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Abstract. The inclusion of new ingredients that are expected to be specially
relevant at higher energies could reveal more information about the physics be-
hind the NLO terms of the chiral Lagrangian. In the present work, we explore
the relevance of including partial waves higher than the L = 0, which is usually
the only component considered in the literature to study the K̄N scattering phe-
nomenology. In particular, we focus on the p-wave contribution, the effect of
which is expected to be non-negligible, as we aim at obtaining the K−p scatter-
ing amplitudes at higher energies, necessary to describe the ηΛ, ηΣ0, K0Ξ0 and
K+Ξ− production reactions. Extending the K̄N interaction to p-wave compo-
nents is also relevant for studies of bound K− mesons in nuclei since their local
momentum can acquire sizable values.

1 Introduction

It is already more than two decades that Unitarized Chiral Perturbation Theory (ChPT) has
been shown as a powerful approach to describe low-energy hadron interction. This non-
perturbative treatment of chiral perturbation theory (ChPT) allows one to dynamically gen-
erate resonances and bound states. ChPT is characterized by employing hadrons as degrees
of freedom, instead of quarks and and gluons, and by respecting the symmetries of the un-
derlying theory of the strong interaction, Quantum Chromodynamics (QCD), particularly its
spontaneously broken chiral symmetry [1].

Already from the early stages of the K̄N interaction study, such a theoretical scheme
provided clear evidences of the molecular nature of Λ(1405) (see Refs [2–7]), whose mass
was systematically overestimated by quark models. The interpretation of the Λ(1405) as a
K̄N quasi-bound state was already anticipated by the authors of Refs [8, 9], but the confir-
mation of the Λ(1405) being essentially a meson-baryon bound state came after establishing
its double-pole nature [4, 10] from comparing different experimental line shapes [11], which
unambiguously indicates the different coupling strength to the meson-baryon components of
the Λ(1405) wave-function.
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More recently, the irruption of several experiments triggered a renewed interest in im-
proving the chiral unitary theories [19–26] for a better description of the K̄N interaction and
related phenomenology. On the one hand, the COSY [12] and HADES [13] collaborations
employed pp reactions aiming at establishing the shape of the Λ(1405). On the other hand,
with same purpose, photo- or electro-production processes were carried out at LEPS [14] and
CLAS [15–17]. Additionally, the precise determination of the energy shift and width of the
1s state in kaonic hydrogen was measured by SIDDHARTA [18].

In our previous works [24–26], the relevance of the terms next in the hierarchy after the
lowest order Weinberg–Tomozawa (WT) term was studied, in connection with the inclusion
of higher-energy experimental data. An especial attention was paid on the KΞ production
reactions because they do not proceed directly via the lowest order WT contribution [24].
Our further studies [25, 26] indeed demonstrated that the so-called Born diagrams as well as
the next-to-leading order (NLO) terms are far from being mere corrections when it comes to
the reproduction of the K−p → ηΛ, ηΣ0,K+Ξ−,K0Ξ0 reaction cross sections. In particular,
the inclusion of isospin filtering reactions in [26, 27] served to emphasize their relevance for
avoiding potential ambiguities in the isospin components of the scattering amplitude. All this
translates into stronger constraints on the models by means of which one can derive more
reliable values of the low-energy constants of the chiral Lagrangian.

In Ref. [28], as we expected, the inclusion of partial waves higher than the L = 0 reveal
more information about the physics behind the NLO terms of the chiral Lagrangian. In par-
ticular, the focus was put on p-wave contributions whose effect is proved to be non-negligible
in order to describe the ηΛ, ηΣ0, K0Ξ0 and K+Ξ− production reactions. As additional ingredi-
ents, new NLO contributions were taken into account, such terms have usually been ignored
for having a low impact at lower energies. We show in the present manuscript that the new
terms of the NLO Lagrangian are relevant, being in fact strongly intertwined with the p-wave
components of the K̄N interaction.

