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In this review essay, we give a detailed synopsis of the twelve contributions 

which are collected in a Special Issue in Frontiers Ecology and Evolution, based 

on the research topic “Current Thoughts on the Brain-Computer Analogy—All 

Metaphors Are Wrong, But Some Are Useful.” The synopsis is complemented 

by a graphical summary, a matrix which links articles to selected concepts. As 

first identified by Turing, all authors in this Special Issue recognize semantics 

as a crucial concern in the brain-computer analogy debate, and consequently 

address a number of such issues. What is missing, we believe, is the distinction 

between metaphor and analogy, which we  reevaluate, describe in some 

detail, and offer a definition for the latter. To enrich the debate, we also deem 

necessary to develop on the evolutionary theories of the brain, of which 

we  provide an overview. This article closes with thoughts on creativity in 

Science, for we concur with the stance that metaphors and analogies, and 

their esthetic impact, are essential to the creative process, be it in Sciences as 

well as in Arts.
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1. Introduction

Drawing comparisons between Brains and Computers has been a long intellectual 
exercise carried out by Philosophers, Psychologists, Mathematicians, Physicists, Computer 
Scientists and Neuroscientists. While some authors have suggested that this is a vacuous 
discussion (they assume that brains are “obviously” computers), others believe that there 
are instances in the functioning of both systems that do not allow this easy jump to 
conclusions, meriting further analysis. Some of the confusions come from the fact that, 
according to some authors many researchers do not understand the fact that behaving 
intelligently does not mean being just an information processor (because computers seem 
to behave intelligently using processors it does not mean that “intelligence” and 
“information processing” are equivalent; opinion articulated by psychologist Robert Epstein 
assay “The empty brain” 2016). Others, however, think that the assignment of a name such 
as “computational system” to the brain is limiting and biases the way in which we see brain 
processes occurring, e.g., consciousness, awareness, or simply “making sense of the world.” 
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In this context, we  think that re-visiting the Brain-Computer 
analogy is still a very valid endeavor. Indeed, based on the 
Research Topic “Current Thoughts on the Brain-Computer 
Analogy—All Metaphors Are Wrong, But Some Are Useful” this 
Special Issue gathers 12 articles that deal with these problematics, 
all showing that the subject (or the debate) is still very much alive.

1.1. The research topic

From the very beginning, it was clear to us that the project was 
to be constructed according to the architecture of a network, since 
the main concepts around which it was conceived were 
interconnected at various degrees. We reasoned that the structure 
of such a network would favor “information” to be exchanged 
among nodes (disciplines, approaches, articles). This useful 
approach allowed us to view our subject (brain) and the 
approaches taken to study it as two manifestations of a similar 
phenomenon, and the reticular interconnection of nodes (ideas, 
approaches or physical entities) as the graphical expression of 
these connections.

The topics and concepts that we  saw as the “nodes of the 
network,” and which formed the foundation of the project, were 
the following: Conceptual points (Philosophy); Network Science; 
Complex systems (self-organization); Neural Networks and 
Computational Neuroscience (Artificial neural networks); 
Computer Science (distributed-centralized architectures; Church-
Turing thesis; computational complexity); Information theory 
(reliability-error checking; efficiency-vs-speed of information; 
information asymmetry); Game theory (decentralized neural 
architecture; asymmetric information distribution); Quantum 
brain—quantum computer; Artificial Intelligence (AI) and 
Artificial Life; Experimental and theoretical Neuroscience; brain 
evolution (evo-devo).

The historical development of the field, lead to the “obvious” 
realization that knowledge derived from Network Science (e.g., 
work by A-L. Barabasi, MEJ Newman, DJ Watts, and others) could 
contribute to understand how the brain works, interacts, manages 
task flexibly, and the underlying involvement of synaptic 
distribution, density and strength. Moreover, it has become clearer 
over time that network evolution could shed light on the 
evolutionary history of neural network architecture (and its 
governing principles; see for instance, Sterling and Laughlin, 
2017). The subject has been treated from diverse points of view, 
derived from the application of different intellectual approaches 
(cellular neuroscience, computational modeling, connectomic 
analysis, philosophy of neurosciences, etc.). These different 
approaches suggested alternatives views of the roles of networks 
in the functionality of the brain. Most of them would deal with the 
general problem of representation, though more recent 
developments have changed the focus on the flow of information 
(the routing). In this context, as we will see in one of the SI papers, 
the contribution by D. Graham identifies the mode(s) of function 

of the internet network as a new frame of reference to understand 
(aspects of) brain function.

Another essential issue related to network evolution 
we wanted to address in this SI was the role of self-organization 
and complex systems in shaping brain (any brain) architecture and 
its evolution (e.g., works by I. Prigogine and G. Nicolis, 
C. G. Langton, S. Kauffman, S. Kelso, P. Bak, S. H. Strogatz, 
C. Gershenson and F. Heylighen, R. Solé, and many others). 
Concepts such as “emergent properties” or “organizational levels” 
come to mind as relevant here.

Finally, being well aware that the relationships between Brain 
and Computer encompass a vast spectrum of topics from Natural 
Sciences, Mathematics, Computer Science, Psychology and 
Philosophy, we needed to narrow our scope: some of the topics 
we  opted not to deal with were Consciousness, Behavior, 
Language, and Culture.

Before dealing with the articles presented in this SI (see 
Table 1), and what they contribute to the debate, we revisit some 
critical, and necessary, concepts/topics: machine(s), metaphor and 
analogy in science, and brain(s). In the following text, the 
references belonging to this Special Issue are identified by a (*) as 
a superscript of the year of publication.

1.2. Semantics: Concepts and definitions

“I PROPOSE to consider the question, ‘Can machines think?’ 
This should begin with definitions of the meaning of the terms 
‘machine’ and ‘think’” (Turing, 1950). No doubt, Alan Turing had 
a clear understanding of the importance of semantics in this 
context. Likewise, all Authors and Editors of this Special Issue 
recognize semantics as a crucial concern in the brain-computer 
analogy debate.

Indeed, the authors identify a number of terms whose current 
definitions are “problematic,” and need therefore to be taken with 
caution. First and foremost, is the definition of “computer” (Brette, 
2022*; Richards and Lillicrap, 2022*). And the list continues with 
“computing” and “recursion” (Danchin and Fenton, 2022*), 
“algorithm” (Brette, 2022*; Richards and Lillicrap, 2022*; Roli 
et  al., 2022*), “computable function” (Richards and Lillicrap, 
2022*), “robot,” “program,” and “software” (Bongard and Levin, 
2021*), “information” (Cobb, 2021*; Gershenson, 2021*; Danchin 
and Fenton, 2022*), “Artificial Intelligence” (Roli et al., 2022*), 
“intelligence” (Gershenson, 2021*), “cognition” (Fraser 
et al., 2021*).

In the following, we are focusing on two specific, fundamental, 
issues: the definition of “machine,” and the distinction between 
“metaphor” and “analogy.” As for the former, in this Special Issue, 
Cobb mainly deals with images of the brain in history, and 
Bongard/Levin express their concern about an “outdated” view of 
term machine. In this paper, we  follow the history of how 
“different kinds of machines” have best represented the brain. As 
for the latter, the distinction between metaphor and analogy is 
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only touched on by Brette and Gomez-Marin. Consequently, 
we deem necessary to have a more detailed description of these 
concepts, which we deal with in turn, and offer a revised definition 
for the latter.

1.3. Machine(s)

Among neuroscientists there is a general opinion (sustained 
over decades of research) that what the brain “is” depends on how 
you  study it. We  live in a mechanical age, so we  study it as a 
machine. In this context, we should question ourselves, upfront, 
what machines are and how our view of them has changed over 
time. In this SI, Cobb and Bongard/Levin introduce us to the ways 
we came to understand machines, in the past and nowadays. The 
underlying rationale for discussing “machines” is that the method 
of study has determined always what we have learned about them 
and how we  have transferred these methodologies to study 
the brain.

For a long time, brains have been assimilated to certain kinds 
of “machines.” The idea can be traced back, for a solid articulation, 
to the Cartesian view of the World, understanding machines as 
any physical system capable of performing certain functions. 
Descartes’ body organs operate in purely mechanical fashion, and 
in this proposal, Descartes “creatively” adapted previous theories 
(Aristotle, Galen, etc.) to his own mechanistic program 
(Hatfield, 2012).

The form the machine analogy has taken over the years has 
suffered many transformations, adopting at every time the 
dominant mechanical view of the world (hydraulic, electrical or 
informational). In this SI, Cobb has revisited some of the historical 

views, with Bongard/Levin adding a perspective that includes 
recent developments in Artificial Intelligence. Interestingly, with 
the 20th century advancements in molecular biology, the machine 
analogy has been transferred from the whole tissue to the 
biochemical components that control its different functions. In 
this sense, the brain is equated to a soup/stew of highly 
coordinated chemical ingredients (molecular machines) that, 
ultimately, enable our rich psychological experiences. The whole 
field of neurochemistry, which foundations were laid in Europe, 
notably France and Germany, in the late 18th and early 19th 
centuries, with an important momentum gained in the 60 and 70’s 
of the 20th century (Boullerne et  al., 2020) is based on the 
assumption that interrelating chemistry and function in the 
nervous system is a most productive avenue to understand the 
brain (e.g., Brady et al., 2011).

From a functional perspective, over time our view of the brain 
has been transformed from a rather passive, fluid conducting 
device, to a more active, information processing one (a device able 
to compute; calculate in the original meaning). The computer 
(originally a person able to “compute” operations) was, and is in 
good part, understood as a mechanical device with certain 
properties (ability to store, retrieve, and process data). At this 
stage, it is relevant to consider that in spite that the English word 
“computer” is meant to signify (programmable machine that can 
store, retrieve, and process data; Encyclopedia Britannica) the 
different Romanic languages retain the original meaning of 
computers as a person who either organizes or computes datasets 
(e.g., “ordinateur, ordenador,” in French and Spanish). In any case, 
we now universally use the term as meaning a device, usually 
electronic, that processes data according to a set of instructions. 
In this context, it is worth to remember that a more precise 

TABLE 1 The articles in the Special Issue.

Article(*) Authors Title

0 Matassi G. and Martinez P. (**) The Brain-Computer Analogy – “a Special Issue”

1 Cobb M. A Brief History of Wires in the Brain

2 Gomez-Marin A. Commentary: Metaphors We Live By

3 Chirimuuta M. Artifacts and levels of abstraction

4 Brette R. Brains as Computers: Metaphor, Analogy, Theory or Fact?

5 Bongard J. and Levin M. Living Things Are Not (20th Century) Machines: Updating Mechanism Metaphors in Light of the Modern 

Science of Machine Behavior

6 Richards B. A. and Lillicrap T. P The Brain-Computer Metaphor Debate Is Useless: A Matter of Semantics

7 Fraser P., Solé R. and De las Cuevas G. Why Can the Brain (and Not a Computer) Make Sense of the Liar Paradox?

8 Roli A., Jaeger J., and Kauffman S. A. How Organisms Come to Know the World: Fundamental Limits on Artificial General Intelligence

9 Danchin A. and Fenton A. A. From Analog to Digital Computing: Is Homo sapiens’ Brain on its Way to Become a Turing Machine?

10 Davis M. The Brain-As-Computer Metaphor

11 Gershenson C. Intelligence as Information Processing: Brains, Swarms, and Computers

12 Graham D. Nine Insights From Internet Engineering That Help Us Understand Brain Network Communication

(*): The articles’ numbering in this Special Issue, from 1 to 12, is the one also used in the main text, and in Figure 1. (**): this paper.
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characterization of the computer was given early on by Mahoney 
in his historical review of computing in which the computer is 
being specifically defined as a fundamentally tripartite structure, 
which reflect the contributions of three historical disciplines 
concerned with the nature of this “machine/device” (electrical 
engineering; computer science and software engineering). 
Moreover, Mahoney clearly stated what those contributions were 
in the summary sentence: “between the mathematics that makes 
the device theoretically possible and the electronics that makes it 
practically feasible lies the programming that makes it intellectually, 
economically, and socially possible” (Mahoney, 1988).

