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JEL classification: Evaluating value at risk (VaR) for a firm’s returns during periods of financial turmoil is a
G110 challenging task because of the high volatility in the market. We propose estimating conditional
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1. Introduction

When evaluating a firm’s stock returns, tails are essential for investors and regulators to manage investment decisions and
evaluate capital allocation. More specifically, negative tails provide information about the possibility of future losses associated with
a market asset or a portfolio. However, the movements in a firm’s returns respond differently to periods of high market volatility.

A univariate time-series analysis of a single firm relies solely on past information for that firm and does not consider other firms
in the same market. An example is the approach taken by the conditional autoregressive value at risk (CAViaR) model (Engle &
Manganelli, 2004). However, to evaluate a firm’s returns conditional on a specific characteristic, a cross-sectional sample of firms
in the same market is required. Here, we propose using a cross-sectional quantile regression model to study tail returns for a single
firm and we compare this approach with the CAViaR model.

Value at risk (VaR) is a relatively simple tool for summarizing risks (Bodnar, Hayt, & Marston, 1998) and, subsequently, several
studies have successfully developed enhanced VaR estimation methods: including, the freedom to choose the probability distribution
(Hull & White, 1998); and innovative approaches, such as ARCH and GARCH, which model heteroskedasticity (Engle, 2001); CoVaR,
which measures systemic risk for institutions under adverse situations (Adrian & Brunnermeier, 2011); and, the CAViaR model,
which estimates the tail with autoregressive processes (Engle & Manganelli, 2004). Additionally, risk evaluation has moved to
calculate together with the VaR the Expected Shortfall (ES), mainly encouraged by the Basel III agreement (Basel Committee on
Banking Supervision, 2016), which approximates the expected loss derived of the happening of an extreme event.

In recent years, many new methods for estimating VaR aimed at improving risk strategies involving asset evaluation have been
proposed (e.g. Wang, Du, & Hsu, 2018; Sahamkhadam, Stephan, & Ostermark, 2018; Lin, Sun, & Yu, 2018; Kwon, 2019; Gribisch
& Eckernkemper, 2019; Cai & Stander, 2020; Pei, Wang, Xu, & Yue, 2021; Bodnar, Lindholm, Thorsén, & Tyrcha, 2021). Here,
researchers highlight the importance of studying periods of high market volatility, which can be devastating in terms of losses and
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lack of liquidity (e.g. Dias, 2016; Alexandridis & Hasan, 2020; Babalos, Caporale, & Spagnolo, 2021; Belaid, Ben Amar, Goutte, &
Guesmi, 2021); yet, in spite of the difficulties encountered in capturing variability in such periods, VaR and ES estimation remain
the standard practice.

2. Methodology
2.1. Quantile regression

Quantile regression (QR) aims to fit the quantile of the response variable given a set of covariates Koenker (2017) and Koenker
and Bassett Jr (1978). Here, we refer to cross-sectional quantile regression (CSQR) to emphasize the fixed period nature of our
analysis. Moreover, CSQR is a useful method for understanding what influences the possibility of extreme returns being observed
(see also, Uribe & Guillen, 2020 for related applications and an overview of time series).

Let y; be a random variable with a probability distribution function F; that depends on covariates X] = {X};, Xy;,..., X;} for
i =1,...,N, where N is the number of observations, so 0 < F;(y|X;) < 1. We specify the a-th conditional quantile (0 < « < 1), or
simply the a-level conditional VaR, as:

Oy, 1x, (@ = Blay + Pray X1i + BappXai + -+ + Biap Xsi = X[ Bay - @
with parameter estimates ﬁ(a) =argmin E[p,(Y; - X ,’ A1 where p,(u) = [a — 1oy 14, and Loy is the identity function, with a value

equal to 1 when the subscript is true and 0 otherwise.

To evaluate the performance of a CSQR model, a scoring function is defined to measure the discrepancy between a predicted and
an observed value. Let j;(a) 1= X f ﬁ(a) be the fitted quantile for observation i at level «, and y; the observed value for observation i,
then we will use a summarization of the loss functions evaluated across a whole period as the scoring function like in Acerbi and
Szekely (2014):

N
0, = % Z‘ [a - l(y[sﬂ-(a))] (i = @) - ?

