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GATA2 deficiency is a complex multi-system disorder with high risk of developing myelodysplastic 

syndromes (MDS) and acute myeloid leukemia (AML) with a nearly complete lifetime penetrance1, 2. 

GATA2 carriers show a highly variable expressivity, with some individuals developing early-onset 

MDS, while others, remaining asymptomatic throughout life. Although no prognostic biomarkers exist, 

it is likely that both cooperating genetic and epigenetic drivers shape the course of the disease3. 

Despite advances in the identification of recurrent somatic mutations in a set of leukemia driver genes 

(i.e. STAG2, SETBP1, ASXL1 and ETV6), there are major gaps in understanding the molecular 

mechanisms associated with leukemic progression in GATA2 carriers4. Moreover, DNA methylation 

alterations contribute to the initiation and expansion of leukemic clones and aberrant 

hypermethylation occurs in adult patients with MDS and AML5, 6. However, to date, a genome-wide 

DNA methylome analysis in GATA2 patients has not been performed.  

For this study, 20 clinically annotated GATA2 carriers from seven Spanish hospitals were enrolled, 

(Table 1 and Online Supplementary Figure S1). Median age at the diagnosis was 36 (6–75) years. 

The primary initial manifestation was MDS (n=12, 55%), followed by immunodeficiency (n=3, 15%), 

and AML (n=2, 10%). On cytogenetics, trisomy 8 was detected in 3 patients, complex karyotype in 2 

patients, while 11 patients had normal karyotype (Online Supplementary Figure S1A-F). Based on 

DNA availability, somatic mutation profiling was performed in total peripheral blood (PB) or bone 

marrow (BM) of 17 GATA2 carriers. Somatic mutations in myeloid malignancy genes were identified in 

71% (12/17) tested patients (Online Supplementary Figure S1F). This analysis confirmed the 

heterogeneity of acquired somatic mutations in GATA2 deficiency, with STAG2, ASXL1 and SETBP1 

as recurrently affected genes. We obtained global DNA methylation profiles of patients who 

underwent complete genetic characterization by using the Infinium Human Methylation EPIC 850�K 

platform (Illumina). We profiled DNA of 8 BM (P1, P3, P5, P6, P10, P11, P12, P13) and 8 PB samples 

(P1, P4, P7, P8, P9, P13, P16 and P17) and compared with a cohort of 12 (5 PB and 7 BM) age-

matched healthy donor (HD) controls. 

High-dimensional data visualization showed that the majority of GATA2 patients cluster tightly 

together and separately from HD. Asymptomatic carriers P1, P16 and P17 (at age 6, 40 and 75 years 

old, respectively) belonging to the same family, were encompassed to HD group (Figure 1A). 

Additionally, we compared HD with the asymptomatic GATA2 carriers alone, and we still observed 

intermixed samples (data not shown). Next, the DNA methylation changes were calculated between 

GATA2 group and HD pairwise, revealing a DNA methylation pattern specific to GATA2 carriers. In 

detail, 2834 differentially methylated positions (DMPs) were identified in GATA2 BM samples and 

1406 DMPs in PB samples (Online Supplementary Figure S2A). A descriptive analysis of the DMP 

distribution was performed using as a reference the probe distribution of the Infinium MethylEPIC 

array from distal to proximal CpG island regions (open sea, CpG shelf, CpG shore and CpG island) 

(Online Supplementary Figure 2B). Although previous studies showed that promoter-proximal 

methylation is negatively correlated with active gene expression7; our analysis revealed that the 

majority of DMPs are promoter-distant in both, BM (Open Sea: 60% hypomethylated DMPs and 

72.5% hypermethylated DMPs) and PB samples (Open Sea: 52% hypomethylated and 82.3% 

hypermethylated) (Figure 1B and Online Supplementary Figure 2C).  

