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Abstract. We study the computation of local approximations of invariant
manifolds of parabolic fixed points and parabolic periodic orbits of periodic

vector fields. If the dimension of these manifolds is two or greater, in gen-

eral, it is not possible to obtain polynomial approximations. Here we develop
an algorithm to obtain them as sums of homogeneous functions by solving

suitable cohomological equations. We deal with both the differentiable and

analytic cases. We also study the dependence on parameters. In the compan-
ion paper [BFM] these approximations are used to obtain the existence of true

invariant manifolds close by. Examples are provided.
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1. Introduction

This paper is the second part of our study on the invariant manifolds of parabolic
points for Cr and analytic maps started in [BFM]. We refer to that paper for the
motivation and references concerning such setting.

In this set of two papers we provide conditions that guarantee the existence of
stable invariant manifolds associated of such points. We use the parametrization
method [CFdlL03a, CFdlL03b, CFdlL05, HdlL06, HdlL07, HCF+]. The operators
involved in this method are more regular than the graph transform, which is an
advantage in the present situation, where only finite differentiability is assumed.
Also, it often provides efficient algorithms to compute explicitly approximations of
the invariant manifolds. In fact, this is the main purpose of the present paper. To
apply this method we need a minimum regularity to be able to have a polynomial
approximation of the map.

We consider maps F ∶ U ⊂ Rn × Rm → Rn × Rm, with (0,0) ∈ U such that
F (0,0) = (0,0), DF (0,0) = Id . We assume some hypotheses, to be specified later,
on the first non-vanishing nonlinear terms which imply the existence of some “weak
contraction” in the (x,0)-directions, as well as some hypotheses concerning the
(0, y)-directions that may imply “weak expansion” in these directions (but not
always). The parametrization method consists of looking for the invariant stable
manifold W s of the origin as an immersion K ∶ V ⊂ Rn → Rn × Rm, with K(0) =
(0,0), DK(0) = (Id ,0)⊺, and satisfying the invariance equation

(1.1) F ○K =K ○R,

where R ∶ V → V is a reparametrization of the dynamics of F on W s.
The procedure to find such K and R has two steps. First, to find functions K≤

and R solving approximately the invariance equation, that is, satisfying

(1.2) F ○K≤(x) −K≤ ○R(x) = o(∥x∥ℓ),

to a high enough order which depends on the first non-vanishing nonlinear terms
of F .

Second, with the reparametrization R obtained so far to look for K as a pertur-
bation of K≤. This second step is carried out in [BFM] where, assuming that R
and a sufficiently good approximation K≤ are known, an “a posteriori” type result
is obtained.

In this paper we obtain approximate solutions of (1.1). This is accomplished
by solving a set of cohomological equations. In the case that the fixed point is
hyperbolic instead of parabolic, it is possible to find solutions of the cohomological
equations in the ring of polynomials, both for K and R (see [CFdlL03a, CFdlL03b,
CFdlL05]). The same happens when one looks for one dimensional invariant man-
ifolds associated to parabolic fixed points [BFdlLM07].

However, when the parabolic invariant manifolds have dimension two or more,
a simple computation shows that generically there are no polynomial approximate
solutions of the invariance equation. The reason is simple: when looking for poly-
nomial solutions, since the terms of order k are determined in order to kill the terms
of order k + j of some error expression, where j ≥ 1 is related to the degree of the
first non-vanishing monomials in the expansion of F around the origin, the number
of conditions on the coefficients corresponding to monomials of degree k is larger
than the number of coefficients if the dimension of the manifold is at least 2. In fact,
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the number of obstructions increases with the order k. Of course, it may happen
that these obstructions vanish in some particular examples (like several instances
of the three body problem, see [BFM]), but generically they are unavoidable.

The cohomological equations for the terms of the approximate solutions of (1.1)
can be written as a linear PDE of the form

Dh(x)p(x) −Q(x)h(x) = w(x), x ∈ V ⊂ Rn,

where p, Q are fixed homogeneous functions that depend on the first non-vanishing
nonlinear terms of the Taylor expansion of F and w is an arbitrary homogeneous
function. Of course, the problem lies in finding global solutions of this PDE. In
this work we prove that, under suitable hypotheses (see H1, H2, H3 and (2.3) in
Section 2.1), the cohomological equations have homogeneous solutions defined in
the whole domain under consideration. Their order is related to the order of w. This
result allows us to find the approximate solutions of (1.1) as a sum of homogenous
functions of increasing order. In general, these functions are not polynomials, not
even rational functions. We deal with both the differentiable and analytic cases. In
the differentiable case there may be a loss of regularity. It is also worth mentioning
that the regularity assumption needed for obtaining R and the approximation are
sufficient to deal with the second stage of the procedure. We remark that our
conditions allow several characteristic directions in the domain under consideration
(see [Hak98, Aba15]).

The structure of the paper is as follows. In Section 2 we present the hypotheses
and main results of the paper. In Section 6 we show that our hypotheses are indeed
necessary, that the loss of differentiability can take place and remark the differences
between the case of one-dimensional and multidimensional parabolic manifolds. In
sections 3 and 4 we prove the main theorems. Section 3 contains the study of the
cohomological equations used in the actual proof of the main theorems in Section 4.
Section 5 is devoted to the dependence with respect to parameters.

2. Main result

The main result of this work deals with the computation of approximations of
stable manifolds of parabolic points, expressed as the range of a function K, in
such a way that the invariance condition (1.1), F ○K −K ○ R = 0, is satisfied up
to a prefixed order (see equation (1.2)). We will look for K and R as a finite sum
of homogeneous functions not necessarily polynomials. Each term of these sums
is a homogeneous solution of a so called cohomological equation. We are forced
to look for homogeneous solutions of the cohomological equations because, in this
multidimensional case x ∈ Rn with n > 1, as we will see in Section 4, in general
these equations do not admit polynomial solutions. We also refer to the reader to
Section 6 where several examples are studied.

In addition, we also study the dependence on parameters of the solutions of the
cohomological equations (see Section 2.3).

At the end of this section, we present the result about approximate solutions of
the invariance equation in the vector field case.

2.1. Set up and general hypotheses. The context we present here is the same
as the one in [BFM], which we reproduce for the convenience of the reader.
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Let U ⊂ Rn ×Rm be an open set such that (0,0) ∈ U and let F ∶ U → Rn+m be a
map of the form

(2.1) F (x, y) = ( x + p(x, y) + f(x, y)
y + q(x, y) + g(x, y) ) , x ∈ Rn, y ∈ Rm,

where p and q are homogeneous polynomials of degrees N ≥ 2 and M ≥ 2 respec-
tively, Dlf(x, y) = O(∥(x, y)∥N+1−l) and Dlg(x, y) = O(∥(x, y)∥M+1−l) for l = 0,1.
Clearly (0,0) is a fixed point of F and DF (0,0) = Id .

Since the degrees of p and q, N and M , respectively, need not to be the same,
we introduce

L =min{M,N}.
We denote by πx(x, y) = x and πy(x, y) = y the natural projections and by Bϱ

the open ball centered at the origin of radius ϱ > 0. However, to simplify notation,
we will often denote the projection onto a variable as a subscript, i.e., Xx ∶= πxX.

Now we state the minimum hypotheses to guarantee that the cohomological equa-
tions we encounter can be solved and consequently, we are able to find approximate
solutions up to the required order.

Given V ⊂ Rn such that 0 ∈ ∂V and ϱ > 0, we introduce

(2.2) Vϱ = V ∩Bϱ.

In this paper we will say that V ⊂ Rn is star-shaped with respect to 0 if 0 ∈ ∂V and
for all x ∈ v and λ ∈ (0,1], λx ∈ V .

Take ϱ > 0, norms in Rn and Rm respectively and consider the following con-
stants:

(2.3)

ap = − sup
x∈Vϱ

∥x + p(x,0)∥ − ∥x∥
∥x∥N , bp = sup

x∈Vϱ

∥p(x,0)∥
∥x∥N ,

Ap = − sup
x∈Vϱ

∥Id +Dxp(x,0)∥ − 1
∥x∥N−1 , Bp = sup

x∈Vϱ

∥Id −Dxp(x,0)∥ − 1
∥x∥N−1 ,

Bq = − sup
x∈Vϱ

∥Id −Dyq(x,0)∥ − 1
∥x∥M−1 ,

cp =
⎧⎪⎪⎨⎪⎪⎩

ap, if Bq ≤ 0,
bp, otherwise

, dp =
⎧⎪⎪⎨⎪⎪⎩

ap, if Ap ≤ 0,
bp, otherwise,

where the norms of linear maps are the corresponding operator norms. We empha-
size that all these constants depend on ϱ

We assume that there exist an open set V ⊂ Rn, V star-shaped with respect to
0, and appropriate norms in Rn and Rm satisfying, taking ϱ small enough,

H1 The homogenous polynomial p satisfies that

ap > 0.

If M > N , we further ask Ap/dp > −1.
H2 The homogenous polynomial q satisfies q(x,0) = 0 for x ∈ Vϱ, and

Dyq(x,0) is invertible ∀x ∈ Vϱ/{0}, if M < N,

2 + Bq

cp
>max{1 − Ap

dp
,0} , if M = N.
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H3 There exists a constant aV > 0 such that, for all x ∈ Vϱ,

dist(x + p(x,0), (Vϱ)c) ≥ aV ∥x∥N .
We emphasize that H1–H3 are asked to be satisfied not in a neighborhood of

the origin but in Vϱ. As usual in the parabolic case, a stable invariant manifold
is defined over a subset V such that 0 ∈ ∂V . It may happen that the manifold is
not defined in a neighborhood of the origin. However, some regularity at the origin
may be retained. For this reason we introduce the following definition.

Definition 2.1. Let V ⊂ Rl be an open set, x0 ∈ V and f ∶ V ∪ {x0} ⊂ Rl → Rk.
We say that f is C1 at x0 if f is C1 in V ∩ (Bϵ(x0) ∖ {x0}), for some ε > 0 and
limx→x0, x∈V Df(x) exists.

Finally we introduce some notation. Given l, k, ℓ ∈ N and an open set U ⊂ Rl

such that 0 ∈ ∂U ∪ U , we define

H≥ℓ = {h ∈ C0(U ,Rk) ∶ for u ∈ U , ∥h(u)∥ = O(∥u∥ℓ)},
H>ℓ = {h ∈ C0(U ,Rk) ∶ for u ∈ U , ∥h(u)∥ = o(∥u∥ℓ)},
Hℓ = {h ∈ C0(U ,Rk) ∶ ∀λ ∈ R, ∀u ∈ U , s.t. λu ∈ U , h(λu) = λℓh(u)}.

To simplify notation, we skip the reference to l, k and U , which will be fixed and
clearly understood from the context.

2.2. Approximate solutions of the invariance equation for maps. In this
section we present two results. The first one is about the existence of approximate
solutions having the “simplest” form. The other one (which can be useful in some
applications) is about the freedom we have for solving the cohomological equations.

As we will prove in an algorithmic way, even when F is an analytic function, we
can not, in general, obtain C∞ approximations of the stable manifold, unlike the
hyperbolic case. For instance, if Ap < dp and M ≥ N , we obtain Cr∗ -regularity of
these approximations, where r∗ is given by

(2.4) r∗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max{k ∈ N ∶ (1 − Ap

dp
)k < 2 + Bq

cp
} , if M = N,

max{k ∈ N ∶ (1 − Ap

dp
)k < 2} , if M > N.

Theorem 2.2. Let F ∶ U ⊂ Rn+m → Rn+m be defined in a neighborhood of the
origin and having the form (2.1). Assume that F ∈ Cr, with r ≥ N , and satisfies
hypotheses H1, H2 and H3 for some ϱ0 > 0. Then, for any N ≤ ℓ ≤ r there exist
0 < ϱ ≤ ϱ0 and K ∶ Vϱ → U and R ∶ Vϱ → Vϱ such that

(2.5) F ○K −K ○R ∈H>ℓ.
In addition, we can choose K and R as a finite sum of homogeneous functions
Kj ∈Hj and Rj ∈Hj (not necessarily polynomials), of the form

Kx(x) = x +
ℓ−N+1
∑
l=2

Kl
x(x), Ky(x) =

ℓ−L+1
∑
l=2

Kl
y(x),

R(x) = x +
min{ℓ,ℓ∗}

∑
l=N

Rl(x)
(2.6)
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with RN(x) = p(x,0), L =min{N,M} and ℓ∗ defined by

(2.7) ℓ∗ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N − 1 + [Bp

ap
+ r∗ (1 − Ap

dp
)] , if Ap < bp and M ≥ N,

N − 1 + [Bp

ap
] , if Ap ≥ bp and M ≥ N,

ℓ, M < N.

Moreover, K and R extend to V by homogeneity of their terms. The functions
Kl

x(x), with l = 2,⋯, ℓ∗ −N + 1, can be chosen arbitrarily, in particular, equal to 0.
Concerning the regularity of the approximation of the parametrization we have

that K and R are C1 at the origin in the sense of Definition 2.1. Finally,

(1) if either Ap > dp or M < N , K,R are analytic in a complex neighborhood
of V ,

(2) if Ap = dp, K,R are C∞ functions on V ,
(3) if Ap < dp and M ≥ N , K,R are Cr∗ functions on V where r∗ is defined

in (2.4).

Remark 2.3. We will see in Lemma 3.6 that Bp/ap ≥ N . Indeed, BDp in that
lemma corresponds to −Bp in (2.3).

Remark 2.4. In [BFM] it is proven that under the hypotheses H1, H2 and H3,

there exists an exact solution K̃,R of the invariance equation (1.1). In addition,
if K≤ is the function provided by Theorem 2.2 for some ℓ big enough, then K has
the form K≤ +K> with K> ∈ H>ℓ−N+1. Even more, assuming that Ap,Bq > 0 and
the hypotheses of the theorem, the stable set is a manifold which is the graph of a
differentiable function φ which can be approximated by πyK ○ (πxK)−1 in the sense

that φ − πyK ○ (πxK)−1 ∈H>ℓ−L+1.

Remark 2.5. As we will see in the proof of Theorem 2.2 in Section 4.4, we can
choose different strategies in order to get R as a sum of homogeneous functions of
degree less than ℓ∗. However, not for all strategies the obtained regularity will be
optimal.

Remark 2.6. The results stated in Theorem 2.2 hold also true if, instead of as-
suming that F is a Cr function in an open neighborhood of the origin, we assume
that F can be written as a sum of homogeneous functions which are Cr in V , that
is F has the form:

Fx(x, y) = x + p(x, y) + FN+1
x (x, y) +⋯ + F r

x(x, y) + F >rx (x, y),
Fy(x, y) = y + q(x, y) + FM+1

y (x, y) +⋯ + F r
y (x, y) + F >ry (x, y),

where all the functions are Cr in V , p ∈ HN , q ∈ HM , F j
x , F

j
y ∈ Hj and F >rx , F >ry ∈

H>r.

An alternative point of view is the following result:

Theorem 2.7. Assume the same hypotheses of Theorem 2.2. Let N ≤ ℓ ≤ r and
Kl

x ∈Hl for l = 2,⋯, ℓ −N + 1. Then for any function Kx ∶ V → Rn such that

Kx(x) − x −
ℓ−N+1
∑
l=2

Kl
x(x) ∈H>ℓ−N+1
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satisfying the regularity statements for K of Theorem 2.2, there exist 0 ≤ ϱ ≤ ϱ0 and
R ∶ Vϱ → Vϱ and Ky ∶ Vϱ → Rm of the form

R(x) = x + p(x,0) +
ℓ

∑
l=N+1

Rl(x), Ky(x) =
ℓ−L+1
∑
l=2

Kl
y(x)

with Rl ∈Hl,Kl
y ∈Hl, such that F ○K −K ○R ∈H>ℓ with K = (Kx,Ky). Moreover

the regularity statements are the same as the ones in Theorem 2.2 and K and R
can be extended to V .

2.3. Dependence on parameters. Let Λ ⊂ Rn′ be an open set of parameters,
U ⊂ Rn+m be an open set and V as in Section 2.1. Assume that F ∶ U ×Λ → Rn+m

are maps having the form (2.1) for any λ ∈ Λ, i.e.:

(2.8) F (x, y, λ) = ( x + p(x, y, λ) + f(x, y, λ)
y + q(x, y, λ) + g(x, y, λ) ) .

For any fixed λ ∈ Λ the constants in (2.3) are well defined and depend on λ.
We denote this dependence with a superindex. As we did in [BFM], we redefine
the constants Ap, ap, etc. by taking the supremum over Vϱ × Λ instead of Vϱ. For
instance,

Ap = inf
λ∈Λ

Aλ
p = − sup

(x,λ)∈Vϱ×Λ

∥Id +Dxp(x,0, λ)∥ − 1
∥x∥N−1 .

We note that, assuming H1, H2 and H3 for any λ ∈ Λ we already have the
existence of approximate solutions Kλ. To obtain uniform bounds, and therefore
continuity and differentiability, with respect to λ ∈ Λ we need to assume

Hλ Hypotheses H1, H2 and H3 hold true uniformly with respect to λ, namely,
all the conditions involving the constants ap, bp,Ap,Bp, dp, cp,Bq, aV hold
true with the new definition of these constants.