2 Formalism

As already mentioned, UChPT has been proved as a proper tool to treat the meson–baryon
scattering at energies around resonances. The key point lies in the fact that the nonpertur-
bative schemes prevent plain ChPT from non converging and, at the same time, the unitarity
and analyticity of the scattering amplitude are ensured. In the present work, the Bethe–
Salpeter (BS) equation solved in coupled channels guarantees unitarity. The method followed
is the same employed in Refs. [3, 29] and allows factorizing the interaction kernel and the
scattering amplitude out of the integral equation thereby transforming a complex system of
coupled integral equations into a simple system of algebraic equations which, in matrix form,
reads:

Ti j = (1 − VilGl)−1Vl j, (1)

where Vi j is the driving kernel derived from the chiral Lagrangian, Ti j is the corresponding
scattering amplitude for the transition from an i channel to a j one, and Gl is the loop function

(i) (ii) (iii) (iv)

Figure 1. Diagrammatic representation of the meson-baryon interaction kernels: Weinberg–Tomozawa
term (i), direct and crossed Born terms (ii) and (iii), and NLO terms (iv). Dashed (solid) lines represent
the pseudoscalar octet mesons (octet baryons).
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of the intermediate channel l, which reads:
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(2)

with Ml and ml being the baryon and meson masses of the channel. The subtraction constants
al replace the divergence for a given dimensional regularization scale µ = 1000 MeV. These
constants are unknown parameters to be fitted to the experimental data. There are ten channels
in the S = −1 sector, therefore one expects to have the same number of subtraction constants,
although they can be reduced to six by taking into account isospin symmetry arguments.

Roughly speaking, the S U(3) effective chiral Lagrangian consist of an expansion in pow-
ers of momentum over a characterizing parameter of the system. These building blocks pre-
serve the symmetries of the fundamental interaction and are arranged in the expansion by
order of relevance following a power counting scheme (see for instance [30] for a more de-
tailed explanation). At leading order (LO), the most general Lagrangian can be expressed
as:

L
(1)
φB = i〈B̄γµ[Dµ, B]〉 − M0〈B̄B〉 −

1
2

D〈B̄γµγ5{uµ, B}〉 −
1
2

F〈B̄γµγ5[uµ, B]〉, (3)

where M0 is the common baryon octet mass in the chiral limit, the constants D, F denote the
axial vector couplings of the baryons to the mesons, and the symbol 〈·〉 stands for the trace
in flavour space. The baryon octet field (N,Λ,Σ,Ξ) is denoted by B, while the pseudoscalar
meson octet field φ (π,K, η) enters in uµ = iu†∂µUu†, where U(φ) = u2(φ) = exp

(√
2iφ/ f

)
(see [24]) with f being the pseudoscalar decay constant that acts as typifying scale factor in
the expansion in powers of momentum. Finally, [Dµ, B] contains the covariant derivative that
accounts for the local character of the chiral transformation of u and it is defined as:

[Dµ, B] = ∂µB + [Γµ, B] (4)

with Γµ = [u†, ∂µu]/2 being the chiral connection. The next-to-leading order (NLO) contri-
butions are given by:

L
(2)
φB = bD〈B̄{χ+, B}〉 + bF〈B̄[χ+, B]〉 + b0〈B̄B〉〈χ+〉 + d1〈B̄{uµ, [uµ, B]}〉

+ d2〈B̄[uµ, [uµ, B]]〉 + d3〈B̄uµ〉〈uµB〉 + d4〈B̄B〉〈uµuµ〉

−
g1

8M2
N

〈B̄{uµ, [uν, {Dµ,Dν}B]}〉 −
g2

8M2
N

〈B̄[uµ, [uν, {Dµ,Dν}B]]〉

−
g3

8M2
N

〈B̄uµ〉〈uν, {Dµ,Dν}B〉 −
g4

8M2
N

〈B̄{Dµ,Dν}B〉〈uµuν〉

−
h1

4
〈B̄[γµ, γν]Buµuν〉 −

h2

4
〈B̄[γµ, γν]uµ[uν, B]〉 −

h3

4
〈B̄[γµ, γν]uµ{uν, B}〉

−
h4

4
〈B̄[γµ, γν]uµ〉〈uν, B〉 + h.c., (5)

