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Hypercycles’ dynamics have been widely investigated in the context of origins of life, especially6

using time-continuous dynamical models. Different hypercycle architectures jeopardising their sta-7

bility and persistence have been discussed and investigated, namely the catalytic parasites and the8

short-circuits. Here we address a different scenario considering RNA-based hypercycles in which9

cooperation is lost and catalysis shifts to density-dependent degradation processes due to the ac-10

quisition of cleaving activity by one hypercycle species. That is, we study the dynamical changes11

introduced by a functional shift. To do so we use a discrete-time model that can be approached12

to the time continuous limit by means of a temporal discretisation parameter, labelled C. We13

explore dynamical changes tied to the loss of cooperation in two-, three-, and four-member hy-14

percycles in this discrete-time setting. With cooperation, the all-species coexistence in two- and15

three-member hypercycles is governed by an internal stable fixed point. When one species shifts16

to directed degradation, a transcritical bifurcation takes place and the other hypercycle members17

go to extinction. The asymptotic dynamics of the four-member system is governed by an invari-18

ant curve in its cooperative regime. For this system, we have identified a simultaneous degenerate19

transcritical–Neimark-Sacker bifurcation as cooperation switches to directed degradation. After20

these bifurcations, as we found for the other systems, all the cooperative species except the one21

performing degradation become extinct. Finally, we also found that the observed bifurcations and22

asymptotic dynamical behaviours are independent of C. Our results can help in understanding the23

impact of changes in ecological interactions (i.e., functional shifts) in multi-species systems and to24

determine the nature of the transitions tied to co-extinctions and out-competition processes in both25

ecosystems and RNA-based systems.26
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I. INTRODUCTION29

Hypercycles [1] are nonlinear dynamical systems formed by n polynucleotides with catalytic activity. Hypercycles30

have been mainly studied within the framework of prebiotic evolution and origins of life, providing a potential solution31

to the so-called prebiotic information crisis [1–3, 5]. The generality of hypercycle (replicator) equations has also32

allowed to employ this model in neural networks [6, 7], virus replication [8–10, 12], immune system [13], or ecosystem33

dynamics [5, 18], among others. Also, parallelisms about the error threshold and hypercycles have been discussed34

within the framework of the emergence of language [19]. Interestingly, hypercycles have been experimentally built35

using coiled-coil peptides [20], yeast cell populations [21], and cooperative engineered bacteria growing with catalytic36

parasites [22].37

It has been argued that hypercycle species may need two minimal conditions in order to be evolutionary stable [3, 4],38

namely: (i) catalytic replication and (ii) capability of information storage. These two properties are found simulta-39

neously in RNA-based replicons such as ribozymes (ribonucleic acid enzymes). RNAs with loop and stem structures,40

similar to those of modern tRNAs [23], are known to be stable against hydrolysis [24] also having replicability po-41

tential [25, 26]. Indeed, smaller functional RNAs have been found in viroids [27] and other RNAs [28]. Ribozymes42

are short RNA molecules able to catalyse specific biochemical reactions, similar to the action of protein enzymes43

[26, 29]. Hence, ribozymes have been considered as potential candidates forming the first autonomous, self-replicating44

molecular systems involved in the origins of life [3, 4, 25, 30–33]. Some of these hypothetic prebiotic RNAs were45

supposed to participate in ribosome-free translation of an appropriate messenger [31, 34].46

Different activities have been described for natural and in vitro (e.g., peptide-bond formation [35]) evolved ri-47

bozymes. Certain introns can catalyse their own excision (self-cleavage) from single-stranded RNA (ssRNA) [26]48

and ligase reactions by RNA catalysts can occur even with short RNA sequences [36]. Moreover, the same RNA49

sequences can catalyse trans-esterification reactions for elongation of one monomer [26], ligation of two independent50

ssRNAs [37, 38], and cleavage of RNA into smaller sequences [26–28, 39] (see [31, 40] for reviews).51

Despite the functional properties of ribozymes, RNA-catalysed self-replication from RNA templates seems to be52

quite limited. However, recent experiments evolving catalysts at sub-zero temperatures have revealed that the com-53

bination of RNAs with cold-adaptative mutations with a previously described 5′ extension operating at ambient tem-54

peratures enabled catalysing the synthesis of an RNA sequence longer than itself (adding up to 206 nucleotides) [41].55

Moreover, recent experiments have shown the spontaneous formation of catalytic cycles and networks from mixtures56

of RNA fragments able to self-assemble into self-replicating ribozymes [42], providing evidences for selective advantage57

of cooperative systems composed by ribozymes.58

From the modelling point of view, hypercycles have been mainly investigated with continuous time approaches, for59

both well-mixed i.e., ordinary differential equations (ODEs) [1, 43–46, 48] and spatially-resolved [49, 51, 52] systems.60

ODEs typically reveal that the asymptotic coexistence for hypercycles with n = 2, 3, 4 species is typically governed61

by an interior stable equilibrium [1, 46, 53]. More specifically, the case n = 2 has a stable node [46], while cases n = 362

and n = 4 are governed by stable foci with fast and hardly damped oscillations [1, 45, 53], respectively. Moreover,63

a multitude of analyses (both numerical and analytical) have revealed that for n > 4, populations undergo self-64

sustained oscillations in its cooperative regime [1, 43, 44, 54]. To date, very few works have investigated hypercycles65

considering discrete time (e.g., using difference equations or maps [55, 56]), being mainly analysed with cellular66

automata models [47, 48, 50]. Specifically, the system studied by Hofbauer and others [55, 56] revealed that discrete-67

time hypercycles with n = 2, 3 have an interior stable fixed point governing coexistence dynamics, while the case68

n = 4 involves oscillating coexistence governed by an invariant curve.69

In this article we consider the discrete hypercycle model developed in [55] to investigate the impact on the dynamics70

and the bifurcations when one of the species shifts from cooperative to antagonistic interactions. By the cyclic71

character of the system we can assume the species that shifts is the first one. To date, different architectural changes72

having a negative impact on hypercycles have been thoroughly investigated. These include the so-called catalytic73

parasites [47–49, 52] and short-circuits [50, 51], suggested to impair hypercycle’s stability thus constraining the74

increase of information. The case we investigate in this article is different since the cyclic structure of the hypercycle75

is maintained but a given replicator instructs the degradation of the next species of the system, instead of providing76

catalytic aid. This new system is inspired in the existence of ribozymes with trans-cleaving functions. For example,77

minimal trans-cleaving RNA hammerheads were generated several decades ago [57, 58]. Also, both in vitro and in78

vivo hammerhead ribozymes with trans-cleaving activity against viroids have been described more recently [39].79

As mentioned, we are interested in the dynamics when a given species shifts from cooperative to antagonistic80

interactions i.e., density-dependent degradation, focusing on small hypercycles with n = 2, 3, 4 species. Although we81

are not modelling this functional shift explicitly by considering mutations in the catalytic motifs and their change to82

cleaving motifs, we investigate this shift by taking a replication constant both either positive (catalysis) or negative83

(cleavage). The paper is organised as follows. In Section II we introduce the studied model [55], showing its relation84

with the ODEs model as the discretisation time parameter C → ∞. Then, we compute the fixed points and the85
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eigenvalues for the general model in Section III A. In Section III B we analytically prove that, for any number of86

species, when the first species shifts to directed degradation, the asymptotic behaviour is a fixed point in the corner87

of the phase space, involving the out-competition of all other species providing catalytic aid. In Section III C we88

investigate the dynamics for the studied hypercycles with n = 2, 3, 4 species. In particular, we analytically determine89

the basin of attraction in the domain of the system. In Section III D we analytically obtain the rates of convergence90

for those cases where the ω−limit is a fixed point, showing the relevant parameters in the asymptotic expression.91