From now on we will abuse notation and we will write that a function h depending
on a parameter µ, belongs to H≥ℓ if h(z, µ) = O(∥z∥ℓ) uniformly in µ. Analogously
if h ∈ H>ℓ. Moreover, h ∈ Hℓ will mean that h is homogeneous of degree ℓ for any
fixed µ.

The differentiability class we work with was introduced in [CFdlL03b] and is also
used in [BFM]. For any s, r ∈ Z+ = N ∪ {0}, we define the set

Σs,r = {(i, j) ∈ (Z+)2 ∶ i + j ≤ r + s, i ≤ s}

and for U ⊂ Rl ×Rn′ , the function space

(2.9)
CΣs,r = {f ∶ U → Rk ∶ ∀(i, j) ∈ Σs,r,

Di
µD

j
zf exists, is continuous and bounded}.

Theorem 2.8. Let F ∈ CΣs,r be of the form (2.8) with r ≥ N satisfying Hλ for
ϱ0 > 0. Let ℓ ∈ N be ℓ ≤ r as in Theorem 2.2.

Then the functions K ∶ V ×Λ→ Rn+m and R ∶ V ×Λ→ Rn given by Theorem 2.2
satisfy:

(1) If either Ap > dp or M < N , K,R are Cs with respect to λ ∈ Λ and real
analytic with respect to x ∈ V . In addition, if F depends analytically on
λ ∈ Λ, the functions K,R are real analytic in V ×Λ.

(2) If Ap = dp then K,R ∈ CΣs,∞ in V ×Λ.
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(3) If Ap < dp and M ≥ N , then K,R ∈ CΣs∗,r∗−s∗ in V ×Λ where r∗ is defined
in (2.4) and s∗ =min{s, r∗}.

If Kx ∶ V × Λ → Rn is of the form given in Theorem 2.7 and satisfies the above
regularity statements, then the functions R ∶ V × Λ → Rn and Ky ∶ V × Λ → Rm

provided by Theorem 2.7 satisfy the same statements.

2.4. Approximate solutions of the invariance equation for flows. We de-
duce the analogous results to Theorems 2.2 and 2.8 in the case of time periodic
flows. It is worth to mention that we could deduce some results for flows from
the previous ones using the Poincaré map. Nevertheless we prefer to give explicit
results because, as we will see in Section 4, we can construct the approximate so-
lutions without computing neither the Poincaré map nor the flow, which turns out
to be very useful in applications.

In the case of flows, to shorten the exposition, we deal with the parametric case,
being the free parameter case a straightforward consequence.

Let U ⊂ Rn+m be a neighborhood of the origin, Λ ⊂ Rn′ and X ∶ U ×R ×Rn′ →
Rn+m a T -periodic vector field

(2.10) ż =X(z, t, λ), X(z, t + T,λ) =X(z, t, λ)
such that

(2.11) X(z, t, λ) =X(x, y, t, λ) = ( p(x, y, λ) + f(x, y, t, λ)
q(x, y, λ) + g(x, y, t, λ) ) ,

where p and q are homogeneous polynomials of degrees N ≥ 2 and M ≥ 2 respec-
tively with respect to (x, y), and f(x, y, t, λ) = O(∥(x, y)∥N+1) and g(x, y, t, λ) =
O(∥(x, y)∥M+1) uniformly in (t, λ) ∈ R ×Λ.

If we want to deal with the invariant manifolds of parabolic periodic orbits, we
translate the orbit to the origin and we get a vector field of the form (2.11).

From now on, in the case of flows, the spaces H>ℓ,H≥ℓ,Hℓ will be the analogous
to the ones in Section 2.1, respectively Section 2.3, with a T -periodic dependence
on t and with uniform bounds with respect to λ ∈ Λ.

Let φ(s; t0, x, y, λ) be the flow of (2.10). The condition that the range of a
function K, depending on (x, t, λ), is invariant by the flow of the vector field (2.11),
analogous to (1.1) for maps, is

(2.12) φ(s; t,K(x, t, λ), λ) =K(ψ(s; t, x, λ), s, λ),
for some function ψ. In the above equation the unknowns are K and ψ. However,
if ψ(s; t, x, λ) is the flow associated to some vector field Y (x, t, λ), the invariance
equation (2.12) is equivalent to its infinitesimal version

(2.13) X(K(x, t, λ), t, λ) =DxK(x, t, λ)Y (x, t, λ) + ∂tK(x, t, λ),
where Dx denotes the derivative with respect to x.

Next theorem asserts that equation (2.13) can be solved up to certain order
using functions belonging to CΣs′,r′ for some s′ and r′. For technical reasons we
will consider separately the differentiability with respect to (x, y) and (t, λ). That
is, in the definition (2.9) of CΣs,r we take z = (x, y) and µ = (t, λ).

Theorem 2.9. Let X ∶ U × R × Λ → Rn+m be a vector field of the form (2.11)
with U an open neighborhood of the origin. Assume that X ∈ CΣs,r and it satisfies
Hypothesis Hλ for some ϱ0 > 0 and V as in Section 2.1.
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Then, for any N ≤ ℓ ≤ r there exist 0 < ϱ ≤ ϱ0, K ∶ Vϱ × R × Λ → U , T -periodic
with respect to t, and Y ∶ Vϱ ×Λ→ Rn such that

(2.14) X(K(x, t, λ), t, λ) −DxK(x, t, λ)Y (x,λ) − ∂tK(x, t, λ) ∈H>ℓ.
In addition, we can choose K and Y as a finite sum of homogeneous functions
Kj ∈Hj and Y j ∈Hj with respect to x (not necessarily polynomials), of the form

Kx(x, t, λ) = x +
ℓ

∑
l=2
Kl

x(x, t, λ), Ky(x, t, λ) =
ℓ

∑
l=2
Kl

y(x, t, λ),

Y (x,λ) =
min{ℓ,ℓ∗}

∑
l=N

Y l(x,λ)

with Y N(x,λ) = p(x,0, λ), L = min{N,M} and ℓ∗ defined in (2.7). The functions
Kl

x(x,λ), with l = 2,⋯, ℓ∗ − N + 1, can be chosen arbitrarily, in particular, equal
to 0. Moreover K and Y can be extended to V by homogeneity.

Concerning regularity we have that K and Y are C1 at the origin in the sense of
Definition 2.1 . Finally,

(1) If either Ap > dp or M < N , K,Y are real analytic with respect to x and Cs
with respect to (t, λ). In addition, if X depends analytically on (t, λ) ∈ R×Λ,
then K,Y are real analytic in V ×R ×Λ,

(2) If Ap = dp, K,Y are C∞ with respect to x and Cs with respect to (t, λ).
Moreover, if X ∈ C∞, then also K,Y ∈ C∞.

(3) If Ap < dp and M ≥ N , K,Y belong to CΣs∗,r∗−s∗ with s∗ = min{s, r∗} and
r∗ defined in (2.4).

Remark 2.10. Notice that the vector field Y can be chosen as a finite sum of
homogeneous functions independent of t.

The rest of this paper is devoted to prove all these results. We first deal with the
map case in the non parametric setting. In Section 3 we study the existence and
regularity of global homogeneous solutions of a partial differential equation which
is a model for all the cohomological equation we need to solve. Then, we prove
Theorems 2.2, 2.7 and 2.9 by following an induction procedure with respect to the
degree of differentiability. After that we deal with the dependence with respect to
parameters. Finally we provide several examples to illustrate that our hypotheses
are necessary to obtain approximate solutions and our results are (in some sense)
optimal.

3. The cohomological equation

Let V ⊂ Rn be an open set, star-shaped with respect to 0 and p ∶ Rn → Rk,
Q ∶ Rn → L(Rk,Rk) and w ∶ V → Rk be such that p ∈ HN , Q ∈ HN−1, w ∈ Hm+N

with N ≥ 2 and m ≥ 1.
Note that p,Q are determined by their restriction to an arbitrary small neigh-

borhood U of the origin. In particular if they have some degree of regularity in U
they have the same regularity in the whole space.

The linear partial differential equation

(3.1) Dh(x) ⋅ p(x) −Q(x) ⋅ h(x) =w(x)
for h ∶ V → Rk appears when we try to find approximations of K and R as sums of
homogeneous functions. We are interested in solutions h ∈Hm+1.
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Let Vϱ0 be defined as in (2.2). Along this section we assume the following con-
ditions for some ϱ0 > 0:

HP1 p is C1 in Vϱ0 and

(3.2) ap = − sup
x∈Vϱ0

∥x + p(x)∥ − ∥x∥
∥x∥N > 0.

HP2 There exists a constant apV > 0 such that

dist(x + p(x), (Vϱ0
)c) ≥ apV ∥x∥

N , ∀x ∈ Vϱ0 .

In the applications in this paper, p and Q will be polynomial functions.

Remark 3.1. If hypotheses HP1 and HP2 are satisfied for some ϱ0, then they also
hold for 0 < ϱ < ϱ0. As a consequence, we are always allowed to consider ϱ small
enough (see Lemma 3.7).

We define the constants bp,Ap,BQ, AQ, cp and dp by,

(3.3)

bp = sup
x∈Vϱ0

∥p(x)∥
∥x∥N , Ap = − sup

x∈Vϱ0

∥Id +Dp(x)∥ − 1
∥x∥N−1 ,

BQ = − sup
x∈Vϱ0

∥Id −Q(x)∥ − 1
∥x∥N−1 , AQ = sup

x∈Vϱ0

∥Id +Q(x)∥ − 1
∥x∥N−1 ,

cp =
⎧⎪⎪⎨⎪⎪⎩

ap, if BQ ≤ 0,
bp, otherwise.

dp =
⎧⎪⎪⎨⎪⎪⎩

ap, if Ap < 0,
bp, otherwise.

Next we introduce two ordinary differential equations which will play a key role
in the proof of the results of this section. The first one is

(3.4)
dx

dt
= p(x).

We denote by φ(t, x) its flow. The second one is the homogeneous linear equation

(3.5)
dψ

dt
(t, x) =Q(φ(t, x))ψ(t, x)

and we denote by M(t, x) its fundamental matrix such that M(0, x) = Id .
Using uniqueness of solutions of (3.4) and homogenity,

(3.6) φ(t, λx) = λφ(λN−1t, x), M(t, λx) =M(λN−1t, x)

wherever they are defined.
In order to deal with the analytic case, we define the norm ∥ ⋅ ∥ in Cn as

∥x∥ =max{∥Rex∥, ∥Imx∥}.

We define complex extensions of V and Vϱ:

Ω(γ) ∶= {x ∈ Cn ∶ Rex ∈ V, ∥Imx∥ < γ∥Rex∥},
Ω(ϱ, γ) ∶= {x ∈ Cn ∶ Rex ∈ Vϱ, ∥Imx∥ < γ∥Rex∥}.

Our analyticity results will be over solutions defined on a complex set Ω(γ) with a
suitable choice of γ. We note that, if x ∈ Ω(γ) with γ ≤ 1, then ∥x∥ = ∥Rex∥. We
will use this fact along this work without explicit mention.



INVARIANT MANIFOLDS OF PARABOLIC FIXED POINTS (II). APPROXIMATIONS BY SUMS OF HOMOGENEOUS FUNCTIONS11

Theorem 3.2. Let p ∈ HN and Q ∈ HN−1 be defined in an open set U of Rn and
w ∈ Hm+N defined on an open set V star-shaped with respect to 0, with N ≥ 2 and
m ≥ 1. Assume that p satisfies hypotheses HP1 and HP2, for some ϱ0 > 0, that
p,Q are Cr, r ≥ 1, in U and w is a Cr function in V .

Then, if

(3.7) m + 1 + BQ

cp
>max{1 − Ap

dp
,0} ,

there exists a unique solution h ∈Hm+1 of equation (3.1) which is given by:

(3.8) h(x) = ∫
0

∞
M−1(t, x)w(φ(t, x))dt, x ∈ V.

Moreover it is of class C1 on V .
Concerning its regularity we have the following cases:

(1) Ap ≥ dp. If 1 ≤ r ≤∞, then h is Cr in V .
(2) Ap < dp. Let r0 be the maximum of 1 ≤ i ≤ r such that

(3.9) m + 1 + BQ

cp
− i(1 − Ap

dp
) > 0.

Then h is Cr0 in V .
(3) Ap > dp. If p,Q,w are real analytic functions in Ω(γ0) for some γ0 then

h is analytic in Ω(γ) for γ small enough. In particular it is real analytic
in V .

Remark 3.3. As we will see in Lemma 3.9 below, by Hypothesis HP2, Vϱ0 is
positively invariant by the flow φ, but it may happen that V is not. However since
V is star-shaped with respect to the origin, V ⊂ V e

ϱ0
= {tx ∶ t > 0, x ∈ Vϱ0}, V e

ϱ0
is

positively invariant by φ and the formula (3.8) makes sense with w understood as
the unique extension of w to V e

ϱ0
by homogeneity.

Remark 3.4. We notice that the condition m + 1 + BQ

cp
> max{1 − Ap

dp
,0} is auto-

matically satisfied if BQ,Ap ≥ 0.

Corollary 3.5. Assume the conditions of Theorem 3.2. Let ν ∈ N. If ν+BQ/cp ≥ 0,
then equation (3.1) has a solution h ∶ V → Rk belonging to Hν , if and only if the
integral

∫
0

∞
M−1(t, x)w(φ(t, x))dt

is convergent for x ∈ V .

We postpone the proof of these results to Section 3.3. First we establish some
preliminary estimates.

3.1. Preliminary facts. This section deals with some basic facts that will be used
henceforth without mention.

Lemma 3.6. The constants Ap,BQ, ap, bp and AQ are finite. They satisfy ∣ap∣ ≤
bp, ap ≥ Ap/N , BQ ≤ AQ and −BDp ≥ Nap > 0.

Proof. The triangular inequality and the homogeneous character of p and Q im-
ply that the constants are finite. Relation ∣ap∣ ≤ bp is also a consequence of the
triangular inequality.
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From the definition of Ap, we have that

∥x + p(x)∥ ≤ ∥x∥∫
1

0
∥Id +Dp(λx)∥dλ ≤ ∥x∥∫

1

0
(1 −Apλ

N−1∥x∥N−1) dλ

= ∥x∥ (1 − Ap

N
∥x∥N−1) ,(3.10)

therefore ap ≥ Ap/N .
As for AQ and BQ, we notice that

∥Id −Q(x)2∥ ≤ ∥Id +Q(x)∥ ⋅ ∥Id −Q(x)∥ ≤ (1 +AQ∥x∥N−1)(1 −BQ∥x∥N−1).

Since ∥Id −Q(x)2∥ ≥ 1 − ∥Q(x)∥2, there exists some constant K > 0 such that

1 −K∥x∥2(N−1) ≤ 1 − (BQ −AQ)∥x∥N−1 −AQBQ∥x∥2(N−1).

Then, BQ −AQ ≤ (K −AQBQ)∥x∥N−1 and we get BQ −AQ ≤ 0 taking x→ 0.
For the last claim, we note that, as we prove in (3.10),

∥x − p(x)∥ ≤ ∥x∥ (1 − BDp

N
∥x∥N−1) .

Since Vϱ0 is invariant we apply the above inequality to x + p(x) and we obtain:

(3.11) ∥x + p(x) − p(x + p(x))∥ ≤ ∥x + p(x)∥ (1 − BDp

N
∥x + p(x)∥N−1) .

We note that ∥x + p(x)∥ ≤ ∥x∥(1 − ap∥x∥N−1). Therefore, by (3.11)

∥x + p(x) − p(x + p(x))∥ ≤ ∥x∥ (1 − (ap +
BDp

N
) ∥x∥N−1 +K2∥x∥2N−2) .

In addition

∥x + p(x) − p(x + p(x))∥ = ∥x − ∫
1

0
Dp(x + sp(x))p(x)ds∥ ≥ ∥x∥(1 −K1∥x∥2N−2).

Then, again from (3.11), taking K =K1 +K2 we obtain

−K∥x∥N−1 ≤ −ap −
BDp

N

which gives the result taking x→ 0. □

The following lemma ensures that we can take ϱ as small as we need.

Lemma 3.7. Let 0 < ϱ < ϱ. Denoting by Ap, ap, bp,AQ,BQ the values of the
constants Ap, ap, bp,AQ,BQ corresponding to ϱ, we have that

Ap ≥ Ap, ap ≥ ap, bp = bp, AQ ≤ AQ, BQ ≥ BQ.

Then, for x ∈ Vϱ,

∥Id +Dp(x)∥ ≤ 1 −Ap∥x∥N−1, ∥x + p(x)∥ ≤ ∥x∥(1 − ap∥x∥N−1),
∥Id +Q(x)∥ ≤ 1 +AQ∥x∥N−1, ∥Id −Q(x)∥ ≤ 1 −BQ∥x∥N−1.