where MN stands for the nucleon mass, while the coefficients bD, bF , b0, di (i = 1, . . . , 4),
gi (i = 1, . . . , 4) and hi (i = 1, . . . , 4) are the low-energy constants (LECs) at this order.
The LECs are unknown parameters that contain all the physics of the problem. Despite
the symmetries of the underlying theory cannot fix these constants, some of them can be
constrained by other observables, namely: the mass splitting of baryons, the pion-Nucleon
sigma term or the strangeness content of the proton. In this case, we treat the LECs as
free parameters in the fitting procedure as it is usually done in the literature. The quantity
χ+ = 2B0(u†Mu† + uMu) explicitly breaks chiral symmetry via the quark mass matrixM =
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diag(mu,md,ms), while B0 = − 〈0|q̄q|0〉 / f 2 relates to the order parameter of spontaneously
broken chiral symmetry.

The NLO Lagrangian of Eq. (5), taken from [31], differs from the one we employed in
our previous works [24–26] in the terms accompanied by gi (i = 1, . . . , 4) and hi (i = 1, . . . , 4)
coefficients (from now on g-terms and h-terms). The non-significant role of these terms at
low energies has been the main reason to discard them in the study of the S = −1 meson–
baryon scattering. By contrary, since our models explore higher energies, it is reasonable
to consider these additional contributions. Actually, as we show in [28] and in the present
manuscript, they play a relevant role mainly in the K̄N transitions to the ηΛ, ηΣ0, and KΞ

channels. It should be mentioned that there is a reduction of the number of LECs since the
the g3 monomial cancells after the hermitian conjugation (h.c.) transformation in Eq. (5) as
well as the appearance of new structures coming from h.c. of the g-terms.

All the interaction kernels for the φiBs
i → φ jBs′

j processes (with the incoming and out-
going spins s, s′, respectively) can be derived from the previous Lagrangians. They can
be found schematically represented in Fig. 1. Diagram (i) corresponds to the Weinberg–
Tomozawa (VWT

i j ), while the Born contributions come in diagrams (ii) (direct Born term VBD
i j )

and (iii) (crossed Born term VBC
i j ), the vertices of which are obtained from the D and F terms

of Eq. (3), and, finally, diagram (iv) accounts for the tree-level contributions at NLO (VNLO
i j ).

The analytical form of all the contributions is given by Eqs. (7), (8), (9) and (10) in Ref. [28].
Since the total interaction kernel (Vi j = VWT

i j + VBD
i j + VBC

i j + VNLO
i j ) is composed of a

mixture of contributions with different angular momenta, it is not possible to incorporate Vi j

into Eq. (1) directly. Thus, it is convenient to express the T -matrix in terms of the spin-nonflip
and spin-flip parts.

Ti j(s, s′) = χ†s
′

j [ f (
√

s, θ) − i(~σ · n̂)g(
√

s, θ)]χs
i , (6)

where θ is the CM angle between the inital and final meson momenta and n̂ = ~q j×~qi/|~q j×~qi|

is the normal vector to the scattering plane (being ~q j and ~qi the outgoing and incoming three-
momentum in the CM, respectively) . The functions f (

