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Intelligent Agricultural Machinery Using Deep Learning 

  

Gabriel Thomas, Simone Balocco, Danny Mann, Avery Simundsson, and Nioosha Khorasani 

 Artificial intelligence, deep learning, big data, self-driving cars …, these are words that have become familiar to most 

people and have captured the imagination of the public and have brought hopes as well as fears. We have been told 

that artificial intelligence will be a major part of our lives, and almost all of us witness this when decisions made by 

algorithms show us commercial adds that are specifically targeting our interests while using the web. In this paper, 

the conversation around artificial intelligence focuses on a particular application, agricultural machinery, but offering 

enough content so that the reader can have a very good idea on how to consider this technology for not only other 

agricultural applications such as sorting and grading produce, but also other areas in which this technology can be a 

part of a system that includes sensors, hardware and software that can make accurate decisions. Narrowing the 

application and also focusing on one specific artificial intelligence approach, that of deep learning, allow us to illustrate 

from start to end the steps that are usually considered and elaborate on recent developments on artificial intelligence. 

Agriculture importance as not only providing the world with food but also as an economic factor  

Agriculture plays a significant role in Canada’s economy. From a recent release from Statistics Canada, we can 

highlight that the sector contributed $49.0 billion to Canada's gross domestic product (GDP) in 2015, accounting for 

2.6% of total GDP. Agriculture industries contributed $25.1 billion or 51% of GDP in the sector, while agri-food 

manufacturing industries contributed $23.9 billion or 49%. In the future, the industry is expected to grow at a 

considerable rate. “Canada’s agriculture industry can generate $11 billion for the country’s GDP annually by 2030 if 

the government invests in people and technology” as indicated in [1]. Canada is a global leader in agricultural 

production and by taking on research and development on new technologies this can be of great benefit to the country 

and the world, as this activity is vital and will help the country to remain competitive. 

Technology impact in agriculture 

The impact of technology is an old story, dating back more than 4000 years. Historians agree that the invention of the 

plow has been a major factor on the transformation of humanity [2]. Agricultural engineers have contributed to 

numerous advances in agricultural machinery during the past century, and we are now beginning to see prototype 

autonomous agricultural machines being designed and built by companies and universities around the world. To date, 

such vehicles are not commercially available due to several limitations (for instance, difficulty operating in dynamic 

environments with uneven terrain and the need for control systems to account for the intricacies of specific tasks). As 

these obstacles are overcome, humans will likely transition from machinery operators to a more supervisory role. The 

advent of precision agriculture technologies in the past decades has increased our ability to cope with on-farm and in-

field variability and to incorporate a much larger volume of information into management decisions [3]. Different 

sensors have been proposed to incorporate information such as microphones, as in-cab operators can extract auditory 

information to quickly discern the state of mechanical operation. In a supervisory role that may be off-site, these 

channels of information may be harder to access without creative and innovative monitoring methods. Many 

operations in agriculture are time-sensitive and machinery breakdowns can be very costly in terms of both time and 

service. It may be difficult to monitor operations with many moving parts, such as a harvester, without the benefit of 

sensory information. A few seconds of delay in processing information may be the difference between preventing a 

failure and a serious harvest delay. Other sensors have been used such as image cameras. In [4], researchers at the 

University of Saskatchewan in Canada used a support vector machine to perform classification of potato diseases 

using images that were segmented and features extracted from the leaves were used as an input to the classifier. 

Features used in [4] were based on color information and statistical features obtained using a gray level co-occurrence 

matrix. Thus, computer vision and machine learning techniques did an excellent job as they reported classification 

accuracies of 95%. Now, if one would like to think of using newer techniques to possibly improve the 95 % success 

classification, Deep Learning (DL) comes to mind. This last discussion leads to a very good question: is using DL a 

good idea for such applications? The purpose of this paper is to guide readers towards making such a decision as well 

as the different aspects that need to be considered. For example, going back to the work presented in [4], as 300 images 
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were used, maybe this data set is not big enough for implementation using a Convolutional Neural Network (CNN) 

as it usually requires thousands of images to train successfully. Having said that, we would like to present this paper 

with a series of questions the reader may ask, on the understanding that not all the questions may be relevant to 

everybody and that some may be skipped. 

Has DL been used recently in agricultural machinery applications and what is needed to develop a proof of 

concept based on this technology? 