Interestingly, and as a result of the inception of the information 
age (in the 1940’s), where information content and logical 
operations were introduced by logicians such as Alonzo Church 
and Alan Turing, the most salient analogy for the structure and 
function of the brain has been the computer, an instantiation of 
the so-called Turing machines (TM). The focus has changed from 
the instantiation of the machine to the underlying operative. In his 
seminal 1950 paper, Turing describes “machines” as those artifacts 
produced by “… every kind of engineering technique,” and suggests 
to identify them with “electronic computers” or “digital computers,” 
given the interest in his historical time in those devices (Turing, 
1950). He gives a definition of computer as a finite state machine 
(a mathematical model of computation). An extended quote from 
Turing seems appropriate here.

"A digital computer can usually be regarded as consisting of 
three parts: (i) Store [of information] … corresponding to the paper 
used by a human computer … [and] … the book of rules ", (ii) 
Executive unit [carries out calculations], (iii) Control [handles the 
correct use of instructions]. … digital computers … fall within the 
class of discrete state machines. … This machine could be described 
abstractly as follows. The internal state of the machine (which is 
described by the position of the wheel) may be q1, q2 or q3. There is 
an input signal i0 or i1 (position of lever). The internal state at any 
moment is determined by the last state and input signal according 
to the table [of instructions]. … These are the machines which move 
by sudden jumps or clicks from one quite definite state to another. 
… the digital computer … must be programmed afresh for each new 
machine which it is desired to mimic. This special property of digital 
computers … is described by saying that they are universal 
machines."Needless to say, not all brain-computer metaphors 
require traditional TM or von Neumann architectures. We now 
have parallel or quantum computing, for instance, and these 
modalities have enriched our view of what computers can do (see 
Kerskens and Lopez-Perez, 2022, suggesting that our brains use 
quantum computation). However, one particularly persistent (and 
relevant here) view of computing and brain functions emphasizes 
the parallel architectures that both utilize, breaking up problems 
into smaller units that are executed by different components, all 
communicating through a shared memory. Thus, when comparing 
computers and brains, a common inference is that both systems, 
essentially, rely on parallel processors. This is not an accurate 
representation of the similarities, and for a number of reasons. (i) 
Brains and computers use different orders of magnitude (6 or 7) 
of independent (computing) units. (ii) While processors in a 
computer are “all purpose,” the human brain has specific areas 
specialized in processing different kinds of input. (iii) There are 
big differences in reliability and adaptability between brains and 
computers (a concept linked to that of “reprogrammability” in 
both systems), where brains information-processing systems are 
intrinsically “noisy” (Faisal et  al., 2008) and this explains the 
differences in reliability and adaptability between them and the 
computers. (iv) Brains are fast at recognizing patterns from 
complex data, which (in many cases) are not possible by massive 
parallel computing systems (Hawkins and Blakeslee, 2004). These 
factors seem to suggest that parallel processing in the brain is 
never “truly” parallel and that reprograming in brains and 
computers rely on different network “reconfiguration” strategies 
(re-routing in machines versus neural plasticity in living systems). 
As the needs arise (e.g., “landscape modifications”), the 
adaptability of biological systems (e.g., brains) is a unique property 
derived from the plasticity of cell and circuit configurations, and 
a result of both genetic and epigenetic factors controlling birth, 
death and connectivity of brain neuronal sets.

In the following, we  return to the processing system and 
provide an “accessible” description of a Turing machine (TM) that 
should be useful to understand the metaphor used for the brain. 
Briefly, a TM, or an “automatic machine” as Turing called it 
(Turing, 1937), is an abstract idealized model of a simple kind of 

FIGURE 1

The Special Issue at a glance. The figure is a kind of [0,1] matrix 
that describes the 12 articles in this Special Issue by means of 20 
concepts (keywords) whose presence is denoted by a dot. The 
external column shows the number of Articles per concept (ND-
A), the external row the number of Concepts per articles [ND-C; 
i.e., the Node Degree (ND), the number of links per node, in the 
corresponding bipartite graph, not shown]. Articles are as follows: 
Cobb (1), Gomez-Marin (2), Chirimuuta (3), Brette (4), Bongard-
Levin (5), Richards-Lillicrap (6), Fraser (7), Roli-Jaeger-Kauffman 
(8), Danchin-Fenton (9), Davis (10), Gershenson (11), Graham (12). 
Abbreviations: TM-Turing machine; AI-Artificial Intelligence; 
ALife-Artificial Life.
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digital computer. The machine input is a string of symbols each 
one of them carried by a single cell on a linear tape. The machine 
possesses some sort of read-write scanning head that considers 
one cell at a time. It is an automatic machine (i.e., at any given 
moment, its behavior is completely determined by the current 
state and symbol, the “configuration,” being scanned). It is a 
machine capable of a finite set of configurations. A finite set of 
rules (i.e., the program representing the algorithm) instructs the 
machine what to do in response to each symbol (i.e., erase, write, 
move left, move right, do not move). In principle, for any function 
that is computable (i.e., a function whose values may be computed 
by means of an algorithm), there is a TM capable of computing it. 
This logically implies the property of imitating another machine, 
meaning that there is a Universal Turing Machine (UTM) capable 
of simulating any other TM performing different tasks, by reading 
the corresponding set of rules from the tape. This is the theoretical 
model of a programmable computer (for more details on TM-UTM, 
see Gershenson, 2021*; Danchin and Fenton, 2022*; Richards and 
Lillicrap, 2022*).

Given the definition of a TM, it soon became clear that the 
brain (or mind) could be equated to a computational system very 
similar to a TM, and with many of the mental processes very 
similar to computations performed by a TM. Some authors 
consider that this identification of brains with TM is too strong, 
and thus, an adherence to it is called the “hard position.”

This “hard position” is being criticized by other authors saying 
that neither the principles, nor the materials or the way they are 
utilized (or organized) in a brain can be equated to a TM, except, 
perhaps, in the way both perform arithmetic operations (some 
authors deem the whole comparison “vacuous”; see Epstein, 
2016). We are not going to delve on this problematic here, just 
want to stress the enormous influence that Turing machines have 
had, as computational neuroscientists have maintained (not all), 
for the last 80 years, in the view of brains as computer (working as 
a TM). This model was vindicated early on when neuroscientists 
realized that neurons were performing their physiological roles, 
firing action potentials, in a “all or none” fashion. This view was 
mostly promoted by Warren McCulloch and Walter Pitts in 1943, 
who also saw neural circuits in the brain as circuits of logical gates. 
Modern neuroscience has revealed more complex firing patterns, 
as well as complex patterns of firing regulation, adding nuances to 
the original McCulloch-Pitts view.

In the comparison between computers and brains, the 
semantics issue has often been raised, in one form or another. In 
particular, in the 80’s John Searle asked the question: “Can a 
machine ever be  truly called intelligent?” (Searle, 1984). The 
question was encapsulated in the well-known “Chinese room” 
argument. It suggests that however well one programs a computer, 
nonetheless the machine does not understand Chinese; it only 
simulates that knowledge, and therefore this behavior cannot 
be  equated with intelligence. Searle argues that his thought-
experiment underscores the fact that computers merely use 
syntactic rules to manipulate strings of symbols, but have no 

understanding of their meaning. The issue of “meaning” is not 
further explored here, though we recognize its enormous interest. 
Searle’s main conclusion was that passing the “Turing Test” is 
inadequate as an answer (see also Cole, 2020).

All in all, in spite of the historical fortunes (and misfortunes) 
of the brain-computer analogy, the use of this “metaphor” is 
widespread, a testimony of which can be found in the different 
papers of this special issue. The subject remains fertile and open 
for further discussions.

1.4. Metaphor and analogy in science

The definitions of metaphor and analogy, at least in English 
dictionaries and encyclopedias, serve well to illustrate how 
muddled these concepts still are, in spite of the massive literature, 
in both Science and Humanities, devoted to them. A telling 
example comes from the Merriam-Webster in which metaphor is 
defined as “a figure of speech in which a word or phrase literally 
denoting one kind of object or idea is used in place of another to 
suggest a likeness or analogy between them.”

The definition of the two concepts has been “adapted” in 
different branches of human knowledge. Here we  are only 
concerned with the meaning(s) of Metaphor and Analogy (M&A) 
in (western) scientific thought. As we will see in the following 
sections, in Science, and also in this SI, M&A are used as 
synonyms, yet they are not. Aware of this, in the title of this 
Research Topic (Current thoughts on the Brain-Computer 
analogy—All metaphors are wrong but some are useful) 
we intentionally, and provokingly, used metaphor and analogy as 
synonyms; and it is precisely in Science that the distinction is 
more conspicuous. This is the rationale for discussing in detail the 
issue in this section.

It is important to note, upfront, that some argue that metaphor 
and analogy have actually no place in science (for a discussion see 
Haack, 2019; Reynolds, 2022), though others claim that M&A are 
essential for scientific creativity (a position sustained in this 
article). According to Ziman “… scientific theories are unavoidably 
metaphorical” (Ziman, 2000), and it has been suggested that they 
are “the basis of our ability to extend the boundaries of human 
knowledge” (Yohan, 2012). Moreover, the aptitude for metaphorical 
and analogical reasoning is an essential part of human cognition. 
Undeniably, M&A have been a powerful way to communicate 
knowledge and consequently a powerful tool in education and 
learning. Just think of how many times we  use metaphorical 
language to convey concepts to students in our own teaching 
experience (Kovac, 2003). Scientific M&A can guide scientific 
discovery, hypothesis and theory, and plays also an important role 
in adapting scientific language to the world. As Kuhn put it 
“Metaphors play an essential role in establishing links between 
scientific language and the world” but what is crucial (see also 
section 3) is that “… Those links are not, however, given once and 
for all” (Kuhn, 1993). Then choosing the “right” metaphor may 
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be  regarded as part of scientists/teacher work and ultimately 
becomes a form of art (Haack, 2019). In the following, we discuss 
M&A in more detail, given the relevance we assign to them in the 
context of discussing our current images of the brain.

1.5. Metaphor

The literature on metaphor is overwhelming and definitions 
abound. Robert R. Hoffman reasons that scientific metaphors 
appear in a variety of different forms and serve a variety of 
functions, and it makes a rather exhaustive list of them (Hoffman, 
1985). One example for all, the “Tree of Knowledge.” In its various 
flavors over the centuries, it is certainly one of the founding 
metaphors of human civilization, not only of Science (Lima, 
2014). And, to an evolutionary biologist (like the two authors of 
this paper), there is hardly a more fundamental metaphor than the 
Tree of Life, which Darwin, and Lamarck (1809) before him, used 
to illustrate his theory of descent with modification and depicted 
in his “Diagram of diverging taxa” (Darwin, 1859, pp. 116–117 in 
6th edn). Indeed, the tree metaphor has been used in evolutionary 
biology ever since. However, and most notably, based on the 
regained awareness of the evolutionary impact of the phenomenon 
of gene flow between species (a.k.a. Horizontal/Lateral Gene 
Transfer) less than three decades ago, a new metaphor has 
emerged to account for the diversity of species: The Network of Life 
(Doolittle, 1999; Martin, 1999; Ragan, 2009). Incidentally, as an 
historical note, contrary to common knowledge, the network 
metaphor predates that of the branching tree. Indeed, it is dated 
1750 and credited to Vitaliano Donati, whereas the first use of the 
tree metaphor is attributed to Pallas in 1776 (cited in Ragan, 
2009). The example of the use of Trees and Networks in 
evolutionary biology is mentioned here specifically to emphasize 
that the two metaphors are complementary; we  consider this 
position as pivotal in our review essay for both trees and networks 
have been specifically used in modeling our ideas of the brain and 
its evolution (see also section 3).