In addition, if HP1 and HP2 are satisfied for ϱ > 0, they are also satisfied for all
0 < ϱ < ϱ.
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Proof. Indeed, let ϱ < ϱ. The relations among the constants follow from the fact
that Vϱ ⊂ Vϱ and (only for bp) p is a homogeneous function. Since bp does not
depend on ϱ, HP1 is satisfied for ϱ. Now we deal with HP2. Let x ∈ Vϱ and let
z ∈ ∂Vϱ be such that

dist(x + p(x), (Vϱ)c) = ∥x + p(x) − z∥.
We have two possibilities: either z ∈ ∂Vϱ or z ∈ Vϱ and ∥z∥ = ϱ. If z ∈ ∂Vϱ, then
since x ∈ Vϱ, by HP2 we have ∥x + p(x) − z∥ ≥ apV ∥x∥N . Finally, if ∥z∥ = ϱ we have
that z = λ(x + p(x)) with λ = ϱ∥x + p(x)∥−1 and by HP1 and the definition of ap
in (3.2),

∥x + p(x) − z∥ = ϱ − ∥x + p(x)∥ ≥ ∥x∥ − ∥x + p(x)∥ ≥ ap∥x∥N .
□

Next lemma will be used in the analytical case.

Lemma 3.8. Let ϱ, γ > 0.
(1) If x ∈ Ω(ϱ, γ) and χ ∶ Ω(ϱ, γ) → Cn is a real analytic function belonging to
Hℓ then

χ(x) = χ(Rex) + iDxχ(Rex)Imx + γ2O(∥x∥ℓ).
(2) If HP2 is satisfied and Ap > bp, then there exists γ0 ∈ (0,1) such that for

any 0 < γ ≤ γ0, the complex set Ω(ϱ0, γ) is an invariant set for the map
x↦ x + p(x).

Proof. Item (1) follows from Taylor’s theorem, Cauchy-Riemann equations and the
fact that χ is a real analytic function.

A property similar to (2) was proven in [BF04]. From (1), if x ∈ Ω(ϱ, γ),
x + p(x) = x + p(Rex) + iDp(Rex)Imx + γ2O(∥x∥N).

On the one hand we have that, by hypothesis HP2,

(3.12) dist(Re (x + p(x)), V c
ϱ0
) ≥ apV ∥x∥

N − γ2O(∥x∥N) > 0

which implies that Re (x+p(x)) ∈ Vϱ0 and on the other hand, using (3.12) and the
definitions of Ap and bp, we have

∥Im (x + p(x))∥ − γ∥Re (x + p(x))∥ ≤ γ(bp −Ap +O(γ))∥Rex∥N < 0
provided γ is small enough. □

3.2. Properties of φ(t, x) and M(t, x). In this section we describe some prop-
erties of the solutions of equations (3.4) and (3.5). We will denote by K a generic
positive constant, which may take different values at different places. Also let

α = 1

N − 1 .

Lemma 3.9. Assume hypotheses HP1 and HP2 for ϱ0 > 0. Then:

(1) There exists ϱ1 ≤ ϱ0 such that for all 0 < ϱ ≤ ϱ1, Vϱ is positively invariant
by the flow φ.

(2) Assume that Ap > bp and that p has an analytic extension to Ω(γ0) for
some 0 < γ0 ≤ 1. Then there exist 0 < ϱ1 ≤ ϱ0 and 0 < γ1 ≤ γ0 such that for
any 0 < ϱ ≤ ϱ1 and 0 ≤ γ ≤ γ1, the set Ω(ϱ, γ) is invariant by the complexified
flow, i.e. φ(t, x) ∈ Ω(ϱ, γ), for t > 0 and x ∈ Ω(ϱ, γ).
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Proof. We first prove item (2). Since φ(t,0) ≡ 0 for all t and φ is C1, we have that,
for some γ ≥ 0 and ϱ small enough

(3.13) ∥φ(t, x)∥ ≤K∥x∥, t ∈ [0,1], x ∈ Ω(ϱ, γ).
By Taylor’s theorem,

(3.14) φ(t, x) = x + tp(x) + ∫
t

0
(t − s)Dp(φ(s, x))p(φ(s, x))ds

and using that p ∈HN , (3.13) and (1) of Lemma 3.8 for χ = p, we get for 0 ≤ t ≤ 1
(3.15) ∥Reφ(t, x) − (Rex + tp(Rex))∥ ≤ γ2K∥x∥N t +K∥x∥2N−1t2.

Let x ∈ Ω(ϱ, γ). The fact that Rex ∈ Vϱ, (3.15) and HP2 imply that

dist(Reφ(1, x), (Vϱ)c) ≥dist(Rex + p(Rex), (Vϱ)c)
− ∥Rex + p(Rex) −Reφ(1, x)∥
≥dist(Rex + p(Rex), (Vϱ)c) − γ2K∥x∥N −K∥x∥2N−1

≥apV ∥x∥
N − γ2K∥x∥N −K∥x∥2N−1 ≥

apV
2
∥x∥N

if ϱ, γ are small enough. We have proven that if x ∈ Ω(ϱ, γ) then Reφ(1, x) ∈ Vϱ.
In equility (3.6), take the values t = 1, λ = tα with t ∈ (0,1] and x ∈ Ω(ϱ, γ).

Then

φ(t, x) = t−αφ(1, tαx).
Since tαx ∈ Ω(ϱ, γ) if x ∈ Ω(ϱ, γ), we already know that Reφ(t, x) ∈ V . Moreover,
by (3.15), taking ϱ, γ small enough and using that ∥Rex∥ = ∥x∥,
∥Reφ(1, tαx)∥ ≤ ∥tαx∥(1 − tap∥x∥N−1 +Ktγ2∥x∥N−1 +Kt2∥x∥2(N−1)) ≤ tα∥x∥,

and consequently ∥Reφ(t, x)∥ ≤ ∥x∥ = ∥Rex∥ ≤ ϱ. This implies that Reφ(t, x) ∈ Vϱ
if t ∈ [0,1]. Now, from identity (3.14), using (1) of Lemma 3.8 and the definitions
of bp and Ap, we deduce that

∥Reφ(t, x)∥ ≥ ∥(Rex + tp(Rex))∥ − γ2K∥x∥N t −K∥x∥2N−1t2

≥ ∥Rex∥(1 − tbp∥Rex∥N−1) − γ2K∥x∥N t −K∥x∥2N−1t2,(3.16)

∥Imφ(t, x)∥ ≤ ∥(Id + tDxp(Rex))Imx∥ + γ2K∥x∥N t +K∥x∥2N−1t2

≤ ∥Imx∥(1 − tAp∥Rex∥N−1) + γ2K∥x∥N t +K∥x∥2N−1t2.
Therefore, since Ap > bp, taking ϱ, γ small enough,

γ∥Reφ(t, x)∥ − ∥Imφ(t, x)∥ ≥ 0.
As a consequence φ(t, x) ∈ Ω(ϱ, γ) for all t ∈ [0,1]. Finally we extend this property
to t > 1 by using inductively that φ(t, x) = φ(1, φ(t − 1, x)). Note that in this part
we have not to reduce the values of ϱ, γ.

A shorter but completely analogous argument proves (1) assuming neither that
p is analytic nor Ap > bp. □

Lemma 3.10. Assume that HP1 and HP2 are satisfied for some ϱ0 > 0. Let
0 < a ≤ ap and b ≥ bp. Then, for any t ≥ 0 and x ∈ V ,

∥x∥
(1 + (N − 1)bt∥x∥N−1)α

≤ ∥φ(t, x)∥ ≤ ∥x∥
(1 + (N − 1)at∥x∥N−1)α

.
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If Ap > bp and p has an analytic extension to Ω(γ0) for some γ0 ≤ 1, for any
0 < a < ap and b > bp there exists γ ≤ γ0 such that for t ≥ 0, φ is analytic in Ω(γ)
and the previous bounds are true for x ∈ Ω(γ).

Proof. The definitions of ap and bp in (3.2) and (3.3), respectively, imply that for
any x ∈ Vϱ and t ∈ [0,1],

(3.17) ∥x∥(1 − tbp∥x∥N−1) ≤ ∥x + tp(x)∥ ≤ ∥x∥(1 − tap∥x∥N−1).

Indeed, the inequality involving bp follows from the triangular inequality. For the
right hand side inequality, let x ∈ Vϱ. Since Vϱ is a star-shaped set, for any t ∈ (0,1],
tαx ∈ Vϱ and hence,

−ap ≥
∥tαx + p(tαx)∥ − ∥tαx∥

∥tαx∥N = ∥x + t
α(N−1)p(x)∥ − ∥x∥
tα(N−1)∥x∥N .

The result follows because α(N − 1) = 1.
Let now x ∈ Ω(ϱ, γ), with ρ and γ given by Lemma 3.9. The real case, x ∈ Vϱ,

is obtained taking γ = 0. By Lemma 3.9, φ(t, x) ∈ Ω(ϱ, γ) and hence ∥φ(t, x)∥ =
∥Reφ(t, x)∥. Then from (3.16),

∥φ(t, x)∥ ≥ ∥x∥(1 − bpt∥x∥N−1 − tγ2K∥x∥N−1 − t2K∥x∥2N−2)

and from (3.15) and (3.17)

∥φ(t, x)∥ ≤ ∥x∥(1 − apt∥x∥N−1 + tγ2K∥x∥N−1 + t2K∥x∥2N−2).

To obtain the bound for ∥φ(t, x)∥, t ∈ [0,1], we only have to take into account that,
since ap > a and bp < b, if ϱ, γ are small enough,

∥x∥(1 − apt∥x∥N−1 + tγ2K∥x∥N−1 + t2K∥x∥2N−2) ≤
∥x∥

(1 + a(N − 1)t∥x∥N−1)α
,

∥x∥(1 − bpt∥x∥N−1 − tγ2K∥x∥N−1 − t2K∥x∥2N−2) ≥
∥x∥

(1 + b(N − 1)t∥x∥N−1)α
.

Finally we are going to check that the results follow for any t ≥ 0 and x ∈ Ω(ϱ, γ).
In fact we will check the inequality involving a, being the other one analogous. We
have already seen that if t ∈ [0,1] the inequalities are true so we can proceed by
induction assuming that the result is true for t ∈ [0, l] with l ∈ N. We introduce
the auxiliary differential equation χ̇ = −aχN , χ ∈ R, and its flow χ(t, ξ), ξ ∈ R.
By induction hypothesis ∥φ(t, x)∥ ≤ χ(t, ∥x∥) if t ∈ [0, l]. Moreover, by Picard’s
theorem, if ξ1 < ξ2 then for all t ≥ 0, χ(t, ξ1) < χ(t, ξ2). Consequently, by using that
Ω(ϱ, γ) is invariant by the flow φ, for any s ∈ [0,1] and t ∈ [0, l], we have that

∥φ(t + s, x)∥ = ∥φ(t, φ(s, x))∥ ≤ χ(t, ∥φ(s, x)∥) ≤ χ(t, χ(s, ∥x∥)) = χ(t + s, ∥x∥)

and the induction is completed.
Let x ∈ Ω(γ) and λ > 0 small enough such that λx ∈ Ω(ϱ, γ). From (3.6),

φ(t, x) = 1

λ
φ( t

λN−1
, λx)

and from this expression, the bounds for ∥φ(s, ⋅)∥ in Ω(ϱ, γ) extend to Ω(γ).
In the real case since γ = 0, the result is valid for any 0 < a < ap and b > bp and

we obtain the same bounds with a = ap and b = bp. □
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Lemma 3.11. Assume that HP1 and HP2 are fulfilled for some ϱ0 > 0. Let 0 <
a ≤ ap, b ≥ bp, A ≥ AQ and B ≤ BQ. Then, for all x ∈ V and t ≥ 0, we have the
following bounds

(1 + c(N − 1)t∥x∥N−1)α
B
c ≤ ∥M(t, x)∥ ≤ (1 + δ(N − 1)t∥x∥N−1)α

A
δ

(1 + δ(N − 1)t∥x∥N−1)−α
A
δ ≤ ∥M−1(t, x)∥ ≤ (1 + c(N − 1)t∥x∥N−1)−α

B
c

with

(3.18) c =
⎧⎪⎪⎨⎪⎪⎩

a, if B ≤ 0,
b, otherwise.

δ =
⎧⎪⎪⎨⎪⎪⎩

a, if A ≥ 0,
b, otherwise.

If p and Q have an analytic extension to Ω(γ0) for some γ0 ≤ 1, and Ap > bp,
then for any 0 < a < ap, b > bp, A > AQ and B < BQ there exists γ ≤ γ0 such that,
for t ≥ 0, M(t, x) is analytic in Ω(γ) and the previous bounds are also true for
x ∈ Ω(γ).

Proof. By Lemma 3.9, the condition Ap > bp implies that there exist ϱ > 0 and
γ > 0 such that the set Ω(ϱ, γ) is invariant by φ if γ is small enough provided that
p has an analytic extension to Ω(ϱ, γ0). This will be the only place where we use
the condition Ap > bp. For that reason we will perform our computations in the
analytic case, the real case being just a direct consequence by taking γ = 0.

Let x ∈ Ω(ϱ, γ). First consider the auxiliary differential equation

ζ̇ = (Id +Q(φ(t, x)))ζ
and denote by χ(t, x) its fundamental matrix satisfying χ(0, x) = Id . We notice
that χ(t, x) = etM(t, x). Moreover,

χ(t, x) = Id + ∫
t

0
(Id +Q(φ(s, x)))χ(s, x)ds.

Hence, by the definition of AQ and Lemma 3.8, we have that

∥χ(t, x)∥ ≤ 1 + ∫
t

0
∥Id +Q(φ(s, x))∥∥χ(s, x)∥ds

≤ 1 + ∫
t

0
(1 + (AQ +Kγ)∥φ(s, x)∥N−1)∥χ(s, x)∥ds.

Writing A = AQ +Kγ and using Gronwall’s Lemma,

∥χ(t, x)∥ ≤ exp(∫
t

0
(1 +A∥φ(s, x)∥N−1)ds) = etexp(A∫

t

0
∥φ(s, x)∥N−1 ds) .

By using that χ(t, x) = etM(t, x), we obtain that

(3.19) ∥M(t, x)∥ ≤ exp(A∫
t

0
∥φ(u,x)∥N−1 du) .

In the real case, i.e. when x ∈ Vϱ = Ω(ϱ,0), we can take A = AQ.
Let us consider the differential equation

ζ̇ = (Id −Q⊺(φ(t, x)))ζ.
We have that its fundamental matrix ψ(t, x) such that ψ(0, x) = Id is ψ(t, x) =
etM−⊺(t, x), where here we have written M−⊺ = [M−1]⊺. Indeed,

ψ̇(t, x) = etM−⊺(t, x) + etṀ−⊺(t, x) = ψ(t, x) −Q⊺(φ(t, x))ψ(t, x).
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Now we have that

ψ(t, x) = Id + ∫
t

0
(Id −Q⊺(φ(s, x)))ψ(s, x)ds.

We transpose the above equality and take norms to obtain

∥ψ⊺(t, x)∥ ≤ 1 + ∫
t

0
∥Id −Q(φ(s, x))∥∥ψ⊺(s, x)∥ds.

Finally using the definition of BQ, Lemma 3.8 and Gronwall’s Lemma we conclude
that

∥ψ⊺(t, x)∥ ≤ exp(∫
t

0
1 − (BQ −Kγ)∥φ(s, x)∥N−1 ds)

= etexp(−(BQ −Kγ)∫
t

0
∥φ(s, x)∥N−1 ds)

and, as a consequence, since ψ⊺(t, x) = etM−1(t, x) we have that

(3.20) ∥M−1(t, x)∥ ≤ exp(−B ∫
t

0
∥φ(u,x)∥N−1 du) ,

where we have taken B = BQ −Kγ. In order to bound ∫
t
0 ∥φ(u,x)∥N−1 du we use

the bounds in Lemma 3.10 obtaining

∫
t

0
∥φ(u,x)∥N−1 du ≤ ∥x∥N−1 ∫

t

0

1

1 + a(N − 1)u∥x∥N−1 du

= 1

a(N − 1) log
(1 + a(N − 1)t∥x∥N−1),

∫
t

0
∥φ(u,x)∥N−1 du ≥ ∥x∥N−1 ∫

t

0

1

1 + b(N − 1)u∥x∥N−1 du

= 1

b(N − 1) log
(1 + b(N − 1)t∥x∥N−1).

We recall that by Lemma 3.6, BQ ≤ AQ. To obtain the inequalities in the statement
from (3.19) and (3.20) we distinguish three cases according to the signs of AQ,BQ.
The first case is BQ > 0. Let 0 < B < BQ and A > AQ. We take 0 < γ1 ≤ γ0 such
that 0 < B ≤ BQ −Kγ1 and A ≥ AQ +Kγ1. Then, if 0 ≤ γ ≤ γ1,

∥M(t, x)∥ ≤ (1 + a(N − 1)t∥x∥N−1)
A

a(N−1) ,

∥M−1(t, x)∥ ≤ (1 + b(N − 1)t∥x∥N−1)
−B

b(N−1) .

The remaining inequalities follow from ∥M−1(t, x)∥ ≥ ∥M(t, x)∥−1. The other two
cases, AQ < 0 and BQ ≤ 0 ≤ AQ, follow analogously.