DL has reached relevance in agricultural applications, for example for avoiding obstacles in autonomous agriculture 

machines using CNN architectures such as Alexnet [5] and ICNet [6]. Another CNN, AMTNET was used for 

automatic recognition of agricultural machinery images [7]. Regarding the ability to implement a proof of concept 

system, there are available pre-trained CNNs that can be used for these agricultural applications. Using free software 

such as PyTorch [8] and TensorFlow [9], these networks can be modified to adjust the number of classes needed for 

a specific application by modifying the last output layer. Additionally, the input layer can be modified to fit the size 

of the data. Table I shows some of the different pre-trained CNNs available in Matlab and Figure 1 shows a comparison 

of these pretrained network prediction times versus their complexity using a computer with a GPU card [10]. A trade 

off is expected between number of layers and prediction time and accuracy. As shown in Figure 1, Alexnet offers the 

least accuracy in the slowest prediction time and at the other end of the spectrum we found nasnetlarge. The database 

used in Figure 1[11] consists of general images such as musical instruments, furniture, animals etc. but this is not an 

impediment for training a pretrained network with data for a different application as during training the network starts 

with random values and with training algorithms such as gradient descent these values adjust to a different application.   

Table I 

Examples of pretrained CNN networks. Depth indicate the number of layers. 

Network Depth 

squeezenet 18 

googlenet 22 

inceptionv3 48 

densenet201 201 

mobilenetv2 53  

resnet18 18 

resnet50 50 

resnet101 101 

xception 71 

inceptionresnetv2 164 

shufflenet 50 

darknet19 19 

darknet53 53 

alexnet 8 

vgg16 16 

vgg19 19 

nasnetlarge 1244 

 

An important aspect to consider when selecting a pretrained network is that of the time the network requires to obtain 

an output. From a study of driver responses that took place on highways in personal vehicles covering a variety of 

driving conditions [12, 13] and assuming that reaction times to stimulus while driving farm machinery would be 

similar, we can estimate that a decision made in less than one second is a good benchmark. Therefore, any system that 

can provide a real-time reaction time (time from sensing the issue to implementing a response mechanism) of less 

than 1 second can be considered to be faster than a human response, and sufficient for a vehicle control system [14].  



For fast output, one can design a CNN with few layers such as the one proposed by researchers at the Universities of 

Calgary and Saskatchewan [15] where an architecture consisting of three convolutional layers followed by a 3 × 3 

pooling layer was used for leaf counting in rosette plants.  

Moreover, in the last few years a novel network architecture called R-CNN has been proposed for object detection in 

real-time applications. The initial convolutional pipeline was proposed by Girshick et et al. [16] in 2014 and won the 

Pascal VOC challenge. The author successively proposed an updated version of the architecture (so called Fast R-

CNN) [17] which jointly trained the CNN, classifier, and bounding box regressor using fully connected layers. The 

network was successively improved by Shaoqing Ren (Faster R-CNN) [18] by replacing the Region Proposal Network 

with a fully convolutional region extraction technique. Such network is particularly used in agricultural applications 

since it allowed a reliable and real-time processing of the images, as shown in [19, 20, 21]. 

The discussion above has been focused on images. As CNNs were very successful for tackling the problem of image 

description when compared to what had been available before, the pretrained networks often use inputs in the form of 

images consisting of matrices of unsigned integers with pixel intensity values ranging from 0 to 255 and of fixed sizes 

that vary from 224 by 224 to 331 by 331 as the ones listed in Table I.  If images of different sizes are available, one 

can also rescale them to fit one of these networks, the image pattern will be distorted but the CNN network is expected 

to find features from these distorted images as well as if the images were kept in their original sizes. If audio is to be 

used, one can transform these 1D signals into 2D images via time-frequency or time-scale analysis [22, 23, 24, 25, 

26]. Furthermore, a newer type of deep network that allows for the inclusion of temporal behaviour, such as the long-

short term recurrent neural network, has proven to be very efficient for audio applications [27, 28] where the inputs 

are not the standard unsigned 8 bit 2D data that form images but real numbers that form 1D input vectors. Inputs then 

can be in the form of data coming from sensors that record vibration, humidity, temperature, etc.  

 

Figure 1: Comparison of different pretrained CNN networks in terms of accuracy, complexity (blue area size) and 

decision-making times 

Not enough data, what can be done? 

