Expression of Melatonin and Dopamine D₃ Receptor Heteromers in Eye Ciliary Body Epithelial Cells and Negative Correlation with Ocular Hypertension

Irene Reyes Resina Facultad de Farmacia y CA Universitat de Barcelona 0902 2023

Civan et al, Exp. Eye Res. 2004 Delamere et al, Adv. Organ. Biol. 2005

Casson et al, Clin. Experiment. Ophthalmol. 2012

Ciliary body → Ciliary Processes: aqueous humor production

Several factors contribute to the homeostasis of IOP:

- the episcleral vein pressure
- the ratio between production and drainage of aqueous humor
- the influence of hormones
- the innervation by cranial nerves V and VII
- the circadian rhythm

IOP varies throughout the day: -maximal at the early morning -minimal levels during the night

Variations are greater in the glaucomatous eye

Agnifili L, et al; Acta Ophthalmol. 2015

Melatonin

-Neurohormone

-Control of circadian rythms

-Synthesized in the pineal gland but also in eye structures (retina, ciliary body...)

Reppert et al, Neuron 1994, Reppert et al, Proc. Natl. Acad. Sci. USA 1995 Xue et al, Eur. Rev. Med. Pharmacol. Sci. 2017 Huete-Toral et al, J. Pharmacol. Exp. Ther. 2015 Cecon et al, Br. J. Pharmacol. 2017

Melatonin receptors

-expressed in retina, cornea, non-pigmented epithelium of ciliary body

-regulation of circadian rhythms and neuroendocrine processes in the retina and in ciliary body

-Coupling to other G proteins has been described (also increases in cAMP!)

GPCR oligomerization

- Pharmacology
- Signal trasnduction
- Allosteric modulation between subunits

MT₁R-MT2R → regulation of photoreceptor function Baba et al, Science Signalling, 2013

MT_1R -GPR50 \rightarrow Gi-coupling altered	
MT ₂ R-GPR50	
	Levoye A. et al, EMBO J. 2006
$MT_2R-5HT_{2c} \rightarrow$	biased agonism for agomelatine
Kamal et al, J. Biol. Chem. 2015	
$MT_1R-\alpha_1R \rightarrow$	heteromerization
	impedes coupling to
$MI_2R-\alpha_1R \rightarrow$	cognate G proteins
Alexander et al, Br. J. Pharmacol. 2017 Alkozi et al, Br J Pharmacol. 2020	

Dopamine

Present in brain but also in eye structures

Dopamine and melatonin

-Dopamine regulates melatonin synthesis in the eye

-Melatonin injection suppresses the release of dopamine

-Synthesis and liberation are under circadian control:

- Day:
 ↑ dopamine ↓ melatonin
- Night:

↓ dopamine ↑ melatonin

HO.

HO

Adachi et al, Brain Res. 1998, 1999 Pescosolido et al, Biomed. Res. Int. 2013 Chu et al, J. Ocul. Pharmacol. Ther. 2004, Chu et al, J. Pharmacol. Exp. Ther. 2000

Dopamine receptors

-Movement, cognition, emotions, vision, memory, reward pathway

-D3R activation leads to IOP reduction -D₃R is expressed in ciliary body epithelial cells

HYPOHESIS

Dopamine D3 and melatonin receptors might form heteroreceptor complexes whose function impact on eye physiology

AIM

To address the potential interaction between dopamine D3 and melatonin receptors, along with the functional consequences of these interactions.

Dopamine D3 Receptors Interact with Melatonin MT1 Receptors in HEK-293T Cells

HEK-D₃R Rluc-MT₁R YFP

Functional Characterization of the D3-MT1 Heteroreceptor Complexes in HEK-293T Cells

* vs forskolin [&] vs melatonin

Functional Characterization of the D3-MT1 Heteroreceptor Complexes in HEK-293T Cells

Receptor inactivation \rightarrow low pERK \rightarrow low FRET

D₃R agonist: 100 nM 7-OH-PIPAT D_3R antagonist: 1 μ M raclopride MT_1R agonist: 1 μM melatonin MT₁R antagonist: 1 μM luzindole

> * vs basal [&] vs melatonin # vs Pipat

Functional Characterization of the D3-MT1 Heteroreceptor Complexes in HEK-293T Cells

Dynamic Mass Redistribution (DMR) response

 D_3R agonist: 100 nM 7-OH-PIPAT D_3R antagonist: 1 μ M raclopride MT₁R agonist: 1 μ M melatonin MT₁R antagonist: 1 μ M luzindole