√
s, θ) and g(

√
s, θ) can be expanded

in Legendre polynomials as:

f (
√

s, θ) =

∞∑
l=0

fl(
√

s) Pl(cos θ),

g(
√

s, θ) =

∞∑
l=1

gl(
√

s) sin θ
dPl(cos θ)

d cos θ
, (7)

with fl and gl being the projections of the sum of all the above kernels onto Pl(cos θ) and
sin θ dPl(cos θ)

d cos θ , respectively.
The amplitudes can be redefined as:

fl+(
√

s) =
1

2l + 1

(
fl(
√

s) + l gl(
√

s)
)

for J = l +
1
2
,

fl−(
√

s) =
1

2l + 1

(
fl(
√

s) − (l + 1) gl(
√

s)
)

for J = l −
1
2
, (8)

to ensure that the quantum numbers of spin ( 1
2 ), orbital angular momentum (l), and total

angular momentum (J) are preserved in the unitarization procedure implemented by the BS
equations. Following the notation of Ref. [32], each unitarized J-scattering amplitude should
be calculated by a new version of Eq. (1), which in matrix form reads:

fl± =
[
1 − f tree

l± G
]−1

f tree
l± , (9)
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where the amplitudes f tree
l± are obtained from equations (6)–(8).

The aim of this work is the study of the effects caused by the inclusion of higher partial
waves on the physical observables in this sector, particularly on the K−p cross sections. The
most general expression of the differential cross sections for a given φiB

χz
i → φ jB

χ′z
j process

is
dσi j

dΩ
=

Mi M j q j

16 π2 s qi
S i j, (10)

with
S i j =

1
2χ + 1

∑
χz,χ

′
z

|Ti j(χz, χ
′
z)|

2 = | f (
√

s, θ)|2 + |g(
√

s, θ)|2,

where the first factor averages over the initial baryon spin projections, giving 1/2 for this par-
ticular case, and where we have also summed over all possible final baryon spin projections.

Since the scope of the present study does not go beyond d-wave contributions, focusing
mostly on p-wave effects, the expression for the total cross section incorporating such partial
waves can be written as:

σi j =
Mi M j q j

4 π s qi

[
| f0+|

2 + 2| f1+|
2 + | f1−|2 + 3| f2+|

2 + 2| f2−|2
]
. (11)

3 Results and discussion

The S = −1 sector is an interesting benchmark to test meson-baryon Effective Field Theories
given the existence of large sets of scattering data. For this very reason, it cannot only serve
for checking their predictive power but also to extract information about the LECs, especially
those beyond LO. This collection of experimental data has been employed to constrain the
models developed in the study, the technical details of the data treatment as well as the fitting
procedure can be found in Ref. [28]. Actually, three models were introduced in [28] to discuss
the effects of the new elements, two new and a third one already developed in [26]. Being the
two new models the natural extension of the old one in two steps.

• s-wave (old): This first model corresponds to the fit called WT+Born+NLO carried out
in [26]. It was constructed by adding the interaction kernels derived from the Lagrangian
up to NLO and neglecting the h- and g-terms. We limited this model to the s-wave contri-
bution.

• s-wave: The second model improves upon the first one by incorporating the novel h- and
g-terms that come from the NLO interaction kernel and, as in the first model, only the
s-wave contribution is taken into account.

• s+p-waves: This model employs the same Lagrangian as the s-wave fit, but it also incor-
porates the p-wave contributions.

As first comment on the values of the parameters present in the models, the most eye-
catching feature is the difference observed when comparing these two new models (see Ta-
ble 2 in Ref. [28]), being the set of the s+p-waves model closer to that of our earlier s-wave
(old) model. This makes us believe that the s+p-waves model developed in the present
work constitutes a very good starting point for subsequent implementations of higher partial
waves. Both new models, s-wave and s+p-waves, reproduces experimental data very well
and achieve very low χ2

d.o. f . (0.77 and 0.86 respectively). This fact is clearly appreciated in
Fig. 2 of [28], where total cross sections of K−p scattering to all channels of the S = −1
sector are compared to experimental data. It should be commented that one can only notice
larger differences among the models in the cross sections of the K−p→ ηΛ, ηΣ0,K+Ξ−,K0Ξ0
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Table 1. Threshold observables obtained from our fits (branching ratios and the energy shift and width
of the 1s state of kaonic hydrogen). Experimental data is taken from [18, 33, 34].