As long as data is available and labeled with its correct classification to train a network, a prototype can be designed. 

This availability of data can actually be an obstacle as many examples, in the order of thousands, are usually needed 

when using a deep network such as the CNNs mentioned before [29]. One way to alleviate the problem of a smaller 

data set is by creating more images doing operations such as rotation, scaling, shifting, etc. of the original data. This 

step is known as data augmentation [30]. Nevertheless, it is highly recommended to start with a big data set that can 

include different scenarios such as possible occlusions of objects, different types of illumination, or any other factors 

that would generate very different images that were not considered during the network training. In the case of audio, 

one must include cases that can be foreseen, such as noise coming from traffic if the system is to be recording near a 



public road. As indicated in [31], it is not just the amount of data but the data significance and usefulness for the 

application that has to be considered. 

The scenario of not having enough data is likely when an innovative solution to a particular problem is sought. In such 

cases, one can start with a shallow network by using a conventional neural network. Not as complex as CNNs, these 

networks can still use low resolution images and have been used in the past for self-driving vehicles. An example of 

this is ALVINN (Autonomous Land Vehicle in a Neural Network) which back in 1989, used a simple NN consisting 

on one hidden layer with 29 nodes, having as an input 30x32 video images as well as input from a range finder that 

was trained to yield 45 direction outputs [32]. ALVINN can be considered as a proof of concept and because of the 

accuracy importance of such application, is not up to now that DL is taking on commercial autonomous vehicles 

having reached much better results than the ones reported in [32]. Usually such shallow networks take on inputs in 

the form of features which total number is much less than the total number of pixels in an image. They execute very 

fast as the network requires only a matrix multiplication and the results of this multiplication are evaluated with a 

sigmoid function in which outputs can be logical ones and zeros by simply thresholding the output or without this 

thresholding, the numerical output can give an indication on how probable the network found that particular output to 

be. This can actually lead to a preliminary system in which a shallow network is designed first in which classifications 

made with high probabilities are used to create a new labeled database and the less likely classifications can be 

manually assessed by an expert, a process known as active learning [33]. Once a bigger data set is formed this way, a 

DL can potentially improve the accuracy later. 

Training databases available 

Computer vision applications require the training on large amount of images. A popular training strategy is to 

exploit training databases such as COCO, PASCAL VOC, SUN. Microsoft COCO is a large-scale object detection, 

segmentation, and captioning dataset for object segmentation and recognition in context including 330K images 

[34]. Pascal VOC [35] provides standardized image data sets for object class recognition. SUN [36] provides a 

benchmark for scene categorization. The Places [37] database introduced by MIT provide a novel scene-centric 

database with 205 scene categories and 2.5 millions of images with a category label. The importance of this dataset 

is not only to provide large data-set for network training, but also international challenges allowing researchers to 

compare novel network architectures. However, training on such large data-bases sometimes requires hardware and 

GPU resources not accessible to all research groups. For this reason a popular training strategy is to use transfer 

learning techniques for adapting networks pre-trained on public databases to custom image data-sets [38]. 

Hardware and preprocessing considerations 

If we are starting with no data, this can be seen as an advantage as data collection can be done in such a way to 

facilitate the implementation of a system. Take for example improper illumination from light reflections. Figure 2 

shows an example of this scenario. In this case, the objective is to grade tomatoes into different quality categories. If 

the shape of a tomato is to be important, that is, how round the object is, this feature can be easily calculated using 

circle detection and find how many pixels in the border of the tomato are within that circle. Figure 2 (a) and (b) show 

those normalized numbers to be 0.3434 and 0.1365 and this feature can be good enough and may not require any level 

of sophistication in terms of what type of classifier to use. However, if defects on the tomato are also being considered, 

then the reflection from the light source can present difficulties as shown in parts (c) and (d).  This may be solved by 

using a circular polarizer in the camera acquisition system or diffusing the light source. A DL approach would require 

thousands of images with different illumination possibilities so that the features can be found automatically under less 

than optimum illumination circumstances. 

 

 

 

 



                        (a)                              (b)                                (c)                               (d) 

 

Figure 2.    Reliable features such as roundness depicted in (a) and (b) and possible illumination problems that can 

be caused by light reflections. 

Thus, no data can actually be a good start as better data can be obtained considering the patterns a network is about to 

learn from the data set. Even preprocessing the data before using a neural network can help. Take for example grading 

dates. Figure 3 shows colour transformations of the gray scale value images of dates by easily converting them into 

color using a colormap and linearly assigning a particular gray level value to a specific value in the colormap table. 

