenko, A.; Abu Halaweh, H. A.; Lawler, J.; Mahmoud, K. A. COVID-19 (SARS-CoV-2) Outbreak Monitoring Using Wastewater-Based Epidemiology in Qatar. <i>The Science of the total</i> <i>environment</i> 2021 , <i>774</i> , 145608. https://doi.org/10.1016/j.scitotenv.2021.145608.
554 555 556	(13)	Meera Chand, Susan Hopkins, Gavin Dabrera, Christina Achison, Wendy Barclay, Neil Ferguson, Erik Volz, Nick Loman, Andrew Rambaut, J. B. <i>Investigation of Novel SARS-</i> COV-2 Variant Variant of Concern 202012/01 (PHE); 2020.
557 558 559 560 561	(14)	Washington, N. L.; Gangavarapu, K.; Zeller, M.; Bolze, A.; Cirulli, E. T.; Schiabor Barrett, K. M.; Larsen, B. B.; Anderson, C.; White, S.; Cassens, T.; Jacobs, S.; Levan, G.; Nguyen, J.; Ramirez 3rd, J. M.; Rivera-Garcia, C.; Sandoval, E.; Wang, X.; Wong, D.; Spencer, E.; Robles-Sikisaka, R.; Kurzban, E.; Hughes, L. D.; Deng, X.; Wang, C.; Servellita, V.; Valentine, H.; de Hoff, P.; Seaver, P.; Sathe, S.; Gietzen, K.; Sickler, B.; Antico, J.; Hoon,