Using the identity (3.6) M(t, x) = M (λ−N+1t, λx), the inequalities extend to
Ω(γ). Note that in the real case we can take A = AQ, B = BQ, a = ap and
b = bp. □

3.3. Proof of Theorem 3.2. We begin by checking that if h ∶ V → Rk is a
differentiable solution of (3.1) in Hm+1, it has to be given by formula (3.8) given in
Theorem 3.2, i.e.

h(x) = ∫
0

∞
M−1(t, x)w(φ(t, x))dt.
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Indeed, let h ∈Hm+1 be such that

Dh(x)p(x) −Q(x)h(x) =w(x).
We define µ(t, x) = h(φ(t, x)) and we have that

µ̇(t, x) =Dh(φ(t, x))p(φ(t, x)) =Q(φ(t, x))µ(t, x) +w(φ(t, x))
and then, since µ(0, x) = h(x),

µ(t, x) =M(t, x) (h(x) + ∫
t

0
M−1(s, x)w(φ(s, x))ds) .

Note that, with ϱ given by Lemma 3.9, if x ∈ Vϱ, φ(s, x) ∈ Vϱ for all s ≥ 0. The
hypothesis (3.7), Lemmas 3.10 and 3.11 and the fact that ∥h(x)∥ ≤K∥x∥m+1, imply
that M−1(t, x)µ(t, x) =M−1(t, x)h(φ(t, x))→ 0 as t→∞. Therefore we obtain the
desired expression for h.

This provides the uniqueness statement in Vϱ. The fact that h belongs to Hm+1

will be proven in the next lemma in a slightly more general setting. The homo-
geneity of h determines uniquely the extension of h to V which satisfies (3.1) in
V . Then it remains to prove that actually h is well defined, it is a solution and
its regularity. Our strategy to prove the regularity stated in Theorem 3.2 follows
three steps. The first one deals with the continuity (resp. analyticity) of functions
defined by integrals of the form

(3.21) g(x) ∶= ∫
0

∞
χ−1(t, x)ω(φ(t, x))dt

with χ and ω satisfying appropriate conditions. Note that definition (3.8) of h fits
in this setting. This is done in Lemma 3.12 below.

Secondly, we deal with the C1 regularity, proving both: i) that g ∈ C1 and ii) that
Dg can be expressed as

∫
0

∞
(χ1)−1(t, x)ω1(φ(t, x))dt

with χ1 and ω1 having the conditions required in the previous step for g to be a
continuous function. This is proven in Lemma 3.14.

Finally, the third step consists of an inductive procedure with respect to the
degree of differentiability.

In what follows we will use the constants introduced at the beginning of Section 3
depending on the homogeneous functions indicated in their subscripts without fur-
ther notice.

Lemma 3.12. Let p ∈HN be defined on V and satisfying hypotheses HP1 and HP2
for ϱ0, Q ∈HN−1 and ω ∈Hν+N on V , with ν ≥ 1. We denote by χ the fundamental
matrix of

d

dt
ψ(t, x) = Q(φ(t, x))ψ(t, x), such that χ(0, x) = Id .

If ν+1+ BQ
cp
> 0, with cp defined in (3.3) taking Q = Q, then the function g ∶ V → Rk

defined by (3.21) belongs to Hν+1 being, in particular, a C0 function on V .
Moreover, if we also have Ap > bp, then, there exists γ > 0 small enough such that

the function g is analytic in Ω(γ) provided p, Q and ω have analytic extensions to
Ω(γ0) for some γ0 > γ.
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Proof. If p,Q and ω have analytic extensions to Ω(γ0), let 0 < a < ap, b > bp and

B < BQ be such that ν + 1 + B
c
> 0 where c is defined in (3.18). We fix ϱ and

γ satisfying the conditions of Lemmas 3.9, 3.10 and 3.11. In this case we have
that Ω(ϱ, γ) is invariant by φ provided Ap > bp. Since Vϱ = Ω(ϱ,0), we make the
convention that in the real case, we take γ = 0. This allows us to deal with both
cases (real and complex) at the same time. If ω is a C0 function on V we take U = V
and if ω has an analytic extension to Ω(ϱ, γ) for some γ > 0, we take U = Ω(ϱ, γ).
With this convention, we define

∥ω∥ = sup
x∈U

∥ω(x)∥
∥x∥ν+N .

We begin by proving that the function g is well defined and C0 in Ω(ϱ, γ). Indeed,
we only need to check that the integral in the definition of g is convergent. For that
we use Lemmas 3.10 and 3.11 applied to Q. Let x ∈ Ω(ϱ, γ)

∥χ−1(t, x)ω(φ(t, x))∥ ≤ ∥ω∥∥φ(t, x)∥ν+N∥χ−1(t, x)∥

≤ ∥ω∥ ∥x∥ν+N

(1 + a(N − 1)t∥x∥N−1)α(ν+N+
B
c
)

because c ≥ a and κ ∶= α(ν +N + B
c
) = α(N − 1) + α(ν + 1 + B

c
) > 1 by hypothesis.

Therefore,

(3.22) ∥χ−1(t, x)ω(φ(t, x))∥ ≤ ∥ω∥∥x∥ν+N(1 + a(N − 1)t∥x∥N−1)−κ

which implies that

∥g(x)∥ ≤ ∥ω∥∥x∥ν+N ∫
∞

0

dt

(1 + a(N − 1)t∥x∥N−1)κ
≤K∥ω∥∥x∥ν+1.

Now we prove that g belongs to Hν+1. As we mentioned in (3.6), for any λ > 0, one
has that φ(t, λx) = λφ(λN−1t, x) and χ−1(t, λx) = χ−1(λN−1t, x). Then,

g(λx) = ∫
0

∞
χ−1(t, λx)ω(φ(t, λx))dt = ∫

0

∞
χ−1(λN−1t, x)ω(λφ(λN−1t, x))dt

= λ1−N ∫
0

∞
χ−1(t, x)ω(λφ(t, x))dt = λ1−Nλν+N ∫

0

∞
χ−1(t, x)ω(φ(t, x))dt

= λν+1g(x).
Finally we check the regularity. We first check that g is analytic if ω , Q and

p have analytic extensions to Ω(ϱ, γ). Let x0 ∈ Ω(ϱ, γ) be a given point. Since
Ω(ϱ, γ) is an open set, there exists 0 < r < ∥x0∥ such that the open ball Br(x0) is
contained in Ω(ϱ, γ). Then, if x ∈ Br(x0), ∥x∥ ≥ ∥x0∥ − r and consequently, using
(3.22),

∥χ−1(t, x)ω(φ(t, x))∥ ≤ ∥ω∥ ∥x∥ν+N

(1 + a(N − 1)t∥x∥N−1)κ

≤ ∥ω∥
(∥x0∥ + r0)

ν+N

(1 + a(N − 1)t(∥x0∥ − r)N−1)
κ

and the analyticity follows from the dominated convergence theorem because the
right hand side of the above bound does not depend on x and it is integrable.
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Since g is homogeneous we can extend it uniquely to an analytic homogeneous
function in Ω(γ). Considering ω extended by homogeneity as indicated in Re-
mark 3.3 the extension of g has expression (3.21).

In the real case, when p is C1 and ω , Q are continuous homogeneous functions,
the same argument as the one given in the analytic case, leads to the proof that g
is a continuous function. □

Now we are going to deal with the differentiable case. If g is a solution of

(3.23) Dg(x)p(x) −Q(x)g(x) = ω(x),
then Dg, if it is C1, should satisfy

D2g(x)p(x) − [Q(x)Dg(x) −Dg(x)Dp(x)] =Dω(x) +DQ(x)g(x)
which is an equation for Dg analogous to (3.23) except that the second term, due
to the lack of commutativity is more involved. Continuing in this way would imply
to consider linear equations of the form

χ̇ = Q(φ(t, λx))χ − χDp(φ(t, λx)).
However we have chosen to consider the equivalent equation for a vector which
contains all elements Dijg ordered one column after the other. This forces the
introduction of the following notation.

We denote by Dj the derivative with respect to the variable xj . We define the

linear operator S ∶ L(Rn,Rk)→ Rn⋅k:

(3.24) S(A) = ((Ae1)⊺,⋯, (Aen)⊺)
⊺
, being {e1,⋯, en} the canonical basis,

and the functions BQ,IkDp,Q1 ∶ Vϱ → L(Rn⋅k,Rn⋅k):

BQ(x) = diag (Q(x),⋯,Q(x)),(3.25)

IkDp(x) =
⎛
⎜
⎝

D1p1(x)Id k ⋯ D1pn(x)Id k

⋮ ⋮ ⋮
Dnp1(x)Id k ⋯ Dnpn(x)Id k

⎞
⎟
⎠
,(3.26)

Q1(x) = BQ(x) − IkDp(x).

with p = (p1,⋯,pn)⊺ and Id k the identity in L(Rk,Rk).
For any w ∈ Rn⋅k, we also write

w = (w1,⋯,wn), with wi ∈ Rk.

Finally we define the norm in Rn⋅k

∥w∥ = sup
u∈Rn/{0}

∥u1w1 +⋯ + unwn∥
∥u∥ = sup

∥u∥=1
∥u1w1 +⋯ + unwn∥,

where the norms in Rn and Rk are such that HP1 and HP2 hold.
Let χ1(t, x) be the fundamental solution of

(3.27)
dψ

dt
(t, x) = Q1(φ(t, x))ψ(t, x) such that χ1(0, x) = Id .

Lemma 3.13. Let 0 < ϱ ≤ ϱ0.
(1) We have that

(3.28) BQ1 ∶= − sup
x∈Vϱ

∥Id −Q1(x)∥ − 1
∥x∥N−1 ≥ BQ +Ap.
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(2) The fundamental matrix χ1 of (3.27) satisfies

(χ1)−1(t, x) = IkDφ(t, x) ⋅ Bχ−1(t, x)
with

Bχ−1(t, x) = diag (χ−1(t, x),⋯, χ−1(t, x)),

IkDφ(t, x) =
⎛
⎜
⎝

D1φ1(t, x)Id k ⋯ D1φn(t, x)Id k

⋮ ⋮ ⋮
Dnφ1(t, x)Id k ⋯ Dnφn(t, x)Id k

⎞
⎟
⎠
.

Proof. Let w ∈ Rn⋅k, w = (w1,⋯,wn) with ∥w∥ = 1. We have that

∥(1
2
Id − BQ(x))w∥ = sup

∥u∥=1
∥(1

2
Id −Q(x)) (w1u1 +⋯ +wnun)∥

≤ ∥1
2
Id −Q(x)∥ sup

∥u∥=1
∥w1u1 +⋯ +wnun∥

= ∥1
2
Id −Q(x)∥ ≤ 1

2
−BQ∥x∥N−1,(3.29)

where we have used that

∥1
2
Id −Q(x)∥ = ∥1

2
(Id −Q(21/(N−1)x))∥ ≤ 1

2
(1 −BQ(21/(N−1)∥x∥)

N−1) .

In addition, we can decompose ( 1
2
Id + IkDp(x))w = (w̄1,⋯, w̄n)⊺, with w̄i ∈ Rk

and

w̄i −
1

2
wi =Dip1(x)w1 +⋯ +Dipn(x)wn.

Given u = (u1, . . . , un) ∈ Rn, letting ū = ( 1
2
Id +Dp(x))u we have

u1w̄1 +⋯ + unw̄n = ū1w1 +⋯ + ūnwn.

As a consequence,

sup
u∈Rn/{0}

∥u1w̄1 +⋯ + unw̄n∥
∥u∥ ≤ ∥(1

2
Id +Dp(x))∥ sup

ū∈Rn/{0}

∥ū1w1 +⋯ + ūnwn∥
∥ū∥

= ∥(1
2
Id +Dp(x))∥ ≤ 1

2
−Ap∥x∥N−1.

The above bound jointly with (3.29) gives that

∥Id −Q1(x)∥ ≤ ∥1
2
Id − BQ(x)∥ + ∥

1

2
Id + IkDp(x)∥ ≤ 1 − (BQ +Ap)∥x∥N−1

and (3.28) is proven.
To obtain the expression for (χ1)−1(t, x) is a straightforward computation. □

Lemma 3.14. Assume that p,Q and ω are C1 functions on V . Let χ be the
fundamental matrix of d

dt
ψ(t, x) = Q(φ(t, x))ψ(t, x) satisfying χ(0, x) = Id .

If hypotheses HP1 and HP2 are satisfied for ϱ0 and

(3.30) ν + 1 + BQ
cp
>max{1 − Ap

dp
,0} ,

with cp, dp defined in (3.3) taking Q = Q, then the function g ∶ V → Rk defined in
(3.21) belongs to Hν+1 and is a C1 function on V .
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Moreover

(3.31) S(Dg(x)) = ∫
0

∞
(χ1)−1(t, x)ω1(φ(t, x))dt,

where χ1 is the fundamental matrix of (3.27) such that χ1(0, x) = Id and

(3.32) ω1(x) = S(Dω(x)) + ((D1Q(x)g(x))⊺,⋯, (DnQ(x)g(x))⊺)
⊺
.

Proof. Let ϱ > 0 satisfying Lemma 3.9. We claim that for any τ ≥ 0 and x ∈ Vϱ,

∫
0

τ
Dj[χ−1(t, x)ω(φ(t, x))]dt = −Djχ

−1(τ, x)g(φ(τ, x))

+ ∫
0

τ
[(χ1)−1(t, x)ω1(φ(t, x))]

j
dt.(3.33)

We recall here that the subscript in a vector in Rn⋅k identifies a vector in Rk.
We will use the following properties related to χ:

d

dt
(χ−1(t, x)Djχ(t, x)) = χ−1(t, x)Dj(Q(φ(t, x)))χ(t, x),(3.34)

χ(u + v, x) = χ(u,φ(v, x))χ(v, x),(3.35)

χ−1(t, x)Djχ(t, x) = −Djχ
−1(t, x)χ(t, x).(3.36)

Expression (3.34) follows by using the variational equation for χ. The second one

follows from the uniqueness of solutions of ψ̇(t, x) = Q(φ(t, x))ψ(t, x) and the last
one taking derivatives in χ−1(t, x)χ(t, x) = Id .

From Lemma 3.13 and definition (3.32) of ω1 we obtain that

(3.37)
[(χ1)−1(t, x)ω1(φ(t, x))]

j

= χ−1(t, x)[Dj(ω(φ(t, x))) +Dj(Q(φ(t, x)))g(φ(t, x))].

Using properties (3.35) in the definition of g, we obtain that

g(φ(t, x)) = ∫
0

∞
χ−1(s,φ(t, x))ω(φ(s,φ(t, x)))ds

= χ(t, x)∫
t

∞
χ−1(s, x)ω(φ(s, x))ds,(3.38)

and by (3.37), (3.38) and (3.34) we get

[(χ1)−1(t, x)ω1(φ(t, x))]
j
= χ−1(t, x)Dj(ω(φ(t, x)))

+ d

dt
(χ−1(t, x)Djχ(t, x))∫

t

∞
χ−1(s, x)ω(φ(s, x))ds.

Integrating by parts and using Djχ
−1(0, x) = 0:

∫
0

τ
[(χ1)−1(t, x)ω1(φ(t, x))]

j
dt = ∫

0

τ
χ−1(t, x)Dj(ω(φ(t, x)))dt

− χ−1(τ, x)Djχ(τ, x)∫
τ

∞
χ−1(t, x)ω(φ(t, x))dt

− ∫
0

τ
χ−1(t, x)Djχ(t, x)χ−1(t, x)ω(φ(t, x))dt.
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Finally, using (3.36) and expression (3.38), we obtain

∫
0

τ
[(χ1)−1(t, x)ω1(φ(t, x))]

j
dt =Djχ

−1(τ, x)g(φ(τ, x))

+ ∫
0

τ
[χ−1(t, x)Dj(ω(φ(t, x))) +Djχ

−1(t, x)ω(φ(t, x))]dt

from which (3.33) follows immediately.
We notice that, from (3.38) we get that g(φ(τ, x)) is differentiable with respect

to τ even if g is not. Moreover, let G̃ be the first term in the right hand side
of (3.33). Then

g̃(τ, x) ∶= − d

dτ
G̃(τ, x) = d

dτ
[Djχ

−1(τ, x)g(φ(τ, x))]

= − χ−1(τ, x)Dj(Q(φ(τ, x)))g(φ(τ, x)) +Djχ
−1(τ, x)ω(φ(τ, x)).(3.39)

Therefore differentiating with respect to τ both sides of (3.33):

(3.40) Dj[χ−1(τ, t)ω(φ(τ, x))] = g̃(τ, x) + (χ1)−1(τ, x)ω1(φ(τ, x)).

To prove the differentiability of g we need to check that Dj[χ−1(τ, t)ω(φ(τ, x))]
is locally uniformly integrable with respect to x. In order to prove this fact and
expression (3.31) for S(Dg(x)) in Lemma 3.14, we prove the locally uniformly
boundedness (with respect to x) by an integrable function of the right hand side
of (3.40). Indeed, we have that ω1 ∈ Hν−1+N and that by Lemma 3.13, BQ1 ≥
BQ + Ap. We apply Lemma 3.12 with ν − 1, χ1 and ω1 instead of ν, χ and ω
respectively and we obtain that the function

G1(x) ∶= ∫
0

∞
(χ1)−1(t, x)ω1(φ(t, x))dt

belongs to Hν provided ν + BQ
cp
+ Ap

dp
> 0. In fact, in the proof of Lemma 3.12 we

checked that (χ1)−1(t, x)ω1(φ(t, x)) is locally uniformly bounded with respect to
x by an integrable function.

Now we deal with g̃. We first bound the first term in (3.39). Since Q ∈ HN−1,
there exists a constant K > 0 such that

(3.41) ∥Dj(Q(φ(s, x)))∥ ≤K∥φ(s, x)∥N−2∥Djφ(s, x)∥.