Numerical computations confirm the analytic findings, in particular, we illustrate the linear dependence of the number92

of iterations to the fixed points with the parameter C. Finally, in Section III E we provide a numerical study of the93

invariant curves found for the case n = 4 and ki > 0. The bifurcations tied to the functional shifts are also discussed94

in Sections III C and III E. Finally, Section IV is devoted to final conclusions.95

II. MATHEMATICAL MODEL96

In this section we introduce the discrete-time hypercycle model proposed by Hofbauer [55], that will be employed
in this work to determine the impact of functional shifts in hypercycles. Let xi denote the concentration of the i-th
species, Si, and ki the kinetic constants that quantify the strength of catalysis that the i− 1 species provides to the
i-th species. For notational convenience the subindices i are modulo n, i.e., x0 = xn and also xn+1 = x1. The system
is determined by an n-dimensional function F : Rn → Rn, Fi(x) being the concentration xi in the next generation,
i.e., Fi(x) represents the concentration after one unit of time. This function considers replication rate of Si to be
proportional to the amount of Si−1, according to the product xi xi−1 (catalytically-assisted replication), taking into
account that the (i− 1)-th species contributes to the replication of i-th one. We write

Fi(x) ∼ xi(C + kixi−1), C > 0.

Next, we determine the proportionality factor A(x) imposing the total population to be a constant. So if
∑n
i=1 xi = 1

we want
∑n
i=1 Fi(x) = 1. This means

n∑
i=1

A(x)xi(C + kixi−1) = A(x)

(
C +

n∑
i=1

kixixi−1

)
= 1.

We introduce

φ(x) =

n∑
i=1

kixixi−1

and then A(x) has to be equal to (C + φ(x))−1. Therefore, we have the following discrete-time system:97

Fi(x) =
C + kixi−1

C + φ(x)
xi, 1 ≤ i ≤ n. (1)

The dynamics of Map (1) spans the following (n− 1)-simplex:

Sn−1 =
{
x = (x1, ..., xn) ∈ Rn |

n∑
i=1

xi = 1 and xi ≥ 0 for i = 1, · · · , n
}
.

To compare this map with an analogous continuous time model we rewrite the i-th component of F as follows:

Fi(x)− xi =
C + kixi−1

C + φ(x)
xi − xi =

kixi−1 − φ(x)

C + φ(x)
xi

so that

Fi(x)− xi
C−1

= xi(kixi−1 − φ(x))
C

C + φ(x)
.

Interpreting now C−1 as the time interval between two generations, the Map (1) can be seen as the Euler C−1 step98

of the differential equation99

ẋi = xi(kixi−1 − φ(x)), 1 ≤ i ≤ n, (2)
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where we have used that

lim
C→∞

C

C + φ(x)
= 1

because φ(x) is bounded. The term φ(x) is equivalent to the dilution outflow used in time-continuous models, which100

introduces competition between replicators also ensuring a constant population.101

We note that for large values of C, the discrete system introduced above will have similar properties to system102

Eqs. (2). As mentioned, the main goal of our article is to investigate how dynamics change considering the range e.g.,103

k1 ≥ −1 and ki > 0 for 2 ≤ i ≤ n. Due to the cyclic structure of hypercycles, setting a negative k1 is the same that104

fixing any other single value of ki 6=1 ≥ −1 and all others to kj 6=i > 0 (i.e., in this study we will focus on the change105

of sign of one parameter). A positive value of k1 means that species x1 receives catalytic aid from species xn. For106

k1 = 0 no interaction happens between x1 and xn, and the hypercycle becomes a catalytic chain (see [4]). For k1 < 0,107

species xn degrades species x1 (i.e., by trans-cleaving ribozymes activity). Since we admit k1 ≥ −1, in order to have108

C + φ(x) > 0 in Sn−1 when k1 < 0 we should take C > −k1/4. This leads us to assume C > 1/4 in all cases.109

III. RESULTS AND DISCUSSION110

In the next Sections we will characterise the dynamics of Map (1). In Section A we will study the fixed points and111

their local stability. Section B discusses the behaviour of the system setting a negative k1 value. In Section C we112

analyse the particular cases of two- three- and four-species systems, focusing on the dynamics and the bifurcations113

identified in the studied hypercycles. Section D provides analytical and numerical results of the rates of convergence114

to the point attractors. Finally, Section E provides a study on the invariant curves and the bifurcations for the case115

n = 4 when k1 = 0.116

A. Fixed poins and eigenvalues117

We begin studying the fixed points of Map (1). In this work we assume C > 1/4, k1 ≥ −1 and ki > 0 for 2 ≤ i ≤ n.
Let ∆n−1 be the hyperplane {x ∈ Rn| ∑n

j=1 xj = 1}. Note that Sn−1 ⊂ ∆n−1. To understand the bifurcation that

occurs when k1 = 0 we consider F defined in ∆n−1 \ {x ∈ Rn|C + φ(x) = 0}. For k1 6= 0 we introduce the quantity

M =

n∑
j=1

1

kj
.

Proposition 1. (a) If k1 6= 0, −1/(
∑n
j=2

1
kj

), then F has a unique fixed point pn in ∆̃n−1 = {x ∈ ∆n−1| xi 6= 0,∀i}.118

We have119

pn = (p1, ..., pn) with pi =
1

ki+1M
, 1 ≤ i ≤ n. (3)

The point pn ∈ Sn−1 \ ∂Sn−1 if and only if k1 > 0. Moreover, when k1 → 0, pn converges to (0, ..., 0, 1). If120

k1 = 0 or k1 = −1/(
∑n
j=2

1
kj

) then F has no fixed points in ∆̃n−1.121

(b) Let x ∈ ∆n−1 \ ∆̃n−1. Then, x is a fixed point if and only if kixixi−1 = 0 for all i. If k1 > 0 the previous122

conditions are also equivalent to φ(x) = 0. The points qn,m = (qm1 , . . . , q
m
n ) such that qmi = δm,i, 0 ≤ m ≤ n,123

are always fixed points (here δ is the Kronecker delta).124

Proof. (a). We assume xi 6= 0 for all i. From the condition Fi(x) = xi we get

C + kixi−1

C + φ(x)
= 1

and hence kixi−1 = φ(x) for all i. Then k2x1 = k3x2 = ... = knxn−1 = k1xn. If k1 = 0 there are no fixed points in

∆̃n−1. When k1 6= 0 we can write xi = (k1/ki+1)xn and determine the value of xn imposing the condition that the
point is in ∆n−1:

k1xn

n−1∑
j=1

1

kj+1
+ xn = 1.
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FIG. 1. Schematic diagram of the studied hypercycles formed by (ribozyme) species Si (with i = 2, ..., 4) and their dynamical
outcomes displayed in phase portraits considering cooperation (heterocatalysis represented with solid black arrows, setting
k1 = 0.5 and ki6=1 = 1), and emergence of directed degradation (trans-cleaving activity, indicated by dashed red arrows, using
k1 = −0.5 and ki 6=1 = 1). (a) Two-member hypercycle: the insets display time series for x1 (black) and x2 (red) using the
same initial conditions of the orbits of the phase portrait. The insets for directed degradation show time series also for x1
(black) and x2 (red) using different initial conditions that achieve the stable fixed point q2,2 = (0, 1) (small orange dot). (b)
Three-member hypercycle with a stable focus as coexistence attractor (fixed point p3). The three-species system with directed
degradation displays a stable fixed point at q3,3 = (0, 0, 1). (c) Four-member hypercycle with oscillatory coexistence governed
by an attracting invariant curve (shown in black). Two different initial conditions are shown: one spiralling towards (green
iterations) the periodic attractor and another spiralling outwards (blue iterations) displayed in a two-dimensional projection.
Directed degradation for this case has a single point attractor at q4,4 = (0, 0, 0, 1). In all panels we have set C = 10.