Note that Q0 is a weighted average of the absolute distance between the observed value and the fitted quantile, where the
weights balance the quantile level . The lower the value of QU, the better the approximation.
The expected shortfall (ES) for a level « is defined as:

ES,(Y,1X,) = ELY,|Y, < VaR, (Y| X,)] . ®)

The ES, known alternatively as tail conditional expectation (TCE), conditional tail expectation (CTE) or tail value at risk (TVaR), is a
risk measure that approximates the expected loss conditioned on the loss exceeding the VaR. When applied to returns, ES is usually
negative given that returns may be negative, but on occasions it is expressed as an absolute value. Here, we opt not to change the
sign.

For backtest the Expected Shortfall that will be calculated empirically after the VaR estimation as average value of Hits, we
take use of the scoring function to evaluate jointly VaR and ES proposed by Fissler and Ziegel (2016), which renders the following
equation:

S, (Q;(a), ESW., ) =(1[y,-SQ,-(0!)) - a)G(Q;(a)) —

1320,y G100 +
Gy (ES, ; NES,; — Qi(a) +

0i(@) -y, (C))
Loy = ~
Cy(ES,) +
a(y;)

being G, an increasing function, G, an increasing and convex function, and ¢, = G,. 1 represents the identity function, with a
value of a 1 if the subscript is met and O otherwise. We will take the model specification from Acerbi and Szekely (2014), which
uses G,(x) = =1/2Wx?, G, = 1/2ax? and a = 0. Other possible specifications used in literature can be found in Fissler and Ziegel
(2016), Gneiting (2011) and Nolde and Ziegel (2017), and a comparison of different specifications is tested in Taylor (2020), without
showing significant discrepancies between them.

2.2. CAViaR model
We use a CAViaR model to analyze a univariate time series of a firm’s returns. Let y, denote the return in time ¢, but, note, as

we analyze only one firm, we have no need for the subscript i. This model was first proposed by Engle and Manganelli (2004) and,
for a given a level, its general model specification is:

q r
LB =B+ X Bifei B+ Y, Bl (5)
i=1

Jj=q+1



X. Vidal-Llana and M. Guillén North American Journal of Economics and Finance 63 (2022) 101835

where an « level is fixed but omitted here, y,_; is the observed return in time 7 — j. f,(§) is an abbreviation for f,(y,_,.f,) denoting
the quantile « at ¢ of the distribution of returns, which depends on the observed returns from previous periods. g, = (f. ..., $,) is
the vector of parameters to be estimated using regression quantiles. Engle and Manganelli (2004) incorporated a lag function /(-)
in order to link observed values to the information set.

The CAViaR model that we use to conduct our analysis, the indirect GARCH(1,1), defines their specification as:

B =By + Pof (i B) + B2 DV ()

which using Eq. (2) to solve f, serves as a quantile regression model.
2.3. CSQR vs. CAViaR for the conditional VaR estimation of returns

In CSQR, we fix a point in time ¢, 1 <7 < T, and we adjust a QR model for the returns using the characteristics of all available
firms in the market in that specific time 7. In so doing, we have T' QR models where each one characterizes each moment the state
of the market.

By predicting with the 7" QR models a firm with its specific characteristics, we can compare the results of the CSQR model and
the corresponding CAViaR model for the same firm. However, note that the two approaches are essentially different. CSQR uses
all firms observed at a given point in time 7 and assumes that quantiles depend on all the firms’ characteristics. CAViaR assumes
that the quantiles of a single firm’s returns depend on its own past returns. By implementing the CSQR and CAViaR approaches, we
obtain two alternative estimates of VaR for each firm at each point in time z.

Implementing CSQR has certain advantages: (1) The computational requirements to calculate a quantile regression model at
each 7 and extract an individual firm i are lower than fitting a CAViaR model (Eq. (6)) for the same firm i; (2) the CSQR model
uses covariates, which allows us to include exogenous characteristics and to predict return quantiles for external firms that are
not initially in our dataset; and (3) CAViaR needs a minimum observational time window prior to estimating the tails, while our
approach does not require any previous observations, only contemporary f.