 Haematologica HAEMATOL/2022/282305 Version 3



Additionally, the DMP distribution using the neighboring gene as reference showed an enrichment in 

intergenic and intronic regions (Figure 1C, Online Supplementary Figure S2D-E). This observation 

was corroborated by a correlation analysis comparing the DMP distribution of GATA2 patients with 

the reference array (Online Supplementary Figure S2F). Overall, we observed that DNA methylation 

changes are enriched in gene-distant and intronic regions in GATA2 patients. Whether this 

discrepancy is a consequence of GATA2 deficiency, or arising solely from the MDS evolution, needs 

to be further investigated. Previous studies showed that endogenous GATA2 preferentially occupies 

sites distant to promoters in hematopoietic stem cells8, hence the loss of DNA binding capacity of 

GATA2 mutant protein might result in aberrant DNA methylation of these loci. 

Interestingly, unsupervised analysis of hypermethylated DMPs highlighted the presence of a 

hypermethylated DMP subcluster across all the GATA2 BM samples (hereinafter subcluster A), 

including P1, the asymptomatic GATA2 carrier (Figure 1D). The matching PB of P1 revealed a 

subcluster of hypermethylated DMPs (hereinafter subcluster B) as affected GATA2 patients (Figure 

1E). Importantly, the 2-year longitudinal follow-up of P1 showed the evolution to MDS with 

multilineage dysplasia (MDS-MLD) and monosomy 7 without secondary mutations. In contrast, the 

two asymptomatic GATA2 carriers P16 and P17 (father and grandfather of P1) had a DNA 

methylation profile comparable with the HD group (Figure 1E). This observation suggests the 

presence of a likely early aberrant DNA methylation at specific loci in GATA2 carriers that might have 

a potential use in early detection of patients at risk for impending myeloid transformation.  

After the gene annotation of the 131 DMPs of the subcluster A (Online Supplementary Figure S2G), 

118 genes were associated to hypermethylated DMPs (Online Supplementary Figure S2H), including 

MECOM, which epigenetic regulation has been reported in AML9. The top candidate was PROMININ1 

(PROM1/CD133) with four hypermethylated DMPs upstream of its promoter region (Online 

Supplementary Figure S2I). Interestingly, the aberrant methylation status of PROM1 promoter has 

already been described in various cancers including AML10. 

Moreover, 42 out of 131 hypermethylated DMP subclusters are classified as gene regulatory 

elements; and most of them are enriched for H3K27ac, a chromatin mark associated with enhancer 

activity (Figure 2A).  

Because tissue-specific DNA methylation patterns might alter the methylation results, we overlapped 

the 118 BM-hypermethylated genes with the 1060 PB-hypermethylated genes. We found 51 

commonly hypermethylated common genes, implying that PB samples, at least partially reflect the 

dysregulated pattern observed in the BM (Figure 2B). Additionally, the 205 PB-hypermethylated 

subcluster B genes were crossed with 118 BM-hypermethylated subcluster A genes, observing an 

overlapped of 30 genes, indicating that the aberrant DNA methylation profile is detectable in both BM 

and PB samples (Online Supplementary Figure S2H). Aberrant epigenetic changes have been 

associated with alterations of transcription factors (TFs) genomic binding capacities11,12. Therefore, 

we assessed whether the hypermethylated and hypomethylated DMPs identified in PB and BM 

samples were enriched in specific TF DNA binding motives using Hypergeometric Optimization of 
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Motif EnRichment (HOMER). This analysis revealed in the hypermethylated DMPs a significant 

enrichment in TFs motives of the ETS family, such as ETV2, ETV6, ELF5 and PU.1 among others 

(Figure 2C-D), which are known to play a role in MDS13. The hypomethylated DMPs showed an 

enrichment in TF of the bZIP family preferentially (Online Supplementary Figure S3A-B). To evaluate 

whether the GATA2 binding sites are linked to DNA methylation in GATA2 deficiency, we integrated 

the hypermethylated genes in both PB and BM samples with a GATA2 ChIPseq dataset from our 

laboratory (GSE107639)14. This analysis revealed the presence of 82 out of 494 hypermethylated 

genes that are also GATA2-targets (Figure 2E). On the contrary, the intersection of GATA2-regulated 

genes with the hypomethylated genes in BM and PB did not show any relevant gene enrichment 