We recall that Dφ(τ, x) is the fundamental solution of the linear system ψ̇ =
Dp(φ(τ, x))ψ such that Dφ(0, x) = Id . Hence we apply Lemma 3.11 to Dφ to
obtain:

(3.42) ∥Dφ(τ, x)∥ ≤ 1

(1 + dp(N − 1)τ∥x∥N−1)
α

Ap
dp

(compare definition of Ap and definition of AQ in (3.3)). Using (3.42) and the
bound of ∥φ(t, x)∥ given by Lemma 3.10 in (3.41), we get

(3.43) ∥Dj(Q(φ(s, x)))∥ ≤K
∥x∥N−2

(1 + ap(N − 1)s∥x∥N−1)
α((N−2)+Ap

dp
)
.
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By Lemma 3.12, ∥g(x)∥ ≤ K∥x∥ν+1 for some constant K > 0. Using the bounds
of ∥χ−1(t, x)∥ and ∥φ(t, x)∥ given by Lemmas 3.11 and 3.10 respectively, we obtain:

(3.44) ∥χ−1(τ, x)Dj(Q(φ(τ, x)))g(φ(τ, x))∥ ≤K
∥x∥ν+N−1

(1 + ap(N − 1)τ∥x∥N−1)
κ0

with κ0 = α (ν + 1 + BQ
cp
+N − 2 + Ap

dp
) and κ0 > 1 by hypothesis.

We deal with ∥Djχ
−1(τ, x)∥ for τ ≥ 0 and x ∈ Vϱ0 . Djχ

−1(τ, x) is the solution of

d

dτ
Djχ

−1(τ, x) = −Djχ
−1(τ, x)Q(φ(τ, x)) − χ−1(τ, x)Dj(Q(φ(τ, x)))

satisfying the initial condition Djχ
−1(0, x) = 0. We have then

Djχ
−1(τ, x) = −(∫

τ

0
χ−1(s, x)Dj(Q(φ(s, x)))χ(s, x)ds)χ−1(τ, x)

= −∫
τ

0
χ−1(s, x)Dj(Q(φ(s, x)))χ−1(τ − s,φ(s, x))ds,(3.45)

where we have used (3.35) again.
For τ > s, by Lemmas 3.10 and 3.11, a calculation (distinguishing the cases

BQ ≥ 0 and BQ < 0) gives

∥χ−1(τ − s,φ(s, x))∥∥χ−1(s, x)∥ ≤ ∥χ−1(s, x)∥

(1 + cp(N − 1)(τ − s)∥φ(s, x)∥N−1)
α

BQ
cp

≤ 1

(1 + cp(N − 1)τ∥x∥N−1)
α

BQ
cp

.(3.46)

Note that the bound is independent of s. If dp ≠ Ap, using bound (3.43) for

∥Dj(Q(φ(s, x)))∥:

∫
τ

0
Dj(Q(φ(s, x)))ds ≤K∥x∥−1(1 + ap(N − 1)τ∥x∥N−1)

αmax{0,1−Ap
dp
}
.

Using previous computations for bounding the terms in formula (3.45), we obtain
that

∥Djχ
−1(τ, x)∥ ≤ K∥x∥−1

(1 + ap(N − 1)τ∥x∥N−1)
α(BQ

cp
−max{0,1−Ap

dp
})
.

In addition, using that ω ∈Hν+N and the bound for ∥φ(t, x)∥ in Lemma 3.10:

(3.47) ∥Djχ
−1(τ, x)ω(φ(τ, x))∥ ≤K∥x∥ν+N−1(1 + ap(N − 1)τ∥x∥N−1)

−κ

with κ = α (ν +N + BQ
cp
−max{0,1 − Ap

dp
}). By hypothesis κ > 1. Also, κ0 ≥ κ.

Now, to bound g̃ defined in (3.39), we use (3.44) and (3.47) and we get:

∥g̃(τ, x)∥ ≤K∥x∥ν+N−1(1 + ap(N − 1)τ∥x∥N−1)
−κ

which can be locally uniformly bounded with respect to x by an absolutely inte-
grable function.

If dp = Ap, an analogous argument leads to

∥g̃(τ, x)∥ ≤K∥x∥ν+N−1(1 + ap(N − 1)τ∥x∥N−1)
−κ

log (1 + ap(N − 1)τ∥x∥N−1).
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Then g is differentiable and

Djg(x) = ∫
0

∞
Dj(χ−1(t, x)ω(φ(t, x)))dt.

Using (3.33), and the fact that limτ→∞Djχ
−1(τ, x)g(φ(τ, x)) = 0 we get (3.31).

Using again the homogeneity of g we extend the regularity properties of g from
the domain Vϱ to V . □

End of the proof of Theorem 3.2. Once Lemma 3.14 is proven, we can apply it to
h with ν = m, Q =Q and ω =w to deduce that h is C1. Then we are ready to prove
that indeed h is a solution of (3.1). From the expression of h and the fact that Vϱ
is positively invariant by φ we can write

h(φ(s, x)) =M(s, x)∫
s

∞
M−1(t, x)w(φ(t, x))dt, x ∈ Vϱ,

where we have used (3.35) with χ = M . Taking derivatives with respect to s we
obtain

(3.48) Dh(φ(s, x))p(φ(s, x)) =Q(φ(s, x))h(φ(s, x)) +w(φ(s, x))
and evaluating at s = 0 we get (3.1).

It remains to check the higher regularity of h. Note that the analytic case follows
directly from Lemma 3.12. For the differentiable case, we proceed by induction.
Assume then that p,Q and w are Cr. Let rp ≤ r be the degree of differentiability
stated in Theorem 3.2 depending on the values of BQ,Ap, cp and dp.

We first introduce some notation. Let Q0 =Q, w0 =w, H0 = h and for l ≥ 1

Ql(x) = BQl−1(x) − In
l−1⋅k

Dp (x) = diag(Ql−1(x), . . . ,Ql−1(x)) − In
l−1⋅k

Dp (x),

where BQl−1 and Inl−1⋅k
Dp were defined in (3.25) and (3.26) respectively. We denote

by M l(t, x) the fundamental matrix of

d

dt
ψ =Ql(φ(t, x))ψ, such that M l(0, x) = Id .

In addition we set

wl(x) = S(Dwl−1(x)) + ((D1Q
l−1(x)H l−1(x))⊺, . . . , (DnQ

l−1(x)H l−1(x))⊺)⊺ ,
H l(x) = S(DH l−1(x)),

provided the derivative exists, where the linear operator S is defined in (3.24). It
is clear that

Ql(x) ∈ L(Rnl⋅k,Rnl⋅k), Ql ∈HN−1 ∩ Cr−1, H l(x) ∈ Rnl⋅k, wl(x) ∈ Rnl⋅k.

We claim that for 0 ≤ i ≤ rp we have

(a)i BQi ≥ BQ + iAp.

(b)i wi ∈Hm+N−i and wj ∈ Ci+1−j for 0 ≤ j ≤ i.
(c)i Hi ∈Hm+1−i, Hj ∈ Ci−j for 0 ≤ j ≤ i and

(3.49) Hi(x) = ∫
0

∞
(M i)−1(t, x)wi(φ(t, x))dt.

We prove the claim by induction on i. The case i = 0 follows directly from the
definitions and Lemma 3.12. Assume the claim holds for i − 1, 1 ≤ i ≤ rp − 1. Item

(a)i follows from Lemma 3.13 applied to Q =Qi = BQi−1(x)−Ini−1⋅k
Dp (x) which gives,

together with the induction hypothesis BQi ≥ BQi−1 +Ap ≥ BQ + iAp.
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Item (b)i. Since, by the induction hypothesis, wi−1 is at least C2, from the
definition of wi we have that wi ∈ Hm+N−i. From j = 0, w0 = w ∈ Cr ⊂ Ci+1. If
1 ≤ j ≤ i, using (b)i−1 and (c)i−1,

wj(x) = S(Dwj−1(x)) + ((D1Q
j−1(x)Hj−1(x))⊺, . . . , (DnQ

j−1(x)Hj−1(x))⊺)⊺

∈ Ci+1−j .

Item (c)i. We apply Lemma 3.14 with Q = Qi−1, ω = wi−1 and ν = m − i + 1 so
that Q1 = Qi, χ1 = M i and ω1 = wi. We have to check (3.30). For that we will
use that i ≤ rp and (3.9). Let ci−1p be the constant cp corresponding to Qi−1 (see
definition (3.3)).

When Ap < dp,

ν + 1 +
BQi−1

ci−1p

≥ m − i + 2 + BQ

cp
+ (i − 1)Ap

dp
> 1 − Ap

dp
> 0.

When Ap ≥ dp,

ν + 1 +
BQi−1

cp
≥ m − i + 2 + BQ

cp
+ (i − 1)Ap

dp
> (i − 1)(Ap

dp
− 1) ≥ 0.

Then Hi−1 ∈ C1 and Hi = S(DHi−1(x)) can be written as (3.49). Therefore, by the

definition of Hj , Hj ∈ Ci−j , 0 ≤ j ≤ i, and the claim is proven.
As a consequence of the claim, we have that h ∈ Crp in Vϱ in all cases. By the

homogeneity we extend the regularity from Vϱ to V . When Ap ≥ bp, if r = ∞, we
also obtain h ∈ C∞. □

Proof of Corollary 3.5. Assume that we have a homogeneous solution h ∈ Hν of
equation (3.1). Then, it has to satisfy the ordinary differential equation (3.48) so
that

M−1(t, x)h(φ(t, x)) = h(x) + ∫
t

0
M−1(s, x)w(φ(s, x))ds.

Since h ∈Hν , by Lemmas 3.10 and 3.11,

∥M−1(t, x)h(φ(t, x))∥ ≤ (1 + ap(N − 1)t∥x∥N−1)
−α(

BQ
cp
+ν)

which is bounded as t→∞ provided BQ/cp + ν ≥ 0. Thus, the result is proven. □

4. Proof of Theorems 2.2 and 2.9

As we will see in Section 4.5 below, Theorem 2.9 can be deduced following the
same lines as Theorem 2.2. For that reason we first focus on the maps case.

We first notice that, for R such that R(x) − (x + p(x,0)) ∈ H≥N+1 then, by
Lemma 3.8, R(Vϱ) ⊂ Vϱ (taking ϱ slightly smaller if necessary). Hence, if the
domain of K is Vϱ (as we will see), the composition K ○R is always well defined.
Moreover, for K such that K(x) − (x,0) ∈ H≥2, if x ∈ Vϱ then K(x) ∈ U and
consequently F ○K is well defined as well.

For h such that its projections have different orders, we will write h ∈H≥l1 ×H≥l2
if hx ∈ H≥l1 and hy ∈ H≥l2 . We will use the same notation for the spaces H>l and
Hl.
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4.1. Preliminaries of the induction procedure: the cohomological equa-
tions. Given N ≤ ℓ ≤ r and j ∈ N such that 1 ≤ j ≤ ℓ−N +1 we proceed by induction
over j to prove first that there exist K≤j and R≤j+N−1 of the form

(4.1) K≤j(x) =
j

∑
l=1
Kl(x), R≤j+N−1(x) = x +

j+N−1
∑
l=N

Rl(x),

with K1(x) = (x,0)⊺ and RN(x) = p(x,0), satisfying

(4.2) E>j ∶= F ○K≤j −K≤j ○R≤j+N−1 = (E>jx ,E>jy ) ∈H>j+N−1 ×H>j+L−1.

Concerning property (2.5) in Theorem 2.2, if L = N , it is a consequence of (4.2)
taking j = ℓ−N +1. If L =M < N , we have to perform an extra induction procedure
for values of j such that ℓ −N + 2 ≤ j ≤ ℓ −L + 1.

The case j = 1 follows immediately taking K≤1(x) = (x,0)⊺ and R≤N(x) = x +
p(x,0). Indeed:

E>1x (x) = x + p(x,0) + f(x,0) −R≤N(x) = f(x,0) ∈H≥N+1 ⊂H>N ,
E>1y (x) = g(x,0) ∈H≥M+1 ⊂H>L,

where we have used that, by hypothesis H2, q(x,0) = 0.
Suppose that (4.2) holds true for j − 1 ≥ 1, K≤j−1 and R≤j+N−2. We will find

the condition that Kj ∈Hj and Rj+N−1 ∈Hj+N−1 have to satisfy in order to ensure
that (4.2) holds for j, K≤j =K≤j−1 +Kj and R≤j+N−1 = R≤j+N−2 +Rj+N−1.

We claim that, since j − 1 +N ≤ ℓ ≤ r, there exists E = (Ej+N−1
x ,Ej+L−1

y ) with
Ej+N−1

x ∈Hj+N−1 and Ej+L−1
y ∈Hj+L−1 such that

(4.3) E>j−1x −Ej+N−1
x ∈H>j+N−1, E>j−1y −Ej+L−1

y ∈H>j+L−1.
Indeed, by Taylor’s theorem

(4.4)
Fx(x, y) = x + p(x, y) + FN+1

x (x, y) +⋯ + F r
x(x, y) + F >rx (x, y),

Fy(x, y) = y + q(x, y) + FM+1
y (x, y) +⋯ + F r

y (x, y) + F >ry (x, y),

with F l
x, F

l
y ∈ Hl and F >rx , F >ry ∈ H>r. Moreover, K≤j−1 and R≤j+N−2 are sums of

homogeneous functions. By the induction hypothesis it is easily checked that

E>j−1x = Fx ○K≤j−1 −K≤j−1x ○R≤j+N−2 = Ej+N−1
x + Ê>jx ,

E>j−1y = Fy ○K≤j−1 −K≤j−1y ○R≤j+N−2 = Ej+L−1
y + Ê>jy

with El
x,y ∈ Hl and Ê>jx ∈ H>j+N−1, Ê>jy ∈ H>j+L−1 and hence (4.3) is satisfied. We

decompose F ○K≤j −K≤j ○R≤j+N−1 as

F ○K≤j −K≤j ○R≤j+N−1 =E>j−1 + [F ○K≤j − F ○K≤j−1 −DF (K≤j−1) ⋅Kj]
+DF (K≤j−1) ⋅Kj −Kj ○R≤j+N−2

− [K≤j ○R≤j+N−1 −K≤j ○R≤j+N−2].
Next we study each term of the above decomposition. In doing that we introduce
several new remainders ei. By Taylor’s theorem, and using that j − 1 ≥ 1,

e1 ∶= F ○K≤j − F ○K≤j−1 −DF (K≤j−1) ⋅Kj ∈H≥N−2+2j ×H≥M−2+2j

⊂H>j+N−1 ×H>j+L−1.
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We denote ι(x) = (x,0). Taking into account that K≤j−1 − ι ∈H≥2 we can write

DF (K≤j−1) ⋅Kj =DF ○ ι ⋅Kj + e2 = (
[Id +Dxp ○ ι] ⋅Kj

x +Dyp ○ ι ⋅Kj
y

[Id +Dyq ○ ι] ⋅Kj
y

) + e2,

with e2 ∈ H≥j+N ×H≥j+M ⊂ H>j+N−1 ×H>j+L−1. Since R≤j+N−2(x) − x − p(x,0) ∈
H≥N+1 and N ≥ 2,

Kj ○R≤j+N−2(x) =Kj(x) +DKj(x) ⋅ p(x,0) + e3(x)
with e3 ∈H≥j−2+2N ∪H≥j+N ⊂H>j+N−1. Finally

K≤j ○R≤j+N−1 −K≤j ○R≤j+N−2 =DK≤j(R≤j+N−2) ⋅Rj+N−1 + e4

= ( R
j+N−1

0
) + e5 + e4,

where e4 ∈H≥2(j+N−1) ⊂H>j+N−1 and e5 ∈H≥j+N ⊂H>j+N−1.
In conclusion, el ∈H>j+N−1×H>j+L−1 for l = 1,⋯,5. Using (4.3) and the previous

computations, we have that

F ○K≤j −K≤j ○R≤j+N−1

= (E
j+N−1
x

Ej+L−1
y

) + ( Dxp ○ ι ⋅Kj
x +Dyp ○ ι ⋅Kj

y −Rj+N−1

Dyq ○ ι ⋅Kj
y

) −DKj ⋅ p ○ ι + Ẽ>j ,

where Ẽ>j = E>j−1 − (Ej+N−1
x ,Ej+L−1

y )⊺ + e1 + e2 − e3 − e4 − e5 ∈H>j+N−1 ×H>j+L−1.
In order to get property (4.2) for j, we have to choose Kj ∈ Hj and Rj+N−1 ∈

Hj+N−1 such that
(4.5)

DKj
x(x) ⋅ p(x,0) −Dxp(x,0) ⋅Kj

x(x) −Dyp(x,0) ⋅Kj
y(x) +Rj+N−1(x) = Ej+N−1

x (x)
and, taking into account that M and N may be different,

(4.6) DKj
y(x) ⋅ p(x,0) −Dyq(x,0) ⋅Kj

y(x) −Ej+L−1
y (x) ∈H>j+L−1.