3. Data and characteristics in the cross-sectional quantile regression model

Our information database contains 204 characteristics for 26,298 different firms in the US market between 1990 and 2020. The
data have a monthly frequency. We combined these data with the firms’ returns, obtained from the Center for Research in Security
Prices (CRSP). Our baseline quantile regression includes seven covariates: firm size (MC), book-to-market ratio (BM), operating
profitability (OP), growth rate of investment (INV), 12-month momentum (MOM), liquidity of the firm (LIQ) and market beta
(beta). Firm size (MC) was constructed using CRSP data, as in Uribe Gil, Guillén, and Vidal-Llana (2021), the other factors were
retrieved from Chen and Zimmermann (2020) dataset. The variables chosen correspond to the standard magnitudes used to price
average returns using cross-sectional factor firm characteristics. MC, BM, OP and INV are recommended by Fama and French (2020)
while MOM, LIQ and beta were added in keeping with the discussions in Campbell (2017) and Malkiel (2019). We are aware of other
factors that can be relevant for predicting VaR during high volatility periods, like the total volatility and idiosyncratic volatility of
a firm (see Ang, Hodrick, Xing, & Zhang, 2006, 2009, Chen, Wang, Lin, & Huang, 2022), but we wanted to keep our model with
the classic asset pricing specification. Moreover, with the addition of more factors, we would be able to improve even more our
contribution and make the comparison less fair for the non cross-sectional model. Because of the specific requirements of the CAViaR
model, we were obliged to restrict our comparative analysis to firms whose returns information cover the whole observation period
(438 firms); CSQR, in contrast, can evaluate all the firms (26,298 firms).

We would like to add that generating synthetically more disaggregated data, e.g., daily information instead of monthly, does not
contribute to answer our research question. We could achieve this by following the inverse steps of Kwon (2019), who transforms
daily data into monthly using the square root method, while assuming normality. Indeed, our main research interest is to study
quantiles of the distribution, and we assume absence of normality. Moreover, see results for the Variance-Covariance method in
Section 4.1 which assumes normality and underperforms against any other tested model.

4. CSQR model for calculating VaR: a comparison with CAViaR

We compare the respective performances of the CSQR and CAViaR models for estimating VaR. Our dataset includes two crisis
periods: the Great Recession (2007-2011) and the Covid-19 pandemic (2020). Note, we only present results from January 2000
to December 2020, given that we use data for the first 10 years to capture the autoregressive momentum required to estimate the
CAViaR model. To study losers in terms of returns, we analyze the 0.05 a-level, a methodology that can be implemented for any
quantile level. Code and results are available on request from the authors.

Fig. 1 shows the average predictions of both the CSQR (purple) and CAViaR models (green) for 438 firms over time. The CSQR
model provides a more volatile series of predictions due to its use of other returns and covariates; this offers a richer perspective
when calculating VaR. The CAViaR model presents a delay on the fitted VaR when compared with the CSQR model: for example,
in the case of the Great Recession, the decrease in the predicted VaR is delayed by between four and seven months. The CAViaR
model also appears to provide less extreme VaR estimates than those provided by the CSQR model. During the Great Recession,
the CAViaR model produces a higher VaR at the 0.05 level - i.e. less extreme negative returns — than that produced by the CSQR
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Fig. 1. Average VaR predicted for the 0.05 quantile for the CSQR (purple) and CAViaR models (green) for 438 firms between 2000 and 2020.
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Fig. 2. Comparison of the evolution in returns and predictions for the 0.05 quantile for both the CSQR (purple) and CAViaR models (green) for firm n2 24010
between 2000 and 2020 (monthly data).

model. This indicates that the CSQR model detects more risk and, so, an increase in reserves is needed during the Great Recession.
During the Covid-19 pandemic, it is unclear to decide which model predicts more risk.

By way of example, Fig. 2 shows the returns observed (gray dots) for an individual firm (firm n2 24010). The lines again show the
predictions for the 0.05 quantile using the CSQR (purple) and CAViaR models (green). We consider a return lower than a 0.05 fitted
quantile to be an Hit and that this should occur just 5% of the time. Hits are calculated with the Hit function (Engle & Manganelli,
2004) that renders a 1 when the return surpasses its calculated VaR and O otherwise. Hits — shown here with the same color as
the corresponding model — refer to returns that are lower than the fitted VaR for that model but not for the other model: that is,
purple crosses indicate returns that we consider to be Hits under the CSQR model but not under the CAViaR model, while green
crosses indicate returns that are Hits under the CAViaR model but not under the CSQR model. Red asterisks are considered Hits for
both models. The figure shows that during the Great Recession (2007-2011) and the Covid-19 pandemic (2020), the volatility of
the returns increased for this particular firm. If we focus solely on the quantile predictions during the Great Recession, it is evident
that the returns for this period are higher than the quantiles fitted for the CSQR model. In contrast, the CAViaR model identifies
four points as Hits during this period (green crosses). These differences are an example of a localized potentially biased estimation
of extreme returns during periods of high volatility.
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Table 1
Eq. (2) scores at the 0.05 quantile for each model and the number of months that the model presented
a lower (better) score than the other for 438 firms, for three time windows.

