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A B S T R A C T   

Quinoa is an Andean grain that is attracting attention worldwide as a high-quality protein-rich food. Nowadays, 
quinoa foodstuffs are susceptible to adulteration with cheaper cereals. Therefore, there is a need to develop novel 
methodologies for protein characterization of quinoa. Here, we first developed a matrix-assisted laser desorption 
ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method to obtain characteristic mass spectra of 
protein extracts from 4 different commercial quinoa grains, which group different varieties marketed as black, 
red, white (from Peru) and royal (white from Bolivia). Then, data preprocessing and peak detection with 
MALDIquant allowed detecting 47 proteins (being 30 tentatively identified), the intensities of which were 
considered as fingerprints for multivariate data analysis. Finally, classification by partial least squares- 
discriminant analysis (PLS-DA) was excellent, and 34 out of the 47 proteins were critical for differentiation, 
confirming the potential of the methodology to obtain a reliable classification of quinoa grains based on protein 
fingerprinting.   

1. Introduction 

Quinoa (Chenopodium quinoa Willd.) is an herbaceous flowering 
plant, the seeds of which offer remarkable nutritional and functional 
properties (Aloisi et al., 2016). Quinoa consumption is rapidly 
increasing globally (Angeli et al., 2020), as this protein-rich food pro-
vides several benefits for human health. Among them, quinoa offers a 
gluten-free alternative for individuals with celiac disease (Niro et al., 
2019). Additionally, quinoa flour is being studied as a substitute for 
wheat flour in bread making processes due to its immuno-nutritional 
properties (Laparra & Haros, 2016, 2018). This increased interest in 
quinoa has propelled demand and cost, making quinoa foodstuffs sus-
ceptible to adulteration with cheaper cereals (Rodríguez et al., 2019; 
Shotts et al., 2018). 

As food adulteration may result in serious health problems for con-
sumers (Bansal et al., 2017), there is a need for developing novel and 
robust methodologies for the characterization of foodstuff, as part of 
quality control and authentication programs. In food analysis, targeted 
and non-targeted analytical approaches are typically used (Cavanna 
et al., 2018). Targeted analysis requires a priori knowledge of the con-
taminants and it is focused on the detection of one or more classes of 
fraud markers. In contrast, non-targeted analysis, also known as 
fingerprinting, is based on obtaining a global profile of certain compo-
nents by analytical techniques, including spectroscopic, spectrometric, 
chromatographic or electromigration techniques (Álvarez et al., 2018; 
Hong et al., 2017). 

Due to its excellent performance, liquid chromatography with ul-
traviolet absorption detection (LC-UV) stills being one of the most 
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applied fingerprinting techniques to analyze food products (Gan et al., 
2019; Jablonski et al., 2014). In a recent publication, we demonstrated 
the usefulness of capillary electrophoresis with ultraviolet absorption- 
diode array detection (CE-UV-DAD) and advanced chemometrics for 
protein profiling and classification of commercial quinoa grains 
(Galindo-Luján et al., 2021). However, these UV-based methods are only 
appropriate for detection of highly absorbing compounds and they lack 
molecular mass confirmation, which may lead to ambiguous results. To 
overcome these major drawbacks, different mass spectrometry (MS) 
approaches have been proposed, including matrix-assisted laser 
desorption ionization time-of-flight mass spectrometry (MALDI-TOF- 
MS), which represents an ideal option for the reliable detection of food 
adulteration due to the ease of use, speed of analysis, appropriate 
sensitivity and wide applicability (Zambonin, 2021). The potential of 
MALDI-TOF-MS in food fraud detection has been demonstrated 
analyzing a wide range of compounds, from small molecules (e.g. lipids, 
carbohydrates, sugars, phenols, etc.) to large biomolecules such as 
proteins, in milk and dairy products, meat, fish, seafood, oils, vegetables 
and fruit (Kiran et al., 2016; Kuo et al., 2019; Sassi et al., 2015; Stahl & 
Schröder, 2017). 