562 563 564 565 566		K.; Liu, J.; Harding, A.; Bakhtar, O.; Basler, T.; Austin, B.; MacCannell, D.; Isaksson, M.; Febbo, P. G.; Becker, D.; Laurent, M.; McDonald, E.; Yeo, G. W.; Knight, R.; Laurent, L. C.; de Feo, E.; Worobey, M.; Chiu, C. Y.; Suchard, M. A.; Lu, J. T.; Lee, W.; Andersen, K. G. Emergence and Rapid Transmission of SARS-CoV-2 B.1.1.7 in the United States. <i>Cell</i> 2021 , <i>184</i> (10), 2587-2594.e7. https://doi.org/10.1016/j.cell.2021.03.052.
567 568 570 571 572 573 574 575 576	(15)	Davies, N. G.; Jarvis, C. I.; van Zandvoort, K.; Clifford, S.; Sun, F. Y.; Funk, S.; Medley, G.; Jafari, Y.; Meakin, S. R.; Lowe, R.; Quaife, M.; Waterlow, N. R.; Eggo, R. M.; Lei, J.; Koltai, M.; Krauer, F.; Tully, D. C.; Munday, J. D.; Showering, A.; Foss, A. M.; Prem, K.; Flasche, S.; Kucharski, A. J.; Abbott, S.; Quilty, B. J.; Jombart, T.; Rosello, A.; Knight, G. M.; Jit, M.; Liu, Y.; Williams, J.; Hellewell, J.; O'Reilly, K.; Chan, YW. D.; Russell, T. W.; Procter, S. R.; Endo, A.; Nightingale, E. S.; Bosse, N. I.; Villabona-Arenas, C. J.; Sandmann, F. G.; Gimma, A.; Abbas, K.; Waites, W.; Atkins, K. E.; Barnard, R. C.; Klepac, P.; Gibbs, H. P.; Pearson, C. A. B.; Brady, O.; Edmunds, W. J.; Jewell, N. P.; Diaz-Ordaz, K.; Keogh, R. H.; Group, C. C19 W. Increased Mortality in Community-Tested Cases of SARS-CoV-2 Lineage B.1.1.7. <i>Nature</i> 2021 . https://doi.org/10.1038/s41586-021-03426-1.
577 578 579 580	(16)	9510 DETECTION OF ENTERIC VIRUSES. In <i>Standard Methods For the Examination of Water and Wastewater</i> ; Standard Methods for the Examination of Water and Wastewater; American Public Health Association, 2018. https://doi.org/doi:10.2105/SMWW.2882.202.
581 582 583	(17)	Moreno, J. L.; Zúñiga, S.; Enjuanes, L.; Sola, I. Identification of a Coronavirus Transcription Enhancer. <i>JOURNAL OF VIROLOGY</i> 2008 , <i>82</i> (8), 3882–3893. https://doi.org/10.1128/JVI.02622-07.
584 585 586	(18)	Manaker, R. A.; Piczak, C. v; Miller, A. A.; Stanton, M. F. A Hepatitis Virus Complicating Studies With Mouse Leukemia. <i>JNCI: Journal of the National Cancer Institute</i> 1961 , <i>27</i> (1), 29–51. https://doi.org/10.1093/jnci/27.1.29.
587 588 589 590	(19)	Raaben, M.; Einerhand, A. W. C.; Taminiau, L. J. A.; van Houdt, M.; Bouma, J.; Raatgeep, R. H.; Büller, H. A.; de Haan, C. A. M.; Rossen, J. W. A. Cyclooxygenase Activity Is Important for Efficient Replication of Mouse Hepatitis Virus at an Early Stage of Infection. <i>Virology Journal</i> 2007 , <i>4</i> (1), 55. https://doi.org/10.1186/1743-422X-4-55.
591 592 593 594	(20)	Vemulapalli, R.; Gulani, J.; Santrich, C. A Real-Time TaqMan RT-PCR Assay with an Internal Amplification Control for Rapid Detection of Transmissible Gastroenteritis Virus in Swine Fecal Samples. <i>Journal of virological methods</i> 2009 , <i>162</i> (1–2), 231–235. https://doi.org/10.1016/j.jviromet.2009.08.016.
595 596 597 598 599	(21)	Zhou, X.; Zhang, T.; Song, D.; Huang, T.; Peng, Q.; Chen, Y.; Li, A.; Zhang, F.; Wu, Q.; Ye, Y.; Tang, Y. Comparison and Evaluation of Conventional RT-PCR, SYBR Green I and TaqMan Real-Time RT-PCR Assays for the Detection of Porcine Epidemic Diarrhea Virus. <i>Molecular and Cellular Probes</i> 2017 , <i>33</i> , 36–41. https://doi.org/https://doi.org/10.1016/j.mcp.2017.02.002.
600 601 602	(22)	ISO15216-1:2017. Microbiology of the Food Chain - Horizontal Method for Determination of Hepatitis A Virus and Norovirus Using Real-Time RT-PCR - Part 1: Method for Quantification. 2017.
603 604	(23)	Andrés, C.; Garcia-Cehic, D.; Gregori, J.; Piñana, M.; Rodriguez-Frias, F.; Guerrero- Murillo, M.; Esperalba, J.; Rando, A.; Goterris, L.; Codina, M. G.; Quer, S.; Martín, M. C.;