As to the definitions of metaphors in science, for the sake of 
brevity, we single out two of them (JC Maxwell, and Lakoff and 
Johnson) adding three illustrative examples for a better  
understanding.

James Clerk Maxwell wrote “The figure of speech or of thought by 
which we transfer the language and ideas of a familiar science to one 
with which we are less acquainted may be called Scientific Metaphor” 
(Maxwell, 1870). This would refer to a “logical semantics” view of 
metaphors, very much used in science and everyday life.

However, and in the classical definition by Lakoff and 
Johnson, the concept of “mapping” is also introduced. This leads 
them to state that “The essence of metaphor is understanding and 
experiencing one kind of thing in terms of another” (Lakoff and 
Johnson, 1980). And also introduce the different idea that the 
“Metaphor is the main mechanism through which we comprehend 
abstract concepts and perform abstract reasoning … Metaphors are 
mappings across conceptual domains” (Lakoff, 1993a). Hence, 
metaphors “become” conceptual tools (aids in understanding). 

Therefore, as Humar put it “A metaphor links two domains by 
mapping attributes from one onto the other. Thus, metaphor is an 
act of transferring … [where] … the key terms, ‘target’ and ‘source’, 
were introduced by Lakoff and Johnson … For instance, the 
biological metaphor ‘genes are text’ links the source ‘text’ and the 
target ‘genes’” (Humar, 2021). Black (1962) points out, in this 
context, how similar is the “standardized” Oxford English 
Dictionary (OED)1 description of metaphor to the one described 
above: “The figure of speech in which a name or descriptive term is 
transferred to some object different from, but analogous to, that to 
which it is properly applicable; an instance of this, a 
metaphorical expression”.

Interestingly, the etymology of the term “metaphor” originates 
from the ancient Greek noun “metaphora” (μεταφορά), which is 
derived from the verb “metapherein” (μεταφέρειν), originally 
meaning “to transfer,” “to transform.” Or else, derived from μετα 
(over, beyond) and πηερειν (to carry). It all depends on what 
we mean by “transfer” or “carry beyond” in the above definitions; 
more precisely we may ask: What is being transferred?

Before delving into the next relevant concept of analogy, 
we need consider another rather problematic term which is very 
often linked or likened to metaphor: the concept of “model.” 
Often, in the scientific literature there is no clear distinction 
between model and metaphor. In fact, we think that a distinction 
needs be made, for clarity. Contrary to a metaphor, a model (a 
conceptual model) has for us a narrower scope and, being a 
hypothetical representation of a system, it aims at simulating and 
understanding reality (e.g., a biological model; see also Ziman, 
2000). Moreover, “… a model is, in its etymological and technical 
sense, a substantive thing which is the best or ideal representative of 
something else. All other uses of the word “model” are metaphorical 
extensions of this basic meaning” (Hoffman, 1985). Therefore, 
we see models as methods or representations aimed to understand, 
and predict, specific patterns.

To complete this section, we would like to propose a “concept” 
of metaphor that does not require, but accepts, the use of the 
mapping concept (but see section 1.6, below). The type of 
metaphor we have in mind is founded on a visual perception. It is 
the visual image that is the driver for scientific insight and 
provides educational power. As an example, we  identify three 
metaphors that best illustrate this idea: Adaptive Landscapes by 
Wright (1931), Epigenetic Landscapes by Waddington (1957), and 
the Gene Regulatory Network by Davidson and Peter (2015). For 
a recent, and more extensive, discussion of the use of metaphors 
in science, with its dangers and pitfalls, we refer to the excellent 
new book by Reynolds (2022).

1.6. Analogy

Metaphors may be a source for “analogies” (and “similarities”) 
and may guide building models. Among the definitions of analogy 

1 https://www.oed.com/view/Entry/117328?redirectedFrom=metaphor&
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given in the OED there are the following: (a) A comparison 
between one thing and another, typically for the purpose of 
explanation or clarification; (b) Biology: The resemblance of 
function between organs that have a different evolutionary origin. 
Our focus here is on the first, more general, definition.

Atran (1990) traces back the concept to Aristotle and his effort 
to compare structures and functions between man, other animals 
and plants; “… Aristotelian life-forms are distinguished and related 
through possession of analogous organs of the same essential 
functions.” Along the same line, the concept of “analogue” was 
introduced in comparative anatomy in 1843 and defined as “a part 
or organ in one animal which has the same function as another part 
or organ in a different animal” (Owen, 1843, p. 374). Atran brings 
us to a more generalized version of the analogy concept, also 
mentions the Newton’s concept of “Analogy of Nature” (ibid p. 
232) and points out that this analogy “… combines two older ideas: 
the theological “Chain of Being” through which Nature seeks Divine 
Perfection, and the unity of causal pattern in the macrocosm and 
the microcosm.”

But it is in her classic book that Mary Hesse describes in 
considerable detail both scientific models and analogies (Hesse, 
1970). A dialog is imagined between two men of science: 
Campbellian, who argues that analogies and “models in some sense 
are essential to the logic of scientific theories” and Duhemist, who 
denies it. Campbellian identifies three types of analogies: positive, 
negative and neutral. Two physical objects or systems have positive 
analogy based on their shared “properties”: “Take, for example, the 
earth and the moon. Both are large, solid, opaque, spherical bodies, 
receiving heat and light from the sun, …” yet, the same objects may 
differ in a number of respects: “On the other hand, the moon is 
smaller than the earth, more volcanic, and has no atmosphere and 
no water … there is negative analogy between them.” Neutral 
analogies are “properties of the model about which we do not yet 
know whether they are positive or negative analogies.” Note that 
Campbellian too is concerned with semantics: “But first let us agree 
on the sense in which we are using the word model.” Thus Hesse tells 
us that analogies can have specific “values”: positive, negative 
or neutral.

Humar has posed a dichotomy between “structural 
metaphors,” such as those described above and functional ones. In 
fact, “functional metaphors … draw attention to a similarity in 
function between a source and a target are also found in ancient 
scientific literature” (2021). And again, Gentner and Jezioreski 
(1993) contend that an underlying idea pervades the use of any 
concept of analogy “The central idea is that an analogy is a mapping 
of knowledge from one domain (the base) into another (the target) 
such that a system of relations that holds among the base objects also 
holds among the target objects. In interpreting an analogy, people 
seek to put the objects of the base in one-to-one correspondence with 
the objects of the target so as to obtain the maximal structural 
match.” More so, broadly speaking, Hoffman sees the distinction 
between the two concepts as a chicken-and-egg problem, analogy 
regarded as the “psychological egg” and metaphor the “chicken” 
(Hoffman, 1985, p. 348).

Finally, we suggest the use of two criteria, the structural and 
the functional in the very definition of analogy (in science), and 
indicate the latter as its most characterizing property. In doing so, 
we do link this definition of analogy with the Lakoff-Johnson 
definition of metaphor and its associated action of “transfer.” 
We think this definition of analogy is more pertinent (of practical 
importance) here because metaphors are not intended to provide 
a solution to a given problem, they have no explanatory power. In 
contrast, analogies do have an explanatory power, and enable to 
make connections to understand the structure/function of a given 
system based on the knowledge acquired on another system. A 
telling example for the “explanatory role” of analogy is the transfer 
of themata [sensu Holton, in Ziman (2000)] between different 
disciplines—for example, the notion of a “code” from information 
theory to molecular genetics.

1.7. Brain(s)

A key concept in this Special Issue is obviously that of a Brain, 
but how to define one? The brain, defined in simple terms, 
according to the Encyclopedia Britannica is: “the mass of nerve 
tissue in the anterior end of an organism.” The brain integrates 
sensory information and directs motor responses. While this 
mostly represent the vertebrate condition, the substitution of 
nerves by neurons would be  still a valid assertion. Brains as 
centralized structures are old, dating back to the origin of 
bilaterian animals in the Ediacaran Period (571 to 539 million 
years ago; Martinez and Sprecher, 2020). The coalescence of 
neurons in a pole of the larvae/animal allows a better, centralized, 
coordination of functions, and in that sense, brains have been also 
equated to “central processing units” (CPUs). How centralization 
has happened and the conditions that drove their appearance have 
been discussed before (see Martinez and Sprecher, 2020) and do 
not need a further discussion here.

Our ideas of the brain have changed radically over the 
centuries, mainly due to the lack of proper understanding of their 
physical constituents and the modes of functioning. Explanations 
have used the current metaphors that conformed the mechanical 
world at every age (see Cobb’s historical account in this SI). Most 
recently, and with the instantiation of computing devices and the 
rise of the information age, computing and information processing 
have been our reference mark when thinking about brains and 
their activities. The current view originated early in the 20th 
century, when the brain tissue was systematically analyzed under 
the microscope. The presence of isolated cells organized as neural 
nets contributed to the view of the brain as a “machine” dedicated 
to compute and process information.

The intricate nature of brain connections (neurons and 
substructures) suggested the possibility that the brain is actually a 
connected set of wires, with complex architectures (see Cobb, 
2020). Moreover, the discovery of chemical and electrical 
connections between neurons reinforced the image of a giant 
electrical device with multiple, complex, switching mechanisms. 
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It is the emergence of the information age, with the first devices 
able to “compute” operations, that led to a new model of the brain, 
which in addition to conducting electrical impulses, was 
assimilated to a complex computing device.

The integrative model of the neurons, with empirical data 
and modeling processes, was developed by pioneer 
cyberneticians/neurophysiologists Warren McCulloch and 
mathematician Walter Pitts (among others). McCulloch’s brand 
of cybernetics used logic and mathematics to develop models of 
neural networks that embodied the functioning of the brain in 
the workings of the brain (Pitts and McCulloch, 1947). How 
accurate is this model? The question has been a subject of 
intense debate, to which some of the papers in this issue refer 
(e.g., Davis, 2021*; Fraser et al., 2021*). Ideas about how the 
information is processed, the speed of neuronal communication, 
the role of the neuron in integrating inputs, the routing of 
information and the correlation between firing patterns and 
brain activities (i.e., mental activities), have all contributed to 
the debate on the validity of using “computer” metaphors for 
understanding different aspects of neuroscience. The debate is 
alive today as it ever was.

At the base of our utilization of metaphors for specific organ 
systems is the consideration that the activities of the organ as 
properties “define” the realm (domain) and the contents of the 
metaphors. In this sense, brains are equated to computers because, 
at least according to some authors, they are actually performing 
“computing” operations (see Chirimuuta, 2022*). However, there 
is not a unified agreement on the use of this metaphor (others are 
explored in this SI by Gomez-Marin and Graham), and this has 
led to a heated debate on the meaningfulness of using some 
specific metaphors in neuroscience (see a later discussion in 
this paper).

One of the key issues discussed by many authors interested 
in modeling the brain and its functions revolves around the 
nature of information flow and how input signals are 
transformed into output behaviors, including the routing 
problem (see Graham, 2022*; in preparation)2. This is linked 
to the idea that our brain does not function as a linear 
processor in which the flowing streams of information, from 
input data to output realization (behavior) are not 
unidirectional, a “one-way street.” Instead, many authors 
consider that the output of the brain’s processing is the result 
of some “emergent properties” not linearly derived from the 
original inputs, properties that are not “just” the result of 
simple operations (addition/subtraction) of inputs. Some of 
the problems not solved by the different physical models of the 
brain are linked to the capacities for self-reference in human 
brains, or more generally the awareness of our own existence 
(consciousness). These problems are not easily dispatched by 
models of emergence, and a proof of the complexity that 

2 Graham, D. (2022). Nine insights from internet engineering that help 

us understand brain network communication. Front. Comput. Sci. (in 

preparation). 

self-reference models have in computer science is shown by 
Fraser et al. in this SI. Once more, mathematical descriptions 
and observable reality are not easy to compare.