Despite the usefulness of MALDI-TOF-MS for fingerprinting ap-
proaches, mass spectra processing for detection of peaks with appro-
priate signal-to-noise ratio (SNR), so they can be discriminated from the 
background noise (i.e. peak detection), still remains a challenging task. 
This is especially true for proteomics data, as mass spectra usually 
contain altering baseline and noise, which can negatively affect the 
interpretation of the results (Yang et al., 2009). In the past years, several 
efforts have been made to provide open-source data analysis software 
for proteomics studies, such as PROcess (Li, 2005), OpenMS (Kohlbacher 
et al., 2007) or MALDIquant (Gibb & Strimmer, 2017). These software 
solutions offer a collection of procedures for MALDI-TOF mass spectra, 
from data preprocessing to peak detection, in order to obtain accurate 
lists of peaks, with characteristic mass-to-charge ratio (m/z) and in-
tensity values. Specifically, MALDIquant has proven to be useful for a 
wide range of proteomics applications, including protein profiling of 
serum from individuals with pancreatic cancer (Fiedler et al., 2009), 
peptide profiling of virus-causing insects (Uhlmann et al., 2014) or 
protein profiling of nasal swabs from individuals with SARS-CoV-2 
(Nachtigall et al., 2020). 

The novelty of the present study relies on the development, for the 
first time to the best of our knowledge, of a comprehensive workflow for 
protein profiling, peak detection and classification of commercial 
quinoa grains based on the combination of MALDI-TOF-MS analysis of 
protein extracts, MALDIquant and chemometrics. The proposed meth-
odology enhances our previous method using CE-UV-DAD (Galindo- 
Luján et al., 2021). It allows, not only to efficiently classify and differ-
entiate the most widely commercially available quinoa grains, which 
group different varieties marketed as black, red, white (from Peru) and 
royal (white from Bolivia), but also to tentatively identify the most 
important proteins for discrimination. 

2. Material and methods 

2.1. Chemicals and samples 

All the chemicals used were of analytical reagent grade or better. 
Sodium hydroxide (≥99.0 %, pellets), hydrochloric acid (37 % (v/v)), 
boric acid (≥99.5 %), acetonitrile (ACN, LC-MS grade), water (LC-MS 
grade), trifluoroacetic acid (TFA, 99.0 %), acetone (99.8 %) and sina-
pinic acid (SA, ≥99.0 %) were supplied by Merck (Darmstadt, Ger-
many). Black (B, 7 samples), red (R, 5 samples) and white (W, 7 samples) 
quinoa grains from Peru, as well as royal white (RO, 5 samples) quinoa 
grains from Bolivia were acquired in local supermarkets from Barcelona. 

2.2. Sample preparation 

Quinoa grains were dried in an air-current oven at 40 ◦C for 24 h, 
ground in a coffee grinder and stored at room temperature in a desic-
cator. Quinoa proteins were extracted as described in our previous 
studies (Galindo-Luján et al., 2021; Galindo-Luján et al., 2021). Quinoa 
protein extracts were prepared in triplicate for the different quinoa 
grains (72 quinoa protein extracts). Before MALDI-TOF-MS analyses, 
quinoa protein extracts were desalted using MF-Millipore® membrane 
filters (Merck). Briefly, 10 µL of sample solution were deposited onto the 
membrane filter. After dialyzing with water for 45 min at room tem-
perature, aliquots of the samples were collected and stored at − 20 ◦C. 

