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Abstract. In this paper we study the existence and regularity of stable man-

ifolds associated to fixed points of parabolic type in the differentiable and
analytic cases, using the parametrization method.

The parametrization method relies on a suitable approximate solution of

a functional equation. In the case of parabolic points, if the manifolds have
dimension two or higher, in general this approximation cannot be obtained

in the ring of polynomials but as a sum of homogeneous functions and it is

given in [BFM]. Assuming a sufficiently good approximation is found, here we
provide an “a posteriori” result which gives a true invariant manifold close to

the approximated one. In the differentiable case, in some cases, there is a loss

of regularity.
We also consider the case of parabolic periodic orbits of periodic vector

fields and the dependence of the manifolds on parameters. Examples are pro-
vided.

We apply our method to prove that in several situations, namely, related to

the parabolic infinity in the elliptic spatial three body problem, these invariant
manifolds exist and do have polynomial approximations.
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1. Introduction

Parabolic fixed points of maps (or parabolic periodic orbits, in the case of flows)
appear in general as bifurcation points but they are also present for all values of
the parameters in important problems. For instance, the “parabolic infinity” in
several instances of the three body problem. See [Mos73, LS80, Rob84, Rob15,
Xia92, GMS15, DKdlRS19].

The purpose of this work is, given a map with a parabolic fixed point, that
is, a point where the map is tangent to the identity, to provide conditions under
which the parabolic point possesses a stable invariant set (which in general will not
contain a neighborhood of the fixed point) which can be parametrized as a regular
invariant manifold. This is the first part of a two papers work, being [BFM] the
second. In the second one, we study the existence of approximate solutions of the
invariance equation that the parabolic invariant manifold should satisfy. Here we
are concerned with the existence of the actual manifold.

The existence of invariant manifolds of parabolic fixed points and their regularity
has been considered in [McG73, Eas84, Rob84], when the dynamical system is
analytic and the stable manifold set is one dimensional. Invariant manifolds of
parabolic fixed points with nilpotent linear part were studied in [CFN92, CFN97,
Fon99]. In [Ler16] the authors use the manifolds of a parabolic point as pieces of the
boundary of regions with regular and ergodic behavior respectively for a specially
chosen family of two dimensional symplectic maps. The case of stable manifolds of
higher dimension, but still in the analytic category, was considered in [BF04]. All
these works share the use of the graph transform method to obtain the parabolic
invariant manifold.

The problem of parabolic fixed points in the context of holomorphic maps has
also been studied in a completely different approach by [Hak98, Éca85]. See also
the survey [Aba15].

When the map is not analytic, but Ck, 1-dimensional stable manifolds of para-
bolic points have been studied in [BFdlLM07]. In this work, unlike the previously
cited ones, the parametrization method is used [CFdlL03a, CFdlL03b, CFdlL05,
HdlL06, HdlL07]. See also [HCF+16].

The procedure here is as follows. Let F ∶ U ⊂ Rn × Rm → Rn × Rm be a map
and assume (0,0) ∈ U is a parabolic point, i.e., F (0,0) = (0,0) and DF (0,0) =
Id . Assume furthermore certain conditions on the first non-vanishing nonlinear
terms which imply some “weak contraction” in the (x,0)-directions and some “weak
expansion” in the (0, y)-directions, to be specified later. Even if our conditions are
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more general and in fact do not always imply “weak expansion” in the (0, y)-
directions, for the sake of simplicity of this introduction, let us assume that there
is this expansion. Then one looks for an invariant stable manifold W s of the origin
as an immersion K ∶ V ⊂ Rn → Rn × Rm, which we call parametrization of the
manifold, with K(0) = (0,0), DK(0) = (Id ,0)⊺, range(K) =W s and satisfying the
invariance equation

(1.1) F ○K =K ○R,
where R ∶ V → V is a reparametrization of the dynamics of F on W s. In general, V
is a domain which contains 0 on its boundary. The procedure to find such K and R
has two steps. First, find functions K≤ and R solving approximately the invariance
equation, that is, satisfying

(1.2) F ○K≤(x) −K≤ ○R(x) = O(∥x∥ℓ),
for some ℓ large enough, depending on the degree of the first non-vanishing nonlinear
terms of F at (0,0). Once these functions are obtained, the invariance equation
can be rewritten as a fixed point equation for a perturbation of K≤ and solved in
appropriate Banach spaces.

Of course, if the invariance equation does have solutions K and R, they will
not be unique, since for any diffeomorphism T ∶ V → V , the functions K ○ T and
T −1○R○T also satisfy the same equation. The same claim holds for the approximate
invariant equation (1.2) if, for instance, T (x) = x + o(∥x∥). The parametrization
method aims to obtain the “simplest” parametrization (or the parametrization that
provides the “simplest” R).

There are two important reasons to use the parametrization method to obtain
the invariant manifolds of a parabolic fixed point. The first one, from the theoretical
point of view, is that is better suited to deal with cases of finite differentiability
than the graph transform method since the operators involved are more regular.
The second one is related to the computation of the approximate solutions of the
invariance equation. From a computational point of view, it provides a way to
explicitly obtain such approximations. And reciprocally, if one is able to produce
functions K≤ and R that are approximate solutions of the invariance equation,
then there exists a true solution close to the given approximation. This is a type
of a posteriori argument (see [dlLGJV05, HdlL06, HdlL07, GEHdlL14, FdlLS09a,
FdlLS09b, FdlLS15]).

The parametrization method is used in [CFdlL03a, CFdlL03b] to find nonres-
onant manifolds of fixed points of maps in Banach spaces. In such setting, the
approximations K≤ and R can be taken as polynomials. The degrees of K≤ and R
depend on the spectrum of DF (0,0). The homogeneous terms of these polynomi-
als are found recursively. The homogenous term of degree j must satisfy a linear
equation which depends on the terms of degree i, for 1 ≤ i ≤ j − 1. In solving these
equations, K≤ and R play different roles and are not unique, even in the class of
polynomials. A possible criterium to determine them is to look for the “simplest”
polynomial R, in the sense that the majority of its coefficients vanish. This fact
only depends on the spectrum of DF (0,0).

In the case when the origin is parabolic and n = 1, in [BFdlLM07] it is shown that
it is also possible to find polynomials K≤ and R which are approximate solutions
of the invariance equation. Again, these polynomials are not determined uniquely,
but there is a choice in which R is the “simplest”. Its degree only depends on the
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degree of the first non-vanishing term of the contracting part. A related result was
obtained in [BH08] where the Gevrey character of the manifolds is established for
analytic maps.

The situation changes drastically when one considers invariant manifolds of par-
abolic points of dimension two or more. Although these cases were successfully
dealt in the analytical context [BF04] by means of the graph transform method,
a simple computation shows that generically there are no polynomial approximate
solutions of the invariance equation. In the spirit of the parametrization method,
if it is not possible to find approximate solutions, the fixed point part of the argu-
ment cannot be carried on. We remark that this fact implies that, generically, the
invariant manifolds obtained in [BF04], which are analytic outside the origin, do
not have a polynomial approximation.

In the present paper, we deal with the actual existence of the invariant mani-
fold and we study its regularity and dependence on parameters, assuming that a
suitable approximate solution of the invariance equation is known. In the com-
panion paper [BFM], we derive a method to find such approximations and their
regularity. However, since, in general, these approximations are not polynomials
but sums of homogeneous functions of increasing degree, we reproduce in Section 3
the algorithm derived in [BFM] to obtain them. It should be remarked that, in gen-
eral, these homogeneous functions need not be rational functions. We also remark
that the conditions under which these approximations can be found allow several
characteristic directions in the domain under consideration (see [Hak98, Aba15]).

When considering parabolic points, one has to look at the first non-vanishing
homogenous terms of the Taylor expansion of the map at the parabolic point.
One looks for “contracting” and “expanding” directions (in certain subsets) in the
dynamics generated by the polynomial map obtained by truncating the Taylor
expansion of the map at the parabolic point at the lowest non vanishing order in
each component. We will assume that the degree of all the “contracting” directions
is N , the degree of all the “expanding” directions is M , without assuming that
N = M . The fact that N ≠ M has consequences both at a formal level, when
solving the approximate invariance equations, and at the analytical level, when
considering the fixed point equation that provides the manifold. In particular, the
behavior and regularity at the origin of the formal approximation and the invariant
manifold depend on the relation between N and M .

We remark that, as it is often the case, the hypotheses to carry out the fixed
point procedure are milder than the ones required for solving the approximate
invariance equation. The reason is that to solve the fixed point equation it is
enough to start with an approximate solution having an error of prescribed high
enough order depending of the first non-vanishing nonlinear terms. Of course, some
care is required to deal with the regularity of the involved objects.

We include in our study the dependence on parameters of the invariant manifolds,
which is rather cumbersome but useful for the applications. In particular, it allows
to derive the analogous statement for flows from the one for maps. This is performed
separately for the actual manifold, in the present paper, and for the approximate
solutions of the invariance equation, in the companion paper. The dependence on
parameters of the invariant manifolds in the case that they are one dimensional and
the map is analytic is already done in [GSMS17], where it was used to find regular
foliations of the invariant manifolds of some parabolic cylinders.
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As a side application of our method, we prove that, in several instances of the
three body problem, namely in perturbations of the restricted spatial elliptic three
body problem, the “parabolic infinity” is foliated with parabolic fixed points with
stable manifolds of dimension two that have polynomial approximation at the origin.
This fact is rather surprising, since to be able to solve the approximate invariance
equations in the ring of polynomials, one obtains a larger number of obstructions
than coefficients at each order. Then, the fixed point machinery works at any order
and as a result one obtains the invariant manifolds of the “parabolic infinity” and
their expansion at the origin.

The structure of the paper is as follows. In Section 2.1 we present the setting
and hypotheses as well as two theorems of existence of invariant manifolds for
maps. In Section 2.2, we present the result concerning the regularity with respect
to parameters and in Section 2.3 we deal with the results for flows. In Section 3 we
describe the algorithm from [BFM] developed to compute the approximate solutions
of the invariance equation. In Section 4 we apply the algorithm to the elliptic spatial
restricted three body problem to obtain the invariant manifolds of the “parabolic
infinity”. In Section 5 we provide two examples that show that our hypotheses are
indeed necessary and that the loss of differentiability can take place. We remark
the differences between one-dimensional and multidimensional parabolic manifolds.
The rest of the paper is devoted to the actual proofs of the results.

2. Main results

This section is devoted to present all the results of this work related to the
existence and regularity of parametrizations of invariant sets. There are three
settings we consider: the map case in Section 2.1, the dependence on parameters
in the map case in Section 2.2 and the periodic flow case in Section 2.3.

2.1. The map case. The first result is a posteriori type theorem which assures the
existence of an invariant manifold close to a sufficiently good approximate solution
of the invariance equation (1.1). Then we provide sufficient conditions to ensure
the existence of an invariant manifold by means of the results in [BFM] about
approximate solutions of the invariance equation, that is, solutions of (1.2).

2.1.1. Set up. Let U ⊂ Rn × Rm be an open set such that 0 ∈ U . We consider Cr
maps F ∶ U → Rn+m, with r to be specified later, of the form

(2.1) F (x, y) = ( x + p(x, y) + f(x, y)
y + q(x, y) + g(x, y) ) , x ∈ Rn, y ∈ Rm,

where p and q are homogeneous polynomials of degrees N ≥ 2 and M ≥ 2 re-
spectively, f(x, y) = O(∥(x, y)∥N+1) and g(x, y) = O(∥(x, y)∥M+1). With these
conditions, the origin is a parabolic fixed point of F .

We introduce the constants

(2.2) L =min{N,M}, η = 1 +N −L.
We denote the projection onto a variable as a subscript, i.e. Xx, and by Bϱ the

open ball centered at the origin of radius ϱ > 0.
Given V ⊂ Rn such that 0 ∈ ∂V and ϱ > 0, we introduce the set

Vϱ = V ∩Bρ.
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We will consider sets V star-shaped with respect to 0, i.e., 0 ∈ ∂V and, for all x ∈ V
and λ ∈ (0,1), λx ∈ V .

We define the stable set of F over V associated to the origin 0 as:

W s
V = {(x, y) ∈ U ∶ F k

x (x, y) ∈ V, k ≥ 0, F k(x, y)→ 0 as k →∞}
and its local version, when we restrict V to the set Vϱ:

(2.3) W s
V,ϱ = {(x, y) ∈ U ∶ F k

x (x, y) ∈ Vϱ, k ≥ 0, F k(x, y)→ 0 as k →∞}.
Let V ⊂ Rn be an open star-shaped with respect to 0 set. Take ϱ > 0, some

norms in Rn and Rm and consider the following constants:

(2.4)

ap = − sup
x∈Vϱ

∥x + p(x,0)∥ − ∥x∥
∥x∥N , bp = sup

x∈Vϱ

∥p(x,0)∥
∥x∥N ,

Ap = − sup
x∈Vϱ

∥Id +Dxp(x,0)∥ − 1
∥x∥N−1 , Bp = sup

x∈Vϱ

∥Id −Dxp(x,0)∥ − 1
∥x∥N−1 ,

Bq = − sup
x∈Vϱ

∥Id −Dyq(x,0)∥ − 1
∥x∥M−1 ,

cp =
⎧⎪⎪⎨⎪⎪⎩

ap, if Bq ≤ 0,
bp, otherwise,

dp =
⎧⎪⎪⎨⎪⎪⎩

ap, if Ap ≤ 0,
bp, otherwise,

where the norms of linear maps are the corresponding operator norms. We em-
phasize that all the previous constants depend on ϱ. Nevertheless there are some
straightforward relations among them.

Lemma 2.1. The constants Ap,Bq,Bp, ap and bp are finite. They satisfy ∣ap∣ ≤ bp,
Bp ≥ Ap, ap ≥ Ap/N and Bp ≥ Nap > 0.

In addition, if 0 < ϱ ≤ ϱ and denoting by Ap,Bp,Bq, ap, bp the corresponding
constants for ϱ, we have that

Ap ≥ Ap, Bp ≤ Bp, Bq ≥ Bq, ap ≥ ap, bp = bp.

This lemma is proven in Section 3.1 of [BFM] (in a slightly different set up)
As usual for parabolic points, their invariant manifolds are defined over a subset

V such that 0 ∉ intV . For this reason, in order to study the regularity of the
invariant manifold at the origin, we define the following natural concept:

Definition 2.2. Let V ⊂ Rl be an open set with x0 ∈ V and f ∶ V ∪{x0} ⊂ Rl → Rk.
We say that f is C1 at x0 if f is C1 in V ∩ (Bε(x0) ∖ {x0}), for some ε > 0 and
limx→x0, x∈V Df(x) exists.

We finally introduce a quantity related with the minimum differentiability degree
we require to F :

(2.5) ℓ0 ∶= N − 1 +
Bp

ap
+max{η − Ap

dp
,0} .

Note that ℓ0 ≥ 2N − 1 ≥ N + 1.

2.1.2. A posteriori result. Let V ⊂ Rn be open, star-shaped with respect to 0.
Assume that there exist appropriate norms in Rn and Rm and ϱ > 0 small enough
such that

H1 The homogenous polynomial p satisfies that ap > 0,



INVARIANT MANIFOLDS OF PARABOLIC FIXED POINTS (I). EXISTENCE AND DEPENDENCE ON PARAMETERS7

H2 q(x,0) = 0, for x ∈ Vϱ and

Bq > 0, if M < N,
Bq > −Nap, if M = N,

H3 There exists a constant aV > 0 such that, for all x ∈ Vϱ,

dist(x + p(x,0), (Vϱ)c) ≥ aV ∥x∥N .

Remark 2.3. It is easily checked that if hypotheses H1, H2 and H3 hold true for
ϱ > 0, they also hold for any 0 < ϱ ≤ ϱ, so that we will take ϱ as small as we need.

Theorem 2.4. Let F ∶ U ⊂ Rn+m → Rn+m be a Cr map (the case r = ∞ is also
included), of the form (2.1) with U an open set such that 0 ∈ U .

Assume that, there exists an open set V and ϱ0 > 0 such that:

(a) Hypotheses H1, H2 and H3 hold for ϱ0 > 0.
(b) The degree of differentiability satisfies r > ℓ0 with ℓ0 defined in (2.5).

(c) There exist K≤ ∶ Vϱ0 → U and R ∶ Vϱ0 → Vϱ0 , Cr
≤

functions, for some r≤ ≥ 1,
of the form

∆K≤(x) ∶=K≤(x) − (x,0) = O(∥x∥2), Dj∆K≤(x) = O(∥x∥2−j),
∆R(x) ∶= R(x) − x − p(x,0) = O(∥x∥N+1), Dj∆R(x) = O(∥x∥N+1−j),

for 0 ≤ j ≤ r≤, satisfying the invariance equation up to order ℓ for ℓ0 < ℓ ≤ r,
i.e.:

F ○K≤ −K≤ ○R = O(∥x∥ℓ).
Then, there exists ϱ > 0 small enough and a unique function K> ∶ Vϱ → U such that

K>(x) = O(∥x∥ℓ−N+1) and K =K≤ +K> satisfies the invariance equation

(2.6) F ○K =K ○R.
Moreover, Rk(x)→ 0 as k →∞, Kx is invertible and, as a consequence,

(2.7) {K(x)}x∈(Kx)−1(Vϱ) ⊂W s
V,ϱ.

Concerning regularity, the parametrization K and the reparametrization R on
W s

V,ϱ are C1 functions at the origin in the sense of Definition 2.2. Moreover, they

are Cr> functions on Vϱ according to the cases

(1) If Ap ≥ ηdp, r> =min{r, r≤}.
(2) If Ap < ηdp, r> =min{r, r0, r≤} with r0 defined by

(2.8) r0 =max{k ∈ N ∶ (η − Ap

dp
)k < r − Bp

ap
−N + 1} .

(3) If F ∈ C∞, then r> = r≤, where the case r≤ =∞ is also included.

In addition, if F,K≤ and R are real analytic, Ap > bp and item (c) is true for j = 0,
then K is also real analytic.

2.1.3. Existence results of invariant manifolds. As a corollary of Theorem 2.4 and
the work [BFM] we can prove an existence result. We first formulate the new
set of hypotheses which are (as usual) slightly stronger than the previous ones.
They coincide with the ones assumed in [BFM] for the existence of approximated
solutions of the invariance equation (1.1). We include them here for completeness.
We summarize the algorithm to find these approximated solutions in Section 3.
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Let V ⊂ Rn be an open set which is star-shaped with respect to 0. Assume that,
with the appropriate norms in Rn and Rm, there exists ϱ is small enough such that
Hypothesis H3 is satisfied and

H1’ The homogenous polynomial p satisfies that

ap > 0.
If M > N , we further ask Ap/dp > −1.