605 606 607 608		Campins, M.; Ferrer, R.; Almirante, B.; Esteban, J. I.; Pumarola, T.; Antón, A.; Quer, J. Naturally Occurring SARS-CoV-2 Gene Deletions Close to the Spike S1/S2 Cleavage Site in the Viral Quasispecies of COVID19 Patients. <i>Emerging Microbes & Infections</i> 2020 , <i>9</i> (1), 1900–1911. https://doi.org/10.1080/22221751.2020.1806735.
609 610 611	(24)	Elbe, S.; Buckland-Merrett, G. Data, Disease and Diplomacy: GISAID's Innovative Contribution to Global Health. <i>Global challenges (Hoboken, NJ)</i> 2017 , <i>1</i> (1), 33–46. https://doi.org/10.1002/gch2.1018.
612 613 614 615 616 617	(25)	Greaney, A. J.; Starr, T. N.; Gilchuk, P.; Zost, S. J.; Binshtein, E.; Loes, A. N.; Hilton, S. K.; Huddleston, J.; Eguia, R.; Crawford, K. H. D.; Dingens, A. S.; Nargi, R. S.; Sutton, R. E.; Suryadevara, N.; Rothlauf, P. W.; Liu, Z.; Whelan, S. P. J.; Carnahan, R. H.; Crowe, J. E.; Bloom, J. D. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain That Escape Antibody Recognition. <i>Cell host & microbe</i> 2021 , <i>29</i> (1), 44-57.e9. https://doi.org/10.1016/j.chom.2020.11.007.
618 619 620 621 622	(26)	Hodcroft, E. B.; Zuber, M.; Nadeau, S.; Vaughan, T. G.; Crawford, K. H. D.; Althaus, C. L.; Reichmuth, M. L.; Bowen, J. E.; Walls, A. C.; Corti, D.; Bloom, J. D.; Veesler, D.; Mateo, D.; Hernando, A.; Comas, I.; González Candelas, F.; Stadler, T.; Neher, R. A. Emergence and Spread of a SARS-CoV-2 Variant through Europe in the Summer of 2020. <i>medRxiv</i> 2021 , 2020.10.25.20219063. https://doi.org/10.1101/2020.10.25.20219063.
623 624	(27)	Sanidad, M. de. Actualización de La Situación Epidemiológica de Las Variantes de SARS- CoV-2 de Importancia En Salud Pública En España; 2021.
625 626 627 628 629	(28)	Alfonsi, V.; Romanò, L.; Ciccaglione, A. R.; la Rosa, G.; Bruni, R.; Zanetti, A.; della Libera, S.; laconelli, M.; Bagnarelli, P.; Capobianchi, M. R.; Garbuglia, A. R.; Riccardo, F.; Tosti, M. E.; Group, C. Hepatitis E in Italy: 5 Years of National Epidemiological, Virological and Environmental Surveillance, 2012 to 2016. <i>Eurosurveillance</i> 2018 , <i>23</i> (41). https://doi.org/https://doi.org/10.2807/1560-7917.ES.2018.23.41.1700517.
630 631 632 633 634	(29)	Bisseux, M.; Colombet, J.; Mirand, A.; Roque-Afonso, AM.; Abravanel, F.; Izopet, J.; Archimbaud, C.; Peigue-Lafeuille, H.; Debroas, D.; Bailly, JL.; Henquell, C. Monitoring Human Enteric Viruses in Wastewater and Relevance to Infections Encountered in the Clinical Setting: A One-Year Experiment in Central France, 2014 to 2015. <i>Eurosurveillance</i> 2018 , <i>23</i> (7).
635 636 637 638 639	(30)	Izquierdo-Lara, R.; Elsinga, G.; Heijnen, L.; Munnink, B. B. O.; Schapendonk, C. M. E.; Nieuwenhuijse, D.; Kon, M.; Lu, L.; Aarestrup, F.; Lycett, S.; Medema, G.; Koopmans, M. P. G.; de Graaf, M. Monitoring SARS-CoV-2 Circulation and Diversity through Community Wastewater Sequencing, the Netherlands and Belgium. <i>Emerging Infectious</i> <i>Disease journal</i> 2021 , <i>27</i> (5), 1405. https://doi.org/10.3201/eid2705.204410.
640 641 642 643	(31)	Nemudryi, A.; Nemudraia, A.; Wiegand, T.; Surya, K.; Buyukyoruk, M.; Cicha, C.; Vanderwood, K. K.; Wilkinson, R.; Wiedenheft, B. Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater. <i>Cell Reports Medicine</i> 2020 , <i>1</i> (6). https://doi.org/10.1016/j.xcrm.2020.100098.
644 645 646	(32)	Jahn, K.; Dreifuss, D.; Topolsky, I.; Kull, A.; Ganesanandamoorthy, P.; Fernandez-Cassi, X.; Bänziger, C.; Stachler, E.; Fuhrmann, L.; Jablonski, K. P.; Chen, C.; Aquino, C.; Stadler, T.; Ort, C.; Kohn, T.; Julian, T. R.; Beerenwinkel, N. Detection of SARS-CoV-2 Variants in