If k1 = −1/
∑n−1
j=1

1
kj+1

, there is not a fixed point in ∆̃n−1. Otherwise k1xn = 1/M and we get (3).125

(b). Let x ∈ ∆n−1 \ ∆̃n−1. There exists l such that xl = 0 and xl+1 6= 0. If x is a fixed point we have

xl+1 =
C + kl+1 xl
C + φ(x)

xl+1

and hence φ(x) = kl+1 xl = 0. Therefore

xi =
C + kixi−1

C
xi = xi +

1

C
ki xi xi−1,

for all i and thus ki xi xi−1 = 0. Conversely, ki xi xi−1 = 0 for all i implies φ(x) = 0 and one immediately gets that x126

is a fixed point.127

To obtain the eigenvalues of DF (pn) and study the stability of the fixed point pn obtained in (a) of Proposition 1
it is convenient to use the following baricentric variables.

yi =
ki+1 xi∑n
j=1 kj+1 xj

, 1 ≤ i ≤ n.
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When k1 > 0, this change of variables sends Sn−1 to Sn−1 bijectively and, more generally, for k1 ∈ R, sends the points
of Sn−1 except the ones on the hyperplane

∑n
j=1 kj+1 xj = 0 to Sn−1. Whenever defined, i.e., when

∑n
j=1 kj+1 xj 6= 0,

the differential of the change has rank n − 1 and, actually it is a (local) diffeomorphism from Sn−1 to Sn−1. This
means that we can compute the eigenvalues of DF at pn in baricentric coordinates. In such coordinates F reads

Fi(y) =
C + yi−1

Ψ(y)

C + 1
Ψ(y)

∑n
j=1 yj−1 yj

yi, where Ψ(y) =

n∑
j=1

1

kj+1
yj ,

and the fixed point pn located at (1/n, ..., 1/n). It is not difficult to compute the partial derivatives and obtain

∂Fi
∂yi

(pn) = 1− 2

n(CM + 1)
,

∂Fi
∂yi−1

(pn) =
1

CM + 1
− 2

n(CM + 1)
,

∂Fi
∂yl

(pn) =
−2

n(CM + 1)
, l 6= i, i− 1.

Then, the differential DF (pn) is a circulant matrix128 
c0 c1 . . . cn−1

cn−1 c0 . . . cn−2

cn−2 cn−1 . . . cn−3

. . .
c1 c2 . . . c0

 (4)

with

c0 = 1− 2

n(CM + 1)
, cn−1 =

1

CM + 1
− 2

n(CM + 1)
, and ci =

−2

n(CM + 1)
for 1 ≤ i ≤ n− 2.

It is known [60] that the eigenvalues of a circulant matrix as (4) are

λm =

n−1∑
j=0

cj e
2πijm/n, 0 ≤ m ≤ n− 1,

where i denotes the imaginary unit
√
−1, with corresponding eigenvectors

(1, e−2πim/n, ..., e−2πi(n−1)m/n).

In our case

λm = 1 +
1

CM + 1
e2πim/n, 0 ≤ m ≤ n− 1.

The eigenvalue λ0 corresponds to the eigenvector (1, 1, ..., 1) which is transversal to Sn−1. The other eigenvalues129

correspond to eigenvectors tangent to Sn−1. Indeed, when m 6= 0,
∑n−1
l=0 e

−2πilm/n = 0.130

To compute the eigenvalues of DF (qn,n) we first look for the linearisation of F (in the original coordinates) at131

qn,n = (0, 0, ..., 1). To do so we translate it to the origin by means of the change of coordinates xn = ξn + 1, xi = ξi,132

1 ≤ i ≤ n− 1. In these variables the map is expressed as:133

F̃1(ξ) =
C + k1(ξn + 1)

C + φ̃(ξ)
ξ1,

F̃i(ξ) =
C + kiξi−1

C + φ̃(ξ)
ξi, 2 ≤ i ≤ n− 1,

F̃n(ξ) =
C + knξn−1

C + φ̃(ξ)
(ξn + 1)− 1,

where φ̃(ξ) =
∑n
j=1 kj ξj ξj−1 + k1 ξ1 + kn ξn−1. From these expressions we readily obtain

DF (qn,n) =


1 + k1

C 0 . . . 0
0 1 . . . 0

. . .
−k1
C 0 . . . 1

 .

The eigenvalues are 1+k1/C and 1. The eigenvalue 1+k1/C corresponds to the eigenvector (1, 0, ..., 0,−1). The eigen-134

value 1 corresponds to the (linearly independent) eigenvectors (0, 1,−1, 0, ..., 0), (0, 1, 0,−1, ..., 0), ..., (0, 1, 0, ..., 0,−1)135

and (0, ..., 0, 1). All these vectors are tangent to Sn−1 except the last one. Proceeding in an analogous way we can136

check that the eigenvalues of DF (qn,i) are 1 + ki+1/C and 1.137
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B. When k1 ≤ 0 the basin of attraction of qn,n contains Sn−1 \ ∂Sn−1
138

In this section we will prove that for k1 ≤ 0 the dynamics achieves the fixed point qn,n. This involves that the species139

that performs directed degradation will outcompete all of the others. Let us go back to Map (1). As mentioned, by140

the cyclic structure of the map we only deal with the case k1 ≤ 0. But, by the symmetry, in the same way we have141

that if kj ≤ 0 and ki6=j > 0 the dynamics achieves qj−1,j−1. We now assume that −1 ≤ k1 ≤ 0, and ki > 0 for142

2 ≤ i ≤ n. These conditions ensure that for x ∈ Sn−1 both C + kixi−1 and C + φ(x) are positive.143

Proposition 2. Assume C > 1/4, −1 ≤ k1 ≤ 0, and ki > 0 with 2 ≤ i ≤ n. If x0 ∈ Sn−1 \ ∂Sn−1 then {Fm(x0)}144

converges to qn,n = (0, 0, ..., 1).145

Proof. We write xm = (xm1 , ..., x
m
n ) = Fm(x0). Since x0 /∈ ∂Sn−1, 0 < x0

i < 1 for all i. Moreover, by the form of F ,
0 < xmi < 1 for all m and i. First, we check that {xm1 } is strictly decreasing and converges to 0. Indeed, since k1 ≤ 0
and xm1 < 1, k1x

m
n x

m
1 ≥ k1x

m
n and since ki > 0 for 2 ≤ i ≤ n, φ(xm) > k1x

m
n . Then

0 <
C + k1x

m
n

C + φ(xm)
< 1 and xm+1

1 =
C + k1x

m
n

C + φ(xm)
xm1 < xm1 , m ≥ 1.

By compactness of Sn−1 there is a subsequence {xmk} of {xm} which converges to some x̃ = (x̃1, ..., x̃n) ∈ Sn−1.
Note that, by monotonicity, {xm1 } converges to x̃1. We assume that x̃1 > 0 to get a contradiction. Taking limit in

xmk+1
1 =

C + k1x
mk
n

C + φ(xmk)
xmk

1

we get

C + k1x̃n
C + φ(x̃)

= 1

which implies k1x̃n = φ(x̃), or equivalently k1x̃n(1− x̃1) = k2x̃2x̃1 + k3x̃3x̃2 + · · ·+ knx̃nx̃n−1. The left hand side is146

less or equal than zero while the right hand one is bigger or equal than zero. Therefore kix̃ix̃i−1 = 0, 2 ≤ i ≤ n, and,147

in particular, x̃2x̃1 = 0 which gives x̃2 = 0.148

From

xm+1
1

xm+1
2

=
C + k1x

m
n

C + k2xm1

xm1
xm2

and

0 <
C + k1x

m
n

C + k2xm1
< 1

we have that
{
xm
1

xm
2

}
is strictly decreasing, in particular is bounded from above. Then

xmk
1 =

xmk
1

xmk
2

xmk
2

converges to 0 which provides the desired contradiction.149

Now, we claim that, for 1 ≤ i ≤ n− 1,
{
xm
i

xm
i+1

}
is strictly monotone for m ≥ M for some M (depending on i) and

xi → 0. Indeed, by the previous arguments the statement is true for i = 1. We assume it is true for 1 ≤ i ≤ n − 2.
Let

γi = lim
m→∞

ki+1x
m
i

ki+2xmi+1

, 1 ≤ i ≤ n− 2.