H2’ The homogenous polynomial q satisfies q(x,0) = 0, for x ∈ Vϱ and

Bq > 0, if M < N,

2 + Bq

cp
>max{1 − Ap

dp
,0} , if M = N.

Unlike the hyperbolic case, as we claimed in Theorem 2.4, here we can lose
differentiability in the case Ap < ηdp even at points x ∈ Vϱ with x ≠ 0. In fact, the
formal approximation is only Cr∗ when Ap < dp and M ≥ N , being r∗:

r∗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max{k ∈ N ∶ (1 − Ap

dp
)k < 2 + Bq

cp
} , if M = N,

max{k ∈ N ∶ (1 − Ap

dp
)k < 2} , if M > N.

See [BFM].
The existence result is as follows:

Corollary 2.5. Let F ∶ U ⊂ Rn+m → Rn+m be a Cr map, of the form (2.1). Assume
that, for some ϱ0 > 0, r > ℓ0, hypotheses H1’, H2’ and H3 are satisfied in an open
star-shaped with respecto to 0 set V .

Then, there exist ϱ > 0 small enough and maps K ∶ Vϱ → U and R ∶ Vϱ → Vϱ
solutions of the invariance equation (2.6) satisfying (2.7).

In addition, K =K≤ +K> with K≤ and R provided by Theorem 2.2 in [BFM].
The parametrization K and the reparametrization R on W s

V,ϱ are only C1 func-

tions at the origin restricting them to the set Vϱ and they are Cr> functions on Vϱ
and r> takes the values:

(1) If Ap ≥ ηdp, r> = r.
(2) If either dp ≤ Ap < ηdp or M < N , r> =min{r, r0} with r0 defined in (2.8).
(3) If Ap < dp and M ≥ N , r> =min{r, r0, r∗}.
(4) If F ∈ C∞ and Ap ≥ dp, then K> ∈ C∞.
Moreover, if F is real analytic and Ap > bp, K is also real analytic.
Finally, substituting H1’ and H2’ by the new conditions Ap > 0 and Bq > 0, we

have that W s
V,ϱ = {K(x)}x∈(Kx)−1(Vϱ).

Proof. Obviously H1’ implies H1. It remains to check that when M = N , the
condition in H2’ implies that Bq > −Nap. This is immediate if Bq ≥ 0. When
Bq < 0, H2’ implies 2ap +Bq > 0 and hence Bq > −2ap ≥ −Nap.

Now we set a good enough initial approximation of the invariant manifold K by
means of Theorem 2.2 in [BFM].

We take ℓ ∈ N such that ℓ0 < ℓ ≤ r with ℓ0 introduced in (2.5) and we decompose
our map F into

(2.9) F (x, y) = P (x, y) +Gℓ(x, y),
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where P is the Taylor expansion of F up to degree ℓ − 1 and Gℓ(x) = o(∥x∥ℓ−1).
In fact, since ℓ ≤ r, we actually have Gℓ(x) = O(∥x∥ℓ). We apply Theorem 2.2
in [BFM] to P to obtain K≤ and R such that

(2.10) P ○K≤ −K≤ ○R = T ℓ, T ℓ(x) = o(∥x∥ℓ−1).
Moreover, both K≤ and R are sums of homogeneous functions satisfying that
∆K≤ ∶=K≤(x)− (x,0) = O(∥x∥)2) and ∆R(x) ∶ R(x)−x−p(x,0) = O(∥x∥N+1). By
Theorem 2.2 in [BFM], K≤ and R are analytic functions if Ap > bp, C∞ functions
if Ap = bp and Cr∗ if Ap < bp, therefore, F,K≤ and R are Cr functions if Ap ≥ bp
and Cmin{r,r∗} functions otherwise. We use the symbol r≤ to denote the degree of
differentiability in each case.

Since P is a polynomial, the remainder T ℓ(x) = O(∥x∥ℓ) is also a finite sum
of homogeneous functions. Therefore, using that the derivative of a homogeneous
function of degree j is also a homogeneous function of degree j − 1, we have that,
for any 0 ≤ j ≤ r≤,
Dj∆K≤(x) = O(∥x∥2−j), Dj∆R(x) = O(∥x∥N+1−j), DjT ℓ(x) = O(∥x∥ℓ−j).

Therefore, we are under the conditions of Theorem 2.4 which implies the stated
existence and the regularity in the present results.

The last statement follows from Theorem 3.1 in [BF04] which states that the
stable set W s

V,ϱ defined in (2.3) is the graph of a Lipschitz function. Since Kx(x) =
x + O(∥x∥2) is invertible, the result follows immediately since the new conditions
Ap,Bq > 0 imply the hypotheses of the results in [BF04]. □

Now we state a corollary from Theorem 2.4 and Theorem 2.7 in [BFM].

Corollary 2.6. Assume the conditions in Corollary 2.5 and take ℓ such that ℓ0 <
ℓ ≤ r. For j = 2,⋯, ℓ −N , let Kj

x ∶ Vϱ → Rn be Cr> homogeneous functions of degree
j. Denote

K∗x(x) = x +
ℓ−N
∑
j=2

Kj
x(x).

Then there exists R∗ ∶ Vϱ → Rn, a finite sum of Cr> homogeneous functions of
order less than ℓ− 1, of the form R∗(x)−x− p(x,0) = O(∥x∥N+1) such that for any

Cr> function ∆R ∶ Vϱ → Rn with ∆R(x) = O(∥x∥ℓ) there exists a Cr> function K
satisfying the invariance equation (2.6) with R = R∗ +∆R and Kx(x) −K∗x(x) =
O(∥x∥ℓ−N+1).

Proof. We proceed as in the proof of Corollary 2.5 decomposing F as in (2.9) and
applying Theorem 2.7 in [BFM] instead of Theorem 2.2 in [BFM] which assures
the existence of K≤ and R∗ satisfying the invariance equation (2.10) up to order ℓ.
Moreover, K≤x(x) −K∗x(x) = O(∥x∥ℓ−N+1). Since ∆R(x) = O(∥x∥ℓ), we have that
K≤(R∗(x)+∆R(x)) =K≤○R∗(x)+O(∥x∥ℓ) and, consequently, writing R = R∗+∆R,

F ○K≤(x) −K≤ ○R(x) = O(∥x∥ℓ).
Applying Theorem 2.4, we get the result. □

2.2. Dependence on parameters. In this section we deal with the dependence
on parameters of the parametrization K and the reparametrization R provided by
Theorem 2.4 and Corollary 2.5.
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2.2.1. Set up. Let Λ ⊂ Rn′ be an open set of parameters and U ⊂ Rn be an open
set. We consider Cr maps F ∶ U × Λ → Rn+m having the form (2.1) for any λ ∈ Λ,
namely:

(2.11) F (x, y, λ) = ( x + p(x, y, λ) + f(x, y, λ)
y + q(x, y, λ) + g(x, y, λ) ) , (x, y, λ) ∈ Rn ×Rm ×Rn′ ,

where p, q are homogeneous polynomials for any fixed λ of degree N,M ≥ 2 re-
spectively and f(x, y, λ) = O(∥(x, y)∥N+1), g(x, y, λ) = O(∥(x, y)∥M+1) uniformly
in λ.

In this context, the constants introduced in (2.4), (2.5) and Hypothesis H3,
depend on λ. We denote this dependence by a superindex, for instance Aλ

p , ℓ
λ
0 , etc.

We redefine the constants (independent of λ) Ap,Bp, ap, bp,Bq, aV , cp, dp, ℓ0 by

(2.12)

Ap = inf
λ∈Λ

Aλ
p , ap = inf

λ∈Λ
aλp , Bq = inf

λ∈Λ
Bλ

q ,

Bp = sup
λ∈Λ

Bλ
p , bp = inf

λ∈Λ
aλp , aV = inf

λ∈Λ
aλV ,

cp =
⎧⎪⎪⎨⎪⎪⎩

ap, if Bq ≤ 0,
bp, otherwise,

dp =
⎧⎪⎪⎨⎪⎪⎩

ap, if Ap ≤ 0,
bp, otherwise,

ℓ0 = N − 1 +
Bp

ap
+max{η − Ap

dp
,0} .

Lemma 2.7. If the conditions in H1, H2, H1’, H2’ and H3 hold true for the con-
stants Ap,Bp, ap, bp,Bq, cp, dp, aV , they are also true for Aλ

p ,B
λ
p , a

λ
p , b

λ
p ,B

λ
q , c

λ
p , d

λ
p , a

λ
V

for any λ ∈ Λ.
In addition ℓλ0 ≤ ℓ0.

The proof of this lemma is straightforward from the definitions.
The differentiability class we work in was used in [CFdlL03b] and is the one

considered in [BFM] for the approximate solutions. For any s, r ∈ (Z+)2, we define
the set

Σs,r = {(i, j) ∈ (Z+)2 ∶ i + j ≤ r + s, i ≤ s}
and for an open set U ⊂ Rl ×Rn′ , the function space
(2.13)

CΣs,r = {f ∶ U → Rk ∶ ∀(i, j) ∈ Σs,r, D
i
µD

j
zf exists, is continuous and bounded}.

Here Dµ and Dz means the derivative with respect to µ and z respectively. We
also denote by

CΣs,ω = {f ∶ U → Rk ∶ f(⋅, µ) is analytic and f ∈ Cs}.

We note that Cr ⊂ CΣr,r .

2.2.2. Dependence on parameters results. Note that assuming that the conditions
in both Theorem 2.4 and Corollary 2.5 are satisfied for any λ ∈ Λ, we obtain the
existence of K,R solutions of the invariance equation

(2.14) F (K(x,λ), λ) =K(R(x,λ), λ).
To have regularity with respect to λ we need to impose some uniformity conditions.

Let V an open set as in Section 2.1.2 and ϱ > 0. We rewrite H1, H2 and H3 to
become uniform with respect to λ ∈ Λ and we add an extra condition:
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Hλ The constants ap, aV > 0. Moreover q(x,0, λ) = 0 for (x,λ) ∈ Vϱ × Λ and
either Bq > 0 if M > N or Bq > −Nap if M = N .

HP Dj
zf(x, y, λ) = O(∥(x, y)∥N+1−j) and Dj

zg(x, y, λ) = O(∥(x, y)∥M+1−j) uni-
formly in Λ with z = (x, y) and j = 0,1.

We introduce

(2.15) ℓ1 ∶= N − 1 +
Bp

ap
+ (η − 1).

Theorem 2.8. Let F ∈ CΣs,r be a map of the form (2.11). Let ϱ0 > 0 be such that
Hypotheses Hλ, HP hold true and r >max{ℓ0, ℓ1}, s ≥ 0.

Assume that there exist K≤ ∶ Vϱ0 ×Λ→ U and R ∶ Vϱ0 ×Λ→ Vϱ0 such that

(a) K≤,R ∈ CΣs≤,r≤ .
(b) For (i, j) ∈ Σs≤,r≤ , uniformly over Λ,

∆K≤(x,λ) ∶=K≤(x,λ) − (x,0) = O(∥x∥2), Di
λD

j
x∆K

≤(x,λ) = O(∥x∥2−j),
∆R(x,λ) ∶= R(x,λ) − x − p(x,0, λ) = O(∥x∥N+1), Di

λD
j
x∆R(x,λ) = O(∥x∥N+1−j).

(c) The invariance equation (2.14) is satisfied up to order ℓ0 < ℓ ≤ r:
F (K≤(x,λ), λ) −K≤(R(x,λ), λ) = O(∥x∥ℓ), uniformly for λ ∈ Λ.

Then the unique function K> ∶ Vϱ ×Λ → Rn+m found in Theorem 2.4 belongs to
CΣs>,r> where s> and r> have the following values according to the cases

(1) If Ap ≥ dpη, r> =min{r, r≤} and s> ≤min{s, s≤} satisfies

(2.16) s>(η − 1) < r − Bp

ap
−N + 1.

(2) If dp < Ap ≤ dpη, then r> ≤min{r, r≤}, s> ≤min{s, s≤} and

(2.17) r − Bp

ap
−N + 1 − r> (η − Ap

dp
) > s>(η − 1).

(3) If Ap < dp, then r> ≤min{r, r≤}, s> ≤min{s, s≤} and

(2.18) r − Bp

ap
−N + 1 − r> (η − Ap

dp
) > s> (η − Ap

dp
) .

(4) If F ∈ CΣs,∞ , then r> = r≤ and s> = s≤.
Finally, if either F,K≤ and R are real analytic or they belong to CΣs,ω and

Ap > bp, then K> is either real analytic if item (b) holds true for i = j = 0 or
K> ∈ CΣs,ω if item (b) holds true for j = 0 respectively.

To finish this section, we formulate an existence result as a corollary of Theo-
rem 2.8 and Theorem 2.7 in [BFM] which includes the regularity with respect to
parameters of the approximate solutions. The following new condition is necessary
to ensure the existence of solutions of the invariance equation (2.14) for any value
of λ ∈ Λ:

Hλ’ ap, aV > 0, q(x,0, λ) ≡ 0 and the conditions in hypotheses H1’, H2’ are
satisfied for the constants Ap, dp,Bq, cp redefined in (2.12).

As we claimed in Lemma 2.7, we have that H1’, H2’ and H3 are satisfied if Hλ’
holds true. Therefore, by the existence Corollary 2.5 there exist K and R satisfying
the invariance equation (2.14). Moreover, by construction, K = K≤ +K> with K≤

provided by Theorem 2.7 in [BFM].



12 INMACULADA BALDOMÁ, ERNEST FONTICH, AND PAU MARTÍN

Corollary 2.9. Let F ∈ CΣs,r be a map of the form (2.11). Assume that there
exists ϱ0 > 0 such that Hλ’ holds true.

● Parametric version of Corollary 2.5 : The solutions K ∶ Vϱ × Λ → Rn+m,
R ∶ Vϱ ×Λ→ Vϱ of the invariance equation provided by Corollary 2.5 belong
to CΣs>,r> with s> and r> satisfying
(1) If Ap ≥ dpη, r> = r and s> ≤ s satisfying (2.16).
(2) If dp ≤ Ap < ηdp or M < N , r> ≤ r, s> ≤ s satisfying (2.17).
(3) If Ap < dp and M ≥ N , r> ≤ r, s> ≤ s, r> + s> ≤ r∗ satisfying (2.18).
(4) If F ∈ CΣs,∞ and Ap ≥ dp, then r> =∞ and s> = s.
Moreover, if either F is real analytic or it belongs to CΣs,ω and Ap > bp,

then K is either real analytic or K ∈ CΣs,ω respectively.
● Parametric version of Corollary 2.6: Let Kj

x ∶ Vϱ × Λ → Rn be CΣs>,r> ho-
mogeneous functions of degree j with respect to x. We introduce K∗x(x,λ) =
x +∑ℓ−N

j=2 Kj
x(x,λ) as in Corollary 2.6.

Then, the function R∗ ∶ Vϱ×Λ→ Rn provided by Corollary 2.6 belongs to

CΣs>,r> . Moreover, if ∆R ∶ Vϱ ×Λ→ Rn with ∆R(x,λ) = O(∥x∥ℓ) uniformly
in λ ∈ Λ, belongs to CΣs>,r> , then the function K satisfying the invariance
equation (2.14) for R = R∗ + ∆R given in Corollary 2.6 also belongs to
CΣs>,r> .

Proof. For any fixed λ0 ∈ Λ, the existence and uniqueness ofK(x,λ0) = O(∥x∥ℓ−N+1)
satisfying the invariance equation (2.14) is guaranteed by Corollary 2.5. To obtain
the regularity with respect to the parameter we have to apply Theorem 2.8. To do
so we need to discuss Hypothesis HP. Since for any λ ∈ Λ, F has the form in (2.1),
we have that Df(x, y, λ) = O(∥(x, y)∥N) and Dg(x, y, λ) = O(∥(x, y)∥M) but the
bounds are not necessarily uniform in λ. Nevertheless, by continuity, for any λ0 ∈ Λ
there exists an open ball centered at λ0, Bρ0(λ0) ⊂ Rn′ , in such a way that HP
is satisfied when we restrict the domain of λ to Λλ0 = Λ ∩ Bρ0(λ0). In addition,
restricting ρ0 if necessary, we can get the approximate solutions K≤,R satisfying
items (a), (b) and (c) in Theorem 2.8, that is, with uniform bounds in λ ∈ Λλ0 .

In conclusion, K ∈ CΣs>,r> with (x,λ) ∈ Vϱ × Λλ0 . Since K(⋅, λ) is the unique

solution of (2.14) of order O(∥x∥ℓ−N+1), K ∈ CΣs>,r> in the full domain (x,λ) ∈
Vϱ ×Λ. □

2.3. Existence results for invariant manifolds. The flow case. We deduce
the analogous result to Corollary 2.5 in the case of time periodic flows, that is,
in the case of a flow with a parabolic periodic orbit. To study invariant objects
associated to periodic orbits of vector fields (in our case invariant manifolds), one
possibility is to consider a Poincaré map in a section transversal to the orbit and
then apply the results for fixed points of maps. In this way, one gets the invariant
manifolds W s,u of the Poincaré map and, from them, the invariant manifolds of
the periodic orbit by considering all the solutions starting in W s,u. Nevertheless
this approach has a drawback: in the applications, it is not easy to compute the
Poincaré map. Hence, if one wants to compute effectively the invariant manifolds,
it is better to have a statement already adapted to the vector field itself.

To shorten the exposition we deal directly with the parametric case. Let U ⊂
Rn+m be an open neighborhood of the origin, Λ ⊂ Rn′ a set of parameters and
X ∶ U ×R ×Λ→ Rn+m a T -periodic vector field:

(2.19) ż =X(z, t, λ), X(z, t + T,λ) =X(z, t, λ)
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with z = (x, y) ∈ U having the form

(2.20) X(z, t, λ) =X(x, y, t, λ) = ( p(x, y, λ) + f(x, y, t, λ)
q(x, y, λ) + g(x, y, t, λ) ) ,

where p, q, f and g are as in Section 2.2.1. We have this form after having translated
the parabolic orbit to the origin.

Let φ(t; t0, x, y, λ) be the flow of (2.19). Given a subset V ⊂ Rn, we define the
stable set of the origin over V :

W s
V = {(x, y) ∈ U ∶ φx(t; t0, x, y, λ) ∈ V, t ≥ 0, φ(t; t0, x, y, λ)→ 0 as t→∞}

and its local version, when we restrict W s
V to the open ball Bϱ:

W s
V,ϱ = {(x, y) ∈ U ∶ φx(t; t0, x, y, λ) ∈ Vϱ, t ≥ 0, φ(t; t0, x, λ)→ 0 as t→∞}.