The three targeted date categories are soft, semi soft and hard dates. Using 900 images, Figure 3 show how training 

accuracy is improved when using a shallow CNN.  

        (a)                                                                         (b) 

                  

Figure 3. (a) Training accuracies. (b) Date images and colormaps used.  

 

For real time applications, not only the complexity of the classifier is in question, but also the hardware that will make 

those decisions. If a stand-alone instrument is to be designed as a second step of a successful proof of concept, NN 

can be very fast for decision making. As CNNs require the calculation of features from the input images via 

convolutions, the calculations take more time. Here there is a trade off again, as a shallow conventional NN can 

compute an output extremely fast, but features need to be calculated first and that can take some time too. These 

features though can be calculated really fast using FPGAs. For example, circle detection used in Figure 2 can be 

implemented with a video capturing board that includes a specialized FPGA [39].  Furthermore, in computer vision, 

features can be extracted from images using morphological operations, which based on set theory and working with 

binary images, can be computationally fast [40]. Thus, not only the complexity of the CNN is in question, but also the 

hardware that will make those decisions. Low-cost digital signal processing boards, such as the Texas Instruments 

C5535/C5545 eZdsp USB Stick Development Kit, can be used to analyze the auditory data in real-time and implement 

the matrix multiplication needed using a NN. For DL solutions, Google Coral / Edge TPU boards can be used. The 

costs are quite similar and all the computations can be carried out on such devices. 

If 1D input data is used and features are to be calculated from the frequency signatures of the data, the FFT is such a 

fast algorithm that it has been even successfully implemented in real time on mobile phone platforms [41]. Even 

though features are to be calculated, the computational cost can be minimal. This time-consuming feature extraction 

is one good reason why only a few features are used and also highlights the importance of selecting the ones that are 

the most useful [31]. For that selection of features, there are very well-known statistical tools that can reduce the 
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number of features, for example, selection of features corresponding to the maximal statistical dependency criterion 

based on mutual information [42]. Sequential forward selection is widely used due to its simplicity and efficiency [43, 

44]. Another popular feature reduction method, principal component analysis [45], is an alternative feature selection 

method that transforms the original variables into another feature space based on principal components. 

Figure 4 summarizes what has been discussed and shows how the instrumentation part can add many steps to an 

effective solution before data is to be used for training and decision making using a NN or DL network. Thus, we note 

that it is not just a matter of inputs – classifier – output, but several other considerations can yield a more efficient 

device. 

 

Figure 4. Possible hardware and software needed for an automatic decision-making instrument. 

Proof of concept example 

The work presented here formulates a proof of concept approach for the classification of harvester sounds that will 

facilitate the creation of an important part of the automatization of this farm vehicle. Sound recordings were taken 

from harvest video feed during the canola harvest in East Selkirk, Manitoba. The canola was harvested with an S680 

John Deere combine and audio was captured with a GoPro Hero Session. The recordings were taken from the rear of 

the combine near the straw chopper. All recordings were taken in the same field on the same day from the same 

machine. Sound sampled at a rate of 48 kHz with AAC compression and automatic gain control was converted to .wav 

files (Waveform Audio Format) for analysis. Sound recordings were isolated into three different operating modes 

(classes) of the combine:  

Mode 1: The combine’s engine is running, and mechanized threshing is not engaged (“Empty”); total 

recorded time was 9 seconds.  

Mode 2: The combine engine is running, and mechanized threshing is engaged with no actual threshing being 

performed (“Engaged”); total recorded time was 5 seconds.  

Mode 3: The combine’s engine is running, and mechanized threshing is engaged and utilized at 

approximately 80% capacity (“Full”); total recorded time was 10 seconds.   

CLASSIFICATION BASED ON A CONVENTIONAL NN   

Extracting features from the frequency information of a signal via the absolute value of the Fourier transform, 

Periodogram (PG), can be an effective way to extract information to be used in a classifier, as for example it was used 

in  [46] for roller bearing fault diagnosis. For the harvester sounds, the position of the highest peaks differ and the 

energy of different frequency bands also differs between the different 3 modes listed before. With this in mind, a series 

of features were extracted from the location of the three strongest peaks, the ratio of the amplitudes of the first and 

second strongest peaks, the distance between the two strongest peaks and the PG center of gravity.  These features can 

be easily normalized and be robust to the size of the FFT used as well as the amount of noise, as noise tends to spread 

over a large frequency band and does not considerably affect these feature values.  