Note that 0 ≤ γi ≤ ∞. If γi > 1, or γi = 1 and
{
xm
i

xm
i+1

}
is decreasing, then

ki+1 x
m
i

ki+2 xmi+1

> 1,
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for m ≥ M̃ for some M̃ and then
{
xm
i+1

xm
i+2

}
is strictly increasing for m ≥ M̃ .150

If γi < 1, or γi = 1 and
{
xm
i

xm
i+1

}
is increasing, then

ki+1 x
m
i

ki+2 xmi+1

< 1,

for m ≥ M̂ for some M̂ and then
{
xm
i+1

xm
i+2

}
is strictly decreasing for m ≥ M̂ .151

Now, to prove that {xmi+1} converges to zero we distinguish two cases: γi > 0 and γi = 0.152

When γi > 0 there exists m0
i such that

ki+1x
m
i

ki+2xmi+1

>
γi
2
, m ≥ m0

i ,

and then, from

xmi+1 <
ki+1

ki+2

2

γi
xmi ,

we get xmi+1 → 0.153

When γi = 0, there exists m̃0
i such that

ki+1x
m
i

ki+2xmi+1

<
1

2
for m ≥ m̃0

i .

Obviously, for m ≥ m̃0
i ,

C + ki+1x
m
i

C + ki+2xmi+1

<
C + (1/2)ki+2x

m
i+1

C + ki+2xmi+1

< 1.

If we assume that {xmi+1} does not converge to 0, then there exists ε > 0 and infinitely many indices m such that
ki+2x

m
i+1 > ε and therefore infinitely many factors

C + ki+1x
m
i

C + ki+2xmi+1

<
C + (1/2)ε

C + ε
.

This means that, given q,

xmi+1

xmi+2

<

(
C + (1/2)ε

C + ε

)qm xqi+1

xqi+2

, m > q,

with qm →∞ as m→∞. Clearly,
{
xm
i+1

xm
i+2

}
→ 0 and xmi+1 <

xm
i+1

xm
i+2

gives that {xmi+1} converges to 0.154

Finally, since xm ∈ Sn−1, xmn → 1.155

C. Case studies: Hypercycles with n=2, n=3, and n=4 members156

1. Case n=2157

In this case the model is essentially one dimensional. When ki > 0 it has a unique inner fixed point

p2 =

(
k1

k1 + k2
,

k2

k1 + k2

)
,

and the fixed points q2,1 = (1, 0) and q2,2 = (0, 1). The eigenvalue at p is

1 +
1

CM + 1
e2πi/2 =

CM

CM + 1
=

C(k1 + k2)

C(k1 + k2) + k1k2
< 1.

The eigenvalues at q2,1 and q2,2 are 1 + k2/C and 1 + k1/C, respectively. Actually, p2 attracts all points of S1 \ ∂S1.158

When k1 → 0 with k2 fixed, the fixed point p2 tends to q2,2 and they undergo a transcritical bifurcation. When k1 ≤ 0159

all points of S1 \ ∂S1 tend to q2,2. The bifurcation diagram obtained by iteration of Map (1) and tuning −1 ≤ k1 ≤ 1160

is displayed in Fig. 2(a). Here, for 0 < k1 ≤ 1 the coexistence equilibrium is given by the fixed point p2. At k1 = 0161

the points p2 and q2,2 collide in a transcritical bifurcation. Then, for negative values of k1 the point q2,2 is stable.162
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FIG. 2. (a) Bifurcation diagram obtained by iteration of Map (1) when n = 2 using k1 as a control parameter with k2 = 1 and
C = 10. Black and red lines denote the equilibrium population of species x1 and x2 respectively. For 0 < k1 ≤ 1 the dynamics
is attracted by the fixed point p2, while for −1 ≤ k1 < 0 the stable fixed point is q2,2, involving the persistence of the second
replicator and the extinction of S1. At k1 = 0 the fixed points p2 and q2,2 collide in a transcritical bifurcation. (b) Linear
dependence of parameter C on the number of iterations needed to achieve the attractors fixing k2 = 1 and: (upper panel, for
attractor p2) k1 = 1 (black), k1 = 0.75 (red), k1 = 0.5 (blue), k1 = 0.25 (green); (lower panel, for attractor q2,2) we have
used the same values of k1 than in the upper panel but with negative sign. We consider δ = 10−6. In all panels we have used
x1(0) = 0.75, x2(0) = 0.25 as initial conditions.

2. Case n=3163

When ki > 0 the inner fixed point is given by

p3 =

(
1

k2M
,

1

k3M
,

1

k1M

)
,

and the corresponding eigenvalues are

λ1,2 = 1 +
1

CM + 1
eiθ1,2 , θ1 =

2π

3
, θ2 =

4π

3
.

We have

|λ1,2|2 = 1 +
2

CM + 1
cos θ1,2 +

(
1

CM + 1

)2

= 1− 1

CM + 1

(
1− 1

CM + 1

)
< 1.

The other fixed points, according to Proposition 1, satisfy φ(x) = 0. The only possibilities are q3,1 = (1, 0, 0),164165

q3,2 = (0, 1, 0) and q3,3 = (0, 0, 1). They have an eigenvalue of modulus greater than 1. The point p3 is an attractor.166

In Ref. [55] it is proved, by using a strict Lyapunov function, that S2 \ ∂S2 is the basin of attraction of p3. When167

k1 → 0 with k2 and k3 fixed, p3 tends to q3,3 and they undergo a (degenerate) transcritical bifurcation. At the168

bifurcation, the two eigenvalues are 1. A special feature is that at the bifurcation there is a segment of fixed points169

{x2 = 0, x1 + x3 = 1} with q3,3 in an extreme of it. After the bifurcation, i.e., when k1 < 0, p3 is outside S2, it is170

unstable. Moreover, when k1 ≤ 0, q3,3 attracts all points of S2 \∂S2. The dynamics for n = 3 is displayed in Fig. 3(a)171

by means of a bifurcation diagram built iterating Map (1). Here, similarly to the case n = 2, the hypercycle persists172

for 0 < k1 ≤ 1 because the point p3 is stable. At k1 = 0, there is a degenerate transcritical bifurcation between the173

points p3 and q3,3, and for negative values of k1 the third member outcompetes all other species i.e., the fixed point174

q3,3 attracts all points of S2 \ ∂S2.175

3. Case n=4176

For ki > 0 the dynamics is governed by an invariant curve [55, 56] that allows the coexistence of all of the species
by means of an oscillatory regime (see Figs. 1, 4(a), and 6). When ki > 0, the inner fixed point is given by

p4 =

(
1

k2M
,

1

k3M
,

1

k4M
,

1

k1M

)
,
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FIG. 3. (a) Bifurcation diagram obtained by iteration of Map (1) when n = 3 using k1 as a control parameter with k2 = 1, k3 =
0.5, and C = 10. Here we show equilibria for variables x1 (black), x2 (red), and x3 (green). For positive k1 the dynamics achieve
the fixed point p3. At k1 = 0 there is a degenerate transcritical bifurcation between the fixed points p3 and q3,3. For negative
k1 the fixed point q3,3 is an attractor. (b) Linear dependence of parameter C on the number of iterations needed to achieve
the attractor q3,3 fixing k2 = 1 and: (upper panel, for attractor p3) k1 = 1 (black), k1 = 0.75 (red), k1 = 0.5 (blue), k1 = 0.25
(green); (lower panel, for attractor q3,3) here we have used k1 = −1. Due to the extremely long transients obtained for k1 < 0
we here consider δ = 10−5 and a shorter range for C. Here the four values of k1 < 0 give place to very similar transient times,
which are displayed overlapped and also have a linear dependence on C. In all panels we have used x1(0) = 0.5, x2(0) = 0.35,
and x3(0) = 0.15 as initial conditions.

and its eigenvalues are

λj = 1 +
1

CM + 1
eiθj with θj = ei2πj/4, 1 ≤ j ≤ 3.