In the case of flows, a parametrization K(x, t, λ) is invariant by the flow if there
exists a vector field Y (x, t, λ) such that

(2.21) X(K(x, t, λ), t, λ) =DxK(x, t, λ)Y (x, t, λ) + ∂tK(x, t, λ)
or, equivalently

(2.22) φ(u; t,K(x, t, λ), λ) =K(ψ(u; t, x, λ), u, λ), ∀u ≥ t, ∀(x,λ) ∈ Vϱ ×Λ,
where φ and ψ are the flows of the vector fields X and Y , respectively.

In this section, we will write that a function f belongs to CΣs,r if it satisfies
definition (2.13) with z = (x, y) and µ = (λ, t).

Theorem 2.10. Let X ∈ CΣs,r be a vector field of the form (2.20). Assume that
Hypotheses Hλ and HP hold true for some ϱ0 > 0 and r >max{ℓ0, ℓ1}. Assume also
that there exist K≤ ∶ Vϱ0 ×R/(TZ) ×Λ→ U and Y ∶ Vϱ0 ×Λ→ Vϱ0 such that

(a) K≤, Y ∈ CΣs≤,r≤ , for some s≤, r≤ ≥ 1.
(b) For (i, j) ∈ Σs≤,r≤ , uniformly over Λ,

∆K≤(x, t, λ) ∶=K≤(x,λ) − (x,0) = O(∥x∥2), Di
λD

j
x∆K

≤(x, t, λ) = O(∥x∥2−j),
∆Y (x,λ) ∶= Y (x,λ) − x − p(x,0, λ) = O(∥x∥N+1), Di

λD
j
x∆Y (x,λ) = O(∥x∥N+1−j).

(c) The invariance equation (2.21) is satisfied up to order ℓ, ℓ0 < ℓ ≤ r:
(2.23) X(K≤(x, t, λ), t, λ) −DxK

≤(x, t, λ)Y (x,λ) − ∂tK≤(x, t, λ) = O(∥x∥ℓ),
uniformly in λ ∈ Λ.

Then, there exists ϱ > 0 small enough and a unique function K> ∶ Vϱ ×R/(TZ)×
Λ → U such that K>(x, t, λ) = O(∥x∥ℓ−N+1) uniformly in (t, λ) and K = K≤ +
K> satisfies the invariance equation (2.21) with the prescribed vector field Y (or,
equivalently, (2.22) with ψ(u; t, x, λ) the flow of ẋ = Y (x,λ)).

Moreover, ψ(u; t, x, λ) → 0 as u → ∞ and Kx is invertible for any fixed (t, λ).
Then we have

(2.24) {K(x, t, λ)}x∈Vϱ×R×Λ ⊂W s
V,ϱ.

Concerning the regularity of K, we have the same results as the ones stated in
Theorem 2.8.

To finish this section we formulate the existence result for the flow case based on
the approximated solutions provided in [BFM]. The proof follows the same lines as
the proof of Corollary 2.5
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Corollary 2.11. Let X ∈ CΣs,r be a vector field of the form (2.20). Assume that
there exists ϱ0 > 0 such that Hypotheses Hλ’ and HP hold true and r >max{ℓ0, ℓ1}.

Then, there exist ϱ > 0 small enough, a map K ∶ Vϱ×R/(TZ)×Λ→ U and a vector
field Y ∶ Vϱ ×R→ Vϱ solutions of the invariance equation (2.21) satisfying (2.24).

In addition, K =K≤ +K> with K≤ and Y provided by Theorem 2.8 in [BFM].
The parametrization K and the vector field Y are C1 functions at the origin in

the sense of Definition 2.2. The regularity on Vϱ × R × Λ is the same as the one
stated in Corollary 2.9.

3. An algorithm to compute approximations of the invariant
manifolds

In this section we present the algorithm developed in [BFM] to compute approx-
imate solutions of the invariance equations (1.1) and (2.21).

3.1. Homological equations in the case of maps. Let F be the map given
by (2.1), which we assume to be of class Cr, with r large enough. Taking advantage
of the fact that F can be written as a Taylor polynomial plus some higher order
remainder, we look for approximate solutions which are finite sum of homogeneous
functions of increasing degree. Then, for any j ≤ r −N + 1, we look for K≤j and
R≤j+N−1 of the form

(3.1) K≤j(x) =
j

∑
l=1
Kl(x), R≤j+N−1(x) = x +

j+N−1
∑
l=N

Rl(x),

with K1(x) = (x,0)⊺, RN(x) = p(x,0) and Kl,Rl ∈Hl, satisfying

(3.2)
E>j(x) ∶= F ○K≤j(x) −K≤j ○R≤j+N−1(x)

= (E>jx ,E>jy )(x) = (o(∥x∥j+N−1), o(∥x∥j+L−1)) ,
where the constant L = min{N,M} was introduced in (2.2). We stress that the
superscripts in the above formula have two different meanings. While in K≤j

and R≤j+N−1 the superscript indicates that they are sums of homogeneous func-
tions of degree less or equal than j and j +N − 1, respectively, in E>j denotes that
it is the j-th error term. Of course, the order of E>j depends on j but also on N
and M and, as it is indicated in formula (3.2), the x and y-components of E>j may
have different orders.

If, by induction, we assume that E>j−1 = (Ej+N−1
x ,Ej+L−1

y ) + Ê>j , where Eℓ
∗,

∗ = x, y, is a homogeneous function of degree ℓ and

(3.3) Ê>j(x) = (o(∥x∥j+N−1), o(∥x∥j+L−1)) ,

then the functions Kj =∶ (Kj
x,K

j
y) and Rj+N−1 must satisfy

(3.4) DKj
x(x)p(x,0)−Dxp(x,0)Kj

x(x)−Dyp(x,0)Kj
y(x)+Rj+N−1(x) = Ej+N−1

x (x)
and, depending on the values of N and M ,

if N <M , DKj
y(x)p(x,0) = Ej+L−1

y (x),(3.5)

if N =M , DKj
y(x)p(x,0) −Dyq(x,0)Kj

y(x) = Ej+L−1
y (x),(3.6)

if N >M , −Dyq(x,0)Kj
y(x) = Ej+L−1

y (x).(3.7)

At this point it is worth to remark that one could try to find solutions of the
above equations in the space of homogeneous polynomials of degree j and j +N −
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1, respectively. In the case that K≤j−1 and R≤j+N−2 are sums of homogeneous
polynomials, the error term is also a homogeneous polynomial. But when N >M it
is clear that Kj

y(x) = −Dyq(x,0)−1Ej+L−1
y (x) cannot be, in general, a polynomial,

but a rational function. When N ≤ M , equations (3.5) and (3.6) are m(j+L+n−2
n−1 )

conditions while Kj
y , if assumed to be a polynomial, would have only m(j+n−1

n−1 ) free
coefficients. Hence, since L ≥ 2, generically these equations only admit polynomial
solutions in the case that n = 1 (which is the case studied in [BFdlLM07]). It is easy
to construct examples where these obstructions do appear. See Section 6 in [BFM].

Now we summarize how we solve equations (3.4), (3.5), (3.6) and (3.7).
In the case N > M , since, as a consequence of hypothesis H2, Dyq(x,0) is

invertible, equation (3.7) is trivially solvable in the space of homogeneous functions
of degree j.

In the case N ≤M , let φ(t, x) be the flow of

ẋ = p(x,0).
As a consequence of H3, φ(t, x) ∈ V , for all x ∈ V and t > 0. We consider the
homogeneous linear equations

dψ

dt
(t, x) =Dpx(φ(t, x),0)ψ(t, x),

dψ

dt
(t, x) =Dqy(φ(t, x),0)ψ(t, x)

and we denote by Mp(t, x) and Mq(t, x) their fundamental matrices such that
Mp(0, x) = Id ,Mq(0, x) = Id , respectively. From Theorem 3.2 in [BFM], the unique
homogeneous solution of equations (3.5) and (3.6) for Kj

y is given by

(3.8)
Kj

y(x) =∫
0

∞
Ej+L−1

y (φ(t, x))dt, if N <M,

Kj
y(x) =∫

0

∞
M−1

q (t, x)Ej+L−1
y (φ(t, x))dt, if N =M.

Theorem 3.2 in [BFM] ensures that the above formulas define homogeneous func-
tions of degree j.

The homogeneous solution of (3.7), clearly unique, is

Kj
y(x) = (Dyq(x,0))

−1
Ej+L−1

y (x), if N >M.

As for (3.4), notice that it is always possible to solve it by choosing Kj
x an

arbitrary homogeneous function of degree j and taking

(3.9) Rj+N−1(x) = Ej+L−1
x (x)−Dyp(x,0)Kj

y(x)+Dxp(x,0)Kj
x(x)−DKj

x(x)p(x,0).

However, we prove in [BFM] that, provided that r is large enough, there exists ℓ∗
(which depends explicitly on the constants defined in (2.4)) such that if ℓ∗−N+2 ≤ j,
Rj+N−1 can be chosen as an arbitrary homogeneous function of degree j+N −1 and

(3.10) Kj
x(x) = ∫

0

∞
M−1

p (t, x)[Ej+L−1
x (φ(t, x)) −Rj+N−1(φ(t, x))

−Dyp(φ(t, x),0)Kj
y(φ(t, x))]dt.

For instance, one can choose Rj+N−1 to be 0, if j ≥ ℓ∗−N +2, which implies that the
function R≤j+N−1 in (3.1) can be taken as a finite sum of homogeneous functions.
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3.2. Homological equations in the case of flows. Let U ⊂ Rn+m a neighbor-
hood of the origin and X ∶ U × R → Rn+m be a T -periodic vector field of the
form (2.20). We look for K and Y of the form

K≤j(x, t) =
j

∑
l=1
K(l)(x, t), Y ≤j+N−1(x) =

j+N−1
∑
l=N

Y l(x)

with K1(x, t) = (x,0)⊺, Y N(x) = p(x,0) and K(l) a sum of two homogeneous func-
tions: one of degree l independent of t and the other one of order (o(∥x∥j+N−1), o(∥x∥j+L−1)).
The homogeneous terms Kl are obtained by rearranging the sum above. They have
to satisfy the invariance equation (2.21) up to some order j in the sense that the
error term

E>j(x, t) ∶=X(K≤j(x, t), t) −DK≤j(x, t)Y ≤j+N−1(x) − ∂tK≤j(x, t)

satisfies

(3.11) E>j(x) = (E>jx ,E>jy )(x) = (o(∥x∥j+N−1), o(∥x∥j+L−1)) .

If, by induction, we assume that (3.3) is satisfied (taking into account the time

dependence) the functions K(j) = (K(j)x ,K
(j)
y ) and Y j+N−1 must satisfy

(3.12) DK(j)x (x, t)p(x,0) −Dxp(x,0)K(j)x (x, t) −Dyp(x,0)K(j)y (x, t)
+ Y j+N−1(x) + ∂tK(j)x (x, t) −Ej+N−1

x (x, t) = o(∥x∥j+N−1),

and
(3.13)

DK(j)y (x, t)p(x,0) −Dyq(x,0)K(j)y (x, t) + ∂tK(j)y (x, t) −Ej+L−1
y (x, t)

= o(∥x∥j+L−1).

Equation (3.13), depending on the values of N and M , reads

if N <M , DK(j)y (x, t)p(x,0) + ∂tK(j)x (x, t) −Ej+L−1
y (x, t)
= o(∥x∥j+L−1),

if N =M , DK(j)y (x, t)p(x,0) −Dyq(x,0)K(j)y (x, t) + ∂tK(j)x (x, t) −Ej+L−1
y (x, t)
= o(∥x∥j+L−1),

if N >M , −Dyq(x,0)K(j)y (x, t) + ∂tK(j)x (x, t) −Ej+L−1
y (x, t)
= o(∥x∥j+L−1).

We remark that, unlike the case of equations (3.4) to (3.7), the functions K(j)

and Y j+N−1 we obtain cancel out the error term in (3.12) and (3.13) but introduce
new terms of higher order.

For a T -periodic function h, we denote by h its mean, that is,

h(x) = 1

T
∫

T

0
h(x, t)dt,
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and h̃ = h − h its oscillatory part. If equations (3.12) and (3.13) are satisfied for

some K(j) periodic, then it is clear that the mean K(j) has to satisfy the equations

(3.14)

DK
(j)
x (x)p(x,0) −Dxp(x,0)K(j)x (x) −Dyp(x,0)K(j)y (x)

+Y j+N−1(x) −Ej+N−1
x (x) = o(∥x∥j+N−1),

DK
(j)
y (x)p(x,0) −Dyq(x,0)K(j)y (x) −Ej+L−1

y (x) = o(∥x∥j+L−1).

These equations can be solved in the same way as (3.4), (3.5), (3.6) and (3.7), in

the previous section. We conclude that K(j) and Y j+N−1 exist and they both have
the appropriate orders, i.e, degree j and j +N − 1 respectively.

Now we impose that

(3.15) ∂tK̃(j)(x, t) = (Ẽj+N−1
x (x, t), Ẽj+L−1

y (x, t))

and that K̃(j) has zero mean. Consequently, K̃(j)(x) = (o(∥x∥j+N−1), o(∥x∥j+L−1)).
We conclude that K(j) = K(j) + K̃(j) and Y j+N−1 satisfy equations (3.12) and

(3.13) and then (3.11) is satisfied.

Remark 3.1. The K(j) found are not homogeneous functions, but sums of homo-

geneous functions. Concretely, K
(j)
x has a term of order j and another of order

j +N − 1. Analogously, K
(j)
y has a term of order j and another of order j +L − 1.

4. Example. The elliptic spatial restricted three body problem

We have pointed out in the previous section that, in general, the invariant mani-
folds of a parabolic fixed point do not have polynomial expansions if their dimension
is greater than one, regardless of the regularity of the map. However, it may be
possible that the system of equations defined by (3.4) and (3.5)–(3.7) admits poly-
nomial homogenous solutions. Here we take advantage of the expressions (3.8),
(3.9) and (3.10) to show that this is the case of the parabolic infinity in the elliptic
spatial restricted three body problem.

The spatial elliptic restricted three body problem is a simplified version of the
spatial three body problem where one of the bodies is assumed to have zero mass
while the other two, named the primaries, evolve describing Keplerian ellipses
around their center of mass.

We introduce q̂(f) = (ρ(f) cos f, ρ(f) sin f,0), where, for a given eccentricity 0 ≤
e < 1,

ρ(f) = 1 − e2
1 + e cos f .

Rescaling time and mass units, we can assume that the masses of the primaries are
µ and 1−µ, respectively, and their positions are given by q1 = µq̂ and q2 = −(1−µ)q̂,
where f denotes the so-called true anomaly which satisfies

df

dt
= (1 + e cos f)

2

(1 − e2)3/2 .

Then, denoting by q ∈ R3 the position of the third body, the equations for q are

q̈ = −(1 − µ)q − q1
r31
− µq − q2

r32
,
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where ri = ∥q − qi∥, i = 1,2. Introducing the momenta p = q̇, this system is Hamil-
tonian with respect to

H(q, p, t) = ∥p∥
2

2
−U(q, t), U(q, t) = 1 − µ

r1
+ µ

r2
.

Our aim is to study the parabolic invariant manifolds of infinity. To this end, we
consider spherical coordinates (r,α, θ) in R3, namely q = (r cosα cos θ, r sinα cos θ, r sin θ).
Let (R,A,Θ) be their conjugated momenta, which can be obtained through a Math-
ieu transformation. They satisfy

p =m(r,α, θ)
⎛
⎜
⎝

R
A
Θ

⎞
⎟
⎠
, m(r,α, θ) =

⎛
⎜
⎝

cosα cos θ − sinα
r cos θ

− cosα sin θ
r

sinα cos θ cosα
r cos θ

− sinα sin θ
r

sin θ 0 cos θ
r

⎞
⎟
⎠
.

The new Hamiltonian is

Ĥ(r,α, θ,R,A,Θ, t) = 1

2
( A2

r2 cos2 θ
+ Θ2

r2
+R2) − Û(r,α, θ, t),

with

(4.1)

Û(r,α, θ, t) = 1 − µ√
r2 − 2µρ(f)r cos(α − f) cos θ + µ2ρ2(f)

+ µ√
r2 + 2(1 − µ)ρ(f)r cos(α − f) cos θ + (1 − µ)2ρ2(f)

=1
r
− µ(1 − µ)

2
(1 − 3 cos(α − f))ρ

2(f) cos2 f cos2 θ
r3

+O ( 1
r4
) .

To study the behavior of the system at r =∞, we perform the non-canonical change
of variables due to McGehee r = 2/z2. Since ṙ = R and the change does not involve
the remaining variables, the equations of motion in the new variables are

ż = −1
4
z3R

α̇ = ∂AĤ∣r=2/z2 = Az4

4 cos2 θ

θ̇ = ∂ΘĤ∣r=2/z2 = 1

4
Θz4

Ṙ = −∂rĤ∣r=2/z2 = A2z6

8 cos2 θ
+ Θ2z6

8
+ ∂rÛ(2/z2, α, θ, t) = −

1

4
z4 +O(z6)

Ȧ = −∂αĤ∣r=2/z2 = ∂αÛ(2/z2, α, θ, t) = O(z6)

Θ̇ = −∂θĤ∣r=2/z2 = −A
2z4 sin θ

4 cos3 θ
+ ∂θÛ(2/z2, α, θ, t) = −

A2z4 sin θ

4 cos3 θ
+O(z6).

Notice that the set {z = 0, R = 0} is invariant and foliated by fixed points. We
focus on those with θ = Θ = 0, α = α0, A = A0. To apply our theory, we perform the
following local change of variables

θ̂ = θ
z
, Θ̂ = zΘ

θ
, α̂ = α − α0 +AR

z
, Â = A −A0

z
,
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which transforms the system into

ż = −1
4
z3R Ṙ = −1

4
z4 + z6O0

˙̂α = 1

4
z2Rα̂ + z5O0

˙̂
A = 1

4
Âz2R + z5O0

˙̂
θ = 1

4
z2Rθ̂ + 1

4
z3θ̂Θ̂

˙̂
Θ = −1

4
z2RΘ̂ − 1

2
z3Θ̂2 + z5O0,

where all the terms up to degree 6 in the local variables are shown (we write Ok

meaning O(∥(z,R, α̂, Â, θ̂, Θ̂)∥k)). Notice that the leading terms are of degree 4.
Finally, it will be convenient to introduce

u = 1

2
(z +R), v = 1

2
(z −R)

so that the system, reordering equations, becomes

(4.2)

u̇ = −1
4
(u + v)3u + (u + v)6O0

˙̂
Θ = −1

4
(u + v)2(u − v)Θ̂ − 1

2
(u + v)3Θ̂2 + (u + v)5O0

v̇ = 1

4
(u + v)3v + (u + v)6O0

˙̂α = 1

4
(u + v)2(u − v)α̂ + (u + v)5O0

˙̂
A = 1

4
(u + v)2(u − v)Â + (u + v)5O0

˙̂
θ = 1

4
(u + v)2(u − v)θ̂ + 1

2
(u + v)3θ̂Θ̂.