γ Rn Rc ∆E1s Γ1s

s+p-waves 2.36 0.188 0.662 297 532
s-wave 2.40 0.179 0.665 280 560
s-wave (old) 2.36+0.03

−0.03 0.188+0.010
−0.011 0.659+0.005

−0.002 288+23
−8 588+9

−40

Exp. 2.36±0.04 0.189±0.015 0.664±0.011 283±36 541±92

processes, specially at energies above 1900 MeV (see discussion in [28]). The results of the
threshold observables for the previous models are collected in Table 1 as well as the corre-
sponding experimental values. No substantial change in the reproduction of the experimental
values can be appreciated when comparing the new models to the s-wave (old) one, which is
completely aligned with the previous comment.

Figure 2. Total cross sections of the K−p → ηΛ, ηΣ0,K+Ξ−,K0Ξ0 reactions obtained for s+p-waves
(solid black line), and the corresponding contributions for JP = 1

2
− (dotted red line), JP = 1

2
+ (dashed

green line) and JP = 3
2

+ (dash-dotted violet line). Experimental data has been taken from [35–50].

In order to aid better understanding of the role of the p-waves, in Fig. 2 we present the
individual partial-wave contributions to the K−p→ ηΛ, ηΣ0,K+Ξ−,K0Ξ0 processes included
in the s+p-waves model, namely the JP = 1

2
− (s-wave), 1

2
+ and 3

2
+ (p-wave) channels. We

directly focus on these reactions since p-wave effects are barely noticeable in the classical
processes.

Focusing first on the K−p → ηΛ cross section, it can be seen that the s-wave JP = 1
2
−

contribution dominates just above threshold due to the Λ(1670) resonance, which is generated
dynamically in this partial wave. Then, as the energy increases, its role is moderately losing
relevance against the JP = 3

2
+ component which is the main contribution in the region ranging

from 1750 to 2100 MeV. Now, we examine the K−p → ηΣ0 reaction. The s-wave JP = 1
2
−

contribution is clearly the dominant one over the whole range of energies explored. The
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p-wave contributions start being noticeable from 1850 MeV, however, one should be very
cautious about drawing conclusions because of the lack of experimental data in this region.

The partial-wave decomposition of the KΞ total cross section provides very valuable
information about the relevance of higher partial waves in our model. On the one hand,
the K0Ξ0 production discloses the fundamental role played by the JP = 1

2
+ contribution

above 2200 MeV and how the low-energy regime is dominated by the JP = 1
2
− wave. The

JP = 3
2

+ component provides a non-negligible strength around 2100 MeV, which is how-
ever not enough to reproduce the sizable experimental structure. On the other hand, in the
K−p→ K+Ξ− process, the JP = 1

2
− and JP = 1

2
+ contributions are moderate and roughly con-

stant, being the JP = 3
2

+ component the one that governs the description of the experimental
data.

The main conclusion of this study is the need of higher partial-wave contributions to
properly describe the K−p inelastic scattering amplitudes opening up at higher energies. This
is in contrast to our previous works, where the experimental data of such processes was
reasonably reproduced employing pure s-wave scattering amplitudes. In other words, our
previous models have effectively overestimated the lowest partial-wave contributions, thereby
masking the physics of higher partial waves behind the values of the NLO parameters. As
for the relevance of the new g- and h-terms considered in this work, compared to the rest of
NLO contributions, we cannot say anything conclusive, as we have obtained very different
values of the parameters in the two new fits presented in [28]. Given the fact that these terms
provide a non-negligible contribution to the scattering amplitudes, especially far enough from
thresholds, it is natural to consider the g- and h-terms when implementing higher partial
waves in the scattering amplitudes for their strong dependence on momenta.
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