As usual in the parametrization method we have a lot of freedom to choose
solutions of the above equations. On the one hand, we expect that equation (4.6)
for Kj

y has a unique homogeneous solution. On the other hand, it is clear that

equation (4.5) for Kj
x and Rj+N−1 admits several homogenous solutions. Despite

the fact that we could solve first (4.6) for Kj
y ∈Hj and then, take Kj

x ≡ 0 and

Rj+N−1(x) = Ej+N−1
x (x) +Dyp(x,0) ⋅Kj

y(x)
to solve (4.5), we are also interested in looking for the simplest representation of
the dynamics on the stable manifold, that is, we ask R≤j+N−1 to be as simple as
possible, for instance taking Rj+N−1 = 0 if we can solve the following equation

(4.7) DKj
x(x) ⋅ p(x,0) −Dxp(x,0) ⋅Kj

x(x) = Ej+N−1
x (x) +Dyp(x,0) ⋅Kj

y(x).
We distinguish three cases to obtain an equation for Kj

y so that condition (4.6)
holds:

● If N <M , then condition (4.6) is satisfied if

(4.8) DKj
y(x) ⋅ p(x,0) = Ej+L−1

y (x).
● If N =M ,

(4.9) DKj
y(x) ⋅ p(x,0) −Dyq(x,0) ⋅Kj

y(x) = Ej+L−1
y (x).
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● If N >M , then we get an algebraic equation:

(4.10) −Dyq(x,0) ⋅Kj
y(x) = Ej+L−1

y (x)
which can be solved by using that, by hypothesis H2, Dyq(x,0) is invertible.
We also have that [Dyq(x,0)]−1 ∈H−M+1. This equation clearly illustrates
the fact that the solutions Kj are not necessarily polynomials.

Assume that we are able to find appropriate solutions Kj
x of equation (4.7)

and Kj
y of (4.8), (4.9) or (4.10). We recall that we were dealing with values of

j = 2,⋯, ℓ −N + 1. When L = N ≤M , (2.5) and (2.6) follows from (4.2) by taking
j = ℓ −N + 1 so in this case we are done. However, in the case L =M < N we also
have to deal with the equation forKj when j = ℓ−N+2,⋯, ℓ−L+1. That is, we need
to add some extra homogeneous terms to Ky to obtain (2.5) and (2.6). Indeed, for

any given ℓ, assume that K≤ℓ−N+1,R≤ℓ are of the form (4.1) and they satisfy (4.2)
for j = ℓ −N + 1. We prove by induction on j that, for any ℓ −N + 2 ≤ j ≤ ℓ −L + 1,
we can find

K≤j =K≤ℓ−N+1 +
j

∑
l=ℓ−N+2

Kl, Kl ∈Hl, with Kl
x ≡ 0

in such a way that E>j = F ○K≤j −K≤j ○R≤ℓ ∈H>ℓ ×H>j+L−1.
Assume that the result holds for j − 1. Then, since j + L − 1 ≤ ℓ ≤ r, decompo-

sition (4.3) of E>j−1y is also true in this case. Taking Kj
x,R

j+N−1 ≡ 0 in the above
computations we also have that

Fy ○K≤j −K≤jy ○R = −DKj
y ⋅ p ○ ι +Dyq ○ ι ⋅Kj

y +Ej+L−1
y + Ẽ>jy

with Ej+L−1
y ∈Hj+L−1, Ẽ>jy ∈H>j+L−1 and

E>jx = Fx ○K≤j −K≤jx ○R =Dyp ○ ι ⋅Kj
y + Ẽ>jx ,

with Ẽ>jx ∈H>j+N−1 ⊂H>ℓ.
Since M < N , if Kj

y ∈Hj and satisfies the equation

Dyq(x,0) ⋅Kj
y(x) = −Ej+L−1

y (x),

then Dyp ○ ι ⋅Kj
y ∈ H≥j+N−1 ⊂ H>ℓ and E>jx ∈ H>ℓ. Therefore, we can follow this

procedure N −L times until (4.3) holds true. After that, the order of the remainder
E>ℓ−L+1 will be ℓ andKx will have the form given in Theorem 2.2 and property (2.5)
will be satisfied.

We remark that the equation for Kj
y , j = ℓ − N + 2,⋯, ℓ − L + 1, is the same

algebraic equation (4.10) as the one corresponding to j = 2,⋯, ℓ −N + 1.

4.2. Resolution of the linear equations (4.8)-(4.10) for Kj
y. We take 2 ≤ j ≤

ℓ − L + 1. In the case M < N , Kj
y is a solution of the algebraic equation (4.10).

Since Dyq(x,0) is invertible, the unique solution of this equation is

Kj
y(x) = −(Dyq(x,0))

−1
Ej+L−1

y (x).
Clearly, Kj

y is a homogeneous function of order j which is analytic in V . Neverthe-
less, it is only j − 1 times differentiable at the origin according to Definition 2.1.

Let M ≥ N . In this case Kj
y has to satisfy either equation (4.8), if N < M ,

or (4.9), if N =M . We write them in a unified way as

DKj
y(x) ⋅ p(x,0) −Q(x) ⋅Kj

y(x) = Ej+L−1
y (x),
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where Q(x) = 0 if N <M and Q(x) = Dyq(x,0) if M = N . Hence this case follows
from Theorem 3.2 taking p(x) = p(x,0) and Q as indicated. We claim that under
the current hypotheses, p and Q satisfy the conditions of Theorem 3.2. Indeed, the
constants Ap, ap, bp in Theorem 3.2 are

ap = ap > 0 (by H1), bp = bp > 0 (by definition) Ap = Ap.

As for BQ, by definition (2.3), if M > N , BQ = 0. If M = N , BQ = Bq and by

hypotheses H1 and H2 the condition j + BQ

cp
> max{1 − Ap

dp
,0} is satisfied in both

cases. Then Theorem 3.2 provides a solution Kj
y ∈Hj for 2 ≤ j ≤ ℓ −L + 1.

4.3. Resolution of the linear equation (4.5) for Kj
x. Consider 2 ≤ j ≤ ℓ−N +1.

We have to find Kj
x satisfying equation (4.5) which we recall here:

DKj
x(x) ⋅ p(x,0) −Dxp(x,0) ⋅Kj

x(x) +Rj+N−1(x) = Ej+N−1
x (x) +Dyp(x,0) ⋅Kj

y(x)

being Ej+N−1
x a homogenous function of order j +N − 1 and Kj

y ∈ Hj the solution

of the linear equation considered in Section 4.2. Since Dyp ○ ι ⋅Kj
y ∈Hj+N−1 we can

add this term to Ej+N−1
x and denote the resulting term again by Ej+N−1

x and hence
we end up with equation

(4.11) DKj
x(x) ⋅ p(x,0) −Dxp(x,0) ⋅Kj

x(x) +Rj+N−1(x) = Ej+N−1
x (x).

As we mentioned in Section 4.1, to solve (4.11), one possibility is to take Kj
x as any

function in Hj and Rj+N−1 as the solution of the resulting equation. If we proceed
in this form, we are always able to solve the equation, but we do not have a normal
form result for R in the sense that R is not simple at all. In the other extreme,
we can try to choose Rj+N−1 = 0 and use Theorem 3.2 with p(x) = p(x,0) and
Q(x) =Dxp(x,0) to solve

(4.12) DKj
x(x) ⋅ p(x,0) −Dxp(x,0) ⋅Kj

x(x) = Ej+N−1
x (x), for Kj

x.

However, this equation may not have solutions if j is not large enough. Indeed,
in this case, since p(x) = p(x,0) and Q(x) = Dxp(x,0), by hypothesis H1 and
Lemma 3.6 the constant BQ = −Bp ≤ −Nap < 0 and hence equation (4.12) can
not be solved unless j is large enough. Concretely, the sufficient condition to have

solutions is j − Bp

ap
>max{1 − Ap

dp
,0}. Therefore, if j ∈ N satisfies

j > Bp

ap
+max{1 − Ap

dp
,0} ,

equation (4.12) has a unique homogeneous solution Kj
x ∈Hj .

In conclusion, if j > Bp

ap
+max{1− Ap

dp
,0}, we take Rj+N−1 ≡ 0 and Kj

x a homoge-

neous solution of (4.12). Otherwise, Kj
x is free and we take as Rj+N−1 the solution

of (4.11).

4.4. Regularity of Kj and Rj+N−1. When Ap > dp, since (EN+1
x ,EM+1

y ) is an-

alytic, from Theorem 3.2, K2 is an analytic function in V and consequently, by
induction Kj is also analytic.

If M < N , we solve equation (4.11) for j = 2 by taking K2
x ≡ 0 and RN+1 = EN+1

x .
Hence K2 is analytic, since (EN+1

x ,EM+1
y ) is analytic. Then by induction Kj is also

analytic provided we solve equation (4.11) in some appropriate way, for instance,
by taking Kj

x ≡ 0 and Rj+N−1 = Ej+N−1
x .
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In the case Ap = dp and M ≥ N , even if (EN+1
x ,EM+1

y ) is analytic, Theorem 3.2

only provides C∞ solutions in V . Consequently, K2 is only C∞ and inductively we
obtain that Kj is C∞.

Finally we consider the case Ap < dp and M ≥ N , where we lose regularity.
Concretely, K2

y ∈ Cr∗ , on V where r∗, given in (2.4), is the maximum integer k such
that

(1 − Ap

dp
)k < 2 + Bq

cp
.

In order to deal with the cases M = N and M > N jointly, from now on we
understand that Bq = 0 ifM > N . Recall that Kj

x ≡ 0 for j = 2, . . . , ℓ∗−N +1 so that
the differentiability of Kj

y for these values of j only depends on the smoothness of

Ki
y, for i = 2,⋯, j − 1, which is r∗ by induction.

When j = ℓ∗ −N +2, from Theorem 3.2, we have that Kℓ∗−N+2
x ∈ Crx , with rx the

maximum integer k satisfying

(1 − Ap

dp
)k < ℓ∗ −N + 2 −

Bp

cp
.

The maximum differentiability, r∗, is obtained by choosing ℓ∗ to be the smallest
integer satisfying

ℓ∗ > (1 −
Ap

dp
) r∗ +N − 2 +

Bp

cp

which justifies the definition (2.7) of ℓ∗ in the present case.
By induction one checks that Kj = (Kj

x,K
j
y) is also a Cr∗ function.

By construction, Rj+N−1 has the same regularity in all cases.

4.5. The flow case. Proof of Theorem 2.9 without parameters. In the case
of flows we have to find K≤j(x, t) and Y ≤j+N−1(x) of the form

K≤j(x, t) =
j

∑
l=1
K(l)(x, t), Y ≤j+N−1(x) =

j+N−1
∑
l=N

Y l(x)

being K1(x, t) = (x,0)⊺, Y N(x) = p(x,0). For technical reasons, we look for K(l)

as a sum of two homogeneous functions: one of degree l independent of t and the
other belonging to H>l+N−1×H>l+L−1. The homogeneous terms Kl in the statement
of the theorem are obtained by rearranging the sum above. K≤j have to satisfy the
invariance condition (2.13) up to some order j in the sense that the error term

E>j(x, t) ∶=X(K≤j(x, t), t) −DK≤j(x, t)Y ≤j+N−1(x) − ∂tK≤j(x, t)

satisfies

(4.13) E>j = (E>jx ,E>jy ) ∈H>j+N−1 ×H>j+L−1.

As we have noticed in Section 4.1, in the case L = N condition (4.13) implies (2.14).
Following the same induction arguments as in Section 4.1 we obtain that Y j and

K(j) = (K(j)x ,K
(j)
y ) have to satisfy the conditions:

(4.14) DK(j)x (x, t)p(x,0) −Dxp(x,0)K(j)x (x, t) −Dyp(x,0)K(j)y (x, t)
+ Y j+N−1(x) + ∂tK(j)x (x, t) −Ej+N−1

x (x, t) ∈H>j+N−1,
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and
(4.15)

DK(j)y (x, t)p(x,0) −Dyq(x,0)K(j)y (x, t) + ∂tK(j)y (x, t) −Ej+L−1
y (x, t) ∈H>j+L−1

which are the analogous in the case of flows for (4.5) and (4.6) respectively. We will
skip the computations which are pretty similar as the ones in the previous section.

However we will not ask K
(j)
x ,K

(j)
y to satisfy their corresponding partial differential

equation (vanishing the terms Ej+N−1
x and Ej+L−1

y ) but we allow them to include
new terms of higher order.

With this strategy in mind, we are going to explain how to solve these equations.
For a given T -periodic function h, we denote by h its average and by h̃ = h − h its
oscillatory part (with zero average). Clearly, since we look for K(j) periodic, one

choice is to ask that the average K(j) satisfies the equations

(4.16)

DK
(j)
x (x)p(x,0) −Dxp(x,0)K(j)x (x) −Dyp(x,0)K(j)y (x)

+Y j+N−1(x) −Ej+N−1
x (x) = 0,

DK
(j)
y (x)p(x,0) −Dyq(x,0)K(j)y (x) −Ej+L−1

y (x) ∈H>j+L−1.
We can solve equations (4.16) as in the map case, following the arguments in Sec-
tions 4.2 and 4.3 for solving equations (4.5) and (4.6). Concerning regularity, the
arguments in Section 4.4 leads to the same regularity as in the map case for the
average of K(j) and Y j . As a conclusion, we have solutions of equations (4.16)

K(j) and Y j+N−1 belonging to Hj and Hj+N−1 respectively.

We take the oscillatory part K̃(j) with zero average and satisfying

(4.17) ∂tK̃(j)(x, t) = (Ẽj+N−1
x (x, t), Ẽj+L−1

y (x, t)).

Consequently, K̃(j) ∈Hj+N−1 ×Hj+L−1.

It only remains to see thatK(j) =K(j)+K̃(j) and Y j+N−1 satisfy equations (4.14)
and (4.15). Indeed, when we compute the left-hand side of, for instance, equa-
tion (4.14) we obtain

DK̃
(j)
x (x, t)p(x,0) −Dxp(x,0)K̃(j)x (x, t) −Dyp(x,0)K̃(j)y (x, t)

which belongs to Hj+L−1+N−1 ⊂ H>j+N−1 since L ≥ 2. Analogously for equa-

tion (4.15). Therefore, we conclude that K(j) = K(j) + K̃(j) and Y j+N−1 satisfy
equations (4.14) and (4.15) and then (4.13) is satisfied.

The regularity of the oscillatory part follows from the fact that it satisfies equa-
tion (4.17).

As in Section 4.1, if L = N , we are done. The case L = M needs an extra
argument which is totally analogous to the one in Section 4.1.

Remark 4.1. The vector field Y can be chosen independent of t. This is due to
the fact that we can perform the averaging procedure so that for any given ℓ we
can move the dependence on t of the vector field X up to order ∥z∥ℓ. If we take
ℓ ≥ ℓ∗ + 1, then the formal procedure is independent of t and we obtain (for the

averaged vector field X) a parametrization K
≤
and a vector field Y satisfying the

invariance condition (2.13) up to order ∥x∥ℓ which do not depend on t.
Nevertheless we can add t-depending terms to Y in order to have a more simple

Kx.
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5. Dependence on parameters. Proof of Theorems 2.8 and 2.9.

In this section we prove Theorems 2.8 and 2.9 which give us the dependence on
parameters of the functionsK and R given in Theorem 2.2 as a sum of homogeneous
functions.

We first emphasize that the methodology developed in Section 4 can also be
applied in the parametric case so that the cohomological equations (4.5) and (4.6)
for Kj are the same in this context but involving the dependence on λ. For a given
value of the parameter λ, the discussion about how to solve the cohomological
equations for Kj

y distinguishing the different cases (N > M , N = M and N < M)

and the different strategies to solve the cohomological equations for Kj
x are also

valid. Therefore, even in the parametric case, the existence of Kj(⋅, λ) is already
proven. Next we study the regularity with respect to λ both for maps and flows.

5.1. The cohomological equation in the parametric case. The case N ≥M ,
can be treated by using the auxiliary equation (3.1) studied in Section 3. See the
strategy of how to proceed in Sections 4.2 and 4.3. As a consequence, we are lead
to deal with the dependence on parameters of the homogeneous solution h

h(x,λ) = ∫
0

∞
M−1(t, x, λ)w(φ(t, x, λ), λ)dt

of the auxiliary equation:

(5.1) Dxh(x,λ)p(x,λ) −Q(x,λ)h(x,λ) =w(x,λ),
given by Theorem 3.2 for any λ ∈ Λ, where p,Q and w are homogeneous functions
of degree N , N − 1, m + N respectively. We will write p ∈ HN , Q ∈ HN−1 and
w ∈Hm+N .

In this setting, the constants defined in (3.3), HP1 and HP2 depend on λ. We

denote them by Aλ
p, A

λ
Q, Bλ

Q, ap,λV , aλp, b
λ
p, c

λ
p and dλp. In order to obtain uniform

bounds with respect to λ we redefine

(5.2)

ap = inf
λ∈Λ

aλp, bp = sup
λ∈Λ

bλp, Ap = inf
λ∈Λ

Aλ
p,

BQ = inf
λ∈Λ

Bλ
Q, AQ = sup

λ∈Λ
Aλ

Q, apV = infλ∈Λ
ap,λV

and cp, dp as in (3.3). Notice that, with this definition of the constants, all the
bounds in Section 3 will be also true uniformly for any λ ∈ Λ.

To study equation (5.1), we will assume the following:

HPλ Hypotheses HP1 and HP2 hold true for ap, a
p
V defined in (5.2).

To deal with the analytic case, for γ > 0, we define the complex extension of Λ

Λ(γ) = {λ ∶ Reλ ∈ Λ, ∥Imλ∥ < γ}.