We emphasize that the leading terms do not depend on t, but the remainders do
depend 2π-periodically on t.

Let X denote the vector field defined by (4.2). We can write the vector field in

the form (2.20) taking x = (u, Θ̂), y = (v, α̂, Â, θ̂) and

(4.3) p(x, y) = ( − 1
4
(u + v)3u

− 1
4
(u + v)2(u − v)Θ̂) , q(x, y) =

⎛
⎜⎜⎜⎜
⎝

1
4
(u + v)3v

1
4
(u + v)2(u − v)α̂

1
4
(u + v)2(u − v)Â

1
4
(u + v)2(u − v)θ̂

⎞
⎟⎟⎟⎟
⎠
.

Theorem 4.1. Let W be a perturbation of Û in (4.1) of the form W = Û + V ,
where

V (r,α, θ, t) = 1

r3
V̂ (r,α, θ, t)

(in spherical variables) is such that the equations of motion leave the plane θ = Θ = 0
invariant (that is, ∂θV∣θ=0 = 0) and V̂ is analytic in 1/r and the rest of its arguments.

Then, after the changes of variables described above, the equations of motion
are given by (4.2). The origin is a parabolic fixed point. It has an analytic stable
invariant two dimensional manifold which admits a parametrization of the form
K(x, t) = (x,0) + K̃(x, t), where

K̃(x, t) = O(∥x∥2), u > 0, Θ̃ > 0
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such that
X(K(x, t), t) =DK(x, t)Y (x) + ∂tK(x, t),

with Y (x) = p(x,0) +O(∥x∥5) is a polynomial of degree 7.

The function K̃(x, t) is 2π-periodic in t and, for all ℓ ≥ 7,

K̃(x, t) =
ℓ

∑
j=2

K̆j(x, t) +O(∥x∥ℓ+1)

where K̆j are homogeneous polynomials, with respect to x, of degree j. That is, the
stable invariant manifold admits polynomial approximation up to any order.

Proof. System (4.2) satisfies hypotheses (a) and (b) of Theorem 2.10. Hence, in
order to obtain the claim, we only need to check hypothesis (c). It is enough to
find approximate solutions of the invariance equation

(4.4) X(K(x, t), t) −DK(x, t)Y (x) − ∂tK(x, t) = 0.
We show that there are indeed approximate solution of these equation up to any
order and that these solutions are sums of homogeneous polynomials.

We use the construction described in Section 3.2 to find approximate solutions
of the above equation. The procedure applies in the region {u > 0, Θ̂ > 0}.

The explicit expression of the flow of the vector field p(x,0), with p on (4.3), is

φ(t, x) = 1

(1 + 3
4
tu3)1/3

(u
Θ̂
) .

Let Mp(t, x) and Mq(t, x) be the fundamental matrices of the linear equations

dψ

dt
(t, x) =Dxp(φ(t, x),0)ψ(t, x)

dψ

dt
(t, x) =Dyq(φ(t, x),0)ψ(t, x)

such that Mp(0, x) = Id and Mq(0, x) = Id , respectively. We have that

M−1
p (t, x) =

⎛
⎝

(1 + 3
4
tu3)4/3 0

3
4
tu2Θ̂ (1 + 3

4
tu3)1/3 (1 + 3

4
tu3)1/3

⎞
⎠

and

Mq(t, x) = (1 +
3

4
tu3)

1/3
Id 4×4.

Along this proof we will deal with several objects that will be homogeneous poly-
nomials. Their superscripts will denote their degree. A slightly different notation
is used for E>j . See (3.2)-(3.3).

We write the vector field in (4.2) asX = ∑l≥4X
l, whereX l depends 2π-periodically

on t. Following the algorithm described in Section 3.2 with N =M = 4, we look for
solutions of the equation (4.4) of the form

K(x, t) =∑
l≥1
K(l)(x, t), Y (x) =∑

l≥4
Y l(x),

where K(l) depends 2π-periodically in t and it is of the form

K(l)(x, t) =Kl(x) + K̃l+3(x, t), with K̃l+3 = K̃(l).
and K1(x) = (x,0), K̃4(x, t) = 0, Y 4(x) = p(x,0). The homogeneous functions K̆l

in the statement of the theorem are obtained by rearranging the sum above.



INVARIANT MANIFOLDS OF PARABOLIC FIXED POINTS (I). EXISTENCE AND DEPENDENCE ON PARAMETERS21

We recall that x = (u, Θ̂) and y = (v, α̂, Â, θ̂). It is clear from (4.2) that the
homogeneous polynomials X l satisfy that

(4.5)

X5
ξ (x,0, t) = u5X̂0

ξ (x, t), ξ = α̂, Â, θ̂,
X5

u(x,0, t) =X5
v(x,0, t) = 0,

X5
Θ̂
(x,0, t) = −1

2
u3Θ̂2 + u5X̂0

Θ̂
(x, t),

and, for l ≥ 6,
X l(x,0, t) = u5X̂ l−5(x, t)
X l

ξ(x,0, t) = u6X̂ l−6
ξ (x, t), ξ = u, v.

The statement is a consequence of the following claim. We make the convention
that Oj = 0 if j < 0.

Claim 4.2. (i) Kj(x) = u2Oj−2, K
j
u,v(x) = u3Oj−3, j ≥ 2. Kj

x = 0 if 2 ≤ j ≤ 7.
K̃j+3(x, t) = u5Oj−2, K̃

j+3
u,v (x, t) = u6Oj−2, j ≥ 3.

(ii) Y 5(x) = ( a1u
5

u3(a2Θ̂2 + a3u2)
), with a1, a2, a3 ∈ R, Y j(x) = (u6Oj−6, u

5Oj−5)⊺,

6 ≤ j ≤ 7 and Y j = 0 for j ≥ 8.
(iii) Denoting K≤j = ∑j

l=1(Kl + K̃l+3), Y ≤j = ∑j
l=4 Y

l,

E>j(x, t) =X(K≤j(x, t), t) −DK≤j(x, t)Y ≤j+3(x) − ∂tK≤j(x, t),
and E>j = Ej+4+Ê>j+1 with Ej+4(x, t) = (O(∥x∥j+4)), Ê>j+1(x, t) = (o(∥x∥j+4)),
then,

Ej+4(x, t) = u5Oj−1, Ej+4
u,v (x, t) = u6Oj−2, j ≥ 2.

In (i) and (ii) the terms Oj are homogenous polynomials in x of degree j while
in (iii) Oj are analytic functions in x of order j.

The following fact will be used repeatedly without mention. Given any monomial
Z(x) = uj1Θ̂j2 and denoting {e1, e2} the canonical basis of R2, there exist ci ∈ R,
depending only on j1 and j2, such that

∫
0

∞
M−1

p (t, x)Z(φ(t, x))e1 dt = c1
Z(x)
u3

e1 + c2
Z(x)
u4

Θ̂e2,

∫
0

∞
M−1

p (t, x)Z(φ(t, x))e2 dt = c3
Z(x)
u3

e2

and, denoting {e′j}j=1,...,4 the canonical basis of R4, there exists c ∈ R, depending
only on j1 and j2, such that

∫
0

∞
M−1

q (t, x)Z(φ(t, x))e′j dt = c
Z(x)
u3

e′j , j = 1, . . . ,4.

Indeed, it suffices to make the change s = tu3 in the integrals. Obviously, the
previous integrals are only convergent when j1 + j2 ≥ 8, for the first one, when
j1 + j2 ≥ 5, for the second one and j1 + j2 ≥ 3 for the last one.

We prove the claim by induction. We start with the case j = 2.
According to the algorithm, using that X4 = (p, q)⊺ and Y 4(x) = p(x,0) in

equations (3.14) for j = 2, the functions K2 and Y 5 must satisfy

DK2Y 4 − (DX4 ○K1)K2 + (Id
0
)Y 5 = E5,
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where E5 = X5 ○K1 denotes the terms of degree 5 of E>1 and we recall that Z
denotes the mean of a periodic function Z. Using (3.8), the equation for K2

y has
the homogeneous solution

(4.6) K2
y(x) = ∫

0

∞
M−1

q (t, x)E5
y(φ(t, x))dt.

Since, in view of (4.5), X5
y ○K1(x) = X5

y(x,0) = a0u5, we have that K2
y(x) = b0u2,

where a0, b0 ∈ R4. Furthermore, since X5
v = 0 and Mq is a diagonal matrix, we

deduce that K2
v = 0.

Once K2
y is found, we take K2

x = 0 and choose appropriately Y 5, that is,

Y 5(x) =DyX
4
x(x,0)K2

y(x) +X5
x ○K1(x) = ( a1u

5

a2u
3Θ̂2 + a3u5

) ,

with a1, a2, a3 ∈ R, where we have used that, since K2
v = 0, and

(4.7) DyX
4
x(x,0) =Dyp(x,0) = (

− 3
4
u3 0 0 0

− 1
4
u2Θ̂ 0 0 0

) ,

we have that Dyp(x,0)K2
y(x) = 0. This accounts for the first part of (ii).

To cancel the oscillatory part of E5 we use (3.15) and we choose K̃5 with zero
mean such that

∂tK̃
5(x, t) = Ẽ5(x, t).

From (4.5) we get that K̃5(x, t) = u5O0 and K̃5
u(x, t) = K̃5

v(x, t) = 0.
With this choice of K≤2 and Y ≤5 the algorithm ensures that the remainder

E>2(x, t) = O6. We have that

E>2(x, t) =X(K≤2(x, t), t) −DK≤2(x, t)Y ≤5(x) − ∂tK≤2(x, t)

=X6(x,0, t) +DX5(x,0, t)K2(x) + 1

2
D2X4(x,0)K2(x)⊗2

−DK2(x)Y 5(x) + u5O1

=u5O1.

The last equality uses that K2
x = 0, K2

v = 0, K2
y(x) = u2O0, the particular form

of Y 5, X5, X6 and the fact that ∂2X4

∂y2 (x,0) = uO1. Moreover, using that K2
x = 0,

K2
v = 0, X5

u,v = 0 and X6
v(x,0, t) = u6O0 one obtains that

(4.8) E>2u,v(x, t) = u6O0.

This proves the claim for j = 2.
Now we assume that we have obtained K≤j−1, Y ≤j+2 and E>j−1, with j ≥ 3,

satisfying the induction hypotheses. The equation for Kj and Y j+3 is

DKjY 4 − (DX4 ○K1)Kj + (Id
0
)Y j+3 = Ej+3.

The function Kj
y is obtained as we did for K2

y in (4.6).

Since Ej+3(x, t) = u5Oj−2, we obtain that Kj
y(x) = u2Oj−2. By the same argu-

ment, using (4.8) and that Mq is a diagonal matrix, one has Kj
v(x) = u3Oj−3.

To find Kj
x and Y j+3 we proceed in two different ways according to whether j ≤ 4

or j ≥ 5. The point is that for j ≥ 5 we can take Y j+3 = 0 choosing appropriately
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Kj
x. However, for j ≤ 4, the integrals involved in the computation of Kj

x do not
converge.

If j ≤ 4, we choose Kj
x = 0 and

Y j+3(x) =DyX
4
x ○K1(x)Kj

y(x) +Ej+3
x (x).

Formula (4.7) and the induction hypothesis gives that Y j+3(x) = (u6Oj−3, u
5Oj−2)⊺.

Instead, if j ≥ 5, we choose Y j+3 = 0 and

Kj
x(x) = ∫

0

∞
M−1

p (t, x)Ej+3
x (φ(t, x))dt.

The induction hypothesis on Ej+3 gives Kj
x(x) = (u3Oj−3, u

2Oj−2)⊺.
We choose K̃j+3 with zero mean such that ∂tK̃

j+3(x, t) = Ẽj+3(x, t). Again from

the induction hypothesis we get that K̃j+3(x, t) = u5Oj−2 and K̃j+3
u,v (x, t) = u6Oj−3.

Finally, we need to check the properties of Ej+4. From the definition of E>j ,

E>j(x, t) =E>j−1(x, t) +X(K≤j(x, t), t) −X(K≤j−1(x, t), t)
− (DK≤j(x, t)Y ≤j+3(x) −DK≤j−1(x, t)Y ≤j+2(x))
− (∂tK≤j(x, t) − ∂tK≤j−1(x, t))
=E>j−1(x, t) + T1(x, t) − T2(x, t) − T3(x, t),

where Ti are defined in the obvious way.
We have

T1 = ∫
1

0
DX(K≤j−1 + s(Kj + K̃j+3), t)(Kj + K̃j+3)ds.

Taking into account the structure of X in (4.2) a long but straightforward compu-
tation gives

T1(x, t) = u5Oj−2, (T1)u,v(x, t) = u6Oj−3.

For T2 we have

T2 =DK≤j−1Y j+3 + (DKj +DK̃j+3)Y ≤j+3.
A simple calculation gives that for j ≥ 3,

DK≤j−1(x, t) = ( 1O0 uO0 u2O0 uO0 uO0 uO0

u3O0 1O0 u3O0 u2O0 u2O0 u2O0
)
⊺

,

Y j+3(x) = (u
6O0

u5O0
) ,

(DK≤j +DK̃j+3)(x, t) = (u
2O0 uO0 u2O0 uO0 uO0 uO0

u3O0 u2O0 u3O0 u2O0 u2O0 u2O0
)
⊺

and

Y ≤j+3(x) = (u
5O0

u3O2
) ,

where here Oj denotes a polynomial in x of order j. This implies

T2(x, t) = u5Oj−2, (T2)u,v(x, t) = u6Oj−3.

Finally, T3 = ∂tK̃j+3 and the induction hypotheses gives (iii) for j.
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Note however that some terms of T1, T2 and T3 do not contribute because their
order is less or equal than j + 3 and are compensated by the choice of the K’s and
Y ’s. □

5. Examples

In this section we provide examples showing that hypotheses H1, H2 and H3
are necessary to the existence of the invariant manifolds. We also show that the
manifolds may be much less regular than the map.

5.1. A toy model. The first example corresponds to a map without stable invari-
ant manifold but satisfying both H1 and H2.

Let φ be the flow of the equations in R2 ×R
ẋ1 = −x21, ẋ2 = −ax1x2, ẏ = bx1y + x32,

being a, b > 0, and F (x, y) = φ(1;x, y), with x = (x1, x2), its time 1 map.

Claim 5.1. There exists V ⊂ R2, star-shaped with respect to the origin, such that
F satisfies hypotheses H1 and H2 in V .

If b + 3a ≤ 1, F has no invariant stable manifold over V of the origin.

The map F has the form (2.1) with p(x, y) = (−x21,−ax1x2) and q(x, y) = bx1y.
We introduce

W = {x = (x1, x2) ∈ R2 ∶ ∣x2∣ < (1 − a)x1 <
2

a + 1} .

First we note that the map F satisfies hypotheses H1 and H2 with the supremum
norm in any open set V contained in W . Of course the constants Ap,Bq will
depend on V . However we claim that there is no invariant set for Fx contained
in W . As a consequence, hypothesis H3 can not be satisfied. Indeed, assume that
x0 = (x1, x2) ∈W , and consider

xn = Fx(xn−1) = Fn
x (x0) =

⎛
⎝

x1
1 + nx1

,
x2

(1 + nx1)
a

⎞
⎠
.

The sequence xn ∈W if and only if x1 ≥ ∣x2∣(1 + nx1)
1−a

, ∀n ≥ 0, which is not true
since x1 > 0 and a < 1.

Now we check that the map F has no stable invariant manifold. Indeed, if such a
manifold exists, then, for any (x, y) belonging to it, Fn

y (x, y)→ 0 as n→∞. Since

φy(t, x, y) = (1 + tx1)
b
⎡⎢⎢⎢⎢⎣
y + x32 ∫

t

0

1

(1 + sx1)
b+3a ds

⎤⎥⎥⎥⎥⎦
,

we deduce that

Fn
y (x, y) = (1 + nx1)

b
⎡⎢⎢⎢⎢⎣
y + x32 ∫

n

0

1

(1 + sx1)
b+3a ds

⎤⎥⎥⎥⎥⎦
.

Therefore, since (1 + nx1)b → ∞ as n → ∞ a necessary condition for Fn
y (x, y) → 0

as n→∞, is that

y = x32 ∫
0

∞

1

(1 + sx1)
b+3a ds,

and the claim follows because the above integral is not convergent when b+ 3a ≤ 1.
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5.2. The loss of differentiability. The following example shows that the invari-
ant manifolds of a parabolic fixed point may be of finite order of differentiability.
This maximum order of differentiability is attained when the manifold is written
(locally) as a graph, since if the invariant manifold possesses a parametrization of
the form given by Theorem 2.4 with some regularity, by performing a close to the
identity change of variables, its representation as a graph will be also of the same
regularity.

Let a, b > 0. Let F be the the time 1 map of

ẋ = p(x), ẏ = q1(x)y + g(x),
where x = (x1, x2) ∈ R2, y ∈ R, p is such that the equation ẋ = p(x) in polar
coordinates (x1, x2) = (r cos θ, r sin θ) becomes

(5.1) ṙ = −ar5, θ̇ = r4 sin 4θ
(p is a homogeneous polynomial of degree 5) and

q1(x) = b(x21 + x22)2, g(x) = 8(x21 + x22)x1x2(x21 − x22).

Claim 5.2. Let ν ∈ (0,1). There exists a0 > 0 such that, for any a > a0, the map
F satisfies hypotheses H1, H2 and H3 in Vϱ, for some ϱ > 0, where

V = {x ∈ R2 ∶ ν∣x1∣ ≤ x2}.
Furthermore, for any m,n ∈ N satisfying n > a0 and 2m > n + 1, the stable

manifold over V of the origin with a = 2n and b = 4(2m − n − 1) is only 2m − 2 ≥ 1
times differentiable.