2. The 12 articles in the special 
issue

In this section, we  present our own summaries of the 12 
articles (see Table 1) in this Special Issue (SI), each of which (but 
one) has been endorsed by the corresponding author(s).

In Figure 1 we propose a graphical picture, a sort of a snapshot 
of the entire Special Issue, based on 20 concepts (keywords) 
we have arbitrarily selected. It is a kind of [0,1] matrix in which 
the presence of those concepts in a given paper is denoted by a 
dot. The usefulness of such a representation is self-explanatory. In 
the following, article summaries are listed by Authors’ names (and 
number in Figure 1).

We have chosen as the opening article of this Special Issue 
Matthew Cobb’s historical account of the metaphors used over the 
centuries to describe the brain and try to understand 
its functioning.

2.1. Cobb (1)

In the opening article of this Special Issue, Matthew Cobb, 
the author of the excellent book "The Idea of the Brain" (2020), 
provides a detailed and instructive history of the “wiring 
diagram” metaphor of the brain and explores its role, together 
with that of its associated metaphors, on the conception of the 
brain over the last two centuries.

His historical account of the use of metaphors for brain 
functioning starts in the 18th century stemming from 
mechanics, and the discovery of electricity (telegraph). Cobb 
identifies a drastic shift toward the end of 19th century with 
the appearance of " … the telephone exchange, where messages 
can be flexibly routed." In the 20th century" … two kinds of 
wiring diagram – that of the animal body and that of the computer 
– entered into dialogue" (McCulloch and Pitts, 1943; von 
Neumann, 1958).

In the 21st century, the connectomic projects, which are 
aimed at a complete description of the structural connectivity 
of the central nervous system, became prominent, in many 
respects. Cobb criticizes these approaches mainly because 
they produce a static representations of the nervous system. 
He thinks that we should proceed from small circuits 
(controlling specific behaviors) to the whole map of neuronal 
connections, and gives the example of the lobster’s stomach, 
whose processes are controlled by a few neurons, which has 
been studied (excruciatingly) for a long time, and for which 
we still do not have a full understanding. Moreover, quite 
rightly, Cobb points out that knowing the genome sequence 
cannot by itself explain the “functioning” of the corresponding 
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organism, likewise " … the wiring diagram itself could not 
explain the workings of the human mind."

Cobb mentions what is regarded as the most recent 
metaphor for brain function “cloud computing or the internet.” 
On the one hand he acknowledges that " … it embodies 
plasticity and distributed function into our conception of the 
brain," on the other hand, he points out its limits if the notion 
of robustness is taken into account" … the internet is designed 
to function even if key parts it removed, whereas some aspects of 
brain function can be decisively disrupted if particular areas are 
damaged." Interestingly, the internet metaphor will 
be explored in great detail by David Graham, in the last 
contribution of this Special Issue.

As a cautionary note, Cobb warns us about the limits of 
the use of these metaphors to study brain function, mainly 
" … because of the plasticity and distributed function of most 
nervous systems." The notion of brain plasticity is central to 
this Special Issue and alludes to the plasticity that nervous 
systems shown in individuals during their lives and linked 
to the processes of learning and memory acquisition.

The next three articles deal with conceptual issues, and are 
written by A. Gomez-Marin, M. Chirimuuta, and R. Brette. They 
tackle the problem of whether there is any foundation for the 
comparison between brains and computers. In different ways, 
they do that by interrogating the interrelated questions of what is 
a computer, how it can be characterized and the limitations that 
these characterizations, and their associated metaphors, have in 
our current understanding of both brains and computers.

2.2. Gomez-Marin (2)

Gomez-Marin introduces us to the well-known book 
"Metaphors we  live by" (1980), authored by the cognitive 
scientists George P. Lakoff and Mark Johnson. In this seminal 
work, the authors provide a detailed analysis of the nature of 
metaphors, suggesting that metaphors, which were once known 
as mere “linguistic devices” (semantics), are mostly “conceptual 
constructions” that shape the way we think and act. In a sense, 
as Gomez Marin points out, the semantic role for metaphors is 
secondary to their conceptual (cognitive) nature. Following 
Lakoff (1993b), metaphor mapping (from one conceptual 
domain to another) would occur independently of their 
linguistic expressions, so there is a priority status given to their 
cognitive function, over those expressed in language terms. Or 
put it another way: the conceptual structure of metaphor is 
given more weight than the structure of metaphoric language.

In this context, Gomez-Marin revisits the analogy of 
computers and brains. After a brief historical overview of the 
most pervasive ways in which brains and computers have 
been visualized, Gomez-Marin draws our attention to the 
lesser-known images of the brain such as holograms and 
radio sets. The latter suggests the intriguing possibility that 
“brains would not create thoughts but receive and filter them.”

Gomez-Marin summarizes his appraisal of metaphors 
with the advice that we apply them as pragmatic tools with 
the proviso that we should be always vigilant to avoid what 
he calls falling into a “metaphorical monoculture”, which 
would become “a burden” rather than “a blessing.”

2.3. Chirimuuta (3)

In a suggestive parallel, Chirimuuta comments on the 
assertion by different authors that the brain and computers 
(or any other complex artifact) could be made tractable by 
using multi-level approaches. These approaches use top 
down, functional characterizations of systems to compliment 
bottom up reductionist strategies. The important assumption 
is that the brain decomposes into relatively autonomous 
levels of organization, similar to the hardware-software 
distinction in computing.

However, as appealing the simile can be, Chirimuuta 
contends that several limitations need to be accounted for. (1) 
Low-level components (neurons in the brain) are not mere 
“hardware implementors” in brain information processing. In 
computers, the elements maintaining the physical integrity of 
the machine and the components performing information 
processing are different. Whether this separation occurs in the 
brain is far from clear. (2) Computers and artifacts are assembled 
differently. While computers are designed to ensure that high 
level functionality is relatively independent of variations in 
hardware the functionality of the brain may well depend on low 
level details often assumed to be irrelevant to cognition. 
Interestingly, the two alternatives are, again, assumed to be the 
products of two constructive methods: engineering, in the case 
of computers/artifacts, and evolution, in the case of brains. 
Chirimuuta, however, is concerned about oversimplifying the 
principles that govern the construction and functionality of 
complex biological systems, such as the brain.

2.4. Brette (4)

The question central to Brette and Richards/Lillicrap (see 
below) is a semantic one, they ask "What is a computer?" 
Brette states that both in common and technical usage a 
“computer” is thought of as a “programmable machine.” Then, 
while pointing out that in computer science there is no formal 
definition of computer, he draws our attention on the concept 
of “program” defined as " … a set of explicit instructions that fully 
specify the behavior of the system in advance (“pro-”, before; 
“-gram”, write)."

Moreover, and quite appropriately, Brette discuss the 
notions of algorithm and computation in the brain. At this 
point, two deep questions, both from evolutionary and 
philosophical perspectives: "what is a brain program"? and 
"who gets to "program" the brain?" The reasoning those 
entail, seem to lead to a logical consequence " … The brain 
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might not be  a computer, because it is not literally 
programmable." Offering a definition of metaphor and 
analogy, Brette concludes that the brain-computer 
metaphor seems to be of little use, if not misleading, for it 
provides, according to the author, a reductionist view of 
cognition and behavior. This conclusion contrasts sharply 
with that of Richards and Lillicrap.

The next contributions deal with different problematics arising 
from the brain-computer comparisons; whether these are semantic 
misunderstandings (formal definitions in the field) or with 
misleading assumptions of what a computer or a brain can do. The 
papers by Bongard and Levin and Richards and Lillicrap deal with 
a fundamental problem that affect all definitions. The definitions 
of concepts bear very much the stamp of the fields in which they 
are generated (e.g., computer science, engineering or 
neurobiology). This straightjacket affects the way we conceive the 
possibilities of what a computer or a brain can do. Revised versions 
of those concepts should liberate the concepts from the “semantic 
constrains” that those fields have imposed in them. Here, brain, 
computer and machines are the three examples analyzed in detail. 
In the following three papers, authored by Fraser et al., Roli et al., 
and Danchin and Fenton the subject of software (the running of 
algorithms) and how brains and computers deal with processing 
information is clearly put. All authors discuss the idea of to what 
extent Artificial Intelligence should be able to reproduce behaviors 
of living organisms. Irrespective of the general optimism in the 
possibilities of Artificial Intelligence, these authors introduce some 
cautionary notes; which cast some doubts on the real possibilities 
of “imitating,” for instance, human behaviors. “Agency” and “self-
reference” become clear stumbling blocks. One last paper in this 
section, authored by Davis, suggests a series of questions posed by 
the analogy, asking himself (and the people in the field) to what 
extend they have been answered and what the answers would add 
to the debate.

2.5. Bongard and Levin (5)

It has been assumed for a long time that life and machines 
are fundamentally different entities, and that the former can’t 
be reduced to the latter (see Nicholson, 2013). Bongard and 
Levin contend that this dichotomy is mostly based on an old 
conception of machine, a 17th to 19th century vision that 
doesn’t account for modern development in disciplines such 
as Artificial Intelligence, Bioengineering, etc. In this context 
the authors re-visit the problem and ask: “does a suitable 
machine metaphor apply sufficiently to biology to facilitate 
experimental and conceptual progress?.” The path toward 
understanding this goes from a clear definition of what a 
machine is, and the properties characterize them, to a critical 
appraisal of what modern science and technology tells us 
about those properties. Do these properties are clearly 

demarcated between alive (or evolved) and engineered 
“things”? In view of modern developments in the above-
mentioned sciences it becomes harder and harder to sustain 
a clear separation between these two “systems”, with borders 
becoming more fluid as modern engineering progresses. The 
authors emphasize the fact that the analysis of properties 
once associated to the living beings in newly developed 
machines clearly show that the boundaries between those, 
once considered unmistakably different systems, are 
nowadays becoming blurred. Several, and very detailed, 
examples are provided. At the end they try to provide a new 
working definition of machine that can accommodate all of 
our newly gained insights.

2.6. Richards and Lillicrap (6)

Richards and Lillicrap emphasize the fact the word 
"computer" is given different definitions in different 
disciplines, and specifically they contrast the definition 
used in computer science with the one used by academics 
outside computer science. According to this argument, 
much of the debate about the brain-computer metaphor 
would be just a matter of semantic disagreement. End of the 
debate. Is it so?

While the common usage of "computer" is 
straightforward—"human-made devices (laptops, 
smartphones, etc) that engage in sequential processing of inputs 
to produce outputs"—this is certainly not so for the notion in 
computer science. The authors carry out an in depth analysis 
of the notion of "computer" in computer science, definition 
based on two other notions, those of "algorithm" and 
"computable function." An "algorithm" can be informally 
defined as a sequence of finite logical steps that mechanically 
lead to the solving of a problem. A “computable function” is 
"any function whose values can be  determined using an 
algorithm." The formal definition of algorithm was developed 
independently by mathematicians Alan Turing and Alonzo 
Church in 1936–19837, and the authors introduce the 
Church-Turing Thesis.

The authors provide a formal definition of “computer”: a 
"physical machinery that can implement algorithms in order to 
solve computable functions." They stress that this definition "is 
important because it underpins work in computational 
neuroscience and AI." The authors also describe the 
applications of this definition to brains and discuss its limits.