Classifier
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(steer, grade,
defective, …)

Expert input
(supervised training)

Sensors
(video, audio, 

temperature, …)

Sensors aid hardware
(light diffusers,
audio filters, …)
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Feature selection
(shallow neural 

networks)

Inputs
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Defining the PG as X(f) , the calculated features are: 

𝑓1̂ = 𝑋(𝑓1) where  𝑋(𝑓1) ≥ 𝑋(𝑓𝑖)  

𝑓2̂ = 𝑋(𝑓2) where  𝑋(𝑓2) ≥ 𝑋(𝑓𝑖)   ∨𝑖  ∉ 𝑖 = 1 

𝑓3̂ = 𝑋(𝑓3) where  𝑋(𝑓3) ≥ 𝑋(𝑓𝑖)   ∨𝑖  ∉ 𝑖 = 1,2  

𝑓4̂ = |𝑓1 − 𝑓2| 

𝑓5̂ =
∑ 𝑖𝑋(𝑓𝑖)

𝑁
𝑖=1

∑ 𝑋(𝑓𝑖)
𝑁
𝑖=1

 

𝑓6̂ =
𝑋(𝑓1) 

𝑋(𝑓2) 
 

 

These features become the inputs to a classifier and as it is well known that the normalization process for the inputs 

can have great effect on preparing the data to be suitable for training [47]. Normalization was done by dividing the 

above features by the total number of frequency samples N used. 

𝑓𝑖 =
𝑓�̂�

𝑁
    for i = 1,2, …,6. 

 

As a classifier, a neural network with one hidden layer with 5 nodes using backpropagation for training yielded 

accuracies of 78.26 when using 5000 samples of audio segments. The total time required for feature extraction and 

final classification was 2.5 ms using an Asus laptop with a 64 bit Intel i7 CPU @ 2.6 GHz and 16 GB of ram. We 

used the Matlab platform version 2017b using parallel processing via an NVIDIA GeForce GTX 960 M GPU card 

with 10 Gb of memory. Figure 5 (a) show the steps taken.  

 

CLASSIFICATION BASED ON A CNN   

The absolute value of the Short-Time Fourier Transform (STFT), known as the Spectogram (SG) was used to obtain 

images. A seven-layer CNN was used. The layers are: 

 

1. Image input layer with 'zerocenter' normalization 

2. Convolution layer, eight 8x8x3 convolutions with stride [1  1] and no padding 

3. ReLU  layer 

4. Average Pooling layer with 2x2 average pooling with stride [2  2] and no padding 

5. Fully Connected layer 

6. Softmax 

7. Classification Output layer,  crossentropyex 

 

 Using the same number of samples as before, the CNN achieved accuracies of 97.97 in an execution time below 

the one second mark using the same equipment and software. Figure 5 (b) shows the steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                              (a)                                                         (b) 

 
Figure 5. Steps needed for the classification of a harvester based on sound recording. (a) Using a conventional 

neural network. (b) Using a CNN. 

 

 

For comparison purposes, using the same six features and same number of samples, five different classifiers yielded 

the accuracies given in Table II.  

 
TABLE II 

CLASSIFICATION TESTING ACCURACY 

Method 
Accuracy 

Linear Discriminant 54.88 

Linear Support Vector Machine 55.33 

Ensemble Bagged Trees 53.97 

k-Nearest Neighbor 56.01 

Binary classification decision tree 55.1 

NN 78.26 

CNN 97.97 

 

We can see how promising the use of DL can be and we also highlighted the impact that data acquisition and data 

preprocessing can have for a system. The topics discussed here not only apply to agricultural machinery but these 

ideas can also play an important role in other DL applications.  
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Conclusions 

 

In this paper, the recent techniques for image and signal classification are reviewed with particular emphasis to 

agricultural applications. The experiments presented in this paper highlight the limitation of classical machine learning 

techniques vs neural network approaches. As demonstrated, classical machine learning approaches reaches lower 

performances compared to NN and CNN architectures. However, the need of a larger amount of training data labeled 

by an expert may not always be available in real world technologies, and the hardware requirements (GPUs) for 

computation may limit the use of such system in real-time applications.    
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Reviewers' comments: 

 

Reviewer #1: 

This work discusses the use of deep learning methods for agricultural applications. The 

paper is well framed in the magazine's scope overviewing the problem and its context. The 

use of deep learning-based structures such as CNN is then addressed highlighting the 

convolutional and classification layers. To restate the advantages of deep learning, a case 

example is finally given comparing NN and CNN for audio processing. 