2.3. MALDI-TOF-MS 

MALDI-TOF mass spectra were obtained using a 4800 MALDI TOF/ 
TOF mass spectrometer (Applied Biosystems, Waltham, MA, USA). Mass 
spectra were acquired over a range of 5,500–25,000 m/z using the mid 
mass positive mode, which is recommended by the instrument manu-
facturer for the analysis of proteins with relative molecular masses (Mr) 
in the range of 5,000–25,000. Data acquisition and data processing were 
performed using the 4000 Series ExplorerTM and Data Explorer® soft-
ware (Applied Biosystems), respectively. Sample-MALDI matrix mix-
tures were freshly prepared as described in a previous work with some 
modifications (Pont et al., 2020). Briefly, the preparation consisted on 
depositing onto a stainless steel MALDI plate the following layers: 1 μL of 
SA in 99:1 (v/v) acetone:water (final SA concentration 27 mg⋅mL− 1), 1 
µL of sample solution (desalted quinoa protein extract), again 1 µL of 
sample solution (to increase sample homogeneity) and, finally, 1 µL of 
SA acid in 50:50 (v/v) ACN:water with 0.1 % (v/v) of TFA (final SA 
concentration 10 mg⋅mL− 1). Spots were allowed to dry at room tem-
perature between each layer addition in order to ensure maximum ho-
mogeneity and, therefore, reproducibility in the MALDI-TOF-MS 
analyses. All the samples were analyzed in triplicate (72 quinoa protein 
extracts × 3 spots). 

2.4. Data analysis 

Experimental data were analyzed combining MALDIquant and che-
mometrics (i.e. principal component analysis, PCA, followed by partial 
least squares-discriminant analysis, PLS-DA). First, MALDIquant was 
used to detect protein peaks, with characteristic m/z and intensity values 
in the mass spectra. Then, PCA followed by PLS-DA were applied to 
perform multivariate analysis and classify the different commercial 
quinoa grain samples according to their protein composition. Data 
processing and graphical representation were performed under R plat-
form (version 4.0.4, https://www.R-project.org/) (R Development Core 
Team, 2020). MALDIquant was run under MALDIquant R package 
(version 1.19.3) (Gibb & Strimmer, 2017) and mdatools R package 
(version 0.12.0) was used for PCA and PLS-DA (Kucheryavskiy, 2020). 

2.4.1. MALDIquant 
First, raw mass spectra were converted to text format (.txt) using a 

macro available with the Data Explorer® software and, then, imported 
into the R environment using MALDIquantForeign R package (version 
0.12) (Gibb, 2014). Subsequently, imported data were transformed for 
variance stabilization and then smoothed. Next, a baseline correction 
was applied to remove background noise. Denoised data was normalized 
for a proper comparison of intensity values across different mass spectra 
and, then, aligned. After that, the 3 preprocessed mass spectra obtained 
for the different protein extracts (3 spots for each protein extract were 
analyzed by MALDI-TOF-MS) were averaged to obtain a mean mass 
spectrum for each protein extract. Next, a peak detection algorithm was 
applied to accurately identify potential protein features. Finally, a peak 
binning procedure allowed correcting m/z shifts across mass spectra. 
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2.4.2. Multivariate data analysis 
The intensities of the detected protein peaks by MALDIquant were 

considered for PCA and PLS-DA analysis. PCA was first used for the 
unsupervised identification of trends and clustering of the data, as well 
as for the detection of outliers (Joliffe & Morgan, 1992). PLS-DA was 
then applied to build a classification model with improved class sepa-
ration (Barker & Rayens, 2003) and to reveal the importance of the 
different protein peaks for discrimination taking into account their 
variable importance in the projection (VIP) scores (Wold et al., 2001). A 
leave-one-out cross validation of the PLS-DA model was performed 
during model optimization (Wold et al., 2001). 

3. Results and discussion 

3.1. MALDI-TOF-MS analysis 

Some preliminary MALDI-TOF-MS experiments were performed 
using a RO quinoa sample to select the most appropriate conditions to 
obtain the characteristic mass spectra profiles of protein extracts from 
quinoa. Special attention was given to the preparation of the sample- 
MALDI matrix mixtures and spot deposition. In a previous work (Pont 
et al., 2020), we demonstrated the usefulness of a sandwich method to 
prepare reproducible spots for the analysis by MALDI-TOF-MS of protein 
extracts from barley and malt. In this sandwich method, a sample 
droplet was applied on top of a fast-evaporated matrix (e.g. SA in 99:1 
(v/v) acetone:water), followed by the deposition of a second layer of 