In sum, Richards and Lillicrap invite us to contrast the two 
definition of "computer," inside and outside computer science. 
If one adopts the definition from computer science "one can 
… simply ask, what type of computer is the brain?" However, " … 
if one adopts the definition from outside of computer science then 
brains are not computers, and arguably, computers are a very 
poor metaphor for brains." End of the debate?
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2.7. Fraser et al. (7)

One of the properties associated to (human) brains is the 
capacity of being conscious of its own existence. This seems an 
obvious difference to any other standard machine, including 
computers. Fraser and collaborators (see Fraser et al., this issue) 
make a good case for this, by appealing to self-reference 
statements, which cannot be resolved by computers. The case is 
clearly stated: verbal statements like “the sentence presently being 
uttered is false” are being “understood” by our brains. A computer 
presented with it, however, enters into an “endless loop,” with no 
resolution. How do brains deal with the above paradox? Fraser 
et al. present an elegant dynamical model, in which brains are 
composed of interacting units (modules) moving through time 
(the strange loop model). The model suggests a way the brain has 
for dealing/resolving the paradox, and this is by extending the 
analysis of the inconsistency over time (deconvoluting it along 
this axis). Temporalizing the problem, the brain is able to cope 
with the paradox. This avoids the system (the brain) to enter into 
the endless loops that would characterize the response of 
a computer.

2.8. Roli et al. (8)

Roli, Jaeger and Kauffman put the focus on the fields of 
Artificial Intelligence (AI) and Artificial Life (Alife). The 
notions of Natural Intelligence and Artificial General 
Intelligence (AGI) are contrasted, the latter being defined as 
"the ability of combining 'analytic, creative and practical 
intelligence'." The ultimate goal of AI and ALife would be to 
create a computational or mechanical system (an AI-ALife-
agent; e.g., a robot) able to autonomously (i.e., without 
human intervention) identify, appraise and exploit new 
alternative opportunities (dubbed affordances) so that to 
evolve and innovate in ways equivalent to a natural organism 
(autonomous Bio-agent). Affordances are here defined as 
"opportunities or impediments on [a] path to attain a goal." The 
authors argue that AI-and ALife-agents cannot "evolve and 
innovate in ways equivalent to natural evolution" for current AI 
algorithms do not allow such capability (broadly dubbed 
“agency”) since they cannot transcend their predefined 
space of possibilities (determined by the human designer). 
Moreover, they show that the term “agency” refers to 
radically different notions in biology and AI research.

As possible objections to their position, the authors 
mention (i) deep-learning algorithms and (ii) unpredictability 
of AI systems (e.g., playing chess, composing music); they 
address and dismiss both.

Finally, citing the work of William Byers and Roger 
Penrose, the authors distinguish the capabilities of Natural 
and Artificial intelligence using the notion of creativity in 
mathematics, creativity "which does not come out of algorithmic 
thought but via insight," which is not formal and involves 
shifting frames.

2.9. Danchin and Fenton (9)

Danchin and Fenton's paper correlates notions from 
neurobiology and computer science. Parallels are also drawn 
between computing, genomics and species evolution. The focal 
point of the paper, made explicit in the title, is built around the 
concept of Turing Machine (TM); an entire section of the paper 
is devoted to it. Noteworthy, the TM concept is also transposed 
into biology.

In order to explore the potential analogies between brain 
and computer, an issue of semantics is addressed first: the 
definition of computing. The differences between analog and 
digital computing are contrasted, with emphasis on the fact 
that analog computation implements of a variety of feedback 
and feedforward loops, whereas digital algorithms make use 
of recursive processes. Recursion is a central concept in this 
essay; it is a characteristic feature of the digital world of a 
TM. Recursion allows one of the steps of a procedure (e.g., set 
of rules of the TM machine) to invoke the procedure itself. "A 
mechanical device is usually both deterministic and predictable, 
while computation involving recursion is deterministic but not 
necessarily predictable." The brain does certainly some sort of 
computation, and "with remarkable efficiency, but this calculation 
is based on a network organisation made up of cells organised in 
superimposed layers, which gives particular importance to the 
surface/volume ratio … This computation belongs to the family of 
analog computation" (A. Danchin).

In an extremely useful Table, the key features of a Turing 
Machine, a digital computer, and the human brain are 
compared. The authors conclude that brains are not digital 
computers. However, they speculate that the recent (in 
evolutionary time) invention of language in human history, 
and writing in particular (maybe around 6,000 years ago), 
might constitute a step toward the evolution of "the brain into 
a genuine (slow) Turing machine."

2.10. Davis (10)

Davis' short paper suggest a range of questions that bear 
into our use of brain computer analogies. His focus is on the 
programing of brain processes. What kind of algorithms use the 
brain to navigate the world? Would computers be able to 
simulate those? Davis suggest that modern use of optimization 
algorithms (network training) should provide an avenue, 
improving over the longer (older) numerical computations. 
He ends up by posing a provocative hypothesis: consciousness 
could play the role of an “interface to the brain’s operating 
system.” Definitely, questions that still remain unresolved in the 
fields of computer and Artificial Intelligence.

The paper by Carlos Gershenson introduces a different 
perspective to this SI by bringing to the fore the notion of 
intelligence, and collective (swarm) intelligence in particular and 
by linking it to the theory of information processing.
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2.11. Gershenson (11)

The main take of the MS is stated in its Title: the focus is 
on Intelligence that is studied in terms of information 
processing. This approach could be applied to brains (single 
and collective), and machines.

A major issue arises immediately: There is no agreed 
definition of intelligence; semantics again. Gershenson 
defines intelligence in terms of information processing: "An 
agent a can be described as intelligent if it transforms information 
… to increase its 'satisfaction' … Examples of goals are 
sustainability, survival, happiness, power, control, and 
understanding." In previous work, Gershenson suggested to 
use measures of information as a tool to study complexity, 
emergence, self-organization, homeostasis, and autopoiesis 
(Fernandez et al., 2014); here he aims to extend this approach 
to cognitive systems, including brains and computers.

Information, a new semantic challenge. Gershenson 
presents a definition of information quoting the classic work 
of Shannon. Our attention is drawn on the meaning of the 
message being transferred; in this context, the failure of 
Laplace daemon (and Leibniz mill for that matter) is 
instrumental in identifying a crucial, and much-overlooked 
notion (not only) in Biology: the existence of different scales, 
different frames of reference, which (ought to) modify the 
models and hypothesis for a given phenomenon. "Even with full 
information of the states of the components of a system, prediction 
is limited because interactions generate novel information.”

A stimulating comparison is offered between the intelligence 
of “the single brain” and the collective intelligence of swarms 
(groups of humans, animals, machines). In the case of insect 
swarms, which can be described as information processing 
systems, the processing is distributed. Gershenson compares 
the cognitive architectures of brains and swarms, and identifies 
a key feature distinguishing the two: "the speed and scalability of 
information processing of brains is much superior than that of 
swarms: neurons can interact in the scale of milliseconds, … insects 
interact in the scale of seconds, … [in practice,] this limits 
considerably the information processing capacities of swarms 
over brains."

Finally, “intelligence as information processing” is used as a 
metaphor to understand its evolution and ecology. The 
author's arguments about ecological (selective) pressures 
with respect to the evolution of intelligence and the 
complexity of ecosystems may be agreed or not.

In conclusion, while " … the brain as computer metaphor is 
not appropriate for studying collective intelligence in general, nor 
swarm intelligence in particular … " nonetheless since " … 
computation can be  understood as the transformation of 
information (Gershenson, 2012), “computers”, broadly 
understood as machines that process information can be a useful 
metaphor … "

Graham extends the comparison of brains and computers by 
introducing a further element of complexity. It is not a computer 

that needs to be compared to a brain; in fact, the functioning of 
the latter is better represented by a collection of interconnected 
computers (internet). He points to a relevant issue that is not 
solved by the proponents those that advance the “strong” brain-
computer analogy, and this is the problem of information routing 
(how the information flows within the brain and the computers; 
how is directed from the input site to the output resolution).

2.12. Graham (12)

Daniel Graham analyzes the appropriateness of the 
computer–brain metaphor (see also Graham, 2021); 
instantiated as what he calls the “representational” view of 
neural components. According to Graham, the analogy is 
useful but incomplete. Although he agrees that the brain 
performs some “computations”, he posits that brains 
themselves can be seen as the result of both representation 
and communication activities. The emphasis on pure 
mathematical operations in the brain, along with their 
translations in neuronal patterns of electrical spikes, does not 
provide a complete view of what happens inside brains as 
they perform tasks. One of the reasons for not supporting the 
strict computer–brain functional (representational) analogy 
is that it does not deal with the key problem of information 
flow within the neuronal nets of the brain. The routing of 
information and the remodeling of circuits transcend the 
limits of the computer analogy. Graham suggests the internet 
as a better image of our (or any) brain architecture and 
functional properties. The internet is constructed with clear 
routing protocols, with an efficient distribution of information 
(termed the small-network configuration, Sporns and Honey, 
2006; but see also Hilgetag and Goulas, 2016 for a critical 
view) and the continuous remodeling of their connectivity 
(plus growth). These properties should remind us of the way 
our brains seem to be constructed and how they route 
information, from external/internal inputs to higher 
integrative circuits and on to motor systems. Integrating 
views of signal processing and routing strategies should give 
us a more nuanced view of the activities of brains.

3. Discussion

3.1. The brain-computer analogy: “Cum 
grano salis”

Much the same way as scientific hypotheses, metaphors and 
analogies are transitory, always adjusting to technological advances. 
The Brain-Computer is usually referred to as a metaphor, but it 
should be thought of as an analogy instead. Indeed, here we are 
suggesting that metaphor and Analogy are two distinct concepts 
and must not be used as synonyms (see also above). While we think 
that a salient feature of a metaphor is a “visual insight” (an evocative 
visual image), the concept of analogy would be mainly associated 
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to the idea of “function.” In short, metaphors have no explanatory 
power, whereas analogies do, for the knowledge acquired on the 
functionality of a system can be transferred to an analogous one, 
thereby leading to understanding and discovery.

The Brain-Computer analogy has raised a harsh debate in the 
scientific community; some took it literally whereas the very 
meaning of analogies implies only a partial overlap of properties. 
In fact, it is very possible that analogies or metaphors are 
inescapable (and used regularly as cognitive tools; sensu Lakoff 
and Johnson, 1980; Gomez-Marin, 2022). Metaphors are rooted 
in things we know and/or manipulate. In this sense the only way 
to grasp what many things are is by describing the phenomena in 
terms we  understand. In this process from “the physical 
phenomenon” to “the understanding of it,” a metaphor/analogy 
always arise. We hypothesize that we can claim “as original” only 
those things apprehended by the senses (always assuming that our 
senses are not tricking us). Metaphors might be the only things 
that we “comprehend,” and this is because they are rooted in our 
sensible experiences. Kuhn himself seems to acknowledge the 
importance of metaphors when he claims: “Metaphors play an 
essential role in establishing links between scientific language and 
the world. Those links are not, however, given once and for all. 
Theory change, in particular, is accompanied by a change in some 
of the relevant metaphors and in the corresponding parts of the 
network of similarities through which terms attach to nature” (1993).

In this context, the wrong question to ask is if metaphors and 
analogies are actually useful or misleading. Quite appropriately, 
Yohan (2012) points out that “… No one can claim to know how 
metaphors work … how we form them, and how we decide whether 
they are successful or not.” Along the same line, we do believe that 
it is totally irrelevant, to their role in science, whether metaphors 
and analogies are “right or wrong.” This attitude being best 
exemplified by the famous Niels Bohr’s horseshoe anecdote (many 
similar versions are available on the internet): A friend asked if 
he believed in it. “Absolutely not! Bohr replied, but they say it works 
even if you do not believe in it.”

Usefulness seems a more appropriate adjective for metaphors; 
being as successful as they provide clues to the phenomena 
under analysis.

Moreover, from the mathematician’s standpoint, but easily 
translatable to any scientific discipline, William Byers maintains 
that “many important mathematical ideas are metaphoric in 
nature” and emphasizes “the close relationship between metaphors 
and ideas. A metaphor, like an idea, arises out of an act of creativity” 
(Byers, 2010, p.  240). Moreover, Byers points out that “… In 
general, most sweeping conjectures turn out to be “wrong” in the 
sense that they need to be modified during the period in which they 
are being worked on. Nevertheless, they may well be very valuable. 
The whole of mathematical research often proceeds in this way—the 
way of inspired mistakes. … Ideas that are “wrong” can still 
be valuable.”