(Online Supplementary Figure S3C). Additionally, the common hypermethylated genes of PB and BM 

were crossed with K562 myeloid leukemia GATA2 ChIPseq dataset (GSE18868)8, observing that 204 

out of 494 hypermethylated genes are GATA2 targets and 51 out of 82 genes are in common 

between Castaño et al14 and Fujiwara et al8 datasets (Online Supplementary Figure S3D-E). Gene 

ontology analysis of the 82 hypermethylated GATA2 target genes showed an enrichment in 

transcriptional regulation and cell differentiation. In-silico analysis of the upstream regulators inferred 

that ETV6, TCF12, MGA, and SOX5 are cooperative-TFs of GATA2 gene regulatory network (Online 

Supplementary Figure 3F). Together, our data suggest that GATA2 deficiency is associated with 

aberrant DNA methylation in GATA2 target genes. 

Finally, we compared our BM hypermethylation data with publicly available methylation profiles of 184 

pediatric AML patients, TARGET 201815. Interestingly, 50% (4/8) of our GATA2 patients clustered 

together with AML samples (which had known GATA2 mutation negative status), showing a similar 

methylation pattern with AML samples (Online Supplementary Figure S3G). This points to the 

possibility that some aberrant methylation signatures observed in our GATA2 patients might be 

directly linked to the AML transformation and thus arises independently of the underlying GATA2 

germline mutation. Future genome-wide association studies are warranted to address this question in 

depth. 

In conclusion, we identified an aberrant DNA hypermethylated signature in GATA2 deficiency. 

Specifically, we described the presence of a subset of aberrant hypermethylated set of genes present 

in GATA2 carriers at early (and not yet symptomatic) disease stage, which could be potentially used 

as predictors of disease progression. In this context, the implementation of customized methylation-

specific assays might be instrumental to validate our findings in larger cohorts of patients and to test 

its clinical prognostic utility. Finally, a collaborative effort will be essential to increase the number 

patients with this rare yet high-risk MDS/AML predisposition syndrome, allowing for comprehensive 

genetic and epigenetic analyses to understand the impact of the secondary hits and/or aberrant DNA 

methylation on the disease progression.  
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Table 1 

ID 

GATA2 Mutations 

Age Sex Clinical 
manifestation* 

Karyotype 
category Treatment Status Genomic 

analysis 

PB 
Monocytes 

(103 
cells/uL) 

 PB NK 
(cells/uL) 

PB B 
cells 

(cells/uL) 

BM 
Blasts 

(%) Mutation Mutation 
Type 

P1 p.M388T Missense  6 M Asymptomatic NK None Alive WES 0,9 200 420 0 

P2 p.R362* Nonsense  18 M MDS NK None Alive WES 0,01 NA 93 0 

P3 p.K378* Nonsense  13 F ID Complex/+8 HSCT Alive WES NA NA NA 0 

P4 p.T354M Missense  37 F MDS NA None Alive WES 0,16 7 18 NA 

P5 p.G273Dfs*53 Frameshift  51 F MDS NK None Alive WES 0,01 NA NA 3 

P6 p.S261T Missense  75 F AML +8 None Dead WES 0,06 NA NA 29 

P7 p.R396L Missense  30 M MDS NA None Dead WES 0,29 0 97 NA 

P8 p.R396L Missense  15 F ID NA None Dead WES 0,1 16 35 0 

P9 p.G346Sfs*40 Frameshift  24 M MDS NA None Dead WES 0,198 34 0 NA 

P10 p.L305V Missense  59 F MDS NK HSCT Alive WES 0 23 81 1 

P11 p.R396Q Missense  45 M MDS 
Complex/-

7q 
HSCT Alive WES 0 0 30 1 

P12 p.R396W Missense  25 M MDS +8 HSCT Dead WES 0 1 6 2 

P13 
p.T358I  

p.G149R  
Missense 
Missense  

55 M MDS NK HSCT Alive WES 0,72 8 14 11 

P14 p.L386Hfs*2 Frameshift  29 F MDS NK HSCT Alive 
Targeted 

seq. 
0 40 0 1 

P15 
 

p.G346insSAA 
Insertion 34 F MDS NK HSCT Alive 

Targeted 
seq. 