Proof. Let φ(t, x) be the flow of ẋ = p(x) andM(t, x) the solution of Ṁ = q1(φ(t, x))M
such that M(0, x) = 1. The stable manifold (if it exists) has to be the graph of
y = h(x) with

(5.2) h(x) = ∫
0

∞
M−1(t, x)g(φ(t, x))dt.

We note that, for any value of a > 0, the map x↦ p(x) has exactly five invariant
lines in the set {x2 ≥ 0} corresponding to the values of θ = 0, π/4, π/2,3π/4, π.

It is straightforward to check that, taking a > 0 big enough, there exists ϱ > 0
small enough and a norm in R2 such that p satisfies H1,H3 in Vϱ with the usual

Euclidean norm ∥v∥ =
√
v21 + v22 .

Moreover, a simple computation shows that 0 < Ap < bp = a. We recall that these
constants were defined in (2.4).

Using polar coordinates (r, θ) in the (x1, x2)-plane, q1 and g have the simpler
expressions

q1(r) = br4, g(r, θ) = 2r6 sin 4θ.
In what follows we will write with the same letter a function f(x) and its expression
in polar coordinates f(r, θ) = f(r cos θ, r sin θ).

The stable manifold over V of the origin (which exists and it is C1) is the graph of
y = h(x) with h given in (5.2). Let φ(t; r, θ) be the flow associated to (5.1) in polar
coordinates. We denote φr and φθ the first and second component respectively of
φ when written in polar coordinates. Then

h(x) = 2∫
0

∞
[My(t, x)]−1[φr(t; r, θ)]

6
sin(4φθ(t; r, θ))dt
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withMy the solution of the linear system Ṁy = b(φr(t; r, θ))4My such thatMy(0, r, θ) =
1.

We first note that, if θ = π/4, π/2,3π/4 (that is, x belongs to an invariant line),
then φθ(t; r, θ) = θ and consequently sin(4φθ(t; r, θ)) ≡ 0. This implies that the
stable manifold evaluated at points with argument θ = π/4, π/2,3π/4 is h(x) ≡ 0. If
the argument of x, θ ≠ π/4, π/2,3π/4,

h(x) = 4cθr6 ∫
0

∞

1

(1 + 4atr4) b
4a+

6
4−

1
a ⋅ [c2θ + (1 + 4atr4)

2
a ]
dt,

where

cθ =
1 + cos(4θ)
sin(4θ) = x

2
1 − x22
2x1x2

= cx

and (r, θ) are the polar coordinates of x = (x1, x2). In particular, if θ = π/4,3π/4,
then cx ≡ 0 and hence the above expression for h is also valid in these invariant
lines.

We perform the change of variables (1 + 4atr4)2/a = c2x/w and we obtain that

h(x) = −cx
x21 + x22

4∣cx∣a(
b
4a+

6
4+

1
a−1)

∫
c2x

0

w
a
2
( b

4a+
6
4+

1
a−1)

w(w + 1) dw.

Now we take m,n as in the claim and choose a, b accordingly. Then

h(x) = −x
2
1 + x22

4c2m−1x
∫

c2x

0

wm−1

w + 1 dw.

Using the elementary identity

wm−1

w + 1 =
m

∑
j=2
(−1)jwm−j + (−1)

m+1

w + 1 ,

we obtain

h(x) = −x
2
1 + x22

4c2m−1x

⎛
⎝

m

∑
j=2
(−1)j c

2(m−j+1)
x

m − j + 1 + (−1)
m+1 log(c2x + 1)

⎞
⎠
.

Now we are going to look for the differentiability of h at points of the form (0, x2),
x2 ≠ 0. To determine the regularity with respect to x1, we only need to study the
auxiliary function

h̃(x) = x2m−11

⎛
⎝

m

∑
j=2
(−1)j x

−2(m−j+1)
1

m − j + 1 + (−1)
m+1 log( 1

x21
+ 1)
⎞
⎠
.

This function is only 2m − 2 ≥ 1 times differentiable. □

6. Decomposition of Vϱ

In this section we describe a decomposition of the set Vϱ associated to a map of
the form R(x) = x + p(x,0) +O(∥x∥N+1). Moreover we will obtain a quantitative
estimate of the rate of convergence of ∥Rk(x)∥ to 0 as k →∞.

We introduce the constant

α = 1

N − 1 .
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For a given ϱ > 0, let u > 0 and a0 > 0 be such that a0u
−α = ϱ. Consider two

sequences ak ∈ R, k ≥ 0 and bk ∈ R, k ≥ 1, such that

(6.1)
bk+1

(u + k + 1)α <
ak

(u + k)α , k ≥ 0.

We introduce the sets

(6.2) Vk = {x ∈ Vϱ ∶ ∥x∥ ∈ Ik ∶= [
bk+1

(u + k + 1)α ,
ak

(u + k)α ]} .

Lemma 6.1. Let p be the homogeneous polynomial defined in (2.1). Let R ∶ Vϱ →
Rn be a continuous map such that R(x) − x − p(x,0) = O(∥x∥N+1).

Assume that p satisfies H1 and H3 and let ap ≤ bp be the constants defined in
(2.4).

Then for any a < ap and b > bp, there exists ϱ small enough such that

(1) if x ∈ Vϱ,

∥R(x) − x∥ ≤ b∥x∥N , ∥R(x)∥ ≤ ∥x∥(1 − a∥x∥N−1).

(2) Let a0, b0, u > 0 be such that aN−10 = αa−1, bN−10 = αb−1 and a0u
−α = ϱ.

There exist two sequences ak, bk ∈ R, satisfying (6.1), such that ak = a0(1 +
O(k−β)), bk = b0(1 +O(k−β)) for some β > 0. Moreover

(6.3) Vϱ/{0} =
∞
⋃
k=0

Vk and R(Vk) ⊂ Vk+1.

Consequently, if x ∈ Vk, then one has that

α

b(u + k + 1 + j)
(1 +O(k−β)) ≤ ∥Rj(x)∥N−1 ≤ α

a(u + k + j)
(1 +O(k−β)).

Proof. The proof of item (1) is straightforward from the definitions of ap and bp.
Now we check (2). We define the auxiliary functions of real variable, Ra(v) =

v − avN and Rb(v) = v − bvN . We first observe that, if ϱ is small enough,

Rb(∥x∥) ≤ ∥R(x)∥ ≤Ra(∥x∥).
Indeed, the right hand side inequality follows from the definition of a and the left
hand side inequality is a straightforward consequence of the definition of b and the
triangular inequality ∥R(x)∥ ≥ ∥x∥ − ∥R(x) − x∥.

For k ≥ 0 we define the sequences ak, bk by the recurrences

ak+1
(u + k + 1)α =Ra (

ak
(u + k)α ) ,

bk+1
(u + k + 1)α =Rb (

bk
(u + k)α ) , k ≥ 0,

and also āk, b̄k by

āk =
ak

(u + k)α , b̄k =
bk

(u + k)α , k ≥ 0.

We have that a < b. We choose ϱ small enough such that both Ra and Rb

are monotonically increasing functions in [0, ϱ] and 0 < Rb(v) < Ra(v) < v, for
v ∈ (0, ϱ]. From the choice of a0, b0 we have b̄0 < ā0 and ā0 = ϱ. We easily check by
induction

0 < b̄k < āk, āk+1 < āk, b̄k+1 < b̄k and lim
k→∞
(ā2k + b̄2k) = 0.
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As an immediate consequence, the sets Vk in (6.2) are well defined for this choice
of sequences bk and ak and, in addition, equality (6.3) holds. Moreover, we note
that if u ∈ Il = [b̄l+1, āl], then, by the definition of the sequences āk, b̄k, since Ra

and Rb are increasing functions in [0, ϱ] and Rb(v) ≤Ra(v),

Ra(v) ∈ [Ra(b̄l+1),Ra(āl)] ⊂ [Rb(b̄l+1),Ra(āl)] = [b̄l+2, āl+1] = Il+1,
Rb(v) ∈ [Rb(b̄l+1),Rb(āl)] ⊂ [Rb(b̄l+1),Ra(āl)] = [b̄l+2, āl+1] = Il+1.

Therefore, if x ∈ Vl (which is equivalent to ∥x∥ ∈ Il), thenR(x) ∈ Il+1 since Rb(∥x∥) ≤
∥R(x)∥ ≤Ra(∥x∥).

In [BFdlLM07] it was proven that there exist two analytic function φa, φb of the
form

(6.4) φa(w) =
a0
wα
+O ( 1

wα+β ) , φb(w) =
b0
wα
+O ( 1

wα+β )

with β > 0 which conjugate both Ra and Rb to w ↦ w + 1, namely

(6.5) Ra(φa(w)) = φa(w + 1), Rb(φb(w)) = φb(w + 1).

Let wa
k ,w

b
k be such that φa(wa

k)(u+ k)α = ak and φb(wb
k)(u+ k)α = bk. We observe

that, by definition of ak, bk and (6.5)

φa(wa
k) =

ak
(u + k)α =Ra (

ak−1
(u + k − 1)α ) =Ra(φa(wa

k−1)) = φa(wa
k−1 + 1)

which implies (by the injective property of φa) that w
a
k = wa

k−1 + 1 = wa
0 + k. Anal-

ogously one can see that wb
k = wb

0 + k. Now we notice that, by the form (6.4) of
φa, φb, one has that

wa
0 = u +O(u1−β), wb

0 = u +O(u1−β).

Therefore,

ak = (u + k)αφa(wa
k) = (u + k)αφa(wa

0 + k)

= a0(u + k)α

[u + k +O(u1−β)]α
+O
⎛
⎜
⎝

(u + k)α

[u + k +O(u1−β)]α+β
⎞
⎟
⎠

= a0

[1 +O(u1−β(u + k)−1)]α
+O
⎛
⎜
⎝

1

(u + k)β[1 +O(u1−β(u + k)−1)]α+β
⎞
⎟
⎠

= a0 +O (
1

(u + k)β ) .

Analogously, one checks that bk = b0 +O((u + k)−β) and the proof of the lemma is
concluded. □

Remark 6.2. Note that as a simple consequence of this technical lemma, we have
that for x ∈ Vϱ, Rk(x) → 0 as k → ∞. Hence, if we are able to prove the exis-
tence of a parametrization K satisfying the invariance equation F ○K −K ○R = 0,
since F k(K(x)) = K(Rk(x)), the image of K will represent a subset of the stable
invariant manifold .
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7. The invariant manifold. The differentiable case

In this section we prove Theorem 2.4 in the differentiable case. This is ac-
complished by stating and solving a fixed point equation in some appropriate Ba-
nach spaces. The proof follows along the same lines of the equivalent result in
[BFdlLM07], but there are technical differences that prevent to apply directly that
proof. However, these differences are not important enough to justify the inclusion
of the whole proof. For this reason, in this section we include a series of technical
lemmas, equivalent to those in [BFdlLM07], with the suitable hypothesis in our
current case. We sketch their proofs when they are different enough of their coun-
terpart in [BFdlLM07]. The existence of the manifold follows directly from this set
of lemmas.

Along this section we will assume that all the hypotheses of Theorem 2.4 hold.
We will denote by C a positive constant which may take different values at different
places.

7.1. Preliminary facts. We take ℓ ∈ N such that ℓ0 < ℓ ≤ r with ℓ0 introduced
in (2.5) and we decompose our map F into

F (x, y) = P (x, y) +Gℓ(x, y),
where P is the Taylor expansion of F up to degree ℓ − 1 and Gℓ(x) = o(∥x∥ℓ−1). In
fact, since ℓ ≤ r, we actually have that Gℓ(x) = O(∥x∥ℓ). By hypothesis, there exist

K≤ and R, Cr≤ functions such that

(7.1) P ○K≤ −K≤ ○R = T ℓ, T ℓ(x) = O(∥x∥)ℓ.
Since P is a polynomial andK≤,R satisfy item (c) in Theorem 2.4, the remainder

T ℓ satisfies

DjT ℓ(x) = O(∥x∥ℓ−j), j = 0,⋯, r≤.
Finally, using that DjGℓ is the Taylor’s remainder of DjF ,

DjGℓ(x, y) = O(∥(x, y)∥ℓ−j), j = 0,⋯, r.
We will use these simple facts without special mention.

As a consequence of (7.1), the purpose of this section is to prove that there is
only one solution K> of

(7.2) F ○ (K≤ +K>) − (K≤ +K>) ○R = 0.
We will see that equation (7.2) can be rewritten as a fixed point equation. Then, a
solution of this fixed point equation will be found.

7.2. The Banach spaces and the main statement. Given E a Banach space,
we will denote

X ν
k (E) = {h ∶ Vϱ ⊂ Rn → E ∶ h ∈ Cν , max

0≤j≤ν
sup
x∈Vϱ

∥Djh(x)∥
∥x∥k−jη <∞}

with η = 1 − L + N defined in (2.2). This quantity was already introduced in
[BFdlLM07], jointly with a motivating example showing that, if K>(x) = O(∥x∥k),
then DK>(x) is not necessarily O(∥x∥k−1).

With this definition, if h ∈ X ν
k (E), then Dh ∈ X ν−1

k−η (L(Rn;E)). Thus we under-

stand by ∥Djh(x)∥ the norm of the j-linear map induced by the norm in E.
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We endow X ν
k with the norm

∥h∥ν,k = max
0≤j≤ν

sup
x∈Vϱ

∥Djh(x)∥
∥x∥k−jη

and it becomes a Banach space. We denote by Bνk(ς) ⊂ X ν
k the open ball of radius

ς.

Proposition 7.1. Assume all the conditions in Theorem 2.4. Let ℓ ∈ N be such
that ℓ0 < ℓ ≤ r (the case r = ∞ is included). Then there exists ς∗ > 0 such that for
any ς ≥ ς∗ there exists ϱ small enough such that equation (7.2) has a unique solution

K> ∶ Vϱ → Rn+m belonging to Br
>

ℓ

ℓ−N+1(ς) with r>ℓ ≤min{r, r≤} and satisfying

r>ℓ max{η − Ap

dp
,0} < ℓ −N + 1 − Bp

ap
.

Note that when ηdp ≤ Ap, the maximum differentiability degree is r>ℓ =min{r, r≤}.
In addition r> = r>ℓ for ℓ = r is the value stated in Theorem 2.4.

In the next sections we prove this proposition by using the same scheme as in
[BFdlLM07].

Next proposition proves the uniqueness statement of Theorem 2.4. This propo-
sition ends the proof of Theorem 2.4 in the differentiable case.

Proposition 7.2. Assume the hypotheses of Proposition 7.1. We denote by ϱ∗ > 0
the corresponding quantity provided in Proposition 7.1 for the radius ς∗. Then

equation (7.2) has a unique solution K> ∶ Vϱ∗ → Rn in X r>ℓ
ℓ−N+1.

Proof. Let K1 = K≤ +K>1 and K2 = K≤ +K>2 be two solutions of the invariance

equation F ○K = K ○R with K>1 ,K
>
2 ∈ X

r>ℓ
ℓ−N+1. We denote by Vϱ0 their common

domain (all the suprema will be taken in this domain) and we consider

ς = ς∗ +max{∥K>1 ∥r>ℓ ,ℓ−N+1, ∥K
>
2 ∥r>ℓ ,ℓ−N+1} > ς∗.

By Proposition 7.1, there exists ϱ ≤ ϱ0 small enough and a unique function K> ∶
Vϱ → Rn+m, belonging to X r>ℓ

ℓ−N+1 with norm ∥K>∥r>
ℓ
,ℓ−N+1 ≤ ς. Since, for i = 1,2,

∥K>i ∥r>ℓ ,ℓ−N+1 < ς they have to coincide in Vϱ. In addition, we can extend K> to

Vϱ∗ by using the invariance equation. Indeed, let K = K≤ +K>. First, we notice

that by (2) of Lemma 6.1, there exists k such that Rk(Vϱ∗/Vϱ) ⊂ Vϱ. Second, the

relation K = F −k ○K ○Rk extends K to Vϱ∗ and the result is proven. □

In Rn+m we will use the norm

(7.3) ∥(x, y)∥ =max{∥x∥, ∥y∥}, (x, y) ∈ Rn+m,

where the chosen norms in Rn and Rm are such that hypotheses H1, H2, and H3
hold.

7.3. A compilation of technical lemmas. The lemmas in this section are the
translation to our current setting of the lemmas in [BFdlLM07].

We first present the following elementary properties of the Banach spaces X ν
k .

Lemma 7.3. The Banach spaces X ν
k satisfy:

(1) Let f(x) ∈ L(X1,X2) with f ∈ X ν
k and g(x) ∈ X1 with g ∈ X ν

l , then f ⋅ g ∈
X ν

k+l and ∥f ⋅ g∥ν,k+l ≤ 2ν∥f∥ν,k∥g∥ν,l.
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(2) Let f ∶ U ⊂ Rn+m → E be a Cν map, with E a Banach space, such that
∥Dlf(x)∥ = O(∥x∥j−l) for all 0 ≤ l ≤ ν. Then, for any map g ∶ Vϱ → U such
that g ∈ X i

1 for some 0 ≤ i ≤ ν we have that f ○ g ∈ X i
j .

For any a < ap, b > bp, we define the auxiliary constant

d =
⎧⎪⎪⎨⎪⎪⎩

a, if Ap ≤ 0,
b, otherwise.

From now on we fix values a < ap, b > bp and B > Bp such that if either a)
Ap > ηdp, or b) dp < Ap < ηdp or c) Ap < dp then a) Ap > ηd, b) d < Ap < ηd or c)
Ap < d respectively. We also choose the constants a, b such that the cases Ap = ηd
or Ap = d can be skipped even when either Ap = ηdp = ηbp or Ap = dp respectively.
Below we introduce k0 and we further impose that

(7.4)
ℓ0 < k0 ∶= N − 1 +

B

a
+max{η − Ap

d
,0} < ℓ ≤ r,

ℓ −N + 1 − B
a
− r>ℓ max{η − Ap

d
,0} > 0.

The first property holds because ℓ0 < ℓ ≤ r. The second one holds by the definition
of r>ℓ in Proposition 7.1. The constant k0 depends on the values a, b,B but it can
be chosen arbitrarily close to ℓ0 (see (2.5) for the definition of ℓ0).

7.3.1. Scaling. We perform a scaling in the y-variables by the change Sδ(x, y) =
(x, δy). Then, equations (7.1) and (7.2) become

(7.5) P̃ ○ K̃≤ − K̃≤ ○R = T̃ℓ
and

(7.6) F̃ ○ (K̃≤ + K̃>) − (K̃≤ + K̃>) ○R = 0,

where P̃ = S−1δ ○ P ○ Sδ, F̃ = S−1δ ○ F ○ Sδ, K̃
≤ = S−1δ ○K≤ and K̃> = S−1δ ○K>.