We have

|λ1|2 = |λ3|2 = 1 +

(
1

CM + 1

)2

> 1 and |λ2|2 =

(
1− 1

CM + 1

)2

< 1.

Moreover, on ∂S3 we have the fixed points q4,i, with q4,i
i = δij (δ being the Kronecker delta) and the segments of177

fixed points {(α, 0, 1 − α, 0)|α ∈ [0, 1]}, {(0, α, 0, 1 − α)|α ∈ [0, 1]}. When k1 = 0 we also have the segment of fixed178

points {(α, 0, 0, 1 − α)|α ∈ [0, 1]}. When k1 → 0, p tends to q4,4 and at the bifurcation value k1 = 0 all eigenvalues179

are equal to 1. At the bifurcation and after it, i.e. when k1 ≤ 0, q4,4 attracts all points of S3 \ ∂S3.180

Figure 4 displays how local maxima and minima obtained from time series for the dynamics on the invariant curve181

change at decreasing k1 from 1 to 0. Notice that the invariant curve shrinks (see also Fig. 6(a)), finally collapsing at182

k1 = 0 (the stability of the invariant curve as well as the bifurcations occurring at crossing k1 = 0 are discussed in183

Section III E below).184

D. Rates of convergence to the point attractors185

In this section we study the rates of convergence of the point attractors of the system. For that, given an initial186

condition x0 ∈ Sn−1 \ ∂Sn−1, we compute the number of iterations m to arrive to a ball of radius δ centered at the187

attractor. We have several cases depending on m and on whether the attractor is the inner point or a vertex. Also,188

the computations are different if the fixed point is hyperbolic or not. For n = 2 and n = 3, if k1 > 0, the attractors are189

p2 and p3, respectively, which are hyperbolic. If k1 ≤ 0, the attractors are q2,2 and q3,3. The point q2,2 is hyperbolic if190

k1 < 0 while both q2,2 and q3,3 have eigenvalues equal to one in the other cases. When n = 4, if k1 > 0, there is not an191

attracting fixed point. If k1 ≤ 0, the attractor is q4,4, which has eigenvalues equal to 1. Here attractor is understood as192

a fixed point, which attracts all points of the interior of the simplex. Notice that, in some cases, they have eigenvalues193

equal to 1. Together with the analytical derivations developed along this section, we also provide numerical results194

computing the number of iterations to achieve the attractors, showing their linear dependence with the discretisation195

parameter C (and with replication constants, see below). Specifically, Fig. 2(b) displays this linear relation between196
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FIG. 4. Bifurcation diagram for the four-member hypercycle obtained by iteration of Map (1) using −1 ≤ k1 ≤ 1 as control
parameter, setting k2,3,4 = 1 and using the initial condition x0(0) = x1(0) = x2(0) = 0.025 and x4(0) = 0.925. The black and
red dots display, respectively, the local maxima and minima of each variable obtained from time series once the dynamics has
settled on the invariant curve for k1 > 0 (right y-axis). For 1 ≤ k1 < 0, the equilibrium of each coordinate is also displayed
(left y-axis). Here the only species that persists is x4. In all panels we set C = 10.
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and the initial conditions x0(0) = x1(0) = x2(0) = 0.025 and x4(0) = 0.925. See Section III D for details.

C and the iterations to the coexistence attractor p2 (upper panel) and to the out-competition attractor q2,2 (lower197

panel). Also, we have found the linear relation between C and the iterations to the coexistence attractor p3 (upper198

panel in Fig. 3(b)) and the out-competition one q3,3 (lower panel in Fig. 3(b)). Finally, Fig. 5 also displays the199

linear relation between constant C and the out-competition attractor q4,4. Specifically, we have obtained that for the200

points p2, p3 the times are proportional to C(
∑n
i=1

1
ki

), n = 2, 3, and for the points qn,n, n = 2, 3, 4, the times are201

proportional to C/kn.202203

Next, we describe in detail the computation of the number of iterations in the more involved cases i.e., for p3 when204
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n = 3 and q4,4 when n = 4. The other cases are studied using the same ideas in a much simpler way. For the latter205

we will just make some comments on the variations on the arguments and give the results.206

1. Convergence to p3207

When n = 3 the system is essentially two dimensional. We use the variables x1, x2 to describe S2. The eigenvalues
at p3 have already been computed and are

λ1 = 1− 1

2(CM + 1)
+ i

√
3

2(CM + 1)
, λ2 = λ̄1,

with

|λ1| = |λ2| = 1− 1

CM + 1
+

1

(CM + 1)2
< 1.

Since p3 is a hyperbolic attractor (without resonances) we can apply Poincaré’s theorem [61] and get that the system208

is locally conjugated to its linear part L by an analytical conjugation h defined in a neighbourhood of 0 sending 0 to209

p3 and satisfying Dh(0) = Id . Specifically, we have210

F ◦ h = h ◦ L in a neighbourhood of 0. (5)

From basic algebra we know that there exists a non-singular matrix B such that B−1 LB = L̃ with

L̃ = |λ1|
(

cosϕ1 − sinϕ1

sinϕ1 cosϕ1

)
, ϕ1 = arg λ1.

Clearly,

L̃m = |λ1|m
(

cos(mϕ1) − sin(mϕ1)
sin(mϕ1) cos(mϕ1)

)
.

We take h̃ = h ◦B and we have211

F ◦ h̃ = F ◦ h ◦B = h ◦ L ◦B = h ◦B ◦ L̃ = h̃ ◦ L̃. (6)

We assume that h̃ is defined in a ball of radius r, Br(0). Using (6) we can extend the domain of h̃ to a neighbourhood212

U of 0 such that h̃(U) is contained in the image by F of its domain of invertibility. Indeed, we start with h̃ defined on213

Br(0) and we inductively use h̃ = F−1 ◦ h̃ ◦ L̃ to extend, at step j, the domain of h̃ from B|λ1|−j+1r(0) to B|λ1|−jr(0).214

This can be done while F−1 exists. Then, eventually we have to stop at some step j0. Notice that if the parameter215

C is big enough, F is globally invertible in the simplex and in such case the domain of h̃ can be extended to R2.216

We denote U = h̃
(
B|λ|−j0r(0)

)
. Let x0 ∈ S2 \ ∂S2. Since p3 is a global attractor (Theorem 3 of [55]) there exists

m0 ≥ 1 such that Fm0(x0) ∈ U . We can write

Fm(x0) = Fm−m0(Fm0(x0)) = Fm−m0(h̃(y0)), m ≥ m0

for some y0 ∈ B|λ|−j0r(0). Then

‖Fm(x0)− p3‖ = ‖Fm−m0(h̃(y0))− h̃(0)‖ = ‖h̃ ◦ L̃m−m0(y0)− h̃(0)‖.
Since we look for m such that L̃m−m0 y0 is very close to 0 and we have Dh̃(0) = B,

‖B−1‖−1 ‖L̃m−m0 y0‖ . ‖h̃ ◦ L̃m−m0(y0)− h̃(0)‖ . ‖B‖ ‖L̃m−m0(y0)‖.
Moreover, ‖L̃m−m0 y0‖ = δ is equivalent to

m =
log δ − log ‖y0‖

log |λ1|
+m0.