A number of articles in this SI deal with the use of metaphors 
in a specific area of science, the interphase between neuroscience 
and computer science. In this context it is important to emphasize 
once more that the metaphors are essential, but also transitory, in 

the sense that more, newer, data to the formulation of others (or a 
more refined version of previous) that seem more suitable at the 
moment. In addition, and in the absence of new data piling up, 
sociological or epistemic changes could also be, at certain 
moments, fruitful sources of new metaphors. Moreover, 
Gershenson reminds us that “different metaphors can be useful for 
different purposes … and in different contexts” within a discipline. 
Utilizing a unique metaphor (as we explain below) might not 
be  the most productive avenue to explain certain complex 
structures, for instance the brain.

In the preceding paragraphs, we have proposed two features 
that may be useful to characterize and differentiate metaphor from 
analogy. In our view, a metaphor develops from a visual image, a 
picture that serves as creative force for scientific insight. Again 
with reference to mathematics, Ivar Ekeland stresses the 
relationship between mathematical ideas and “certain pictures” 
and the power of those pictures “… of certain visual representations, 
in the historical development of science … It is a power, in the early 
stages, to initiate progress, when the ideas it conveys are still creative 
and successful, and it becomes, later on, power to obstruct, when the 
momentum is gone and repetition of the old theories prevents the 
emergence of new ideas” (Ekeland, 1988, p. 9).

As Denis Nobles put it “… Different, even competing, 
metaphors can illuminate different aspects of the same situation, 
each of which may be correct even though the metaphors themselves 
may be incompatible. … Metaphors compete for insight, and for 
criteria like simplicity, beauty, creativity … Metaphor invention is 
an art not a science and, as with other art forms, the artist is not 
necessarily the best interpreter” (Noble, 2006). To these views 
we subscribe fully.

As for analogy, we think that the criterion of “function” could 
be  regarded as its most characterizing property, a property 
endowed with explanatory power. For example, in this SI, Daniel 
Graham proposes internet as a new metaphor for the Brain. 
According to our definitions (see above), in the case internet 
works both as metaphor and analogy.

To end this section, a cautionary note is warranted. Metaphors 
may be  inevitable and necessary to Science, because of 
psychological factors associated to learning or the search for 
explanations (Hoffman, 1980). The alternative to using metaphors 
would be a crude description of facts. In the philosophy of mind 
(or our discussion here) this would imply a “pure” description of 
physiological states in the brain. Whether there is any “information 
content” attached to this description, the authors of this review 
think there is very little, if any. We do not envision a productive 
substitute for the use of metaphors in science.

3.2. Theories of the brain

We would like to emphasize here the importance of 
considering the brain as a structure that can be  analyzed at 
“different scales,” where functions might be  distributed in 
particular domains and with the involvement of different 
components. In this sense we believe that it is wrong to search for 
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“an ultimate THEORY of the brain,” since a better description 
would have to accommodate explanations on how these levels of 
architectural organization (including the varied set of functional 
domains) are established and integrated. As explained below, it 
may be more appropriate to explore “different theories of the brain,” 
perhaps a more suitable name for the exploratory endeavor 
we propose next.

In this context we  would like to bring about a different 
perspective for analyzing the brain-computer analogy and this is 
through a systems approach in which the different levels of 
organization are candidates for specific analogies. We think that a 
theory that tries to analogize components (or modules, see below) 
should be more productive that a single theory encompassing 
such a complex structure as the brain. The underlying assumption 
here is that brains are the (non-linear) sum of components 
(modules) that are juxtaposed to perform, or facilitate, certain 
mental tasks. This is not a gratuitous assumption, since current 
data in the neurosciences, has proven the modularity of many of 
the structures in the brain, all products of evolutionary history. 
From the commonalities of neuronal subtypes to the conservation 
of specific neuronal circuits or the distribution of cortical areas, 
the brains of many animals share structures that were selected for 
specific functions and that are now recognized as homologous 
across taxa (Schlosser, 2018; Barsotti et al., 2021; Tosches, 2021).

In fact, brains, as any other organ or tissue, are organized at 
different levels, with modular blocks contributing to the next one; 
this suggests a parallel discussion between analogizing brain 
structures and the more classical discussion of biological 
homologies across scales (proteins, cells, organs, etc.).

In this framework, the fact that brains are organized in a series 
of hierarchical levels allows us to re-focus our attention on finding 
analogies that best represent different scales (i.e., a computer at 
one level, a radio at another, a hologram below, and an internet 
above, etc.). This does not imply setting aside the problem of the 
brain as a whole, just that it could be more productive finding 
good (useful) analogies of those, lower level, modules involved in 
its construction; and use modules as recognized functional units 
(e.g., neurons or neuronal circuits). A cautionary note needs to 
be  introduced here: we  are not claiming any strong/rigid 
interpretation of the brain modularity since we understand that 
there are clear instances of distributed function, and plasticity, 
plus the shifting localization of representations of stimuli over 
time. In fact, it is the distributed and flexible organization of 
modules what allows us for the integration of levels.

In a sense, and as explained by Cobb, our hypotheses on brain 
development and function have depended, at every historical 
time, on the current knowledge of the system. Hydraulic or 
electrical images of the brain were suggested at the time when 
discoveries were made on these areas; within and without the 
body. Calculations and algorithms promoted computational ideas 
of the brain, though, later on, of the neurons themselves (including 
the more recent idea that single neurons are doing complex 
computations at the synapsis). Analogies, sometimes, are exported 
from one level of analysis to another, with the computing image 

of whole brains or “single” synapsis as an obvious example. 
Similarly, the network analogy flows from the local connection of 
a few neurons (the reflex arc) to areas of the brain involved in 
specific tasks, to the whole brain or swarms of them.

To sum up what is explained above, we would like to suggest 
a reappraisal of the use of our analogies, so we  can better 
understand how every level is organized and, importantly, how the 
integration of different modules at a particular level contribute to 
generate (emergent) properties observed at the next higher level. 
Moreover, we  would encourage the introduction of different 
analogies that best represent the different levels of construction 
(avoiding, perhaps, the trap of overarching analogies explaining 
every single component in a complex system). Surely enough, 
we should notice here that “parts” in the construction of the living 
organism can be attributed to chance (drift), to physical–chemical 
laws (self-organizing), to emergent phenomena or to adaptive 
processes. All of these, constructional, principles bear no 
relationship with our purely structural view of the organism. Here 
we base our suggestion on the analysis of structures per se, at many 
levels, but not about their developmental assembly. Perhaps this 
last approximation can be considered in the future, in refined 
forms of our analogical search.

3.3. Creativity in science

Why are we  interested in creativity in the context of this 
Special Issue? Because if we  ask “can computers think,” next 
we  ought to ask “can computers create.” And the very act of 
creation (be it in sciences or in the arts) stems from the awareness 
of the esthetic element. Reflection on creativity, and its sources, 
has a long history. While philosophers are far from a consensus 
definition of what creativity is and what it entails (see Erden, 
2010), there are some tenets that are commonly recognized as 
pertaining to the creative act (freedom, potential, originality, etc.). 
Moreover, some philosophers also recognize that creation, in fact, 
it is a process with some specific requirements (McGilchrist, 
2021): (i) a generative faculty (allowing ideas to come about; 
recognizing patterns, etc.) (ii) a permissive element (generating 
the conditions for the ideas to develop), and (iii) a translational 
disposition (the insights carried over for a period up to the 
moment of the final “creative act”). These are not, per se, 
components of other (non-necessarily creative) process such as 
problem solving. In the latter sense, it has been manifested that 
“there is no algorithm behind creative processes.” What many 
authors agree upon is the fact that metaphors expand your creative 
thinking, and in that sense, the analysis of metaphors becomes a 
key component in understanding creativity in science. But how?

The analysis of metaphors and analogies relies on the 
understanding of its sources. Creativity is an obvious candidate. 
But what is the source of “true creativity” … in science? 
Undeniably, the history of science tells us that chance has played 
and will play an important role in scientific creativity. Aside from 
orthodox views, more innovative paths have been explored in 
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recent times. This is a subject that bears an important place in our 
discussion about the brain-computer metaphor.

But first we need to define what creativity is and what is the 
suggested relationship between creativity and metaphors?

In formal and natural sciences, the issue of creativity has been 
thoroughly discussed mainly in Mathematics and Physics. The 
mathematician William Byers distinguished two types of thought 
in mathematics: algorithmic (based on logical operations) defined 
as trivial and profound (deep) thought, defined as creative 
(Byers, 2010).

Byers asks a number of deep questions “Could a computer 
be programmed to distinguish between the trivial and the deep?” … 
“Can a computer do mathematics?” … “Is mathematics 
algorithmic?.” Therefore, and inevitably, he  is confronted with 
“THE question” first addressed by Turing in 1950: “Can a 
computer think?,” which, he says “… is equivalent to the question: 
Is [human] thought algorithmic?” If, following Byers again, “human 
creativity involves ideas, ambiguity, paradox, depth, and complexity” 
an act of creativity (a very rare event indeed) might be analogous 
to a biological evolutionary event, since (as some authors have 
pointed out), it is impossible to predict, a priori, how ideas will 
unfold in the future. Ideas seem to unfold over time, through 
culture (Gabora and Kaufman, 2010).

The mathematician Henri Poincaré, in asking “what is 
mathematical creation?” proposed the following: “The 
mathematical facts worthy of being studied are those which, by their 
analogy with other facts, are capable of leading us to the knowledge 
… Among chosen combinations the most fertile will often be those 
formed of elements drawn from domains which are far apart … 
Invention is discernment, choice” (Poincaré, 1910). The theoretical 
physicist Paul Dirac, followed an even more unconventional path 
designating the potent role of esthetics in scientific creativity (see 
below). We  share the opinion of those authors who think 
metaphors to be  invaluable to scientific creativity in that they 
permit to explore uncharted lands and offer new perspectives for 
expanding scientific knowledge.

Here we propose to consider another aspect of creativity that 
we think to be highly relevant, but still not fully appreciated: it is 
the feeling of emotion, of amazement (émerveillement, in French) 
the researcher may feel in front of a phenomenon (though 
Socrates and Plato linked it already to wisdom). This feeling might 
be necessary and sufficient to awaken the scientist and illuminate 
his/her thoughts. Moreover, and probably facilitated by 
“émerveillement,” we would also like to suggest that creativity in 
science might depend on the integration of views arising from 
different disciplines (as many scientists have stated when asked 
about their own work). In this context, we would speculate that 
“transferring metaphors” from one field to another could be a 
good source of new ideas, thus propitiatory of a creative act. 
Metaphors as tools for understanding in one field should be able 
to illuminate other aspects of reality, in another field. This mental 
“transferring” could be  productive, and, thus lead to 
“understanding” of unrelated phenomena.

In the context of the Brain-Computer analogy the comparison 
between human creativity and “AI creativity” arises spontaneously. 
And, the debate as to whether AI does and will play a role in 
human creativity is undeniably timely.

Obviously, human creativity is influenced by cultural 
traditions (context), or through the connections between very 
different ideas (i.e., from different/distant fields). This might 
suggest some intrinsic difficulties in imitating (the process of) 
human creativity with AI.

In a rather trivial way, and following the assertion above, 
we can state that computers are not creative, unable to produce 
“acts of creativity,” since creation might not be  a pure 
algorithmic process.

Indeed, supporting the preeminence of human creativity, 
Byers (2010) writes “… mathematical thought can be simple and it 
can also be complex but mostly it is nontrivial. Computer thought, 
on the other hand, even though it may be  very lengthy and 
complicated, is essentially trivial.” Along the same lines, Roli et al. 
support the notion that creativity in mathematics “… does not 
come out of algorithmic thought but via insight,” based on the 
argument that AI algorithms (being human devised) cannot 
identify, appraise and exploit (adapt to) new “environmental” 
alternatives (called affordances), to new frames of reference (Roli 
et al., 2022*).