Fig. 1. MALDI-TOF mass spectra obtained after MALDIquant processing for (a) RO, (b) W, (c) B and (d) R quinoa protein extracts.  
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Table 1 
Proteins detected by MALDI-TOF-MS used as PLS-DA variables with their corresponding experimental Mr, VIP score values (for discrimination of RO, W, B and R 
quinoa samples) and tentative identifications (theoretical Mr, accession number (ID) and protein name based on an experimental quinoa seed proteome map obtained 
by shotgun LC-MS/MS proteomics (Galindo-Luján et al., 2021)).  

PLS-DA protein variablesa Tentative identificationsb 

Protein Experimental Mr
c VIP Scoresd Theoretical Mr Accession number (ID)e and protein name 

RO W B R 

1 6,279 0.61 1.05 0.86 0.73 – – 
2 6,392 0.55 1.09 0.84 0.72 6,413 XP_021764391.1 40S ribosomal protein S29 

XP_021764390.1 40S ribosomal protein S29 
XP_021762716.1 40S ribosomal protein S29 
XP_021762714.1 40S ribosomal protein S29 

3 6,719 1.21 1.26 1.11 1.27 – – 
4 7,217 0.85 0.72 0.82 0.80 – – 
5 7,432 0.72 0.39 0.72 0.60 – – 
6 7,623 0.80 1.11 0.85 0.92 – – 
7 7,722 0.60 0.35 0.59 0.51 7,687 XP_021750374.1 LOW QUALITY PROTEIN: protein transport protein Sec61 subunit gamma-1- 

like 
XP_021727999.1 protein transport protein Sec61 subunit gamma-1-like 
XP_021713805.1 protein transport protein Sec61 subunit gamma-1-like 

8 7,771 0.97 0.59 0.93 0.85 – – 
9 7,855 1.70 1.07 1.57 1.52 – – 
10 8,019 0.62 0.85 0.73 0.68 7,986 XP_021768098.1 ATP synthase subunit epsilon, mitochondrial 

8,039 XP_021772297.1 60S ribosomal protein L38 
XP_021734344.1 60S ribosomal protein L38 

11 8,072 1.20 1.03 0.80 1.26 8,039 XP_021772297.1 60S ribosomal protein L38 
XP_021734344.1 60S ribosomal protein L38 

12 8,173 0.64 0.51 0.57 0.62 8,163 XP_021745172.1 cytochrome b-c1 complex subunit 6-like 
XP_021717737.1 cytochrome b-c1 complex subunit 6-like 

13 8,414 0.71 0.98 0.75 0.82 – – 
14 8,501 0.45 0.71 0.59 0.52 – – 
15 8,640 0.77 1.34 1.03 0.96 – – 
16 8,902 1.11 0.84 0.64 1.16 8,943 XP_021769286.1 40S ribosomal protein S21-like 
17 8,937 0.75 1.37 1.09 0.93 8,943 XP_021769286.1 40S ribosomal protein S21-like 

8,951 XP_021765473.1 em-like protein GEA6 
8,977 XP_021733643.1 protein deletion of SUV3 suppressor 1-like 

18 8,966 1.22 0.53 1.20 1.00 8,977 XP_021733643.1 protein deletion of SUV3 suppressor 1-like 
19 9,049 0.73 1.39 1.07 0.94 9,076 XP_021768105.1 late seed maturation protein P8B6-like 
20 9,266 0.71 1.37 1.06 0.91 – – 
21 9,293 0.82 1.38 1.12 0.98 – – 
22 9,383 1.21 1.39 1.28 1.26 – – 
23 9,773 0.92 1.09 1.02 0.96 – – 
24 10,656 1.71 0.96 1.45 1.55 – – 
25 10,808 1.09 0.99 0.79 1.15 10,858 XP_021759005.1 small ubiquitin-related modifier 1 