If C is big,

log |λ1| =
−1

CM
+

3

2

1

(CM)2
− 1

3

1

(CM)3
+O

(
1

(CM)4

)
,

and then m is of the order CM(log δ−1 − log ‖h̃−1(Fm0(x0))‖−1) +m0.217

Here, and in the following cases, log h̃−1(Fm0(x0)) should be interpreted as a constant depending on the initial218

condition.219



13

2. Convergence to p2 (when k1 > 0)220

In this case p2 is a hyperbolic fixed point (k1 > 0) and the corresponding eigenvalue is λ = (CM)/(1 +CM). Using221

the same strategy as before, we obtain222

m ≈ log δ − log h̃−1(Fm0(x0))

log λ
+m0 =

= CM
[

log δ−1 − log(h̃−1(Fm0(x0)))−1
](

1 +O
(

1

CM

))
+m0.

3. Convergence to q2,2 (when k1 < 0)223

The eigenvalue corresponding to q2,2 is 1 + k1/C < 1. Similarly as before we now have

m ≈ C

(−k1)

[
log δ−1 − log(h̃−1(Fm0(x0)))−1

](
1 +O

(
k1

C

))
+m0.

4. Convergence to q4,4 (when k1 ≤ 0)224

The point q4,4 is not hyperbolic and this fact forces to introduce several technicalities. We start with a lemma225

which provides control on the convergence of some sequences.226

Lemma 3. Let γ > 0, m0 ≥ 0 and {zm} be a sequence of positive numbers. If zm+1 ≥ zm

1+γzm for m ≥ m0 then

zm ≥ zm0

1 + (m−m0)γzm0
, m ≥ m0.

If zm+1 ≤ zm

1+γzm for m ≥ m0 then

zm ≤ zm0

1 + (m−m0)γzm0
, m ≥ m0.

The same statement is true with strict inequalities with the conclusions for m > m0.227

Proof. Let {ξm} be the auxiliary sequence defined by ξm0 = zm0 and

ξm+1 =
ξm

1 + γξm
, m ≥ m0.

We easily check by induction that ξm = ξm0

1+(m−m0)γξm0
. We claim that zm ≥ ξm for all m ≥ m0. Indeed, when

m = m0 this is obviously true. Assuming it is true for m ≥ m0, and using that ϕ(t) = t
1+γt is strictly increasing in

(0,∞) we have

zm+1 ≥ zm

1 + γzm
≥ ξm

1 + γξm
= ξm+1.

Then the result is obtained. The second part follows in the same way.228

Let (x0
1, x

0
2, x

0
3, x

0
4) ∈ S3 \ ∂S3. We already know from the proof of Proposition 2 that the sequences {xm1 /xm2 },229

{xm2 /xm3 } and {xm3 /xm4 } are strictly monotone from some index on, that {xm1 }, {xm2 }, {xm3 } converge to 0 and {xm4 }230

converges to 1.231

In the next claims we will use a small constant ε > 0 and an integer m0 sufficiently big. They will be the ones232

needed for certain conditions on sequences to be met, and may be different at different places. We will require a finite233

(small) number of such conditions. Given ε ∈ (0, 1) there exists m0 such that xm1 < ε, xm2 < ε, xm3 < ε and xm4 > 1−ε234

for m ≥ m0. Since {xm1 /xm2 }m≥0 is strictly decreasing, xm1 /x
m
2 < β1 for some β1 > 0.235

Moreover, since xm3 /x
m
4 → 0, {xm3 /xm4 } is strictly decreasing for m ≥ m0, then

C+k3x
m
2

C+k4xm
3
< 1 and hence k3x

m
2 < k4x

m
3236

for m ≥ m0.237
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Claim 4. {xm1 /xm3 }m≥0 converges to 0.238

Proof. First we consider the case k1 = 0. We have that

xm+1
1

xm+1
3

=
C

C + k3xm2

xm1
xm3

and hence {x
m
1

xm
3
}m≥0 is strictly decreasing. We know that xm1 ≤ β1x

m
2 .239

To get a contradiction we assume that limm→∞ xm1 /x
m
3 = β2 > 0. Then xm1 > β2x

m
3 for m ≥ 0 and φ(xm) =240

k2x
m
2 x

m
1 + k3x

m
3 x

m
2 + k4x

m
4 x

m
3 < (k2 + k3/β2 + k4/β2)xm1 . Then xm+1

1 = C
C+φ(xm)x

m
1 > 1

1+γ1xm
1
xm1 , where γ1 =241

(k2 + k3/β2 + k4/β2)/C for all m ≥ 0. By Lemma 3, xm1 > x0
1/(1 +mγ1x

0
1)−1. Then242

xm1
xm3

=

(
m−1∏
j=0

C

C + k3x
j
2

)
x0

1

x0
3

=

(
exp

m−1∑
j=0

log
C

C + k3x
j
2

)
x0

1

x0
3

. (7)

Assume ε is small enough so that (k3/(β1C))ε < 1. Using that log 1
1+t < −(log 2)t for t ∈ (0, 1) we have log C

C+k3x
j
2

<243

log C

C+(k3/β1)xj
1

< −(log 2)(k3/(β1C))xj1 < −(log 2)(k3/(β1C))
x0
1

1+jγ1x0
1

for m ≥ 0 and therefore the sum in (7) diverges244

to −∞ when m→∞ and hence
xm
1

xm
3
→ 0 which is a contradiction.245

When k1 < 0, we use that given ε > 0 there exists m0 such that if m ≥ m0 then xm4 > 1− ε. Then

xm+1
1

xm+1
3

≤ C + k1(1− ε)
C

xm1
xm3

, m ≥ m0.

Since C+k1(1−ε)
C < 1, we also have

xm
1

xm
3
→ 0.246

247

Claim 5. {xm2 /xm3 }m≥0 converges to 0.248

Proof. We assume that limxm2 /x
m
3 = β3 > 0. By the condition k3x

m
2 < k4x

m
3 for m ≥ m0 we have β3 ≤ k4/k3.249

Then xm2 > (β3−ε)xm3 for m > m0. Moreover, since xm1 /x
m
3 < ε for m ≥ m0 we also have that xm1 < (ε/(β3−ε))xm2 .250

Then φ(xm) ≤ k2x
m
2 x

m
1 + k3x

m
3 x

m
2 + k4x

m
4 x

m
3 < (k2 + k3 + k4/(β3 − ε))xm2 . Then xm+1

2 =
C+k2x

m
1

C+φ(xm)x
m
2 > 1

1+γ3xm
2
xm2 ,251

where γ3 = (k2 + k3 + k4/(β3 − ε))/C for all m ≥ m0.252

By Lemma 3, xm2 ≥
x
m0
2

1+(m−m0)γ3x
m0
2

for m ≥ m0. Moreover, using again that k3x
m
2 < k4x

m
3 ,253

xm3 ≥
(k3/k4)xm0

2

1 + (m−m0)γ3x
m0
2

. (8)

On the other hand, using that if A > 0 and −1 + 2A < B < 1 + 2A254

1 +A

1 +B
<

1

1 +B − 2A
, (9)

we have

C + k2x
j
1

C + k3x
j
2

≤ C + εk2x
j
3

C + k3(β3 − ε)xj3
≤ 1

1 + γ3x
j
3

, j ≥ m0,

with γ3 = (k3(β3 − ε)− 2εk2)/C and ε so small that γ3 > 0. Then255

xm2
xm3

=

(
m−1∏
j=j0

C + k2x
j
1

C + k3x
j
2

)
xj02
xj03

=

(
exp

m−1∑
j=j0

log
C + k3x

j
2

C + k3x
j
2

)
xj02
xj03

. (10)