We observe that

P̃x(x, y) = x + p(x,0) + p(x, δy) − p(x,0) + f̂(x, δy),

where, by hypothesis, p̃(x, y) = p(x, δy) − p(x,0) is a homogeneous polynomial of

degree N and f̂(x, δy) = O(∥(x, δy)∥N+1) . We have that p̃(x, y) = p̂N−1(x, y)y,
where

p̂N−1(x, y) = δ∫
1

0
Dyp(x, τδy)dτ

is a matrix whose coefficients are homogeneous polynomials of degree N − 1. It
satisfies p̂N−1(x,0) = δDyp(x,0).

Lemma 7.4. With B given in (7.4), there exist ϱ, δ > 0 small enough such that

∥(DP̃ )−1(K̃≤(x))∥ ≤ 1 +B∥x∥N−1, for all x ∈ Vϱ.

Proof. The proof of this lemma is analogous to Lemma 4.5 in [BFdlLM07]. How-

ever, we sketch it. Let ϱ > 0 be such that ϱ1/2δ−1 < 1. Taking into account the
above considerations about the scaling, the norm of the matrix (DP̃ )−1(K̃≤(x)) is

∥(DP̃ )−1(K̃≤(x))∥ ≤max{1+(Bp+O(ϱ)+O(δ))∥x∥N−1,1−(Bq+O(δ−1ϱ))∥x∥M−1}.



32 INMACULADA BALDOMÁ, ERNEST FONTICH, AND PAU MARTÍN

Recall that we are using in Rn the norm given in (7.3). Since ϱ1/2δ−1 < 1, taking
ϱ, δ small enough, the constant B in (7.4) satisfies

∥(DP̃ )−1(K̃≤(x))∥ ≤max{1 +B∥x∥N−1,1 − (Bq +O(ϱ1/2))∥x∥M−1}.

To obtain the result, we need to check that B∥x∥N−1 ≥ −(Bq +O(ϱ1/2))∥x∥M−1. If
N ≠M , the result follows from H2 and the smallness of ϱ. The case N =M , follows
from −Bq +O(ϱ1/2) < Nap +O(ϱ1/2) ≤ Bp +O(ϱ1/2), by H2 and Lemma 2.1. Again
taking ϱ small enough, we are done. □

From now on, we suppress the “tilde” from the scaled functions.
We fix δ, ϱ > 0 small enough and a, b,B in (7.4) such that the conclusions of

Lemma 6.1 applied to R and Lemma 7.4 hold true.

7.3.2. Weak contraction of the nonlinear terms. Since the fixed point is parabolic
there is no contraction from the linear part of the map at the point. In the following
lemma we measure the contraction provided by the nonlinear terms.

Lemma 7.5. Let Vk ⊂ Vϱ be the sets defined in (6.2). There exists a constant
C > 0, depending only on δ, ϱ and ℓ (which are fixed a priori), such that for any
k ≥ 0, x ∈ Vk and i ≥ 0

i

∏
m=0
∥(DP )−1(K≤(Rm(x)))∥ ≤ C (u + k + i

u + k )
αBa−1

,(7.7)

∥D[(DP )−1 ○K≤](x)∥ ≤ C(u + k)−α(L−2),(7.8)

∥DRi(x)∥ ≤
i−1
∏
m=0
∥DR ○Rm(x)∥ ≤ C ( u + k

u + k + i)
αApd

−1

.(7.9)

Finally, if Ap < d

∥D2Ri(x)∥ ≤ C(u + k + i)α ( u + k
u + k + i)

2αApd
−1

(7.10)

and in the case Ap > d = b

∥D2Ri(x)∥ ≤ C(u + k)α ( u + k
u + k + i)

αApd
−1

.(7.11)

Remark 7.6. The proof of this lemma is analogous to the one of Lemma 4.6 in
[BFdlLM07] using the estimates for ∥Ri(x)∥ given in Lemma 6.1. However, the
exponents in inequalities (7.7), (7.9)–(7.11) are different from their counterpart in
[BFdlLM07] due to the fact that here the invariant manifold is not one dimensional.
In particular, the constant analogous to Apd

−1 was exactly N in [BFdlLM07]. We
also are forced to separate the cases Ap < d and Ap > d in the bound of ∥D2Rj(x)∥.

Proof. We begin with (7.7). By Lemma 6.1, if x ∈ Vk, then Rm(x) ∈ Vk+m. There-
fore, using Lemma 7.4 and item (2) of Lemma 6.1 we have that

∥(DP )−1(K≤(Rm(x)))∥ ≤ 1 + αB

a(u + k +m)
(1 +O((k +m)−β)),
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for x ∈ Vk. Then, since
i

∑
m=0

log (∥(DP )−1(K≤(Rm(x)))∥) ≤
i

∑
m=0

log(1 + αB

a(u + k +m)
(1 +O((k +m)−β)))

= αB
a

i

∑
m=0

1

u + k +m
(1 +O((k +m)−β))

= αB
a
[log (u + k + i

u + k ) +O(k
−β)] ,

and (7.7) is proven.
Bound (7.8) is an straightforward computation. To prove estimate (7.9) we first

notice that since R(x) = x + p(x,0) +O(∥x∥N+1), by Lemma 6.1, if x ∈ Vk,

∥DR(x)∥ ≤ 1 − αAp

d(u + k) +
C

(u + k)1+β .

Then, again using Lemma 6.1,

∥DRi(x)∥ ≤
i−1
∏
m=0
∥DR ○Rm(x)∥ ≤

i−1
∏
m=0
(1 − αAp

d(u + k +m) +
C

(u + k +m)1+β ) .

Finally, estimate (7.9) follows from the fact that

i−1
∑
m=0

log(1 − αAp

d(u + k +m) +
C

(u + k +m)1+β ) ≤
αAp

d
log ( u + k

u + k + i) +
C

(u + k)1+β .

To bound ∥D2Ri(x)∥ we first note that

∥D2Ri(x)∥ = ∥D(
i−1
∏
m=0

DR○Rm)∥ ≤
i−1
∑
m=0
∥D2R○Rm∥∥DRm∥

i−1
∏
l=0
∥DR○Rl∥∥DR○Rm∥−1.

Then, taking into account that ∥DR ○Rm(x)∥ ≥ 1/2 and that,

∥D2R(Rm(x))∥ ≤ C∥Rm(x)∥N−2,

using again 6.1 of Lemma 6.1, we have that

∥D2Ri(x)∥ ≤C
i−1
∏
l=0
∥DR ○Rl∥

i−1
∑
m=0
∥Rm(x)∥N−2∥DRm∥

≤C
i−1
∏
l=0
∥DR ○Rl∥

i−1
∑
m=0

(u + k)αApd
−1

(u + k +m)αApd−1+α(N−2)
.

Now we distinguish two cases. First, when Ap > d = b, we have αApd
−1+α(N−2) > 1

and then
i−1
∑
m=0

(u + k)αApd
−1

(u + k +m)αApd−1+α(N−2)
≤ C(u + k)α.

This bound together with (7.9), implies (7.11) in this case. On the other hand,
when Ap < d,

i−1
∑
m=0

(u + k)αApd
−1

(u + k +m)αApd−1+α(N−2)
≤ C(u + k)α(u + k + i)α(1−Apd

−1)

and, using again (7.9), we get (7.10). □
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7.3.3. Operators for higher order derivatives and their inverses. Now we proceed
to rewrite equation (7.6), which we recall here

(7.12) F ○ (K≤ +K>) − (K≤ +K>) ○R = 0,
as a fixed point equation. We emphasize that we have skipped the symbol˜of our
notation, although we work with the rescaled map. That is, since K≤ satisfies (7.5):
P ○K≤ −K≤ ○R = T ℓ, K> has to satisfy

(DP ○K≤)K> −K> ○R =
− T ℓ −Gℓ ○ (K≤ +K>) − P ○ (K≤ +K>) + P ○K≤ + (DP ○K≤)K>.

To shorten the notation, we introduce the operators

(7.13) L0(S) = (DP ○K≤)S − S ○R
and

(7.14) F(K) = −T ℓ −Gℓ ○ (K≤ +K) − P ○ (K≤ +K) + P ○K≤ + (DP ○K≤)K.
Then equation (7.12) for K> can be rewritten as

(7.15) L0(K>) = F(K>).
The formal inverse of L0 is

(7.16) S0(T ) =
∞
∑
i=0
[

i

∏
m=0
(DP )−1 ○K≤ ○Rm]T ○Ri

and consequently, we can formally write equation (7.15) as the fixed point equation

(7.17) K> = S0 ○F(K>).
Following the same arguments as the ones in the proof of Lemma 4.9 in [BFdlLM07],
one can check that the operator S0 ∶ X 0

ℓ → X 0
ℓ−N+1 is continuous. Therefore, the

operator L0, introduced in (7.13), is suitable to prove the existence of a continuous
invariant manifold. In order to obtain the higher order derivatives, we introduce
the operators

Lj(S) = (DP ○K≤)S − S ○R(DR)j , j ≥ 1.
The key property is that if S is a Cν solution of L0(S) = T , with T a Cν function,
then DjS is a solution of

Lj(H) = T j , 0 ≤ j ≤ ν,
where T j is defined by the recurrence relation

T 0 = T,
T j+1 =DT j −D(DP ○K≤)DjS + jDjS ○R(DR)j−1D2R.

Recall the parameters L = min{N,M} and η = 1 +N − L defined in (2.2). The
following lemma is analogous to Lemma 4.7 in [BFdlLM07], with an appropriate
change in the hypothesis.

Lemma 7.7. Let ℓ > N − 1 +Ba−1 and j ≥ 0 be such that

ℓ −N + 1 − B
a
− j (η − Ap

d
) > 0.

Then, the operators Lj ∶ X 0
ℓ−N+1−jη → C0, j ≥ 0, are well defined, continuous and

one to one.
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Proof. Since R(x) = x + p(x,0) +O(∥x∥N+1), N ≥ 2, and ap > 0, ∥R(x)∥ ≤ ∥x∥ and
then Lj is well defined and continuous.

Let j ≥ 0 and S ∈ X 0
ℓ−N+1−jη be such that Lj(S) = 0, that is, S = (DP ○K≤)−1S ○

R(DR)j , or, using this condition iteratively,

S = (
i

∏
m=0
(DP)−1 ○K≤ ○Rm)S ○Ri+1(DRi+1)j , i ≥ 0.

Now, using that ∥S ○Ri+1(x)∥ ≤ C∥S∥0,ℓ−N+1−jη∥Ri+1(x)∥ℓ−N+1−jη and Lemmas 6.1
and 7.5, we obtain that, for x ∈ Vk,

∥S(x)∥ ≤ C∥S∥0,ℓ−N+1−jη
(u + k)α(jApd

−1−Ba−1)

(u + k + i)α(ℓ−N+1−Ba−1−j(η−Apd−1))
.

By hypothesis, the right hand side of the above expression tends to 0 when i tends
to ∞, which implies that S = 0 and, consequently, that Lj is one to one. □

A formal inverse of the operator Lj obtained recursively from Lj(S) = T is given
by the formula

(7.18) Sj(T ) =∑
i≥0
(

i

∏
m=0
(DP )−1 ○K≤ ○Rm)T ○Ri ⋅ (DRi)j .

Notice that Sj acts on j-linear maps. If this formula is absolutely convergent, it is
a simple computation to check that Lj(Sj(T )) = T .

In the next lemma, equivalent to Lemma 4.9 in [BFdlLM07] with adjusted hy-
potheses, we check that Sj is indeed well defined and bounded between appropriate
spaces.

Lemma 7.8. Assume that ℓ > N − 1 +Ba−1 and that j ≥ 0 satisfies

ℓ −N + 1 − B
a
− j (η − Ap

d
) > 0.

Then the operator Sj ∶ X 0
ℓ−jη → X 0

ℓ−jη−N+1 is well defined and bounded. Also we

have Lj ○ Sj = Id on X 0
ℓ−jη.

Moreover, if ℓ > k0, with k0 defined in (7.4) and j ≥ 0 is such that

ℓ − k0 − j (η −
Ap

d
) > 0,

the operator Sj ∶ X 1
ℓ−jη → X 1

ℓ−jη−N+1 is well defined and

D (Sj(T )) = Sj+1(T̃ ), if T ∈ X 1
ℓ−jη,

where

T̃ =DT −D(DP ○K≤)Sj(T ) + jSj(T ) ○R(DR)j−1D2R.

Proof. Let T ∈ X 0
ℓ−jη and S = Sj(T ). Following the same lines as the ones in the

proof of Lemma 4.9 in [BFdlLM07], a direct computation shows that, for x ∈ Vk,

∥S(x)∥ ≤ C∥T ∥0,ℓ−jη∑
i≥0

(u + k)α(jApd
−1−Ba−1)

(u + k + i)α(ℓ−j(η−Apd−1)−Ba−1) .

Therefore, since by hypothesis α(ℓ − j(η −Apd
−1) −Ba−1) > 1, if x ∈ Vk,

∥S(x)∥ ≤ C∥T ∥0,ℓ−jη(u + k)−α(ℓ−jη−N+1) ≤ C∥x∥ℓ−jη−N+1∥T ∥0,ℓ−jη.
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Hence ∥S∥0,ℓ−jη−N+1 ≤ ∥T ∥0,ℓ−jη, that is, Sj ∶ X 0
ℓ−jη → X 0

ℓ−jη−N+1 is well defined and

bounded. It also proves that Lj ○ Sj = Id on X 0
ℓ−jη.

Following the proof of Lemma 4.9 in [BFdlLM07], we argue that, if Sj(T ) is
differentiable and its derivative belongs to X 0

ℓ−(j+1)η−N+1, then DSj(T ) = Sj+1(T̃ ).
The trick is to check that both are solutions of the same equation Lj+1(H) = T̃
belonging to X 0

ℓ−(j+1)η−N+1. Indeed, first we note that if T ∈ X 1
ℓ−jη, then T̃ ∈

X 0
ℓ−(j+1)η provided DT ∈ X 0

ℓ−(j+1)η, D(DP ○ K≤) ∈ X 0
L−2, D

2R ∈ X 0
N−2 and the

definition of η. This implies that Sj+1(T̃ ) ∈ X 0
ℓ−(j+1)η−N+1. It only remains to

check that D(Sj(T )) is a solution of Lj+1(H) = T̃ which can be proven by taking
derivatives in Lj(Sj(T )) = T . Hence the uniqueness result, Lemma 7.7, proves that

D(Sj(T )) = Sj+1(T̃ ).
Now we prove that Sj(T ) is differentiable and belongs to X 0

ℓ−(j+1)η−N+1. In order

to do so, we take derivatives formally in (7.18). We have D(Sj(T )) = S1 + S2 + S3,
where

S1 =∑
i≥0
(

i

∏
m=0
(DP )−1 ○K≤ ○Rm)DT ○Ri(DRi)j+1,

S2 =∑
i≥0
(

i

∏
m=0
(DP )−1 ○K≤ ○Rm)T ○Rij(DRi)j−1D2Ri,

S3 =∑
i≥0

i

∑
m=0
(
m−1
∏
l=0
(DP )−1 ○K≤ ○Rl)D ((DP )−1 ○K≤ ○Rm)

× (
i

∏
l=m+1

(DP )−1 ○K≤ ○Rl)T ○Ri(DRi)j ,

and check that the above expressions are absolutely convergent, belong to X 0
ℓ−(j+1)η−N+1

and are bounded.
Since DT ∈ X 0

ℓ−(j+1)η, then, by the first part of the lemma, S1 = Sj+1(DT )
belongs to X 0

ℓ−(j+1)η−N+1 and we are done with S1.

Next we deal with S2. Let x ∈ Vk. Assume that Ap > d = b. Then, by Lemma 7.5,
we have that:

∥S2(x)∥ ≤ C∥T ∥1,ℓ−jη∑
i≥0

(u + k)α(jApd
−1+1−Ba−1)

(u + k + i)α(ℓ−j(η−Apd−1)−Ba−1) .

Since ℓ − j(η −Apd
−1) −Ba−1 > N − 1, the sum is convergent and we obtain

∥S2(x)∥ ≤ C
∥T ∥1,ℓ−jη

(u + k)α(ℓ−jη−N) = C∥x∥
ℓ−jη−N∥T ∥1,ℓ−jη ≤ C∥x∥ℓ−(j+1)η−N+1ϱη−1∥T ∥1,ℓ−jη

which implies that S2 ∈ X 0
ℓ−N+1−(j+1)η. Here we have used that η ≥ 1. If Ap < b,

then again by Lemma 7.5,

∥S2(x)∥ ≤ C∥T ∥1,ℓ−jη∑
i≥0

(u + k)α((j+1)Apd
−1−Ba−1)

(u + k + i)α(ℓ−(j+1)(η−Apd−1)−Ba−1+η−1) .

Proceeding as in the previous case, one gets that ∥S2(x)∥ ≤K∥x∥ℓ−(j+1)η−N+1ϱη−1∥T ∥1,ℓ−jη
and the study for S2 is finished.
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Finally we consider S3. Using again Lemma 7.5, if x ∈ Vk we have that

∥S3(x)∥ ≤ C∥T ∥1,ℓ−jη∑
i≥0

(u + k)α((j+1)Apd
−1−Ba−1)

(u + k + i)α(ℓ−j(η−Apd−1)−Ba−1)

i

∑
m=0

1

(u + k +m)1−α(η−Apd−1)
.

We have different estimates for the sum with respect to m if either Apd
−1 ≤ η or

Apd
−1 > η. Nevertheless, the sum with respect to i is convergent provided ℓ satisfies

the current hypothesis. Performing straightforward computations, we obtain that

∥S3(x)∥ ≤ C
∥T ∥1,ℓ−jη

(u + k)α(ℓ−(j+1)η−N+1) ≤ C∥T ∥1,ℓ−jη∥x∥
ℓ−(j+1)η−N+1

and the lemma is proven. □

The last result of this section is the following.

Proposition 7.9. Let r≤ be the differentiability degree of K≤ and R assumed in
Theorem 2.4. Take ℓ > N − 1 +Ba−1 and ν such that 0 ≤ ν ≤ r≤ and

(7.19) ℓ −N + 1 − B
a
− νmax{η − Ap

d
,0} > 0.

Then,

S0 ∶ X ν
ℓ → X ν

ℓ−N+1 and S1 ∶ X ν
ℓ−η → X ν

ℓ−η−N+1

are bounded linear operators.