XP_021755691.1 small ubiquitin-related modifier 1 
26 11,322 0.31 0.42 0.38 0.34 11,270 XP_021771595.1 sm-like protein LSM3A 

XP_021761024.1 sm-like protein LSM3A 
11,285 XP_021725656.1 lectin-C-like 
11,308 XP_021716413.1 60S acidic ribosomal protein P2-4-like 
11,339 XP_021723219.1 non-specific lipid-transfer protein-like 
11,343 XP_021748130.1 60S acidic ribosomal protein P1-like 
11,345 XP_021748130.1 60S acidic ribosomal protein P1-like 
11,348 XP_021764768.1 60S acidic ribosomal protein P2A-like 

XP_021728700.1 60S acidic ribosomal protein P2A-like 
11,366 XP_021722096.1 60S acidic ribosomal protein P2-2-like 

27 11,540 1.05 1.12 0.96 1.11 – – 
28 11,617 1.45 1.17 1.52 1.31 – – 
29 11,775 0.96 1.01 1.14 0.90 11,797 XP_021763483.1 small ubiquitin-related modifier 1-like 

XP_021720059.1 small ubiquitin-related modifier 1-like 
30 11,892 0.98 1.02 0.79 1.06 11,902 XP_021771529.1 60S acidic ribosomal protein P3-like 
31 12,046 0.74 1.12 0.95 0.83 11,992 YP_009380236.1 ribosomal protein S18 

YP_009380152.1 ribosomal protein S18 
12,050 XP_021776279.1 peptidyl-prolyl cis–trans isomerase FKBP12-like 

32 12,216 0.62 1.05 0.84 0.75 12,163 XP_021774134.1 peptidyl-prolyl cis–trans isomerase FKBP12-like 
33 13,115 1.23 0.68 1.11 1.09 13,082 XP_021765265.1 peptidyl-prolyl cis–trans isomerase Pin1-like 

XP_021722042.1 peptidyl-prolyl cis–trans isomerase Pin1-like 
34 16,060 0.63 0.54 0.71 0.55 15,995 XP_021730553.1 40S ribosomal protein S17-like 

XP_021773485.1 40S ribosomal protein S17-like 
XP_021765576.1 40S ribosomal protein S17-like 
XP_021728631.1 40S ribosomal protein S17-like 

15,997 XP_021732055.1 actin-depolymerizing factor 4-like 
16,093 XP_021752156.1 oleosin 1-like 
16,096 XP_021731590.1 glycine-rich RNA-binding, abscisic acid-inducible protein-like 
16,101 XP_021726936.1 probable prefoldin subunit 2 

XP_021773911.1 probable prefoldin subunit 2 
16,125 XP_021738617.1 glycine-rich RNA-binding protein-like 

(continued on next page) 
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Table 1 (continued ) 

PLS-DA protein variablesa Tentative identificationsb 

Protein Experimental Mr
c VIP Scoresd Theoretical Mr Accession number (ID)e and protein name 

RO W B R 

16,134 XP_021716351.1 ferredoxin, root R-B2-like 
35 16,188 1.41 1.21 0.92 1.49 16,125 XP_021738617.1 glycine-rich RNA-binding protein-like 

16,134 XP_021716351.1 ferredoxin, root R-B2-like 
16,200 XP_021717733.1 high mobility group B protein 3-like 
16,215 XP_021716749.1 ferredoxin, root R-B2-like 
16,216 XP_021754488.1 high mobility group B protein 3-like 
16,239 XP_021762815.1 uncharacterized protein At5g48480-like 

XP_021733518.1 uncharacterized protein At5g48480-like 
16,250 XP_021766528.1 40S ribosomal protein S14-2 

XP_021765192.1 40S ribosomal protein S14-2 
36 16,360 1.38 1.37 1.17 1.45 16,289 XP_021721762.1 oleosin 1-like 