Lemma 5.1. Let p ∈ HN , Q ∈ HN−1 and w ∈ Hm+N . Assume that p,Q,w ∈ CΣs,r

and that p satisfies hypothesis HPλ for ϱ0 > 0.
Then, if

m + 1 + BQ

cp
>max{1 − Ap

dp
,0} ,

the solution h ∶ V ×Λ→ Rk of (5.1) provided by Theorem 3.2 satisfies h ∈Hm+1 and
we have the regularity results according to the cases:

(1) Ap ≥ dp. If 1 ≤ r ≤∞, then h ∈ CΣs,r in V ×Λ.
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(2) Ap < dp. Let κ0 be the maximum of 1 ≤ i ≤ r + s such that

m + 1 + BQ

cp
− i(1 − Ap

dp
) > 0.

Then h ∈ CΣs0,r0 in V ×Λ with s0 =min{s, κ0} and r0 = κ0 − s0.
(3) Ap > dp. If p,Q,w are real analytic functions in Ω(γ0) × Λ(γ20) for some

γ0 then h is analytic in Ω(γ) × Λ(γ2) for γ small enough. In particular it
is real analytic in V ×Λ.

To have an unified notation for all cases of the lemma, we introduce the differ-
entiability degrees rp, sp as:

(5.3) rp = r, sp = s, if Ap ≥ bp, rp = r0, sp = s0, otherwise,

where r0, s0 are defined in Lemma 5.1. In this way, in all cases h ∈ CΣrp,sp .
We proceed in a similar way as in Section 3.3. We introduce the function

(5.4) g(x,λ) ∶= ∫
0

∞
M−1(t, x, λ)ω(φ(t, x, λ), λ)dt,

where φ(t, x, λ) is the solution of ẋ = p(x,λ) such that φ(0, x, λ) = x, M is the fun-

damental matrix of ψ̇ = Q(φ(t, x, λ), λ)ψ such that M(0, x, λ) = Id and ω satisfies
appropriate conditions to be specified later on. We first deal with the continuity
of g and then with the differentiability with respect to the parameter λ. For that
we check that the formal derivative Dλg is of the same form as g with a suitable
different ω which implies the differentiability with respect to λ. This is done jointly
in Lemma 5.3. Then using an induction argument we deal with the general differen-
tiable case. Finally we deal with the analytic case, which needs an extra argument
in this parametric setting.

For a given set U ⊂ Rn ×Rn′ , it will be useful to consider the functional spaces:

Bνσ,κ = {h ∶ U → Rk ∶ h ∈ CΣσ,κ−σ and h ∈Hν}
if κ,σ ∈ Z+ and κ ≥ σ.
Remark 5.2. Note that Bνs,r+s = CΣs,r ∩Hν .

Lemma 5.3. Let κ ≥ σ with σ = 0,1. Assume that p ∈ BNσ,κ, Q ∈ BN−1σ,κ and

ω ∈ Bν+Nσ,κ . Let ϱ0 > 0 be such that HPλ holds true.

Then, if ν + 1 + BQ

cp
>max{1 − Ap

dp
,0}, the function g defined by (5.4) belongs to

Bν+1σ,κp
, where κp = rp + sp and rp, sp are defined in (5.3).

In addition, when σ = 1, Dλg exists and

(5.5) Dλg(x,λ) = ∫
0

∞
M−1(t, x, λ)ω1(φ(t, x, λ), λ)dt

with ω1 ∶ V ×Λ→ L(Rn′ ,Rk) (recall that Λ ⊂ Rn′), given by:

(5.6) ω1(x,λ) =Dλω(x,λ) +DλQ(x,λ)g(x,λ) −Dxg(x,λ)Dλp(x,λ).
Remark 5.4. We observe that κp, the degree of differentiability stated for the case
σ = 0, is the same as the one given in Theorem 3.2.

Remark 5.5. Note that DλQ(x,λ)g(x,λ) ∈ L(Rn′ ,Rk) having the i-th column

Dλi
Q(x,λ)g(x,λ).

The same happens for DxQ(x,λ)g(x,λ).
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Proof. The case σ = 0 follows from Theorem 3.2, the dominated convergence theo-
rem and the fact that the bounds are uniform in λ ∈ Λ.

The case σ = 1 is more involved. Its proof is analogous to the proof of Lemma 3.14.
To shorten the notation we introduce φx

λ(t) ∶= φ(t, x, λ). First we check that

Gx
λ(τ) ∶= ∫

0

τ
Dλ[M−1(t, x, λ)ω(φx

λ(t), λ)]dt

can be written as:

Gx
λ(τ) ∶= −DλM

−1(τ, x, λ)g(φx
λ(τ), λ) + ∫

0

τ
M−1(t, x, λ)Dλ[ω(φx

λ(t), λ)]dt

+ ∫
0

τ
M−1(t, x, λ)Dλ[Q(φx

λ(t), λ)]g(φx
λ(t), λ)dt(5.7)

Indeed, since M−1 is the fundamental matrix of ψ̇ = −ψQ(φx
λ(t), λ), we can use the

variation of constants formula to the variational equation for DλjM
−1 to obtain:

DλjM
−1(t, x, λ)M(t, x, λ) = ∫

0

t
M−1(s, x, λ)Dλj

[Q(φx
λ(s), λ)]M(s, x, λ)ds

and, using expression (3.38) of g(φx
λ(t), λ),

M−1(t, x, λ)ω(φx
λ(t), λ) =

d

dt
[M−1(t, x, λ)g(φx

λ(t), λ)].

Then the result follows by integrating by parts

∫
0

τ
[DλM

−1(t, x, λ)M(t, x, λ)][M−1(t, x, λ)ω(φx
λ(t), λ)]dt.

Next we prove that

G̃x
λ(τ) ∶= ∫

0

τ
M−1(t, x, λ)Dxg(φx

λ(t), λ)Dλp(φx
λ(t), λ)dt

can be written as

G̃x
λ(τ) = −M−1(τ, x, λ)Dxg(φx

λ(τ), λ)Dλφ
x
λ(t)

− ∫
0

τ
M−1(t, x, λ)DxQ(φx

λ(t), λ)g(φx
λ(τ), λ)Dλφ

x
λ(t)(5.8)

− ∫
0

τ
M−1(t, x, λ)Dxω(φx

λ(t), λ)Dλφ
x
λ(t).

In order to prove (5.8), we will also integrate by parts. By using that Dλφ is the
solution of

d

dt
ψ =Dxp(φx

λ(t), λ)ψ +Dλp(φx
λ(t), λ), ψ(0, x, λ) = 0

we deduce that:

Dλp(φx
λ(t), λ) =Dxφ

x
λ(t)

d

dt
[(Dxφ

x
λ(t))−1Dλφ

x
λ(t)] .

Therefore, since Dx[g(φx
λ(t), λ)] =Dxg(φx

λ(t), λ)Dxφ
x
λ(t),

(5.9) G̃x
λ(τ) = ∫

0

τ
M−1(t, x, λ)Dx[g(φx

λ(t), λ)]
d

dt
[(Dxφ

x
λ(t))−1Dλφ

x
λ(t)] dt.

Applying (3.48) with h = g we have

d

dt
[g(φx

λ(t), λ)] =Q(φx
λ(t), λ)g(φx

λ(t), λ) + ω(φx
λ(t), λ)



36 INMACULADA BALDOMÁ, ERNEST FONTICH, AND PAU MARTÍN

which implies

d

dt
(M−1(t, x, λ)Dx[g(φx

λ(t), λ)]) = −M−1(t, x, λ)Q(φx
λ(t), λ)Dx[g(φx

λ(t), λ)]

+M−1(t, x, λ)Dx[Q(φx
λ(t), λ)g(φx

λ(t), λ)]
+M−1(t, x, λ)Dx[ω(φx

λ(t), λ)].
Finally, expression (5.8) follows from integrating by parts in (5.9). To do so we use
that ifH(x,λ) ∶=Q(x,λ)g(x,λ) we have thatDx[H(φx

λ(t), λ)] =DxH(φx
λ(t), λ)Dxφ

x
λ(t)

with

DxH(φx
λ(t), λ) =DxQ(φx

λ(t), λ)g(φx
λ(t), λ) +Q(φx

λ(t), λ)Dxg(φx
λ(t), λ).

Now we are going to relate expression (5.7) with (5.8). It is an straightforward
computation (see Remark 5.4) to check that

Dλ[Q(φx
λ(t), λ)]g(φx

λ(t), λ) =DxQ(φx
λ(t), λ)g(φx

λ(t), λ)Dλφ
x
λ(t)

+DλQ(φx
λ(t), λ)g(φx

λ(t), λ).

Substituting the above expression of Dλ[Q(φx
λ(t), λ)]g(φx

λ(t), λ) into (5.7), us-

ing (5.8) and the definition of G̃x
λ we have

Gx
λ(τ) = −DλM

−1(τ, x, λ)g(φx
λ(τ), λ) −M−1(τ, x, λ)Dxg(φx

λ(τ), λ)Dλφ
x
λ(τ)

+ ∫
0

τ
M−1(τ, x, λ)ω1(φx

λ(t), λ)dt

with ω1 defined in (5.6).

To prove that limτ→∞G
x
λ(τ) = ∫

0
∞M

−1(τ, x, λ)ω1(φx
λ(t), λ)dt it remains to check

that

h
x

λ(τ) ∶=DλM
−1(τ, x, λ)g(φx

λ(τ), λ) +M−1(τ, x, λ)Dxg(φx
λ(τ), λ)Dλφ

x
λ(τ)

goes to 0 as τ →∞ uniformly in (x,λ) ∈ V ×Λ. Indeed, the result follows from

∥Dλφ
x
λ(τ)∥ ≤K∥x∥(1 + dp(N − 1)τ∥x∥N−1)

−α(1−max{0,1−Ap
dp
})
,

∥DλM
−1(τ, x, λ)∥ ≤K(1 + cp(N − 1)τ∥x∥N−1)

−α(
BQ
cp
−max{0,1−Ap

dp
})
.

These bounds are obtained in a similar way as the ones of the corresponding deriva-
tives with respect to x in Lemma 3.14. First we write adequately Dλφ

x
λ and DλM

−1

by taking into account the differential equations that they both satisfy and prop-
erty (3.35):

Dλφ
x
λ(τ) = ∫

τ

0
Dxφ(τ − s,φx

λ(s), λ)Dλp(φx
λ(s), λ)ds,

DλM
−1(τ, x, λ) = −∫

τ

0
M−1(s, x, λ)Dλ[Q(φx

λ(s), λ)]M−1(τ − s,φx
λ(s), λ)ds.

Bound (3.42) of ∥Dxφ
x
λ(s)∥, bound of ∥φx

λ(s)∥ in Lemma 3.10 and the fact that
Dλp ∈HN , lead to

∥Dλφ
x
λ(τ)∥

≤ K∥x∥N

(1 + (N − 1)dpτ∥x∥N−1)
α

Ap
dp

∫
τ

0

1

(1 + (N − 1)dps∥x∥N−1)
α(N−Ap

dp
)
ds
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which gives the bound for ∥Dλφ
x
λ(τ)∥. Since

Dλ[Q(φx
λ(τ), λ)] =DxQ(φx

λ(τ), λ)Dλφ
x
λ(τ) +DλQ(φx

λ(τ), λ),

we have that

∥Dλ[Q(φx
λ(τ), λ)]∥ ≤K(1 + (N − 1)dpτ∥x∥N−1)

−α(N−1−max{0,1−Ap
dp
})
.

Then, using (3.46) with χ =M , we obtain the bound for ∥DλM
−1(τ, x, λ)∥.

Finally we easily check that the three terms in M−1(t, x, λ)ω1(φx
λ(t), λ) have a

uniform behavior of the form t
−a(

BQ
cp
+N−1)

when t is big and α(BQ

cp
+N − 1) > 1.

This proves that indeed, g is differentiable with respect to λ and formula (5.5) holds
true.

Now assume that ω ∈ Bν+N1,κ . Applying the result when σ = 0, we get that g ∈ Bν+10,κp

and in particular Dxg ∈ Bν0,κp−1. Then we deduce that ω1 ∈ Bν+N0,κp−1. Therefore,

using again the present result for σ = 0, Dλg ∈ Bν+10,κp−1, that is: Dj
xDλg(x,λ) for

j ≤ κp − 1 are continuous and bounded and as a consequence g ∈ Bν+11,κp
. □

End of the proof of Lemma 5.1. We consider the differentiable and the analytic
cases separately.

Assume that p ∈ BNs,κ, Q ∈ BN−1s,κ and w ∈ Bm+Ns,κ with κ = r + s. We apply Lemma

5.3 with ω =w and ν = m and we obtain that the function h belongs to Bm+11,κp
with

κp = rp + sp defined in (5.3). To finish the proof in the differentiable case we use
induction. Assume that h ∈ Bm+1σ−1,κp

with σ ≤ sp. By definition of Bm+1σ−1,κp
, we have

that if i+ j ≤ κp and i ≤ σ − 1, then Di
λD

j
xh are continuous and bounded functions.

We have to prove that indeed, h ∈ Bm+1σ,κp
.

We define H0 = h, w0 =w and recurrently, for 1 ≤ i ≤ σ − 1:

Hi(x,λ) =DλH
i−1(x,λ),

wi(x,λ) =Dλw
i−1(x,λ) +DλQ(x,λ)Hi−1(x,λ) −DxH

i−1(x,λ)Dλp(x,λ).

Note that by expression (5.5) in Lemma 5.3, we have that

Hσ−1(x,λ) = ∫
0

∞
M−1(t, x, λ)wσ−1(φ(t, x, λ), λ)dt.

Since by induction hypothesis H0 ∈ Bm+1σ−1,κp
then Hi ∈ Bm+1σ−1−i,κp−i and DxH

i−1 ∈
Bmσ−i,κp−i. These facts imply that wi ∈ Bm+Nσ−i,κp−i. Applying the last formula for

i = σ−1, one has that wσ−1 ∈ Bm+N1,κp−σ+1. Therefore, applying Lemma 5.3 with s = 1,
one concludes that Hσ−1 ∈ Bm+11,κp−σ+1.

Now we are almost done because, on the one hand, if 1 ≤ i ≤ σ−1 and 1 ≤ i+j ≤ κp,
all the derivatives Di

λD
j
xh are bounded and continuous by induction hypothesis and

on the other hand, since Hσ−1 =Dσ−1
λ h ∈ Bm+11,κp−σ+1 the same happens for

DλD
j
xH

σ−1 =DλD
j
x (Dσ−1

λ h)

if 1 + j ≤ κp − σ + 1, hence Dσ
λD

j
xh is continuous and bounded if σ + j ≤ κp.

It remains to deal with the analytic case. We denote by φ(t, x, λ) the flow of
ẋ = p(x,λ). We claim that, if ϱ, γ are small enough, the complex set Ω(ϱ, γ) is
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invariant by φ(t, x, λ) for any λ ∈ Λ(γ). Indeed, first we note that

p(x,λ) =p(Rex,Reλ) + iDp(Rex,Reλ)[Imx, Imλ]

− ∫
1

0
(1 − µ)D2p(x(µ), λ(µ))[Imx, Imλ]2 dµ,

with x(µ) = Rex + iµImx and λ(µ) = Reλ + iµImλ. We observe that, writing
zµ = (x(µ), λ(µ)):

Dp(Rex,Reλ)[Imx, Imλ] =Dxp(Rex,Reλ)Imx +Dλp(Rex,Reλ)Imλ,

D2p(zµ)[Imx, Imλ]2 =D2
xp(zµ)[Imx, Imx] + 2DxDλp(zµ)[Imx, Imλ]
+D2

λp(zµ)[Imλ, Imλ].

Then, since p is homogeneous and analytic, we have that Dλp,D
2
λp ∈ HN . Then,

if λ ∈ Λ(γ2):
p(x,λ) = p(Rex,Reλ) + iDxp(Rex,Reλ)Imx + γ2O(∥x∥N).

From the above equality we can proceed as in the proof of Lemma 3.9 to prove that
Ω(ϱ, γ) is invariant if ϱ, γ are small enough. Then, the proof of the analytic case is
completely analogous to the one of Theorem 3.2, using the dominated convergence
theorem and the fact that the bounds are uniform for λ ∈ Λ. □

5.2. End of the proof of Theorems 2.8 and 2.9. First we discuss the case of
maps. No matter what strategy we choose for solving the cohomological equations
for Kj we have to deal with the remainders Ej+N−1

x and Ej+L−1
y (Sections 4.2

and 4.3). Therefore, the first thing we need to do is to check what regularity
with respect to (x,λ) they have. We deal with Ej+N−1

x being the case for Ej+L−1
y

analogous. Recall that, as we prove in (4.3), Ej+N−1
x was the homogeneous part of

the error term E>j−1x = Fx ○K≤j−1 −K≤j−1x ○R≤j+N−2. To prove this we used that
by induction K≤j and R≤j+N−1 are sums of homogeneous functions and Taylor’s
theorem by decomposing Fx as in (4.4):

Fx(x, y, λ) = x + p(x, y, λ) + FN+1
x (x, y, λ) +⋯ + F r

x(x, y, λ) + F >rx (x, y, λ).
Since p and F l

x, l = N + 1,⋯, r, are homogeneous polynomials with respect to (x, y)
and moreover F ∈ CΣs,r , we have that p,F l

x ∈ CΣs,∞ for l = N + 1,⋯, r. In fact they
are analytic with respect to x and Cs with respect to λ. Analogously for Ej+L−1

y .
The casesM < N or Ap ≥ bp follows immediately from the strategy in Section 4.4

and Lemma 5.1.
When, M ≥ N and Ap < bp the first cohomological equation we solve is

DxK
2
y(x,λ)p(x,0, λ) −Q(x,λ)K2

y(x,λ) = EM+1
y ,

with Q ≡ 0 if M > N or Q(x,λ) = Dyq(x,0, λ) if N = M . Using Lemma 5.1 with
p(x,λ) = p(x,0, λ), m = 1 and w = EM+1

y , we have that K2
y ∈ CΣs∗,r∗−s∗ where s∗, r∗

are the given in Theorem 2.8. Proceeding by induction as in Section 4.4, we prove
Theorem 2.8.