647 648		Switzerland by Genomic Analysis of Wastewater Samples. <i>medRxiv</i> 2021 , 2021.01.08.21249379. https://doi.org/10.1101/2021.01.08.21249379.
649 650 651	(33)	Heijnen, L.; Elsinga, G.; de Graaf, M.; Molenkamp, R.; Koopmans, M. P. G.; Medema, G. Droplet Digital RT-PCR to Detect SARS-CoV-2 Variants of Concern in Wastewater. <i>medRxiv</i> 2021 , 2021.03.25.21254324. https://doi.org/10.1101/2021.03.25.21254324.
652 653 654 655 656 657 658 659 660	(34)	Vogels, C. B. F.; Breban, M. I.; Ott, I. M.; Alpert, T.; Petrone, M. E.; Watkins, A. E.; Kalinich, C. C.; Earnest, R.; Rothman, J. E.; Goes de Jesus, J.; Morales Claro, I.; Magalhães Ferreira, G.; Crispim, M. A. E.; Network, BU. C. G.; Singh, L.; Tegally, H.; Anyaneji, U. J.; Africa, N. for G. S. in S.; Hodcroft, E. B.; Mason, C. E.; Khullar, G.; Metti, J.; Dudley, J. T.; MacKay, M. J.; Nash, M.; Wang, J.; Liu, C.; Hui, P.; Murphy, S.; Neal, C.; Laszlo, E.; Landry, M. L.; Muyombwe, A.; Downing, R.; Razeq, J.; de Oliveira, T.; Faria, N. R.; Sabino, E. C.; Neher, R. A.; Fauver, J. R.; Grubaugh, N. D. Multiplex QPCR Discriminates Variants of Concern to Enhance Global Surveillance of SARS-CoV-2. <i>PLOS Biology</i> 2021 , <i>19</i> (5), e3001236.
661 662 663 664	(35)	McCarthy, K. R.; Rennick, L. J.; Nambulli, S.; Robinson-McCarthy, L. R.; Bain, W. G.; Haidar, G.; Duprex, W. P. Recurrent Deletions in the SARS-CoV-2 Spike Glycoprotein Drive Antibody Escape. <i>Science (New York, N.Y.)</i> 2021 , <i>371</i> (6534), 1139–1142. https://doi.org/10.1126/science.abf6950.
665 666 668 669 670 671 672 673 674 675	(36)	Thomson, E. C.; Rosen, L. E.; Shepherd, J. G.; Spreafico, R.; da Silva Filipe, A.; Wojcechowskyj, J. A.; Davis, C.; Piccoli, L.; Pascall, D. J.; Dillen, J.; Lytras, S.; Czudnochowski, N.; Shah, R.; Meury, M.; Jesudason, N.; de Marco, A.; Li, K.; Bassi, J.; O'Toole, A.; Pinto, D.; Colquhoun, R. M.; Culap, K.; Jackson, B.; Zatta, F.; Rambaut, A.; Jaconi, S.; Sreenu, V. B.; Nix, J.; Jarrett, R. F.; Beltramello, M.; Nomikou, K.; Pizzuto, M.; Tong, L.; Cameroni, E.; Johnson, N.; Wickenhagen, A.; Ceschi, A.; Mair, D.; Ferrari, P.; Smollett, K.; Sallusto, F.; Carmichael, S.; Garzoni, C.; Nichols, J.; Galli, M.; Hughes, J.; Riva, A.; Ho, A.; Semple, M. G.; Openshaw, P. J. M.; Baillie, J. K.; Rihn, S. J.; Lycett, S. J.; Virgin, H. W.; Telenti, A.; Corti, D.; Robertson, D. L.; Snell, G. The Circulating SARS-CoV-2 Spike Variant N439K Maintains Fitness While Evading Antibody-Mediated Immunity. <i>bioRxiv</i> 2020 , 2020.11.04.355842. https://doi.org/10.1101/2020.11.04.355842.
676 677 678 679 680 681	(37)	Kemp, S. A.; Meng, B.; Ferriera, I. A. T. M.; Datir, R.; Harvey, W. T.; Papa, G.; Lytras, S.; Collier, D. A.; Mohamed, A.; Gallo, G.; Thakur, N.; Carabelli, A. M.; Kenyon, J. C.; Lever, A. M.; de Marco, A.; Saliba, C.; Culap, K.; Cameroni, E.; Piccoli, L.; Corti, D.; James, L. C.; Bailey, D.; Robertson, D. L.; Gupta, R. K. Recurrent Emergence and Transmission of a SARS-CoV-2 Spike Deletion H69/V70. <i>bioRxiv</i> 2021 , 2020.12.14.422555. https://doi.org/10.1101/2020.12.14.422555.
682 683 684 685 686 687 688	(38)	Bal, A.; Destras, G.; Gaymard, A.; Stefic, K.; Marlet, J.; Eymieux, S.; Regue, H.; Semanas, Q.; d'Aubarede, C.; Billaud, G.; Laurent, F.; Gonzalez, C.; Mekki, Y.; Valette, M.; Bouscambert, M.; Gaudy-Graffin, C.; Lina, B.; Morfin, F.; Josset, L.; the COVID-Diagnosis HCL Study Group. Two-Step Strategy for the Identification of SARS-CoV-2 Variant of Concern 202012/01 and Other Variants with Spike Deletion H69–V70, France, August to December 2020. <i>Eurosurveillance</i> 2021 , <i>26</i> (3). https://doi.org/https://doi.org/10.2807/1560-7917.ES.2021.26.3.2100008.
689 690	(39)	Emma B. Hodcroft. CoVariants: SARS-CoV-2 Mutations and Variants of Interest https://covariants.org/.