Proof. The proof of this proposition is analogous to the corresponding one Proposi-
tion 4.10 in [BFdlLM07]. Let T ∈ X ν

ℓ ⊂ X 0
ℓ . The key point of the proof is to deduce

that

(7.20) D[Sj−1(T j−1)] = Sj(T j), 1 ≤ j ≤ ν,

being {T j}0≤j≤ν the sequence defined inductively by

T 0 =T,
T j+1 =DT j −D(DP ○K≤)Sj(T j) + jSj(T j) ○R(DR)j−1D2R,

for 0 ≤ j ≤ ν−1. Indeed, one checks by induction that T j belongs to X 1
ℓ−jη if j ≤ ν−1.

For j = ν we have that T ν ∈ X 0
ℓ−νη and therefore, by Lemma 7.8, Sj(T j) ∈ X 1

ℓ−jη−N+1
and Sν(T ν) ∈ X 0

ℓ−νη. Note that, if j ≤ ν − 1 with ν satisfying (7.19), then

ℓ − k0 − j (η −
Ap

d
) ≥ ℓ −N + 1 − B

a
− (j + 1)max{η − Ap

d
,0} > 0.

Then, for j ≤ ν−1, the results of Lemma 7.8 on the operators Sj ∶ X 1
ℓ−jη → X 1

ℓ−jη−N+1
apply.

Applying iteratively (7.20) we have that Dj[S0(T )] = Sj(T j) ∈ X 0
ℓ−jη−N+1, for

j ≤ ν and, hence, S0(T ) ∈ X ν
ℓ−N+1.

Finally, to prove that the operator S0 ∶ X ν
ℓ → X ν

ℓ−N+1 is bounded, we refer the
reader to [BFdlLM07], Proposition 4.10. The proof that S1 ∶ X ν

ℓ−η → X ν
ℓ−η−N+1 is

also bounded is very similar to the one for S0. □
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7.4. End of the proof of Proposition 7.1. Fixed point equation. Using
Proposition 7.9 we are able to prove that the fixed point equation (7.17),

(7.21) K> = S0 ○F(K>),
is well defined in the appropriate Banach spaces and it is a contraction. Concretely,
we prove Proposition 7.1. That is, that there exists a unique solution K> of equa-

tion (7.21) belonging to X r>ℓ
ℓ−N+1 for any ℓ0 < ℓ ≤ r. To do so, we follow the same

steps as the ones in Section 4.10 of [BFdlLM07]. We sketch them without proofs,
only given the essential information. The main tool is Lemma 7.3.

Let ϱ > 0 be such that all the results in Sections 7.3.3 and 7.3.2 are valid. Recall
that we settled this quantity at the end of Section 7.3.1 satisfying the results in
Section 6 and (7.4) for a, b and B.

Since F(0) = −T ℓ − Gℓ ○K≤, using that T ℓ and Gℓ are Cr functions, that K≤

is a Cr≤ function and the definition of r>ℓ , we have that F(0) ∈ Cmin{r,r≤} ⊂ Cr>ℓ .
Then F(0) ∈ X r>ℓ

ℓ and, since ν = r>ℓ satisfies the condition stated in Proposition 7.9,

see (7.4), S0 ○F(0) ∈ X r>ℓ
ℓ−N+1. We also have that

∥S0 ○F(0)∥r>
ℓ
,ℓ−N+1∥ ≤ ∥S0∥(∥T ℓ∥r>

ℓ
,ℓ + ∥Gℓ ○K≤∥r>

ℓ
,ℓ) =∶

ς∗
2
.

Since the domain of K≤ is Vϱ ⊂ Vϱ0 we will work with this domain in the spaces
X ν

k .

We will find the solution K> of equation (7.21) in Br
>

ℓ−1,ς
ℓ−N+1 ⊂ X

r>ℓ−1
ℓ−N+1, the ball

of radius ς ≥ ς∗. First we note that for any ς ≥ ς∗ there exists ϱ′ small enough

such that if K> ∈ Br
>

ℓ−1,ς
ℓ−N+1 and x ∈ Vϱ′ , then (K≤ +K>)(x) ∈ U , the domain of F .

Indeed, we deduce this property because U is an open set, dist(Vϱ′ , ∂U) > 0 and
∥(K≤ +K>)(x) − x∥ ≤ C(ϱ′)2 with C > 0 a constant. Note that ϱ′ depends on ς, ϱ
and K≤.

As usual in the differentiable case, we first prove the existence of a solution
belonging to Cr>ℓ−1 defined on Vϱ′ . To do so, it only remains to check that the

operator F ∶ Br
>

ℓ−1,ς
ℓ−N+1 → X

r>ℓ−1
ℓ−N+1 is a contraction. The proof of this result follows

from the analogous result in [BFdlLM07] and in fact we obtain the same bound for
the Lipschitz constant

lip(F) ≤ C(ϱ′)ℓ−2N−L,
with C independent of ϱ′, but depending on ς and ϱ.

As a consequence, equation (7.21) has a solution K> ∶ Vϱ′ → Rn+m. Applying
the linear operator L0 we obtain that equation (7.15) has a unique differentiable

solution K>. This implies that K = K≤ + K> and R are Cr>ℓ−1 solutions of the
invariance equation (7.2).

Following the same arguments as the ones given in [BFdlLM07] we deduce that,
if r =∞ the parametrization K = K≤ +K> is also a C∞ as well as R is. Moreover,
the arguments to prove the sharp regularity can be also applied in this new context.
Hence we obtain Cr>ℓ parametrizations.

Until now the function K = K≤ +K> is defined on Vϱ′ with ϱ′ ≤ ϱ. However,
since ϱ is small enough to assure that R satisfies the conclusions of Lemma 6.1,
we can use the invariance equation to extend the domain of K to Vϱ as we did in

the proof of Corollary 7.2. Indeed, let k ∈ N be such that Rk(Vϱ/Vϱ′) ⊂ Vϱ′ . Then

K = F −k ○K ○Rk extends K to Vϱ.
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Remark 7.10. We have proven that the domain Vϱ of K and R depends on ℓ, K≤

and on the constants a, b,B as well as ap, bp,Ap,Bp.

8. Dependence on parameters

In this section we prove Theorem 2.8 about the dependence of the invariant
manifold on parameters. Along this section we will assume all the conditions stated
in this theorem. We will proceed in a similar way as in the proof of Theorem 2.4.

8.1. Preliminary facts. Consequences of the previous results. As a conse-
quence of Lemma 2.7, if Hypothesis Hλ holds true, then H1, H2 and H3 are satisfied
for any λ ∈ Λ. Then, using Proposition 7.1 with ℓ = r, we have that for any λ ∈ Λ,
there exists ϱλ such that the invariance equation

F (K≤(x,λ) +K>(x,λ), λ) −K≤(R(x,λ), λ) +K>(R(x,λ), λ) = 0

has a solution K>(⋅, λ) ∈ X r>ℓ
ℓ−N+1 defined on Vϱλ

. However we emphasize that

● the degree of differentiability r>ℓ does not depend on λ and
● ϱλ can be taken independent on λ provided the constants ap, bp,Ap,Bp,Bq

are independent on the parameter (see Remark 7.10). Then K> is defined
over Vϱ ×Λ.

In addition, we already know that for any λ, K>(⋅, λ) is the unique solution belong-

ing to X r>ℓ
ℓ−N+1 of the fixed point equation (7.21):

(8.1) K> = S0 ○F(K>)
being S0 and F defined by (7.16) and (7.14), respectively.

It is important to remark that all the functions involved, P,T ℓ,Gℓ,K
≤,K,R, and

T , depend on both, x,λ, but, abusing notation, we only indicate the composition
with respect to the x variable. For instance R2 means R(R(x,λ), λ) and Gℓ ○(K≤+
K) means Gℓ(K≤(x,λ) +K(x,λ), λ).

We restate Theorem 2.8 in a functional setting using the space CΣσ,ν introduced
in (2.13). We also introduce the Banach space

Yσ,ν
k = {f ∶ U ×Λ→ Rl ∶ f ∈ CΣσ,ν−σ max

i,j∈Σσ,ν−σ

sup
(x,λ)∈U×Λ

∥Di
λD

j
xf(x,λ)∥

∥x∥k+i−(i+j)η <∞}

for ν ≥ σ, endowed with the norm

∥f∥σν,k = max
i,j∈Σσ,ν−σ

sup
(x,λ)∈U×Λ

∥Di
λD

j
xf(x,λ)∥

∥x∥k+i−(i+j)η .

Note that Yσ,ν+σ
k ⊂ CΣσ,ν . The differentiability conclusions of Theorem 2.8 are a

direct consequence of the following proposition.

Proposition 8.1. Assume all the conditions in Theorem 2.8. Let ℓ ∈ N be such
that max{ℓ0, ℓ1} < ℓ ≤ r with ℓ0 and ℓ1 defined in (2.5) and (2.15) respectively.
Then the solution K> ∶ Vϱ × Λ → Rn+m of the fixed point equation (8.1) belongs to

Ys>ℓ ,ν
>

ℓ

ℓ−N+1 with ν>ℓ = r>ℓ + s>ℓ , r>ℓ ≤min{r, r≤}, s>ℓ ≤min{s, s≤} and

ℓ −N + 1 − Bp

ap
− (ν>ℓ − i)max{η − Ap

dp
,0} − i(η − 1) > 0, 0 ≤ i ≤ s>ℓ .
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The remaining part of this section is devoted to prove this result. The procedure
is similar to the one we have followed in Section 7. First we study the product
and composition of functions belonging to the functional spaces Yσ,ν

k . Then, we

study the linear operator S0 defined on Yσ,ν
ℓ and, finally, we apply the fixed point

theorem to obtain a solution K> of the fixed point equation (8.1) belonging to
Yσ,ν
ℓ−N+1 with appropriate values of σ and ν. With standard arguments we check the

sharp regularity of the solutions.

8.2. Technical lemmas. Next lemma, whose proof we skip, is analogous to Lemma 7.3
for Yσ,ν

k .

Lemma 8.2. The Banach spaces Yσ,ν
k satisfy:

(1) Let f(x,λ) ∈ L(X1,X2) with f ∈ Yσ,ν
k and g(x,λ) ∈ X1 with g ∈ Yσ,ν

l , then
f ⋅ g ∈ Yσ,ν

k+l and ∥f ⋅ g∥σν,k+l ≤ 2ν∥f∥σν,k∥g∥σν,l.
(2) Let f ∶ U × Λ ⊂ Rn+m+n′ → E be a CΣσ,ν−σ map and E a Banach space

such that ∥Dl′

λD
l
xf(x,λ)∥ = O(∥x∥j−l) for all (l′, l) ∈ Σσ,ν−σ. Then, for any

map g ∶ Vϱ × Λ → U such that g ∈ Yi′,i
1 for some (i′, i) ∈ Σσ,ν we have that

f ○ (g, Id ) ∈ Yi′,i
j .

We need to stablish the dependence on λ of S0(K).

8.2.1. Differentiability with respect to λ of the linear operator S0. We first note
that all the results stated in the previous sections are valid uniformly in λ ∈ Λ for
functions belonging to Y0,ν

ℓ . This is due to Hypothesis HP and to the fact that the
constants ap, bp, etcetera, defined in (2.12) are independents of λ ∈ Λ and therefore,
all the bounds in the previous sections are uniform with respect to λ ∈ Λ. The
uniformity with respect to λ ∈ Λ of Lemmas 7.5 and 7.7 and Proposition 7.9 is
summarized in the following lemma.

Lemma 8.3. We have that:

(i) All the bounds in Lemma 7.5 hold true with constants C independent of
λ ∈ Λ.

(ii) Under the hypotheses of Lemma 7.7, the formula

L0(S) = (DP ○K≤)S − S ○R

defines an operator L0 ∶ Y0,0
ℓ−N+1 → C0, continuous and one to one.

(iii) If the conditions for ν, ℓ of Proposition 7.9 are satisfied, then

S0 ∶ Y0,ν
ℓ → Y0,ν

ℓ−N+1 and S1 ∶ Y0,ν
ℓ−η → Y

0,ν
ℓ−η−N+1

are bounded linear operators.

Now we state and prove the differentiability results with respect to the parameter
λ.

Lemma 8.4. Let ℓ, ν, σ be such that ℓ0 < ℓ ≤ r, σ ≤ s≤, 1 ≤ σ ≤ ν ≤ r≤ + s≤ and

(8.2) ℓ −N + 1 − B
a
− (ν − i)max{η − Ap

d
,0} − i(η − 1) > 0, 0 ≤ i ≤ σ.

We have that:
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(1) (Low order regularity) The linear operator S0 ∶ Y1,ν
ℓ → Y1,ν

ℓ−N+1 is bounded if
ℓ, ν satisfy condition (8.2) with σ = 1. In addition,

(8.3) DλS0(T ) = S0(T̃ )
with

T̃ = −Dλ(DP ○K≤)S0(T ) +Dx[S0(T )] ○R ⋅DλR +DλT.

(2) (Higher order regularity) The linear operator S0 ∶ Yσ,ν
ℓ → Yσ,ν

ℓ−N+1 is bounded.

Proof. We have to check first that for any T ∈ Y1,ν
ℓ−N+1,

S0(T ) ∈ Y0,ν
ℓ−N+1, DλS0(T ) ∈ Y0,ν−1

ℓ−N+1−(η−1).

The first relation, which corresponds to σ = 0, follows from Lemma 8.3. To deal
with the second one, we proceed as in the proof of Lemma 7.8. We take derivatives
with respect to λ formally and we check that the different factors we obtain, which
will be infinite sums, are absolutely convergent, belong to Y0,ν−1

ℓ−N+1−(η−1) and are

bounded. Indeed, we formally decompose DλS0(T ) = S1 + S2 with

S1 =
∞
∑
i=0

⎡⎢⎢⎢⎣

i

∏
j=0
(DP )−1 ○K≤ ○Rj

⎤⎥⎥⎥⎦
[DλT ○Ri + (DxT ○Ri)DλR

i]

S2 =
∞
∑
i=0

i

∑
m=0
(
m−1
∏
l=0
(DP )−1 ○K≤ ○Rl)Dλ ((DP )−1 ○K≤ ○Rm)

× (
i

∏
l=m+1

(DP )−1 ○K≤ ○Rl)T ○Ri.

It can be checked by induction that, if i ≥ 2,

DλR
i =DλR ○Ri−1 +

i−1
∑
j=1
(DxR

j ○Ri−j)DλR ○Ri−j−1.

Therefore, from item (i) of Lemma 8.3, if (x,λ) ∈ Vk ×Λ,

∥DλR
i(x,λ)∥ ≤ C

(u + k + i)αN +
C

(u + k + i)αApd−1

i−1
∑
j=1

1

(u + k + j)α(N−Apd−1)

≤ C

(u + k + i)αApd−1(u + k)α(N−Apd−1)−1
+ C

(u + k + i)αN−1

with C independent of λ. Then, if x ∈ Vk and λ ∈ Λ, using the definition of S0,

∥S1(x,λ)∥ ≤ C∥S0(DλT )(x)∥ +C∥T ∥1ν,ℓ
1

(u + k)αBa−1

×
∞
∑
i=0

⎛
⎝

(u + k)−α(1−Apd
−1)

(u + k + i)α(ℓ−η−Ba−1+Apd−1)
+ 1

(u + k + i)α(ℓ−η−1)
⎞
⎠

≤ C∥T ∥1ν,ℓ(u + k)−α(ℓ−N+1−(η−1)),

where we have used (iii) of Lemma 8.3 to bound ∥S0(DλT )(x)∥. Then,

(8.4) ∥S1(x,λ)∥ ≤ C∥T ∥1ν,ℓ∥x∥ℓ−N+1−(η−1), x ∈ Vϱ
uniformly in λ ∈ Λ.
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To deal with S2, we first note that if x ∈ Vk and m ∈ N, then

∥Dλ((DxP )−1 ○K≤ ○Rm)(x,λ)∥ ≤ C

(u + k +m)α(L−1) .

Then, using Lemma 7.5,

∥S2(x,λ)∥ ≤ C∥T ∥1ν,ℓ
∞
∑
i=0

(u + k)−αBa−1

(u + k + i)α(ℓ−Ba−1)

i

∑
m=0

1

(u + k +m)α(L−1) .

If α(L − 1) < 1, then, since η = 1 +N −L,

∥S2(x,λ)∥ ≤ C∥T ∥1ν,ℓ
∞
∑
i=0

(u + k)−αBa−1

(u + k + i)α(ℓ−Ba−1+L−1−N+1) ≤ C∥T ∥
1
ν,ℓ(u + k)−α(ℓ−η+1−N+1)

and we are done in this case. When α(L − 1) = 1, in other words η = 1, we take a
positive quantity ε > 0, such that α(L− 1+ ε) > 1 and ℓ−Ba−1 − ε > N − 1 (this last
condition can be fulfilled by hypothesis). Then

∥S2(x,λ)∥ ≤ C∥T ∥1ν,ℓ
∞
∑
i=0

(u + k)−αBa−1

(u + k + i)α(ℓ−Ba−1−ε)

i

∑
m=0

1

(u + k +m)1+αε

≤ C∥T ∥1ν,ℓ
∞
∑
i=0

(u + k)−α(Ba−1+ε)

(u + k + i)α(ℓ−Ba−1−ε) ≤ C∥T ∥
1
ν,ℓ(u + k)−α(ℓ−N+1).

In any case, ∥S2(x,λ)∥ ≤ C∥T ∥1ν,ℓ∥x∥ℓ−N+1−(η−1). This bound together with the

corresponding one for S1 in (8.4), leads us to conclude thatDλS0(T ) ∈ Y0,0
ℓ−N+1−(η−1).

On the one hand, DλS0(T ) and S0(T̃ ) belong to Y0,0
ℓ−N+1−(η−1) and both are

solutions of the same linear equation L0H = T̃ . Since, by (ii) of Lemma 8.3, L0 is
injective,

DλS0(T ) = S0(T̃ ).
On the other hand, it is clear that T̃ ∈ Y0,ν−1

ℓ−η+1 because T ∈ Y1,ν
ℓ . Therefore, using

(iii) of Lemma 8.3, S0(T̃ ) ∈ Y0,ν−1
ℓ−η+1−N+1 and consequently, DλS0(T ) belongs to

Y0,ν−1
ℓ−η+1−N+1. This ends the proof of the first item of the lemma.

To deal with the second item, we perform an induction procedure. Let T ∈ Yσ,ν
ℓ

and S = S0(T ). We have to prove that S ∈ Yσ,ν
ℓ−N+1. The cases σ = 0,1 are already

proven. Assume that S ∈ Yσ−1,ν
ℓ−N+1 for σ ≤ s≤. We define recursively for 0 ≤ i ≤ σ − 1:

Si =Di
λS,

T i = −Dλ(DP ○K≤)Si−1 +DxS
i−1 ○R ⋅DλR +DλT

i−1.