The proof of Theorem 2.9 is straightforward. Indeed, following the strategy in

Section 4.5, we decompose K(j) = K(j) + K̃(j) where K(j) is the time average of
K(j) which satisfies equation (4.16). The same argument as in the case of maps

leads to conclude that K(j) ∈ CΣs∗,r∗−s∗ . Finally, K̃(j) satisfies the equation

∂tK̃(j) = (Ẽj+N−1
x , Ẽj+L−1

y )
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and therefore it is Cs with respect to (t, λ) and analytic with respect to x.

6. Examples

In this section we are going to see that our hypotheses are all of them necessary
in order to be able to solve the cohomological equations for Kj

y .
In Section 6.1, we present an alternative (and easy) way for solving the cohomo-

logical equations in a particular setting. We also provide two examples of analytic
maps (or even analytic vector fields) satisfying all the hypotheses, where the solu-
tion of the corresponding cohomological equations are only Cr in int(V ). One of
these examples, satisfies that Ap = 0 and the other one is such that Ap > 0. We will
also check that the condition Ap > dp is essential to obtain analyticity. Moreover,
we will also check that, when Ap < dp, r∗ is the maximum degree of differentiability.

Recall that the cohomological equations for Kj
x can be always solved by choosing

Rj properly. However, it is interesting to obtain the simplest normal form, to be
able to solve the cohomological equations for Kj

x with Rj ≡ 0. We present an
example where the cohomological equation for Kj

x can not be solved with Rj ≡ 0
if the degree j ≤ ℓ∗ with ℓ∗ the degrees of freedom to chose Kj

x defined in (2.7).
In consequence, the normal form Rj stated in the main result, is the simplest one,
generically.

6.1. Example 1. A particular form of p. Let F be a map of the form (2.1),
satisfying hypotheses H1, H2 and H3.

Claim 6.1. Let p(x) = p(x,0). Assume that p(x) = p0(x)x, with p0 ∶ V → R
and p and V satisfy hypotheses HP1, HP2. Then the approximate parametrization
K≤ and the reparametrization R are rational functions (which in general are not
polynomials). Moreover R can be chosen to be of the form R(x) = x + p0(x)x +
R2N−1(x), as in the one dimensional case.

Proof. HP1 implies −2 < p0(x) < 0, x ∈ V . Then, the auxiliary equation (3.1) reads

Dh(x)p0(x)x −Q(x)h(x) =w(x).

Since we look for homogeneous solutions of degree m + 1, using Euler’s identity,
namely Dh(x)x = (m + 1)h(x), if h is homogeneous of degree m + 1, equation (3.1)
can be written as:

[(m + 1)p0(x)Id −Q(x)]h(x) =w(x).

Consequently, we can solve this equation for any homogeneous function w ∈Hm+N

if and only if the matrix (m + 1)p0(x)Id −Q(x) is invertible for all x ∈ V . Assume
the contrary, that is, there exists x ∈ V and a eigenvector v, with ∥v∥ = 1, of the
eigenvalue 0. For the next computations we assume that m > 0 and V is small
enough so that −1 < p0(x) < (m + 1)−1 if x ∈ V . Then Q(x)v = (m + 1)p0(x)v and

∥(Id −Q(x))v∥ = 1 − (m + 1)p0(x).

By definition (3.3) of BQ:

∥(Id −Q(x))v∥ ≤ ∥Id −Q(x)∥ ≤ 1 −BQ∥x∥N−1
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and by definition (3.2) of ap, p0(x) ≤ −ap∥x∥N−1, then, we deduce that, if the
matrix (m + 1)p0(x)Id −Q(x) is not invertible,

m + 1 + BQ

ap
≤ 0.

Consequently, if m + 1 + BQ

ap
> 0, for any x ∈ V , the matrix (m + 1)p0(x)Id −Q(x)

is invertible and moreover, the solution of the auxiliary equation is

h(x) = [(m + 1)p0(x)Id −Q(x)]
−1
w(x).

Depending on the values of M,N , Kj
y has to satisfy the cohomological equa-

tions (4.8) if N < M , equation (4.9) if N = M and (4.10) when N > M . Then,
taking in the auxiliary equation w(x) = Ej+L−1

y , and either Q(x) = 0 if N <M or
Q(x) =Dyq(x,0) if N ≥M , we have that

Kj
y(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

jp0(x)
Ej+N−1

y (x), N <M,

[jp0(x)Id −Dyq(x,0)]
−1
Ej+N−1

y (x), N =M,

−Dyq(x,0)−1Ej+M−1
y (x), N >M.

To obtain Kj
x and Rj+N−1 we have to deal with (4.5) which in abstract form reads

Dh(x)p0(x)x −D(p0(x)x)h(x) + η(x) = (jp0(x)Id −D(p0(x)x))h(x) + η(x)
=w(x),

where h = Kj
x, η = Rj+N−1 and w(x) = Ej+N−1

x (x) +Dyp(x,0)Kj
y(x). Assume that

the matrix in the above equation is not invertible for some x ∈ V . Then there exists
v ∈ Rn with ∥v∥ = 1 such that

(j − 1)p0(x)v = (Dp0(x)v)x.
This implies that x and v are linearly dependent: v = λx for some λ ∈ R/{0}. Then

(j − 1)p0(x)λx = λ(Dp0(x)x)x = λ(N − 1)p0(x)x
and hence j = N . As a consequence, for j ≥ 2, j ≠ N , the previous matrix is
invertible, we can take Rj+N−1 ≡ 0 and

Kj
x(x) = [jp0(x)Id −Dxp(x,0)]

−1(Ej+N−1
x (x) +Dyp(x,0)Kj

y(x)).
When j = N , we can take KN

x as any function in HN and then

R2N−1(x) = E2N−1
x (x) −DKN

x (x)p0(x)x +Dxp(x,0)KN
x (x) +Dyp(x,0)KN

y (x).
□

6.2. Example 2. On the necessity of hypothesis H3. Consider the system of
ordinary differential equation in R2 ×R

ẋ1 = −x21, ẋ2 = −ax1x2, ẏ = bx1y + x32
with a, b > 0 and b+3a ≤ 1. This system was also considered in Section 5.1 of [BFM].
There it was shown that the time 1 map F of the flow defined by the above system
satisfies hypotheses H1 and H2 in a suitable domain V but that it has no invariant
manifold over V .
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Claim 6.2. There exist V ⊂ R2, star-shaped with respect to the origin, where F
satisfies hypotheses H1 and H2 but in which the cohomological equations (4.9) have
no homogeneous solution in V . That is, H3 is needed both at a formal and at an
analytical level.

It is clear that F is a map of the form (2.1) with N = M = 2, p(x, y) =
(−x21,−ax1x2) and q(x, y) = bx1y.

We denote x = (x1, x2). Let φ be the flow of ẋ = p(x,0), which can be explicitly
computed:

φ(t, x) = (φx1(t, x, y), φx2(t, x)) = (
x1

1 + tx1
,

x2
(1 + tx1)a

) .

Proof. Hypotheses H1 and H2 are satisfied for F in the convex domain

W = {x = (x1, x2) ∈ R2 ∶ ∣x2∣ < (1 − a)x1 <
2

a + 1}

with the supremum norm. Actually, Ap = a2, ap = 1 and Bq = b. However there is
no open invariant set for Fx contained in W and, as a consequence, hypothesis H3
is not satisfied. Indeed, assume there is such open set and that x0 = (x01, x02) ∈W ,
x02 ≠ 0, and let

xn = Fx(xn−1,0) = (Fn)x(x0,0) = (Fx)n(x0,0) =
⎛
⎝

x01
1 + nx01

,
x02

(1 + nx01)
a

⎞
⎠
.

If the sequence xn ∈W , ∀n ≥ 0, then (1 − a)x01 ≥ ∣x02∣(1 + nx01)
1−a

, ∀n ≥ 0, which is
false since a < 1.

Following the algorithm described in Section 4, we compute

E>1(x) = F ○K≤1(x)−K≤1○R≤N(x) = F (x,0)−(x+p(x,0),0) = (0,0, x32)+O(∥x∥4∥).
Therefore, the first cohomological equation that we need to solve is

(6.1) DK2
y(x)p(x,0) −Dyq(x,0)K2

y(x) = x32.

Let Mq(t, x) = (1 + tx1)b be the fundamental matrix of ż = Dyq(φ(t, x),0)z =
bφx1(t, x)z. Formula (3.8) applied to p(x) = p(x,0), Q(x) =Dyq(x,0) and w(x) =
x32 states that

K2
y(x) = ∫

0

∞
M−1

q (t, x)w(φ(t, x))dt = x32 ∫
0

∞

1

(1 + tx1)b+3a
dt

which, obviously, is not convergent if b + 3a ≤ 1. In conclusion, our algorithm can
not be applied if H3 does not hold. Finally, we remark that, by Corollary 3.5,
equation (6.1) has no homogeneous solution. □

6.3. Example 3. The loss of differentiability. We consider the map (x, y) ∈
R2 ×R↦ F (x, y) ∈ R3 given by

F (x, y) = ( x + p(x)
y + q1(x)y + g(x)

) , x = (x1, x2) ∈ R2, y ∈ R,

where

p(x) = ( −x
3
1

−cx32
) , q1(x) = d(x21 + x22), g(x) = xi1xj2,

with i + j ≥ 4 and c, d > 0.
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Claim 6.3. There exists V ⊂ R2, star-shaped with respect to the origin, where F
satisfies hypotheses H1, H2 and H3.

Let K be any approximate solution of (2.5) provided by Theorem 2.2. If the
choice of i, j, c, d is such that i+ d = j + d/c = 4, then K is only j + 1 times differen-
tiable. This is the optimal regularity claimed by Theorem 2.2.

Possible choices are i = j = d = 2, c = 1 and i = 3, j = d = 1, c = 1/3.

Proof. We will compute the term K2
y explicitly and check that if has precisely the

claimed regularity.
Let V = Bϱ0 ∖ {0} ⊂ R2 with ϱ0 small. We claim that, hypotheses H1, H2, H3

are satisfied in V for the Euclidean norm ∥ ⋅ ∥2 (in fact, they are satisfied with any
norm). Indeed, we have that V is invariant by x↦ x + p(x) if ϱ0 is small and

ap =
c

1 + c +O(ϱ
2
0) > 0, Ap = 0, bp =max{1, c}, Bq = d > 0.

We have that E>1(x) = (E4
x,E

4
y)(x) = F (x,0) − (x + p(x),0) = (0, g(x)). Then,

the first cohomological equation we have to solve is

DK2
y(x)p(x) − q1(x)K2

y(x) = g(x) = xi1xj2,

which, according to (3.8), gives

K2
y(x) = xi1xj2 ∫

0

∞

1

(1 + 2tx21)
i+d
2 (1 + 2tcx22)

j
2+

d
2c

dt.

According to Theorem 2.2, the degree of differentiability of K, given in (2.4), is the
maximum integer satisfying

r∗ < 2 +
Bq

bp
= 2 + d

max{1, c} .

Now we take values of i, j, c, d such that i + d = j + d/c = 4. It is a calculation to
check that

K2
y(x) = xi1xj2 [

cx22 + x21
2(cx22 − x21)2

− c x21x
2
2

(cx22 − x21)3
log(cx

2
2

x21
)] .

We study K2
y in the subdomain W = {∣√cx2∣ < ∣x1∣} of V . On W , K2

y is

K2
y(x) =xi−j−21

xj2

xj1
(1 + cx

2
2

x21
)(1 − cx

2
2

x21
)
−2

+ 2xi−j−61

xj+22

xj+21

(1 − cx
2
2

x21
)
−3

log(
√
c∣x2∣
∣x1∣

) .

To study the differentiability of K2
y on W is equivalent to study the derivability of

χ(z) = zj+2 log(∣z∣), which is only Cj+1 at z = 0 but it is not Cj+2. Consequently,
K2

y is only Cj+1 at the points (x1,0) ∈ W ⊂ V . Note that, with the two choices of
the parameters i, j, d, c, we have that, d = j and c ≤ 1. Then, r∗ < 2 + j, that is,
r∗ = 1 + j which coincides with regularity of K2

y at x2 = 0. □
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6.4. The reparametrization R. We consider the map given by

F (x, y) = ( x + p(x) + f(x)
y + q1(x)y + g(x)

) , (x, y) ∈ R2 ×R,

with p(x) = (−xN1 ,−cxN−11 x2), N ≥ 2, q1(x) = (x21 + x22)(M−1)/2, M odd and M ≥ 3,
g ∈H≥M+1 and f ∈H≥N+1.

Claim 6.4. Assume c > 1. F satisfies hypotheses H1, H2 and H3 with the supre-
mum norm in the set

(6.2) V = {x ∈ R2 ∶ ∣x2∣ < x1}.

For any approximate solutions K and R given by Theorem 2.2, R has the form

R(x) = x + p(x) +
N

∑
j=2

Rj+N−1(x), Rj+N−1 ≠ 0, j = 2,⋯,N.

In the case of one dimensional manifolds, it was proven in [BFdlLM07]) that one
can always take Rj+N−1 = 0 if j = 2, . . . ,N − 1.

Proof. It is easy to see that Hypotheses H1, H2 and H3 hold in V , as well as to
compute the value of the constants Bp = Nc, ap = 1, Ap = −c(N − 2) and bp = c.
Consequently we have that

ℓ∗ > N − 1 + [Nc] ≥ 2N − 1.

What we are going to check is that, necessarily, for solving the cohomological
equations (4.5) for Kj

x in Section 4 for values of 2 ≤ j ≤ ℓ∗ −N + 1, we have to take
Rj+N−1 ≢ 0. Indeed, if not, the cohomological equations (4.5) for 2 ≤ j ≤ N are

DKj
x(x)p(x)−Dp(x)Kj

x(x)

=DKj
x(x)(

−xN1
−cxN−11 x2

) + ( NxN−11 0
c(N − 1)xN−21 x2 cxN−11

)Kj
x(x)

=Ej+N−1
x (x),

where Ej+N−1
x is a homogeneous function of degree j +N − 1.

We focus our attention to the equation for the first component of Kj
x,

(6.3) x1D1K
j
x1
(x) + cx2D2K

j
x1
(x) −NKj

x1
(x) = −x1−N1 Ej+N−1

x1
(x).

We introduce the auxiliary functions h(z) = Kj
x1
(1, z) and T (z) = Ej+N−1

x1
(1, z).

Notice that we can recover Kj
x1
(x) from the identity:

(6.4) Kj
x1
(x1, x2) = xj1h(x2/x1).

Using Euler’s identity jKj
x(x) =DKj

x(x)x and rearranging terms in (6.3), we obtain
that h is a solution of the differential equation:

(6.5) (c − 1) d
dz
h(z) = N − j

z
h(z) − T (z)

z
.

We study the solutions of (6.5). Assume the easiest case, that is Ej+N−1
x1

is a
homogeneous polynomial. Then T (z) is a polynomial of degree j +N − 1 which we
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write as: T (z) = ∑j+N−1
l=0 alz

l. From the form of (6.5) the solutions are defined for
z ∈ (0,∞) and for z ∈ (−∞,0). When j = N , equation (6.5) yields:

(c − 1)h(z) = C − a0 log ∣z∣ −
2N−1
∑
l=1

al
l
zl

for some constant C. Then, by (6.4)

KN
x1
(x) = xN1

c − 1 (C − a0 log ∣
x2
x1
∣ −

2N−1
∑
l=1

al
xl2
lxl1
)

which is not defined for x2 = 0 contained in the set V in (6.2). So that equation (6.3)
can not be solved in V for j = N . Even more, when j ≠ N , denoting β = (N −j)/(c−
1)

h(z) = ∣z∣βC − ∣z∣β ∫
z

1
w−β−1T (w)dw = ∣z∣βC − ∣z∣β

j+N−1
∑
l=0
∫

z

1
alw

−β−1+l dw.

When β = l ∈ {0,⋯, j +N − 1}, h will have the term al log ∣z∣ and, as in the case
j = N , Kj

x1
will have the term log(∣x2∣/∣x1∣) which, again, is not defined in the set

V . We realize this case for j < N taking, for instance, c = 2 and l = N − j. On the
contrary, Kj

x1
is well defined if j > N . □
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[BFM] I. Baldomá, E. Fontich, and P. Mart́ın. Invariant manifolds of parabolic fixed points
(I). Existence and dependence of parameters.
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