Dopamine D3 Receptors Interact with Melatonin MT2 Receptors in HEK-293T Cells

Functional Characterization of the D3-MT2 Heteroreceptor Complexes in HEK-293T Cells

 $\begin{array}{l} D_{3}R \text{ agonist: } 100 \text{ nM 7-OH-PIPAT} \\ D_{3}R \text{ antagonist: } 1 \ \mu\text{M raclopride} \\ \text{MT}_{2}R \text{ agonist: } 300 \text{ nM IIK7} \\ \text{MT}_{2}R \text{ antagonist: } 1 \ \mu\text{M 4P-PDOT (4PP)} \end{array}$

CILIARY BODY

59HCE cell line: Non-Pigmented Ciliary Body Epithelial Cells

D₃-MT₁ and D₃-MT₂ Heteroreceptor Complexes in Human Non-Pigmented Ciliary Body Epithelial Cells

PROXIMITY LIGATION ASSAY (PLA)

Specificity of antibodies against D3, MT1, and MT2 receptors

untransfected

untransfected

HEK293T cells

Effect of dopamine and melatonin receptor agonists in human 59HCE cells

 D_3R-MT_1R

D₃-MT₁ and D₃-MT₂ Heteroreceptor Complexes in Human Non-Pigmented Ciliary Body Epithelial Cells

[GSK1016790A] (nM)

Differential expression of D_3 -MT₁ and D_3 -MT₂ heteroreceptor complexes in the glaucomatous eye

-D₃ receptors form heteroreceptor complexes with MT_1 and MT_2R receptors in transfected HEK-293T cells. -The print of D_3R-MT_1R and D_3R-MT_2R heteroreceptor complexes consists of an abolishment of D_3R -mediated Gi signalling in the presence of MTRs, and a negative cross-talk and bidirectional cross-antagonism in MAPK signalling.

- D_3R-MT_1R and D_3R-MT_2R heteroreceptor complexes were detected in a human non-pigmented ciliary epithelial cell line and in human ciliary body samples.

-The expression of D_3R-MT_1R and D_3R-MT_2R heteroreceptor complexes decreases in a ciliary body-based cell model of elevated IOP and in samples from human hypertensive eyes (vs normotensive), indicating a negative correlation between ocular hypertension and heteromer expression.

Healthy ciliary body cells

Glaucomatous ciliary body cells

Balanced ion fluxes: normotensive IOP

Article

Expression of Melatonin and Dopamine D₃ Receptor Heteromers in Eye Ciliary Body Epithelial Cells and Negative Correlation with Ocular Hypertension

Irene Reyes-Resina ^{1,2,3,*}, Hanan Awad Alkozi ⁴, Anna del Ser-Badia ^{3,5}, Juan Sánchez-Naves ⁶D, Jaume Lillo ^{1,3}, Jasmina Jiménez ³, Jesús Pintor ⁴, Gemma Navarro ^{3,7,*} and Rafael Franco ^{3,8,*}D

- ¹ Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; lillojaume@gmail.com
- ² Neuroplasticity Research Group, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- ³ Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; delserbadia@gmail.com (A.d.S.-B.); jasminajc@gmail.com (J.J.)
- ⁴ Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, 28037 Madrid, Spain; hanan-q1@live.com (H.A.A.); jpintor@ucm.es (J.P.)
- ⁵ Department de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- ⁶ Department of Ophthalmology, Balearic Islands Institute of Ophthalmology, 07013 Palma de Mallorca, Mallorca, Spain; juansanchez.naves@gmail.com
- ⁷ Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08027 Barcelona, Spain
- ⁸ School of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
- * Correspondence: ire-reyes@hotmail.com (I.R.-R.); g.navarro@ub.edu (G.N.); rfranco123@gmail.com or rfranco@ub.edu (R.F.); Tel.: +34-934021208 (I.R.-R. & G.N.)

Rafael Franco, Grupo de Neurobiología Molecular, Depto. Bioquímica y Biomedicina Molecular, Facultad de Biología, UB

GemmaNavarro,GrupodeNeurofarmacologíaMolecular,Depto.BioquímicayFisiología,FacultaddeFarmacia y CA, UBFacultadFacultadde

Hanan Awad Alkozi Jesús Pintor Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid Juan Sánchez-Naves. Department of Ophthalmology, Balearic Islands Institute of Ophthalmology, Palma de Mallorca