Note that, using (8.3), Si =Di
λS = S0(T i). Moreover, since S ∈ Yσ−1,ν

ℓ−N+1,

Si ∈ Yσ−1−i,ν−i
ℓ−N+1−i(η−1), DxS

i−1Yσ−i,ν−i
ℓ−N+1−η−i(η−1).

Using that η = N −L + 1 and the above properties,

Dλ(DP ○K≤)Si−1 ∈ Yσ−i,ν−i+1
ℓ−i(η−1) , DxS

i−1 ○R ⋅DλR ∈ Yσ−i,ν−i
ℓ−i(η−1)

so that, by recurrence one gets T i ∈ Yσ−i,ν−i
ℓ−i(η−1), if 0 ≤ i ≤ σ − 1. We take now i = σ − 1

and we obtain that

Tσ−1 ∈ Y1,ν−(σ−1)
ℓ−(σ−1)(η−1).
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Using item 1) we deduce that Dσ−1
λ S = Sσ−1 = S0(Tσ−1) ∈ Y1,ν−(σ−1)

ℓ−(σ−1)(η−1)−N+1 and

therefore,

Dσ
λS =DλS0(Tσ−1) ∈ Y0,ν−σ

ℓ−σ(η−1)−N+1

which implies that S ∈ Yσ,ν
ℓ−N+1. □

8.3. End of the proof of Proposition 8.1. We point out that, since K≤ and R
satisfy b) of Theorem 2.8, if (x,λ) ∈ Vϱ ×Λ,

Di
λD

j
xT

ℓ(x,λ) = O(∥x∥ℓ−j), (i, j) ∈ Σs≤,r≤ ,

and, since Gℓ is the Taylor’s remainder (with respect to the (x, y) variable) of
F ∈ CΣs,r ,

Di
λD

j
xGℓ(x, y, λ) = O(∥(x, y)∥ℓ−j), (i, j) ∈ Σs,r.

Moreover, these bounds are uniform on λ ∈ Λ.
Standard arguments allows us to apply the fixed point theorem to obtain the

existence of a solution K> of the fixed point equation (8.1) belonging to Ys>ℓ ,νℓ−1
ℓ−N+1 .

Finally we recover the last derivative as in the analogous result in [BFdlLM07].

9. The analytic case

In this section we deal with the conclusions of Theorem 2.4 and 2.8 in the analytic
case. We assume that F , of the form (2.11), is a real analytic map, that Ap > dp = bp
and that K≤,R are real analytic functions in the complex extension Ω(ϱ, γ)×Λ(γ)
of Vϱ ×Λ given by

Ω(ϱ, γ) ∶= {x ∈ Cn ∶ Rex ∈ Vϱ, ∥Imx∥ ≤ γ∥Rex∥}

Λ(γ) ∶= {λ ∈ Cn′ ∶ Reλ ∈ Λ, ∥Imλ∥ ≤ γ2}
with the norm ∥ ⋅ ∥ in Cn as

∥x∥ =max{∥Rex∥, ∥Imx∥}.
We note that, if x ∈ Ω(ϱ, γ) with γ ≤ 1, then ∥x∥ = max{∥Rex∥, ∥Imx∥} = ∥Rex∥.
We will use this fact along this section without special mention.

It is clear that the facts in Section 7.1 also hold in this new setting, as well as
the reformulation of the problem as a fixed point equation, K> = S0 ○F(K>) (see
(8.1)), with S0 and F defined in (7.16) and (7.14). Therefore, it is enough to prove
that the fixed point equation has an analytic solution.

The first thing we need to control is the weak contraction of the nonlinear
terms in the analytic case. For that we first need to prove an analogous result
to Lemma 6.1 to decompose Ω(ϱ, γ) properly. For that, for a given ϱ > 0, we con-
sider u > 0 and a0 > 0 such that a0u

−α = ϱ and sequences ak ∈ R, k ≥ 0, and bk ∈ R,
k ≥ 1, satisfying condition (6.1). Moreover, for any γ ≤ 1, we introduce
(9.1)

Ωk = {x ∈ Ω(ϱ, γ) ∶ ∥x∥ ∈ Ik ∶= [
bk+1

(u + k + 1)α ,
ak

(u + k)α ]} = {x ∈ Ω(ϱ, γ) ∶ Rex ∈ Vk},

where the sets Vk where introduced in (6.2).

Lemma 9.1. Let p be the homogeneous polynomial with respect to (x, y) defined
by (2.11). Let R ∶ Ω(ϱ, γ)→ Cn be an analytic map such that R(x,λ)−x−p(x,0, λ) =
O(∥x∥N+1) uniformly in Λ.
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Assume that there exists ϱ0 > 0 such that p satisfies the corresponding conditions
in Hλ and, moreover, Ap > bp.

Then for any a < ap and b > bp, there exist ϱ1, γ1 > 0 such that for any γ ≤ γ1
and ϱ ≤ ϱ1 the following claims hold.

(1) If (x,λ) ∈ Ω(ϱ, γ) ×Λ(γ),
∥R(x,λ) − x∥ ≤ b∥x∥N , ∥R(x,λ)∥ ≤ ∥x∥(1 − a∥x∥N−1).

(2) The set Ω(ϱ, γ) is invariant by R, that is, R(Ω(ϱ, γ)) ⊂ Ω(ϱ, γ).
(3) Let {ak},{bk} be the two sequences defined in Lemma 6.1 and Ωk defined

in (9.1). We have that

Ω(ϱ, γ)/{0} = ∪∞k=0Ωk and R(Ωk) ⊂ Ωk+1.

Consequently, if x ∈ Ωk, then one has that
α

b(u + k + 1 + j)
(1 +O(k−β)) ≤ ∥Rj(x)∥N−1 ≤ α

a(u + k + j)
(1 +O(k−β)).

Proof. We first note that, if χ(x,λ) is a real analytic function,

χ(x,λ) =χ(Rex,Reλ) + iDχ(Rex,Reλ)[Imx, Imλ]

− ∫
1

0
(1 − µ)D2χ(x(µ), λ(µ))[Imx, Imλ]2 dµ,

with x(µ) = Rex + iµImx and λ(µ) = Reλ + iµImλ.
In addition, if χ,Dλχ,D

2
λχ = O(∥x∥k), we have that, if λ ∈ Λ(γ):

(9.2) χ(x,λ) = χ(Rex,Reλ) + iDxχ(Rex,Reλ)Imx + γ2O(∥x∥k).
The first item is a direct consequence of the above expression, for χ(x,λ) =R(x,λ)−
x, the definition (2.12) of ap, bp and that χ(x,λ) = p(x,0, λ) + O(∥x∥N+1). The
second one is also a consequence of (9.2). Indeed, on the one hand, if γ ≤ γ1 and
ϱ ≤ ϱ1, writting R(x,λ) = x + χ(x,λ),
dist(ReR(x,λ), (Vϱ)c) = dist(Rex + p(Rex,0,Reλ), (Vϱ)c) −Cγ2∥x∥N −C∥x∥N+1

≥ ∥x∥N(aV −O(γ21 , ϱ1)) ≥
aV
2
∥x∥N ,

taking γ1, ϱ1 small enough. On the other hand,

∥ReR(x,λ)∥ ≥∥Rex∥(1 − (bp +O(γ21 + ϱ21))∥x∥N−1),
∥ImR(x,λ)∥ ≤∥(Id +Dxp(Rex,0,Reλ))Imx∥ +Cγ2∥x∥N

≤γ(1 − (Ap +O(γ1, ϱ1))∥x∥N−1)∥Rex∥
and then if Ap > bp, taking ϱ1, γ1 small enough, ∥ImR(x,λ)∥ ≤ γ∥ReR(x,λ)∥ for
any γ ≤ γ1.

Finally, the third item is a consequence of Lemma 6.1, item (2) and the fact that
x ∈ Ωk if and only if Rex ∈ Vk and ∥Imx∥ ≤ γ∥Rex∥ = ∥x∥. □

Let U(ϱ, γ) = Ω(ϱ, γ) ×Λ(γ). We define the Banach space of analytic functions

Zk = {h ∶ U(ϱ, γ)→ Cn+m, real analytic, such that ∥h∥k <∞},
where

∥h∥k = sup
(x,λ)∈U(ϱ,γ)

∥h(x,λ)∥
∥x∥k .
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From formula (9.2) applied to (DP )−1(K≤)(x) one can easily prove that Lemma 7.4
holds true for x ∈ Ω(ϱ, γ). As a consequence, if the scaling parameter is small,
bound (7.7) in Lemma 7.5 is also true for x ∈ Ωk.

A proof analogous to the ones of Lemmas 7.7 and 7.8 for the continuous case
proves that a) the operator L0 ∶ Zℓ → Cω, where Cω is the space of analytic functions
on U(ϱ, γ), is continuous and one to one, and b) the linear operator S0 ∶ Zℓ →
Zℓ−N+1 is well defined and bounded provided ℓ −N + 1 −Ba−1 > 0. In addition, in
the same way as in Lemma 8.3, we obtain that there are bounds of the norms of
S0 uniform in λ ∈ Λ.

Finally, one easily checks that the operator S0○F is contractive on a suitable open
ball of Zℓ−N+1. We skip the details which are very similar to the ones in [BFdlLM07].
This ends the proof in the analytic case.

It only remains to deal with the CΣs,ω case. We first note that, for any λ ∈ Λ fixed,
K(⋅, λ) is analytic in Ω(ϱ, γ) for ϱ, γ small enough independent of λ. Moreover, since
CΣs,ω ⊂ CΣs,∞ , given F ∈ CΣs,ω we also have that K ∈ CΣs,∞ . Therefore, K ∈ CΣs,ω .

10. The Flow case

In this section we prove Theorem 2.10, the analogous result of Theorem 2.8 for
flows.

The proof is performed in two steps in Sections 10.1 and 10.2 below. The first
step is to see that the Poincaré map F associated to the periodic vector field X
in (2.20) has an invariant parametrization K and a reparametrization R satisfying
the invariance equation F ○K =K ○R. To do so we apply Theorem 2.8. The second
step is to check that the invariance condition (2.22) for flows:

(10.1) φ(u; t,K(x, t, λ), λ) −K(ψ(u; t, x, λ), u, λ) = 0
is satisfied for K, where φ is the flow of X and ψ is the flow of a vector field Y on
Rn to be determined.

We assume that the vector field X ∈ CΣs,r where in the definition (2.13) of CΣs,r

we take z = (x, y) and µ = (t, λ). We will denote by Dz and Dµ the derivatives with
respect to these variables.

10.1. From flows to maps. Assume that X ∈ CΣs,r is a T -periodic vector field of
the form (2.20)

(10.2) X(x, y, t, λ) = ( p(x, y, λ) + f(x, y, t, λ)
q(x, y, λ) + g(x, y, t, λ) ) ,

that p satisfies Hλ and let K≤, Y ∈ CΣs≤,r≤ satisfying items (a), (b) and (c) in
Theorem 2.10. In particular we have that condition (2.23) is satisfied, namely,

X(K≤(x, t, λ), t, λ) −DK≤(x, t, λ)Y (x,λ) − ∂tK≤(x, t, λ) = O(∥x∥ℓ)
for a given ℓ such that ℓ0 < ℓ ≤ r.

We denote by φ(u; t, x, y, λ) and ψ(u; t, x, λ) the associated flows of ż =X(z, t, λ),
z = (x, y), and ẋ = Y (x,λ) respectively. For t ∈ R and u ∈ [t, t + T ],

(10.3) φ(u; t,K≤(x, t, λ), λ) −K≤(ψ(u; t, x, λ), u, λ) = O(∥x∥ℓ),
uniformly in u,λ. The proof is a consequence of Gronwall’s lemma, (2.22) and the
C0 dependence of K≤ with respect to t.
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We introduce the Poincaré maps F (x, y, t, λ) = φ(t + T ; t, x, y, λ) and R(x,λ) =
ψ(T ; 0, x, λ) = ψ(t + T ; t, x, λ). Applying (10.3) to u = t + T , we obtain that

(10.4) F (K≤(x, t, λ), t, λ) −K≤(R(x,λ), t, λ) = O(∥x∥ℓ).
We want to apply Theorem 2.8, so we have to check the setting and hypotheses

of that theorem for F .
By Hypothesis HP and, since X is of the form (10.2), for any (x, y) ∈ Bρ, we

have ∥X(x, y, t, λ)∥ ≤ CρN . Then, on the one hand, the flow φ(u; t, x, y, λ) is well
defined for u ∈ [t, t+T ] if (x, y) ∈ Bϱ and ϱ is small enough. On the other hand, by
Gronwall’s lemma,

(10.5) ∥φ(u; t, x, y, λ)∥ ≤ C∥(x, y)∥, (u,x, y, λ) ∈ [t, t + T ] ×Bϱ ×Λ.
Now we check that F has the form (2.11). Applying Taylor’s theorem to φ(u; t, x, y, λ),

with respect to u:

F (x, y, λ, t) =φ(t + T ; t, x, y, λ) = ( x
y
) + T ( p(x, y, λ) + f(x, y, t, λ)

q(x, y, λ) + g(x, y, t, λ) )

+ ∫
t+T

t
(t + T − u)DzX(φ(u; t, x, y, λ), u, λ)X(φ(u; t, x, y, λ), u, λ)du

+ ∫
t+T

t
(t + T − u)DtX(φ(u; t, x, y, λ), u, λ)du.

Using bound (10.5) in the above formula for the Poincaré map F , we see that F
has the form (2.11) and satisfies Hλ for any fixed t ∈ R since p does not depend
on t. Moreover, using that f and g are periodic with respect to t, D2

(x,y)f,D
2
(x,y)g

are bounded and they satisfy Hypothesis HP. We also have that the remainder
(f̃ , g̃) = F − Id − (Tp,Tq) satisfies Hypothesis HP.

Concerning the items of Theorem 2.8, (a) follows from the hypotheses and general
regularity results for flows, (b) for K≤ also follows from hypothesis and (c) have
already been obtained in (10.4).

It remains to check that R(x,λ) = ψ(T ; 0, x, λ) satisfies (b) in Theorem 2.8.
Namely, defining ∆R(x,λ) ∶= R(x,λ) − x − Tp(x,0, λ) we have to check that, uni-
formly in λ ∈ Λ,

Dj
λD

i
x∆R(x,λ) = O(∥x∥N+1−i), (i, j) ∈ CΣs≤,r≤ .

These bounds are consequence of the following elementary result, whose proof we
omit.

Lemma 10.1. Let Z ∶ Vϱ0×Λ→ Rn be a vector field of the form Z(x,λ) = Z0(x,λ)+
Z1(x,λ). Let χ(t;x,λ) be its flow.

Let σ ≥ 0 and ν ≥ 2. Assume that Z0, Z1 ∈ CΣσ,ν and that there exist l > k ≥ 2
such that, for all (i, j) ∈ CΣσ,ν :

Di
λD

j
xZ0(x,λ) = O(∥x∥k−j), Di

λD
j
xZ1(x,λ) = O(∥x∥l−j)

uniformly in λ ∈ Λ.
Then for any u0 > 0 there exists ϱ small enough such that, if x ∈ Vϱ/2 and

u ∈ [0, u0], the flow χ satisfies χ(u;x,λ) = x + uZ0(x,λ) + Z̃1(u,x, λ) ∈ Vϱ with

Di
λD

j
xZ̃1(u,x, λ) = O(∥x∥k+1−j), (i, j) ∈ Σσ,ν

uniformly in (u,λ) ∈ [0, u0] ×Λ.
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Summarizing, let max{ℓ0, ℓ1} < ℓ ≤ r, K≤ and Y be such that (10.3) holds true.
Applying Theorem 2.8 to the Poincaré map F (x, y, t, λ) = φ(t + T ; t, x, y, λ) with
R(x,λ) = ψ(t + T ; t, x, λ), we obtain a solution K = K≤ + K> ∈ CΣs>,r> of the
invariance condition

(10.6) F (K(x, t, λ), t, λ) =K(ψ(t + T ; t, x, λ), t, λ)
with K>(x, t, λ) = O(∥x∥ℓ−N+1) uniformly in λ. Moreover, by the uniqueness of the
solution, K> (and consequently K) is periodic with respect to t.

10.2. From maps to periodic flows. In this section we prove that the parametriza-
tionK found in the previous Section 10.1 satisfies the invariance condition (10.1) for
flows. To avoid cumbersome notations, in this section we will skip the dependence
on λ.

Using the properties of general solutions of vector fields, the definitions of F
and R and (10.6) we obtain

K(x, s) = φ(s; s + T,K(R(x), s)), R(ψ(s; t, x)) = ψ(s; t,R(x)).
We define

Ks(x, t) = φ(t; s,K(ψ(s; t, x), s)).
We have Kt(x, t) =K(x, t) and
F (Ks(x, t), t) = φ(t + T ; s,K(ψ(s; t, x), s)) = φ(t + T ; s + T,K(ψ(s; t,R(x)), s))

= φ(t; s,K(ψ(s; t − T,x, s))),
Ks(R(x), t)) = φ(t; s,K(ψ(s; t,R(x), s))) = φ(t; s,K(ψ(s; t − T,x), s)).

Consequently, Ks(x, t) satisfies the invariant condition (10.1) for any s.
Applying again Taylor’s theorem,

Ks(x, t) =φ(t; s,K(ψ(s, t, x), s)) = φ(t; s,K≤(ψ(s; t, x), s))

+ ∫
1

0
Dφ(t; s,K≤(ψ(s; t, x), s) +wK>(ψ(s; t, x), s))K>(ψ(s; t, x), s)dw

and, applying equality (10.3) to ψ(s; t, x),

Ks(x, t)−K≤(x, t) = O(∥x∥ℓ) + ∫
1

0
DK≤(x +w(ψ(s; t, x) − x), t)[ψ(s; t, x) − x]dw

+ ∫
1

0
Dφ(t; s,K≤(ψ(s; t, x), s) +wK>(ψ(s; t, x), s))K>(ψ(s; t, x), s)dw.

Therefore, since ψ(s; t,0) = 0 and ψ(s; t, x) = x +O(∥x∥N), we have that Ks(x, t) −
K≤(x, t) = O(∥x∥ℓ−N+1) and this implies, by the uniqueness statement in Theo-
rem 2.8 that Ks(x, t) =K(x, t). Then

K(ψ(s; t, x), s) = φ(s; t,Ks(x, t)) = φ(s; t,K(x, t))
and the proof is complete.
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