 

Overall, the paper represents a good match for the SI in machine learning and signal 

processing. It is well written; it is easy to read, and to follow. As IMM targets generalist 

papers including comprehensive descriptions of the topics addressed, I recommend: 

 

1. To expand the SoA on deep learning projects addressing agricultural problems. 

We thank the reviewer for the comments. We have included a discussion as well as more 

references regarding the agricultural problems and solutions [19, 20 and 21]. 

2. I was surprised of not finding details of Fast and Faster R-CNN in this review (Even 

though I acknowledge they can be grouped in CNNs). In particular, the former is widely 

used in real-time applications. 

The reviewer mentions an important type of network and we added the following: 

Moreover, in the last few years a novel network architecture called R-CNN has been 

proposed for object detection in real-time applications. The initial convolutional pipeline 

was proposed by Girshick et et al. [16] in 2014 and won the Pascal VOC challenge. The 

author successively proposed an updated version of the architecture (so called Fast R-CNN) 

[17] which jointly trained the CNN, classifier, and bounding box regressor using fully 

connected layers. The network was successively improved by Shaoqing Ren (Faster R-

CNN) [18] by replacing the Region Proposal Network with a fully convolutional region 

extraction technique. Such network is particularly used in agricultural applications since it 

allowed a reliable and real-time processing of the images, as shown in [19, 20, 21]. 

 

3. Just as the convolutional layer was explained (Table 1), a comparative evaluation of the 

most popular training databases is recommended (COCO, PASCAL VOC, SUN, etc.). 

We included the following: 

Computer vision applications require the training on large amount of images. A popular 

training strategy is to exploit training databases such as COCO, PASCAL VOC, SUN. 

Microsoft COCO is a large-scale object detection, segmentation, and captioning dataset for 

object segmentation and recognition in context including 330K images [34]. Pascal VOC 
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[35] provides standardized image data sets for object class recognition. SUN [36] provides 

a benchmark for scene categorization. The Places [37] database introduced by MIT provide 

a novel scene-centric database with 205 scene categories and 2.5 millions of images with a 

category label. The importance of this dataset is not only to provide large data-set for 

network training, but also international challenges allowing researchers to compare novel 

network architectures. However, training on such large data-bases sometimes requires 

hardware and GPU resources not accessible to all research groups. For this reason a popular 

training strategy is to use transfer learning techniques for adapting networks pre-trained on 

public databases to custom image data-sets [38]. 

 

4. For agricultural related applications, the limitations of the aforementioned databases 

must be highlighted and training with custom images should be discussed. 

We added:  

However, training on such large data-bases sometimes requires hardware and GPU 

resources not accessible to all research groups. For this reason a popular training strategy is 

to use transfer learning techniques for adapting networks pre-trained on public databases to 

custom image data-sets [38]. 

 

 

Reviewer #2: This is an important topic and the authors summarize very well the latest in 

the field. However, to benefit scientists and engineers involved in agricultural research the 

authors need to organize better their paper and provide the reader with each of the 

techniques presented in the paper in a separate section including pros and cons and an 

example(s) for illustration. 

We moved the hardware discussion into a consecutive part as it was discussed in two 

different sections. In addition, the longest section was broken down into two more sections 

in order to help the organization of the paper.  

A conclusion section has been included to emphasize the pros and cons of the study. 

Unfortunately, we were forced to reduce the amount of additional text in order to fulfill the 

maximum length of the paper allowed for the magazine  

Conclusions 

In this paper the recent techniques for image and signal classification are reviewed with 

particular emphasis to agricultural applications. The experiments presented in this paper 

highlight the limitation of classical machine learning techniques vs neural network 

approaches. As demonstrated, classical machine learning approaches reaches lower 

performances compared to NN and CNN architectures. However, the need of a larger amount 

of training data labeled by an expert may not always be available in real world technologies, 

and the hardware requirements (GPUs) for computation may limit the use of such system in 

real-time applications.    