ng All Great recession Covid-19 pandemic
(2000-2020) (2007-2011) (2020)

Historical 1.14 (25,996) 1.39 (6,221) 1.89 (1,352)

Variance-Covariance 1.19 (2,051) 1.36 (573) 1.82 (149)

CSQR 0.97 (45,984) 1.02 (10,008) 1.13 (2,546)

CAViaR 0.88 (48,536) 1.05 (7,457) 1.31 (1,488)

0.10

Density of firms

0 20 40 60
Number of exceptions

= Historical Variance-Covariance — CSQR —— CAViaR

Fig. 3. Kernel density of the number of Hits by firm for the CSQR (purple) and CAViaR models (green) for the 0.05 quantile between 2000 and 2020 (438
firms). The dotted line indicates the benchmark score of 12.6 (i.e. expected number of Hits = 21 years x 12 months each x 0.05 quantile).

The example presented in Fig. 2 indicates that the method developed herein is robust to periods of turmoil. Indeed, this holds
true for almost all the firms in our sample (see Fig. A.7 in the Appendix for further examples of this comparison conducted for other
individual firms).

4.1. Scoring the models and distribution of hits

Our contribution focuses on the comparison between the Cross-Sectional Quantile Regression Model (CSQR) and the CAViaR
model. This section is mainly based on scorings, so we are adding two other baseline models to show the improvement that a
change to a more complex model adds. The complementary baseline models for calculating the VaR are the Historical method and
the Variance-Covariance method.

In Table 1 we present the score in Eq. (2) for all months and for the two crisis periods, for the Historical method, Variance—
Covariance method, for the CSQR model and the CAViaR model, for 438 firms. In parenthesis, we present the total number of
months when a model (given in the corresponding row) has had a lower score, i.e. scores better, than the other models.

Table 1 shows that the CSQR model provides a better approximation to the 0.05 quantile during periods of high volatility,
presenting a higher number of better scores (10,008 during the Great Recession and 2546 during the Covid-19 outbreak). However,
over the whole period, the CAViaR model scores better more months than the other approximations. It appears that the CSQR
model outperforms the CAViaR model in times of crisis due to the use of market data, suggesting that the former adapts to periods
of high volatility more readily than is the case of the CAViaR model. It is interesting to note how the Variance—Covariance model
does not show a good result in comparison of the other three models and that, while for the whole period the CAViaR model
outperforms significantly the Historical method, over turmoil periods the number of months that CAViaR model outperforms the
Historical method is very similar (25,996 vs 48,536 over the whole period but 6221 vs 7457 and 1352 vs 1488 during high volatility
periods). This shows how our proposed model is as reliable during calm periods as it is reliable during turmoil events.

Fig. 3 shows the kernel density of the number of Hits for all firms (438) for the Historical method, the Variance—Covariance
method, the CAViaR and CSQR models. In the case of the CAViaR and Historical models, we would expect a very high density of
Hits overlapping the dotted line — corresponding here to a benchmark equal to 12.6 (that is, 21 years x 12 months each x 0.05
quantile) — because these models adjust quantiles from a time-series perspective, leaving approximately a% of observed values as
Hist. In the case of the Variance-Covariance and the CSQR model, the density is less concentrated and presents fewer Hits than the
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Fig. 4. Histogram of the duration between hits for Historical, Variance-Covariance, CSQR and CAViaR models for quantile level 0.05.

Table 2
Average of expected shortfall scores by firm present at Eq. (4) at the 0.05 quantile for each
model for three time windows.

So.0s All Great recession Covid-19 pandemic
(2000-2020) (2007-2011) (2020)

Historical —-6,130.5 -5,853.3 -16,387.2

Variance-Covariance -5,631.0 -5,728.2 -15,543.8

CSQR —6,615.3 -7,562.8 —20,434.8

CAViaR -7,795.2 —6,653.1 -11,534.7

Lower score indicates better prediction, marked in bold.

benchmark value. By locating individual firms in Fig. 3, we can identify those that present more Hits than expected and, as such,
they can be considered underperforming.

Fig. 4 shows the histogram of the duration in months between two hits using the same procedure than Christoffersen and Pelletier
(2004) and Engle and Manganelli (2004). We observe that for the CSQR model, and even more for the Variance-Covariance method,
the distribution shows a bigger span between hits, while the CAViaR presents a distribution more truncated to the left side, with
lower periods between two hits. The historical method does not present any notable information gain in comparison to other models.
We performed a Kolmogorov-Smirnov test for the duration between Hits for both the CSQR and CAViaR models, where the null
hypothesis tests the equal distribution of durations with an exponential duration and the alternative hypothesis assumes a different
distribution. For the great majority of firms, the null hypothesis was not rejected.