Advocates of the potential of AI describe its performance, 
either in autonomous creative processes or with human 
intervention, mainly in fields such as writing, music, and painting 
(e.g., Zylinska, 2020; Jukebox, https://openai.com/blog/jukebox/), 
but also in scientific discovery (e.g., protein fold prediction via 
machine-and deep-learning techniques; see Gil et al., 2014 and 
Callaway, 2020).

Other authors sustain a more optimistic view of AI 
creativity (e.g., Boden, 2003; Forbes, 2020). These authors, 
following tenets of classical psychology (e.g., Boden, 1992), 
view creativity as having different sources and, thus, classify it 
as: combinatorial (combination of familiar ideas; e.g., poetic 
images), exploratory (arising within cultural traditions; e.g., 
cooking recipes), and transformational creativity (older rules 
are broken; e.g., cubism). While combinatorial and exploratory 
components are imitable by AI, the possibility of 
transformational creativity in computing seems a bit more 
problematic. Breaking rules seem to be a capacity specific to 
humans, since in the final acceptance of those new rules 
depends on a “value judgement” (only those outcomes that 
satisfy some new needs are incorporated). Of course, the 
possibility of having evolving programs (with selective regimes) 
are now a reality and this allows the possibility of 
“transformation.” Here again value is an important selective 
factor, which can hardly be  implemented (nowadays) by 
AI. We should be reminded that critical thinking is still central 
to the creative process and, while humans are able to scrutinize 
their ideas/creations, computers cannot. All in all, these authors 
seem to suggest the possibility of finally exorcizing Cartesian 
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dualism while establishing that the brain is, perhaps, a 
wonderfully subtle machine.

In spite of these, sometimes, entrenched opinions, what every 
scientist seems to agree upon is that with the current state of AI, 
our “machines” capabilities for imitating human creativity is still 
quite limited nowadays, though the future can change our views 
quite rapidly. All in all, creativity should be incorporated as a key 
concept when discussing metaphors such as that relevant to this 
Special Issue.

To end this review essay, we think it is important to mention 
the role of beauty (and esthetics in general) in scientific creativity.

Creativity and esthetics go hand in hand. Evaluation of 
creativity always requires a judgment of beauty. For instance, and 
according to a Kant’s classical statement: “aesthetics is not the goal 
of creativity but it is its essential component.”

Its crucial role in science has been recognized by a number 
of great mathematicians and physicists: G. W. Leibniz, 
H. Poincaré, A. Einstein, G. H. Hardy, P. A. M. Dirac, M. Gell-
Mann, to name just a few. In 1910 Poincare writes “… the feeling 
of mathematical beauty, of the harmony of numbers and forms, of 
geometric elegance. This is a true esthetic feeling that all real 
mathematicians know, and surely it belongs to emotional 
sensibility. Now, what are the mathematic entities to which 
we attribute this character of beauty and elegance, and which are 
capable of developing in us a sort of esthetic emotion?” (Poincaré, 
1910). In a famous and often quoted sentence Dirac boldly stated 
that “… it is more important to have beauty in one’s equations 
than to have them fit experiment” (Dirac, 1963). And in 
G. H. Hardy’s words: “The mathematician’s patterns, like the 
painter’s or the poet’s, must be beautiful.” Finally, the pervasiveness 
of the esthetics approach to human knowledge is epitomized in 
two extraordinarily powerful lines by the romantic English poet 
John Keats: “What the imagination seizes as beauty must be the 
truth” (1817) and “Beauty is truth, truth beauty. That is all ye 
know, and all ye need to know” (1884; in Keats, 2015). The 
relationships linking computer science, creativity and esthetics 
are explored in a recent review by Yang and Lu (2022), in which 
the authors also propose a framework that uses computational 
methods to connect creativity and esthetics.

It is fairly obvious that the meaning of the concept of beauty 
differs greatly among cultures, and also among individuals; this is 
trivial. Indeed, the commonly accepted stance is that the notion 
of esthetic quality is elusive. But here lies the problem, as 
metaphorically illustrated by the famous Bruegel’s painting “The 
blind conducts the blind”; everybody is looking for the “absolute” 

definition of beauty, and exactly this is the mistake. In contrast, 
the most crucial point is that, as far as science is concerned, all 
meanings and definitions of beauty are equivalent, and they all 
fulfill the same goal: to show the way to scientific discovery. 
Beauty is impossible to define because it lies in the eyes of the 
observer? Sure, but … “It does not matter!” for the chances for any 
esthetic criterion to be effective are not negligible at all. Likewise, 
for metaphors and analogies.

Author contributions

All authors listed have made a substantial, direct, and 
intellectual contribution to the work and approved it 
for publication.

Acknowledgments

We thank Matthew Cobb and Alex Gomez-Marin for critical 
reading of the MS. We  also thank R. Brette, M. Cobb, 
M. Chirimuuta, A. Danchin, C. Gershenson, A. Gomez-Marin, 
D. Graham, M. Levin, B. Richards, A. Roli, and R. Solé for 
feedback on resumes of their articles. Thanks are also due to 
Marino Miculan for clarifying a number of concepts in computer 
science. GM wishes to thank most warmly Annalisa Pastore and 
Pierandrea Temussi for valuable advice and constant  
encouragement.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Atran, S. (1990). Cognitive Foundations of Natural History, Towards an 

Anthropology of Science. Cambridge, UK: Cambridge University Press.

Barsotti, E., Correia, A., and Cardona, A. (2021). Neural architectures in the light 
of comparative connectomics. Curr. Opin. Neurobiol. 71, 139–149. doi: 10.1016/j.
conb.2021.10.006

Black, M. (1962). Models and Metaphors, Studies in Language and Philosophy. 
Ithaca, New York, USA: Cornell University Press.

Boden, M. A. (1992). Understanding creativity. J. Creat. Behav. 26, 213–217. doi: 
10.1002/j.2162-6057.1992.tb01178.x

Boden, M. A. (2003). The Creative Mind: Myths and Mechanisms. Milton Park, 
England: Routledge.

Bongard, J., and Levin, M. (2021). Living things are not (20th century) machines: 
updating mechanism metaphors in light of the modern science of machine behavior. 
Front. Ecol. Evol. 9:650726. doi: 10.3389/fevo.2021.650726

https://doi.org/10.3389/fevo.2022.1099253
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://doi.org/10.1016/j.conb.2021.10.006
https://doi.org/10.1016/j.conb.2021.10.006
https://doi.org/10.1002/j.2162-6057.1992.tb01178.x
https://doi.org/10.3389/fevo.2021.650726


Matassi and Martinez 10.3389/fevo.2022.1099253

Frontiers in Ecology and Evolution 17 frontiersin.org

Boullerne, A. I., Foley, P., Turner, A. J., Johnston, G. A. R., and Beart, P. M. (2020). 
The origins and early history of neurochemistry and its societies. J. Neurochem. 152, 
8–28. doi: 10.1111/jnc.14839

Brady, S., Siegel, G., Albers, R. W., and Editors P. D. L. (2011). Basic Neurochemistry: 
Principles of Molecular, Cellular and Medical Neurobiology. New York, USA: Academic Press.

Brette, R. (2022). Brains as computers: metaphor, analogy, theory or fact? Front. 
Ecol. Evol. 10:878729. doi: 10.3389/fevo.2022.878729

Byers, W. (2010). How Mathematicians Think. Princeton, USA: Princeton 
University Press.

Callaway, E. (2020). It will change everything': DeepMind's AI makes gigantic leap 
in solving protein structures. Nature 588, 203–204. doi: 10.1038/d41586-020-03348-4

Chirimuuta, M. (2022). Artifacts and levels of abstraction. Front. Ecol. Evol. 
10:952992. doi: 10.3389/fevo.2022.952992

Cobb, M. (2020). The Idea of the Brain: A History. New York, NY, USA: 
Basic Books.

Cobb, M. (2021). A brief history of wires in the brain. Front. Ecol. Evol. 9:760269. 
doi: 10.3389/fevo.2021.760269

Cole, D. (2020). “The Chinese room argument,” in The Stanford Encyclopedia of 
Philosophy (Winter 2020 Edition). ed. E. N. Zalta. (Stanford, USA)

Danchin, A., and Fenton, A. A. (2022). From analog to digital computing: is 
Homo sapiens’ brain on its way to become a Turing machine? Front. Ecol. Evol. 
10:796413. doi: 10.3389/fevo.2022.796413

Darwin, C. (1859). The Origin of Species By Means of Natural Selection. London: 
Murray.

Davidson, E. H., and Peter, I. (2015). Genomic Control Process: Development and 
Evolution. New York, USA: Academic Press.

Davis, M. (2021). The brain-as-computer metaphor. Front. Comp. Sci. 3:681416. 
doi: 10.3389/fcomp.2021.681416

Dirac, P. A. M. (1963). The evolution of the physicists picture of nature. Sci. Am. 
208, 45–53. doi: 10.1038/scientificamerican0563-45

Doolittle, W. F. (1999). Phylogenetic classification and the universal tree. Science 
284, 2124–2128. doi: 10.1126/science.284.5423.2124

Ekeland, Y. (1988). Mathematics and the Unexpected. Chicago, USA: University of 
Chicago Press.

Epstein, R. (2016). Your brain does not process information and it is not a 
computer, Aeon. Available at: https://aeon.co/essays/your-brain-does-not-process-
information-and-it-is-not-a-computer

Erden, Y. J. (2010). Could a created being ever be creative? Some philosophical 
remarks on creativity and AI development. Mind. Mach. 20, 349–362. doi: 10.1007/
s11023-010-9202-2

Faisal, A. A., Selen, L. P., and Wolpert, D. M. (2008). Noise in the nervous system. 
Nat. Rev. Neurosci. 9, 292–303. doi: 10.1038/nrn2258

Fernandez, N., Maldonado, C., and Gershenson, C. (2014). “Information 
measures of complexity, emergence, self-organization, homeostasis, and autopoiesis,” 
in Guided Self-Organization: Inception. Vol. 9. ed. M. Prokopenko (Berlin 
Heidelberg: springer).

Forbes, A. C. (2020). AI: from expressive mimicry to critical inquiry. Artnodes 26, 
1–10. doi: 10.7238/a.v0i26.3370

Fraser, P., Solé, R., and De las Cuevas, G. (2021). Why can the brain (and not a 
computer) make sense of the liar paradox? Front. Ecol. Evol. 9:802300. doi: 10.3389/
fevo.2021.802300

Gabora, L., and Kaufman, S. B. (2010). “Evolutionary perspectives on creativity,” 
in The Cambridge Handbook of Creativity. eds. J. Kaufman and R. Sternberg 
(Cambridge, UK: Cambridge University Press), 279–300.

Gentner, D., and Jezioreski, M. (1993). “The shift from metaphor to analogy in 
Western science,” in Metaphor and Thought. 2nd Edn. ed. A. Ortony (Cambridge, 
UK: Cambridge University Press), 447–480.

Gershenson, C. (2012). “The world as evolving information,” in Unifying Themes 
in Complex Systems. Vol. VII. eds. A. Minai, D. Braha and Y. Bar-Yam (Berlin 
Heidelberg: Springer), 100–115.

Gershenson, C. (2021). Intelligence as information processing: brains, swarms, 
and computers. Front. Ecol. Evol. 9:755981. doi: 10.3389/fevo.2021.755981

Gil, Y., Greaves, M., Hendler, J., and Hirsh, H. (2014). Amplify scientific discovery 
with artificial intelligence. Science 346, 171–172. doi: 10.1126/science.1259439

Gomez-Marin, A. (2022). Commentary: metaphors we live by. Front. Comp. Sci. 
4:890531. doi: 10.3389/fcomp.2022.890531

Graham, D. (2021). An Internet in Your Head: A New Paradigm for How the Brain 
Works. New York: Columbia University Press.