Assume j0 is big enough so that γ3x
j0
3 < 1. Using that log 1

1+t < −(log 2)t for t ∈ (0, 1) we have log
C+k2x

j
1

C+k2x
j
2

≤256

log 1

1+γ3x
j
3

< −(log 2)γ3x
j
3. Taking into account (8) we get that the sum in (10) diverges to −∞ when m → ∞ and257

hence
xm
2

xm
3
→ 0 which is a contradiction.258

259
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To estimate the distance from Fm(x0) to q4,4 we write

‖(xm1 , xm2 , xm3 , xm4 )− (0, 0, 0, 1)‖2 = (xm1 )2 + (xm2 )2 + (xm3 )2 + (xm1 + xm2 + xm3 )2

= 2(xm3 )2

[
1 +

xm1
xm3

+
xm2
xm3

+
xm1
xm3

xm2
xm3

+

(
xm1
xm3

)2

+

(
xm2
xm3

)2]
(11)

so that the asymptotic behaviour depends on how {xm3 } tends to 0.260

Claim 6. Given ε > 0 there exists m0 ≥ 1 such that261

xm0
3

1 + (m−m0)((k4 + ε ν2)/C)xm
0

3

≤ xm3 ≤
xm0

3

1 + (m−m0)((k4 + ε ν1)/C)xm
0

3

, m ≥ m0, (12)

where ν1 = k1 − 2k3 − k4 and ν2 = k3 + εk2.262

Proof. By the previous claims we have that xm1 < εxm3 and xm2 < εxm3 for m ≥ m0. Also xm1 , x
m
2 , x

m
3 < ε for m ≥ m0.

First we establish the bounds

φ(xm) ≥ εk1x
m
3 + k4(1− ε)xm3 , m ≥ m0,

and

φ(xm) ≤ ε2k2x
m
3 + ε k3x

m
3 + k4x

m
3 , m ≥ m0.

Then, using (9),

C + k3x
m
2

C + φ(xm)
≤ C + εk3x

m
3

C + (k4 + ε(k1 − k4))xm3
≤ 1

1 + ((k4 + εν1)/C)xm3

which gives

xm+1
3 ≤ 1

1 + ((k4 + εν1)/C)xm3
xm3 ,

and by Lemma 3, we obtain the right hand side inequality of the claim. On the other hand

C + k3x
m
2

C + φ(xm)
≥ C

C + (k4 + ε(k3 + εk2))xm3
=

1

1 + ((k4 + εν2)/C)xm3
,

and, using Lemma 3 again, we obtain the other inequality.263

With the information on the rate of convergence of {xm3 } we can now estimate, given x0 ∈ Sn−1 \ ∂Sn−1, the
number of iterations m for Fm(x0) to arrive to a distance δ from q4,4. The condition for m is obtained putting xm3 = δ
in (12). From this we get

C

k4 + εν2
(1/δ − 1/xm0

3 ) +m0 < m <
C

k4 + εν1
(1/δ − 1/xm0

3 ) +m0.

That is, apart from a transitory, the number of iterations for xm3 to get δ is essentially proportional to C/k4, and by264

(11), the number of iterations for xm to arrive to a neighbourhood of q4,4 of radius δ is given by the previous formula265

changing δ by δ/
√

2.266267

5. Convergence to q3,3 (when k1 ≤ 0).268

Following the same scheme as before, to estimate the distance from Fm(x0) to q3,3 we write

‖(xm1 , xm2 , xm3 )− (0, 0, 1)‖2 = (xm1 )2 + (xm2 )2 + (xm1 + xm2 )2 = 2(xm2 )2

[
1 +

xm1
xm2

+
(xm1
xm2

)2
]
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FIG. 6. (a) Evolution of the invariant curve in a projection of the phase space (x1, x4) as k1 → 0 using: k1 = 0.8 (black);
k1 = 0.4 (red); k1 = 0.2 (blue); k1 = 0.1 (green); k1 = 0.05 (magenta); and k1 = 0.01 (orange). Insets: (orange) k1 = 0.01;
(violet) k1 = 10−4; and (green) k1 = 10−5. Here we have set k2,3,4 = 1. (b) Time series on the attractor for x4 (blue) and x1
(black), x2 (red), x3 (green), with k1 = 0.1, k2 = 0.9, k3 = 0.6, and k4 = 0.8. In all panels we used C = 10.

so that the asymptotic behaviour depends on how {xm2 } tends to 0. We first prove, as in the previous case, that
{xm1 /xm2 } converges to 0. Next we prove that

1

1 + ((k3 + εν4)/C))xj2
≤ 1 + k2x

m
1

C + φ(xm2 )
≤ 1

C + ((k3 + εν3)/C))xm2

for m ≥ m0, with ν3 = k1 − 2k2 − k3 and ν4 = k2. We then check that the number m of iterations to converge from
x0 to a ball of radius δ centered at q3,3 satisfies

C

k3 + εν4
(
√

2/δ − 1/xm0
2 ) +m0 < m <

C

k3 + εν3
(
√

2/δ − 1/xm0
2 ) +m0.

6. Convergence to q2,2 (when k1 = 0).269

This case is very particular since the map is one dimensional. Written in terms of x1 it has the form

xm+1
1 =

C

C + k2xm1 (1− xm1 )
xm1 .

For m ≥ m0 we have

1

1 + (k2/C)xm1
xm1 ≤ xm+1

1 ≤ 1

1 + (k2(1− ε)/C)xm1
xm1 .

Arguing in a similar way, the number of iterations satisfies

C

k2
(
√

2/δ − 1/xm0
1 ) +m0 < m <

C

k2 − ε
(
√

2/δ − 1/xm0
1 ) +m0.

E. Invariant curve and study of bifurcations for n = 4270

As previously mentioned and, as a difference from time-continuous models (where oscillations appear for n ≥ 5271

[43, 44, 54]), the dynamics of the map F defined in (1) for n = 4 and ki > 0 (i = 1, ..., 4) is governed by an invariant272

curve [55, 56]. The bifurcation diagrams in Fig. 4 display how the local maxima and minima of all the variables,273

obtained from time series once the invariant curve has been reached, change at decreasing k1. For 0 < k1 ≤ 1 the274

dynamics is governed by self-sustained, periodic oscillations (see also Fig. 6). Figure 4 also displays how the invariant275

curve changes within the range 0 < k1 ≤ 1. The invariant curve shrinks to q4,4 = (0, 0, 0, 1) as k1 → 0. This change276
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≥ k1 ≥ k1

FIG. 7. The two eigenvalues, λ1,2, of the fixed point resulting from the study of the invariant curve on a Poincaré-like section
for the case n = 4 (see Section III E). Note that the two eigenvalues are smaller than one within the range 0 < k1 ≤ 1, indicating
that the invariant curve is stable.

in the size of the invariant curve can be visualised in Fig. 6(a), where projections of the attractor in the phase space277

(x1, x4) are shown for decreasing values of k1. Note that the invariant curve changes in size until it collapses at k1 = 0278

(see also Fig. 4). Figure 6(b) displays time series setting k1 = 0.1, k2 = 0.9, k3 = 0.6, and k4 = 0.8.279

So far, the invariant curve when n = 4, described in Ref. [55], was obtained by numerical iteration. Also, the280

emergence of periodic oscillations for this hypercycle dimension were provided by the presence of a ’Hopf’ bifurca-281

tion [56] in the asymptotic limit C →∞. Nowadays many authors call Neimark-Sacker to the bifurcation of families282

of maps analogous to the Hopf bifurcation for differential equations. The collapse of the invariant curve at k1 = 0283

is through a degenerate transcritical-Neimark-Sacker bifurcation different from the one found in [56] when C → ∞.284