In Table 2 we see the average scoring evaluated for the four models as specified in Eq. (4) for the quantile level 0.05. The results
are similar than those present in Table 1, for the whole period the CAViaR model shows a better approximation to the Expected
Shortfall, but for both turmoil periods, the CSQR model surpasses the other models tested. It is of note how the CAViaR model is
the most underperforming model during the Covid-19 pandemic, which can be due to the necessity of the time-series based models
of a long span of data, making them unfeasible to predict short terms, for example, at the start of a crisis.

4.2. Comparison of VaR and expected shortfall estimation

In Fig. 5, we present the density of the average estimated VaR 0.05 over time, calculated using the CSQR and CAViaR models,
for all 438 firms and for three time windows. The density of the average VaRs for the 0.05 quantile calculated with the CSQR model
is more strongly negative than that of the average VaRs calculated using the CAViaR model for the whole period (left subfigure).
For periods of high volatility (center and right subfigures), the CAViaR model seems to include a group of firms with a fitted VaR
lower than that fitted with the CSQR model, but the density of average CAViaR-fitted VaRs stays shifted to the right with respect
to the density of the average CSQR-fitted VaRs.

Fig. 6 shows the difference between the empirical ES for the CSQR and CAViaR models, separately by time periods. In general, for
the whole period (left subfigure), the average ES levels for the CAViaR model are greater than those for the CSQR model, meaning
that, on average, capital requirements should be increased when using the CSQR model as opposed to the time-series perspective
provided by the CAViaR model. During the Great Recession (center subfigure), the CSQR model predicts average ES levels similar
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Fig. 5. Kernel density of estimated VaR using the CSQR (purple) and CAViaR models (green) for the 0.05 quantile, for the whole period (2000-2020, left), the
Great Recession (2007-2012, middle) and Covid-19 pandemic (2020, right), for 438 firms.

Density of fims
Density o fims
Density of fims
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Fig. 6. Kernel density of estimated empirical ES using the CSQR (purple) and CAViaR models (green) for the 0.05 quantile, for the whole period (2000-2020,
left), the Great Recession (2007-2012, middle) and Covid-19 pandemic (2020, right), for 438 firms.

to those of the CAViaR model. In the Covid-19 period (right subfigure), capital requirements are lower when employing the CSQR
model (vs. the CAViaR model), because the density of the average estimated ES levels of the CSQR model has shifted to the right.
This indicates that the choice of model does not have the same consequences for investment decisions.

5. Conclusions

We develop a cross-sectional quantile regression (CSQR) model using seven firm characteristics to evaluate the tail behavior
of returns. For each firm, we compared the predicted VaR and empirical ES obtained using this CSQR model with the VaR and
empirical ES estimated using the CAViaR model.

Our study included two periods of high volatility: the Great Recession (2007-2011) and the Covid-19 outbreak (2020). The CSQR
model shows a lower estimated 0.05 quantile during these high volatility periods than that obtained using the CAViaR approach.
Our results show the CSQR model performs better for the 0.05 quantile during both periods of turmoil and that this same CSQR
model presents fewer Hits than are presented by the CAViaR model.

With the CSQR model, the VaR and empirical ES are, on average, lower than the corresponding values calculated using CAViaR;
however, in periods of high volatility, the ES estimates using CSQR increase, exceeding those estimated with the CAViaR model.
This is especially true for the period coinciding with the Covid-19 pandemic. From the perspective of risk management, if the ES is
closer to zero in the CSQR model, this means that reserves should be reduced.

A natural step forward in this line of research would be to implement a mixture of both CAViaR model and CSQR model, for
example by weighting both predictions depending of the volatility of the market, or by calculating the CSQR model’s parameters as
a stochastic process adjusted with a CAViaR.

In short, using the CSQR model should serve to enhance the evaluation of company returns, and can provide an improvement
in the calculation of reserves during periods of turmoil. Moreover, the use of the CSQR model facilitates quantile approximation for
out-of-sample firms.
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Fig. A.7. Monthly comparison between the evolution of returns and predictions for the 0.05 quantile for both the CSQR (purple) and CAViaR models (green)
for firm n% 10550, 17137, 21573, 45728, 51263, 54704, 57568, 61313 and 62092 between 2000 and 2020.
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