Haack, S. (2019). The art of scientific metaphors. Rev. Port. Filos. 75, 2049–2066. 
doi: 10.17990/RPF/2019_75_4_2049

Hatfield, G. (2012). “Mechanizing the sensitive soul,” in Matter and Form in Early 
Modern Science and Philosophy. ed. G. Manning (Leiden, Netherlands: Brill). 

Hawkins, J., and Blakeslee, S. (2004). Times Books. Chicago, USA: Times Books.

Hesse, M. B. (1970). Models and Analogies in Science. Notre Dame, USA: 
University of Norte Dame Press.

Hilgetag, C. C., and Goulas, A. (2016). Is the brain really a small-world network? 
Brain Struct. Funct. 221, 2361–2366. doi: 10.1007/s00429-015-1035-6

Hoffman, R. R. (1980). “Metaphor in science,” in Cognition and Figurative 
Language. eds. R. P. Honeck and R. R. Hoffman (New York: Routledge).

Hoffman, R. R. (1985). “Some implications of metaphor for philosophy and 
psychology of science,” in The Ubiquity of Metaphor: Metaphor in Language and 
Thought. Vol. 29. eds. W. Paprotté and R. Dirven (Amsterdam, Netherlands: Current 
Issues in Linguistic Theory; John Benjamins Publishing Company), 327–380.

Humar, M. (2021). Metaphors as models: towards a typology of metaphor in 
ancient science. HPLS 43:101. doi: 10.1007/s40656-021-00450-2.Jukebox

Keats, J. (2015). The Odes of John Keats. Australia: Leopold Classic Library.

Kerskens, C. M., and Lopez-Perez, D. (2022). Experimental indications of non-
classical brain functions. J. Phys. Commun. 6:105001. doi: 10.1088/2399-6528/ac94be

Kovac, J. (2003). Writing as thinking. Ann. N. Y. Acad. Sci. 988, 233–238. doi: 
10.1111/j.1749-6632.2003.tb06103.x

Kuhn, T. S. (1993). “Metaphor in science,” in Metaphor and Thought. 2nd Edn. ed. 
A. Ortony (Cambridge, UK: Cambridge University Press), 533–542.

Lakoff, G. (1993a). “The contemporary theory of metaphor,” in Metaphor and 
Thought. 2nd Edn. ed. A. Ortony (Cambridge, UK: Cambridge University Press).

Lakoff, G. (1993b). “The syntax of metaphorical semantic roles,” in Semantics and the 
Lexicon. Studies in Linguistics and Philosophy. Vol. 49. ed. J. Pustejovsky (Dordrecht: 
Springer).

Lakoff, G., and Johnson, M. (1980). Metaphors We Live By. Chicago, USA: Chicago 
University Press.

Lamarck, J.-B. (1809). Philosophie Zoologique. Vol. 2 (Paris, France: Dentu), 463.

Lima, M. (2014). The Book of Trees. New York, USA: Princeton Architectural Press.

Mahoney, M. S. (1988). The history of computing in the history of technology. 
Ann. Hist. Comput. 10, 113–125. doi: 10.1109/MAHC

Martin, W. (1999). Mosaic bacterial chromosomes: a challenge en route to a tree 
of genomes. Bio Essays 21, 99–104. doi: 10.1002/(SICI)1521-1878(199902)21:2<99:
:AID-BIES3>3.0.CO;2-B

Martinez, P., and Sprecher, S. G. (2020). Of circuits and brains: the origin and 
diversification of neural architectures. Front. Ecol. Evol. 8:82. doi: 10.3389/
fevo.2020.00082

Maxwell, J. C. (1870). “Address to the mathematical and physical sections of the 
British association. British association report, p 227; reprinted,” in The Scientific 
Papers of James Clerk Maxwell. ed. W. D. Niven (Cambridge, UK: Cambridge 
University Press), 215–229.

McCulloch, W., and Pitts, W. (1943). A logical calculus of ideas immanent in 
nervous activity. Bull. Math. Biophys. 5, 115–133. doi: 10.1007/BF02478259

McGilchrist, I. (2021). The Matter With Things: Our Brains, Our Delusions, and 
the Unmaking of the World. UK: Perspectiva Press.

Nicholson, D. J. (2013). Organisms ≠ Machines. Stud. Hist. Philos. Biol. Biomed. 
Sci. 44, 669–678. doi: 10.1016/j.shpsc.2013.05.014

Noble, D. (2006). The Music Of Life-Biology Beyond Genes. Oxford, UK: Oxford 
University Press.

Owen, R. (1843). Lectures on the Comparative Anatomy and Physiology of the 
Invertebrate Animals. London: Longman, Brown, Green, and Longmans.

Pitts, W., and McCulloch, W. S. (1947). How we know universals the perception of 
auditory and visual forms. Bull. Math. Biophys. 9, 127–147. doi: 10.1007/BF02478291

Poincaré, H. (1910). Mathematical creation. Monist 20, 321–335.

Ragan, M. A. (2009). Trees and networks before and after Darwin. Philos. Trans. 
R. Soc. B 364, 2169–2175. doi: 10.1098/rstb.2009.0046

Reynolds, A. S. (2022). Understanding Metaphors in the Life Sciences 
(Understanding Life). Cambridge, UK: Cambridge University Press.

Richards, B. A., and Lillicrap, T. P. (2022). The brain-computer metaphor debate 
is useless: a matter of semantics. Front. Comp. Sci. 4:810358. doi: 10.3389/
fcomp.2022.810358

Roli, A., Jaeger, J., and Kauffman, S. A. (2022). How organisms come to know the 
world: fundamental limits on artificial general intelligence. Front. Ecol. Evol. 
9:806283. doi: 10.3389/fevo.2021.806283

https://doi.org/10.3389/fevo.2022.1099253
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://doi.org/10.1111/jnc.14839
https://doi.org/10.3389/fevo.2022.878729
https://doi.org/10.1038/d41586-020-03348-4
https://doi.org/10.3389/fevo.2022.952992
https://doi.org/10.3389/fevo.2021.760269
https://doi.org/10.3389/fevo.2022.796413
https://doi.org/10.3389/fcomp.2021.681416
https://doi.org/10.1038/scientificamerican0563-45
https://doi.org/10.1126/science.284.5423.2124
https://aeon.co/essays/your-brain-does-not-process-information-and-it-is-not-a-computer
https://aeon.co/essays/your-brain-does-not-process-information-and-it-is-not-a-computer
https://doi.org/10.1007/s11023-010-9202-2
https://doi.org/10.1007/s11023-010-9202-2
https://doi.org/10.1038/nrn2258
https://doi.org/10.7238/a.v0i26.3370
https://doi.org/10.3389/fevo.2021.802300
https://doi.org/10.3389/fevo.2021.802300
https://doi.org/10.3389/fevo.2021.755981
https://doi.org/10.1126/science.1259439
https://doi.org/10.3389/fcomp.2022.890531
https://doi.org/10.17990/RPF/2019_75_4_2049
https://doi.org/10.1007/s00429-015-1035-6
https://doi.org/10.1007/s40656-021-00450-2.Jukebox
https://doi.org/10.1088/2399-6528/ac94be
https://doi.org/10.1111/j.1749-6632.2003.tb06103.x
https://doi.org/10.1109/MAHC
https://doi.org/10.1002/(SICI)1521-1878(199902)21:2<99::AID-BIES3>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1521-1878(199902)21:2<99::AID-BIES3>3.0.CO;2-B
https://doi.org/10.3389/fevo.2020.00082
https://doi.org/10.3389/fevo.2020.00082
https://doi.org/10.1007/BF02478259
https://doi.org/10.1016/j.shpsc.2013.05.014
https://doi.org/10.1007/BF02478291
https://doi.org/10.1098/rstb.2009.0046
https://doi.org/10.3389/fcomp.2022.810358
https://doi.org/10.3389/fcomp.2022.810358
https://doi.org/10.3389/fevo.2021.806283


Matassi and Martinez 10.3389/fevo.2022.1099253

Frontiers in Ecology and Evolution 18 frontiersin.org

Schlosser, G. (2018). A short history of nearly every sense-the evolutionary history 
of vertebrate sensory cell types. Integr. Comp. Biol. 58, 301–316. doi: 10.1093/icb/
icy024

Searle, J. (1984). Minds, Brains and Science. Cambridge MA: Harvard University Press.

Sporns, O., and Honey, C. J. (2006). Small worlds inside big brains. Proc. Natl. 
Acad. Sci. U. S. A. 103, 19219–19220. doi: 10.1073/pnas.0609523103

Sterling, P., and Laughlin, S. (2017). Principles of Neural Design. Cambridge, MA: 
MIT Press.

Tosches, M. A. (2021). Different origins for similar brain circuits. Science 371, 
676–677. doi: 10.1126/science.abf9551

Turing, A. M. (1937). On computable numbers, with an application to the 
Entscheidungsproblem. Proc. Lond. Math. Soc. s2-42, 230–265. doi: 10.1112/plms/
s2-42.1.230

Turing, A. M. (1950). Computing machinery and intelligence. Mind LIX, 433–460. 
doi: 10.1093/mind/LIX.236.433

von Neumann, J. (1958). The computer and the Brain. New Haven, USA: John Yale 
University Press.

Waddington, C. H. (1957). The Strategy of the Genes; A Discussion of Some 
Aspects of Theoretical Biology. Crows Nest, Australia: George Allen & 
Unwin Ltd.

Wright, S. (1931). Evolution in Mendelian populations. Genetics 16, 97–159. doi: 
10.1093/genetics/16.2.97

Yang, H., and Lu, Z. (2022). “Computerising connections between creativity and 
aesthetics,” in IEEE International Conference on Service-Oriented System Engineering 
(SOSE), 185–188.

Yohan, J. J. (2012). Metaphor: the Alchemy of Thought. Available at: https://
axispraxis.wordpress.com/2012/09/26/metaphor-the-alchemy-of-thought/

Ziman, J. (2000). Real Science, What It Is and What It Means. Cambridge, UK: 
Cambridge University Press.

Zylinska, J. (2020). AI Art-Machine Visions and Warped Dreams. London: Open 
Humanities Press.

https://doi.org/10.3389/fevo.2022.1099253
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://doi.org/10.1093/icb/icy024
https://doi.org/10.1093/icb/icy024
https://doi.org/10.1073/pnas.0609523103
https://doi.org/10.1126/science.abf9551
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/genetics/16.2.97
https://axispraxis.wordpress.com/2012/09/26/metaphor-the-alchemy-of-thought/
https://axispraxis.wordpress.com/2012/09/26/metaphor-the-alchemy-of-thought/

	The brain-computer analogy—“A special issue”
	1. Introduction
	1.1. The research topic
	1.2. Semantics: Concepts and definitions
	1.3. Machine(s)
	1.4. Metaphor and analogy in science
	1.5. Metaphor
	1.6. Analogy
	1.7. Brain(s)

	2. The 12 articles in the special issue
	2.1. Cobb (1)
	2.2. Gomez-Marin (2)
	2.3. Chirimuuta (3)
	2.4. Brette (4)
	2.5. Bongard and Levin (5)
	2.6. Richards and Lillicrap (6)
	2.7. Fraser et al. (7)
	2.8. Roli et al. (8)
	2.9. Danchin and Fenton (9)
	2.10. Davis (10)
	2.11. Gershenson (11)
	2.12. Graham (12)

	3. Discussion
	3.1. The brain-computer analogy: “Cum grano salis”
	3.2. Theories of the brain
	3.3. Creativity in science

	Author contributions
	Conflict of interest
	Publisher’s note

	References