There are several methods to look for invariant curves (and invariant tori). See [14–17] for description and history of285

these methods. They are based either on conjugating the map to a rotation (parameterization method), on studying286

the iterations that fall in a thin region (slices method) or interpolating the map in some way. Our results have been287

obtained using a method based on interpolation similar, but simpler, to the one proposed in [11]. A further elaboration288

in a much more sophisticated way is found in [59].289

To compute the invariant curve we choose a suitable transversal section M (depending on the parameters) close to290

the expected invariant curve. We choose it as a hyperplane (intersected with S3) determined by the first variable x1291

fixed at x1 = xh1 . Since the invariant curve should be not so far from the inner fixed point p4, we take xh1 as the first292

component of p4. Since the domain of the map is S3 we will work with the variables x2, x3, the variable x4 being293

recovered from x1 + x2 + x3 + x4 = 1. Now, given a point x0 ∈ M , we iterate it until the iterations cross M in the294

same sense as x0 goes to F (x0). This means the second time they cross M . We consider the previous three iterations295

before reaching M and the three ones after crossing it. To obtain a point in M we interpolate the six points by a296

(vector) polyomial p(t) = (p1(t), p2(t), p3(t), p4(t)), and then look for t∗ such that P1(t∗) = xh1 ; solving the equation297

using Newton’s method. Then p(t∗) ∈ M . We call G : M → M the map that sends x0 to p(t∗) obtained by the298

previous procedure. It can be seen as a pseudo Poincaré map. We emphasise that it is a two dimensional map.299

Next we look for a fixed point of G by using Newton’s method, approximating the derivatives numerically by the300

central difference quotient. In this way we have an approximation of a point on the invariant curve. Iterating this301

point we recover it. In our example two iterations are sufficiently close so that the polynomial interpolation gives a302

good local representation of the curve. Moreover, the derivative of G at the fixed point provides a good estimate of303

the hyperbolicity of the invariant curve. The corresponding eigenvalues, computed as a function of k1, are displayed304

in Fig. 7.305

When k1 → 0, as we have already mentioned, the invariant curve shrinks to q4,4 and disappears for k1 ≤ 0 in306

a Neimark-Sacker bifurcation. At the same time p4 collides with q4,4 undergoing a transcritical bifurcation. All307

eigenvalues of DF (q4,4) are 1 except 1 + k1/C which passes from bigger to less than 1 when k1 decreases. As for308

p4, for k1 > 0, DF (p4) has two eigenvalues bigger than 1 and one less than 1. For k1 < 0, all its eigenvalues are309

bigger than 1 (note that in this case p4 no longer belongs to Sn−1). Also, q4,4 belongs to the line of fixed points310

{(0, α, 0, 1−α) |, α ∈ R}. Moreover, just at the bifurcation (k1 = 0) a new line of fixed points {(α, 0, 0, 1−α) |, α ∈ R}311

containing q4,4 appears, making the bifurcation even more degenerate.312
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IV. CONCLUSIONS313

Hypercycles have been a subject of intensive research within the last 40 years. This theory has become of paramount314

importance since it suggests a plausible path towards the origins of life from biochemical self-organisation [1–3, 5]. One315

of the most important properties of hypercycles is their potential to overcome the so-called error threshold, suggested316

to be a major constraint in the increase of complexity of the first self-replicating systems in prebiotic ages [1–3]. The317

hypercycle may allow the stable coexistence of all its members, and thus larger information contents could be stored,318

as a difference from self-replicating, non-cooperative systems, in which the survival of the fittest may limit species’319

coexistence and thus genetic diversity [1, 2, 4].320

It has been suggested that catalytic RNAs (i.e., ribozymes) could have been the first self-replicating systems321

in prebiotic evolution [30–33]. RNAs are good candidates since this macromolecules are known to have catalytic322

activities [26–28, 35–40] as well as the capacity of genetic information storage. The dynamics and stability of catalytic323

networks is largely determined by its graph structure [4]. For example, several works have investigated the impact324

of catalytic parasites (i.e., replicators receiving catalytic aid but not providing catalysis to the next members of325

the cycle) in hypercycles persistence [47–49, 52]. Also, the so-called catalytic short-circuits [50, 51], although less326

explored, have been studied to determine its impact on hypercycles’ persistence. In this contribution, we have327

analysed a different scenario in which a functional shift in a given species changes the cooperative interaction to an328

antagonistic one. Specifically, we have studied small hypercycles in which a heterocatalytic interaction shifts to a329

density-dependent degradation (trans-cleaving activity). Several experimental studies have described trans-cleaving330

activities in ribozymes [39, 57, 58].331

Despite hypercycle dynamics have been widely investigated, most of the research has been performed using time-332

continuous approaches [1, 43–46, 48, 51, 52]. Only few discrete-time hypercycle systems have been explored [55, 56].333

We here have considered that discrete-time hypercycle introduced by Hofbauer [55]. However, here, in contrast with334

[55], we have investigated how functional shifts impact the dynamics of small hypercycles with n = 2, 3, 4 species.335

Fixed points and stability analyses are developed for these systems. In this discrete-time setting, hypercycles with336

n = 4 display an oscillatory state allowing the coexistence of all the species via an invariant curve, while smaller337

hypercycles achieve coexistence via an interior fixed point. We provide a proof for the ω−limit of hypercycles when338

one replicator undergoes directed degradation, shown to be given by the out-competition of all the cooperative species339

by the one conducting the degradation. This functional change from cooperation to directed degradation makes the340

hypercycle become more similar to a catalytic chain. Our results are in agreement with previous research describing341

the impossibility of replicators’ coexistence in linear catalytic chains [4].342

The convergence times to the fixed points have been analytically obtained and the relevant parameters in the343

asymptotic expressions identified. Concretely, we have obtained that for the points pn, n = 2, 3, the times are344

proportional to C(
∑n
i=1

1
ki

), n = 2, 3, and for the points qn,n, n = 2, 3, 4, the times are proportional to C/kn.345

Numerical computations confirm the results and illustrate the behaviour. We have also described the bifurcations346

tied to the functional shift in one of the replicators. For cases n = 2, 3 a transcritical bifurcation is responsible for347

the extinction of the hypercycle. When n = 4, the analytical/numerical computations lead us to conclude there348

is a degenerate transcritical–Neimark-Sacker bifurcation when k1 → 0 as described at the end of Section III E. We349

emphasize that this bifurcation is different from the one described in [56] that occurs when C →∞.350

As mentioned in the Introduction, hypercycle equations have been used to model the dynamics of different nonlinear351

systems such as cooperativity in ecosystems [5, 18], virus replication [8–10, 12], and, more recently, experimentally-352

built synthetic systems using bacteria [22] and yeast [21]. We want to notice that our contribution, albeit carrying a353

deep mathematical background, aims to model the changes introduced by functional shifts that can occur in molecular354

replicators by mutation processes. Indeed, functional shifts are found in ecological systems and are usually caused by355

behavioural or environmental changes. We are here focusing on changes in ribozymes switching their phenotype from356

the cooperative to the degradative one (self-cleaving). In terms of complex ecosystems, such functional shifts can be357

given by transitions between cooperation and competition. These shifts have been described in plants in semiarid358

ecosystems (the so-called stress-gradient hypothesis), in which facilitation (cooperation) increase as resources (e.g.,359

water availability) decrease [62].360
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[14] À. Haro, M. Canadell, J.L. Figueras, A. Luque, J.M. Mondelo, The parameterization method for invariant manifolds. From387

rigorous results to effective computations. Applied Mathematical Sciences, 195. Springer, 2016.388
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