- 691 (40) Pérez-Lago, L.; Sola Campoy, P. J.; Buenestado-Serrano, S.; Pharmacy, P. C.; Estévez, A.; 692 de la Cueva Technician, V. M.; López, M. G.; Tecnichian, M. H.; Suárez-González, J.; 693 Alcalá, L.; Comas, I.; González-Candelas, F.; Muñoz, P.; García de Viedma, D.; Group, on 694 behalf of G. M. M.-I. C.-19 S. Epidemiological, Clinical and Genomic Snapshot of the First 695 100 B.1.1.7 SARS-CoV-2 Cases in Madrid. *Journal of Travel Medicine* **2021**. 696 https://doi.org/10.1093/jtm/taab044. 697 ECDC. SARS-CoV-2 – Increased Circulation of Variants of Concern and Vaccine Rollout in (41) 698 *the EU/EEA, 14th Update – 15 February 2021.*; 2021. 699 (42) (ISCIII), E. C.-19. RENAVE. CNE. C. Informe Nº 77. Situación de COVID-19 En España.
- 700 *Casos Diagnosticados a Partir 10 de Mayo*; 2021.

703 FIGURE LEGENDS

704

705	Figure 1. Estimated genome copies (GC) corresponding to wild type SARS-CoV-2
706	sequences without $\Delta HV69/70$ deletion (grey bars) and sequences containing $\Delta HV69/70$
707	deletion in the S gene (yellow bars), from 9 preparations at 3 different total
708	concentration levels (A: $1x10^4$ GC/rxn, B: $1x10^3$ GC/rxn and C: $1x10^2$ GC/rxn), and 3
709	different proportions of Wuhan-Hu-1 and B.1.1.7 GC (90:10, 50:50, and 10:90). Data
710	correspond to mean values ± standard deviations from duplicate samples. Each sample
711	correspond to an independent preparation containing the indicated proportions of
712	B.1.1.7 and Wuhan-Hu-1 synthetic control RNAs. Samples at different proportions of
713	synthetic control RNAs were prepared in duplicate and were further diluted at the
714	indicated concentration levels.
715	
716	Figure 2. Overview of the nucleotide substitutions detected in SARS-CoV-2 S gene
717	sequences from wastewater samples (n=8) as compared to the SARS-CoV-2 isolate
718	Wuhan-Hu-1 reference genome (MN908947.3). Percentages before each line indicate
719	the proportion of B.1.1.7 variant measured in each sample. B.1.1.7-specific markers are
720	shown in light orange; yellow markers show mutations described in B.1.777 variant,
721	and blue markers indicate others. RBD (Receptor Binding Domain) is indicated with a
722	dotted square. Amplicon numbers are shown at the bottom. Shaded green colors
723	indicate sequence coverage in logarithmic scale for each amplicon.
724	
725	Figure 3. Concentration of SARS-CoV-2 RNA in wastewater samples collected in
726	Spain from December 2020 to March 2021, as measured by N1 RT-qPCR (dark blue),
727	and duplex S gene allelic discrimination RT-qPCR [wildtype S (light blue) and B.1.1.7