0 NA NA 3 

P16 p.M388T Missense  40 M Deafness NK None Alive WES NA NA NA 0 

P17 p.M388T Missense  75 M Asymptomatic NK None Alive WES NA NA NA 0 

P18 p.M388T Missense  39 F AML NK HSCT Alive NA 0 NA NA 0 

P19 p.T117= Synonymous 49 M Asymptomatic NK None Alive NA 0,6 NA NA 0 

P20 p.R396L Missense  14 M MDS NA NA Dead NA 0,07 184 12 NA 

Table 1. Patient clinical characteristics and genetic landscape.  

Patients were diagnosed in the following hospitals: University Hospital of Gran Canaria Dr. Negrin, 

Hospital de la Santa Creu i Sant Pau, Hospital Universitari Vall d'Hebron, Hospital La Paz, Hospital 

Clínico Universitario de Salamanca, Hospital General Universitario Gregorio Marañón and Dr. Balmis 

General University Hospital. M, male; F, female; NK, normal karyotype; NA, no available; MDS, 

myeloid dysplastic syndrome; ID, immunodeficiency; AML, Acute Myeloid Leukemia; WES, whole 

exome sequencing; * at sample collection. 
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Figure legends: 

Figure 1. Unsupervised hierarchical clustering and the heat map visualization of differentially 

methylated CpG sites of GATA2 patients.  

A) T-distributed stochastic neighbor embedding (t-SNE) showing the distribution of GATA2 patient (P) 

data (in red) and healthy donors (HD) (in blue), based on DNA methylation profile. Bone marrow (BM) 

samples are represented with circles and peripheral blood (PB) samples are represented with 

triangles. 

B) Differentially methylated probes (DMPs) distribution of BM samples, hypermethylated (above) and 

hypomethylated (below). CpG island distance, island (eggplant), shore (lollipop), shelf (mauve) and 

open sea (fandango).   

C) DMPs distribution of BM samples, hypermethylated (above) and hypomethylated (below). 

Promoter (dark blue), intergenic (orange), intronic (grey), exonic (yellow), 5’ UTR (light blue) and 3’ 

UTR (green).  

D) Heatmap of DMPs BM vs HD samples. The DMPs in common among all GATA2 patients 

(subcluster A) are squared in green. Scale Beta values from -3 (blue/hypomethylated) to +3 

(red/hypermethylated). 

E) Heatmap of DMPs of PB vs HD samples. The hypermethylated DMPs in P1 sample (subcluster B), 

which are in common with affected GATA2 patients, are squared in fuchsia. Scale Beta values from -3 

(blue/hypomethylated) to +3 (red/hypermethylated). 

Figure 2. Regulatory element analysis of hypermethylated genomic regions identify in GATA-

mutant patients. 

A) Ranked representation of the regulatory function of the hypermethylated position based on 

GeneHancer (blue) score and H3K27ac enrichment of those genomic positions (green).  

B) Venn diagram of the total hypermethylated genes in peripheral blood (PB) (n=1060) versus 

subcluster of hypermethylated genes in bone marrow (BM) (n=118), the genes of the intersection are 

51 genes. P-value=1.572541e-14 (hypergeometric distribution test). 

C) Hypergeometric Optimization of Motif EnRichment (HOMER) analysis using hypermethylated 

differentially methylated probes in BM samples. Enriched motifs found are predominantly from the 

ETS family including ETVs and PU.1.  

D) HOMER analysis using hypermethylated DMPs in peripheral blood (PB) samples. Enriched motifs 

found are predominantly from the ETS family and IRF family. 
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E) Top row: Venn diagram of the neighbouring gene of hypermethylated DMPs in the BM samples 

(n=1631) compared to the neighbouring gene of hypermethylated DMPs in the PB samples (n=1095), 

intersection 494 genes. Below row: GATA2 regulated genes (n=2301) obtained from the intersection 

of two GATA2 ChIPseq data GSE10763915. The crossed of top intersection (n=494) versus GATA2-

regulated genes (n=2301), the intersection gives 82 GATA2 hypermethylated targets both in PB and 

BM. 
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