28

ACS Paragon Plus Environment

728	S (red)]. Wastewater treatment plants (WWTPs) are alphabetically grouped by
729	Autonomous Communities in Spain (A: Andalucía, B: Aragón, C: Baleares, D:
730	Canarias, E: Cantabria, F: Castilla-La Mancha, G: Castilla y León, H: Cataluña, I:
731	Com. De Madrid, J: Com. Valenciana, K: Extremadura, L: Galicia, M: La Rioja, N:
732	País Vasco, O: Pr. Asturias). Data represent average values and error bars standard
733	deviation of the RT-qPCR replicates used for calculation. Dotted lines correspond to the
734	limit of quantification of assays.
735	
736	Figure 4. Evolution of B.1.1.7 SARS-CoV-2 prevalence over time, as measured by
737	duplex RT-qPCR in wastewater samples from 32 wastewater treatment plants

738 (WWTPs). As in Figure 3, data are alphabetically shown according to Autonomous

Community. * indicates samples with detection of a single variant, but with titers<LOQ.

741

742 Figure 5. Comparison of B.1.1.7 estimates from wastewater testing and clinical 743 epidemiological surveillance. (A) Correlation between B.1.1.7 proportions estimated by duplex RT-qPCR from wastewater and data reported by local authorities from clinical 744 745 specimens sequencing. (B) Geographic and temporal evolution of B.1.1.7 SARS-CoV-2 emergence in Spain during the study period, estimated from wastewater samples (left 746 panels) and reported in clinical data (right panels). For wastewater data, percentages are 747 indicated for each WWTP. * indicates samples with detection of a single variant, but 748 749 with titers <LOQ. For clinical data, percentages are indicated for each Autonomous 750 Community and number in parenthesis indicates the number of cases under sequence study during that week. Communities in for which data were not available are depicted 751 752 colorless.

For Table of Contents Only

Figure 1

ACS Paragon Plus Environment

Figure 2

			Vern	20	20							2024						
Region			rear	20	20							2021						
(Autonomous	WWTP	City	Month	Decer	mber		Jan	uary			Febr	ruary				March		
Comunity)			Week	20_51	20_52	21_01	21_02	21_03	21_04	21_05	21_06	21_07	21_08	21_09	21_10	21_11	21_12	21_13
	3	Córdoba															*	
A	4	Granada																
Andalucia	6	Málaga														+		
	10	Sevilla/San Jerónimo														*	*	
																		<u>.</u>
Aragón	15	Zaragoza																
Baleares	17	Palma de Mallorca											*				*	
. ·	18	Las Palmas												*				
Canarias	19	Santa Cruz Tenerife							*									
Cantabria	20	Santander												*				
	24	Albacete															*	*
Castilla-La Mancha	25	Guadalajara															*	
	29	Cuenca														*		
	21	Segovia															*	*
Castilla y León	22	Soria			*													
•	23	Valladolid															•	
																		L
	26	Barcelona																
Cataluña	27	Igualada																
	28	Lleida																
	7	Madrid																
	8	Madrid																
	9	Madrid																
Com. de Madrid	30	Madrid																
	31	Madrid																
	32	Madrid																
Com. Valenciana	1	Valencia														*		*
Fortune and an	2	Badajoz																
Extremadura	36	Cáceres												*	*	*		
Galicia	5	Oursense																
La Rioia	14	Logroño																*
		0.0.0																
- 4 -	12	Vitoria																
País Vasco	13	Bilbao																
Pr. Asturias	16	Oviedo																
	10	011040																