16,304 XP_021756410.1 nucleoside diphosphate kinase 1 
XP_021756411.1 nucleoside diphosphate kinase 1 

16,318 XP_021755225.1 nucleoside diphosphate kinase 1-like 
16,431 XP_021747488.1 uncharacterized protein LOC110713339 

XP_021716984.1 uncharacterized protein LOC11068485 
37 16,516 1.36 0.98 1.19 1.28 16,469 XP_021746531.1 60S ribosomal protein L27a-3-like 

XP_021743225.1 60S ribosomal protein L27a-3-like 
16,474 XP_021769235.1 glycine cleavage system H protein 2, mitochondrial-like 

XP_021732532.1 glycine cleavage system H protein 2, mitochondrial-like 
38 16,679 1.32 0.85 1.18 1.21 16,616 XP_021755504.1 2S albumin-like 

16,624 XP_021751394.1 60S ribosomal protein L26-1 
XP_021714459.1 60S ribosomal protein L26-1 
XP_021769238.1 60S ribosomal protein L26-2-like 
XP_021732535.1 60S ribosomal protein L26-2-like 

16,625 XP_021730224.1 probable calcium-binding protein CML13 
XP_021725345.1 probable calcium-binding protein CML13 

16,651 XP_021731588.1 glycine-rich RNA-binding, abscisic acid-inducible protein-like 
16,676 XP_021732772.1 60S ribosomal protein L28-1-like 
16,685 XP_021735190.1 ubiquitin-conjugating enzyme E2 variant 1D-like 

XP_021724506.1 ubiquitin-conjugating enzyme E2 variant 1D-like isoform X2 
XP_021724505.1 ubiquitin-conjugating enzyme E2 variant 1C-like isoform X1 

16,693 XP_021774210.1 60S ribosomal protein L28-1-like 
16,702 XP_021717270.1 blue copper protein-like isoform X2 

XP_021717265.1 mavicyanin-like isoform X1 
XP_021761125.1 mavicyanin-like 

16,742 XP_021720407.1 17.4 kDa class III heat shock protein-like 
XP_021720406.1 17.4 kDa class III heat shock protein-like 

39 16,807 0.66 1.04 0.88 0.76 16,742 XP_021720407.1 17.4 kDa class III heat shock protein-like 
XP_021720406.1 17.4 kDa class III heat shock protein-like 

16,775 XP_021749320.1 uncharacterized protein LOC110715055 
16,812 XP_021758596.1 2S albumin-like 
16,833 XP_021733717.1 40S ribosomal protein S16-like 

XP_021719033.1 40S ribosomal protein S16-like 
XP_021741014.1 40S ribosomal protein S16-like 
XP_021724150.1 40S ribosomal protein S16 

16,834 XP_021776507.1 calmodulin-7-like 
XP_021746004.1 calmodulin-7-like 

16,860 XP_021754554.1 calmodulin 
XP_021749259.1 calmodulin 
XP_021745669.1 esterase CG5412-like 
XP_021754747.1 calmodulin-2/4 

16,877 XP_021749775.1 peptidyl-prolyl cis–trans isomerase FKBP15-1-like 
XP_021720138.1 peptidyl-prolyl cis–trans isomerase FKBP15-1-like 

40 17,811 0.71 0.37 0.72 0.59 17,762 XP_021756280.1 40S ribosomal protein S18 
XP_021748256.1 40S ribosomal protein S18-like 

17,803 XP_021769395.1 40S ribosomal protein S11-like 
XP_021739192.1 40S ribosomal protein S11-like 

17,855 XP_021773311.1 60S ribosomal protein L12-1 
XP_021746006.1 60S ribosomal protein L12-1 
XP_021735009.1 60S ribosomal protein L12-1 
XP_021730745.1 60S ribosomal protein L12-1 

17,901 XP_021732395.1 17.4 kDa class I heat shock protein-like 
XP_021718604.1 17.8 kDa class I heat shock protein-like 

41 17,996 0.87 0.34 0.89 0.68 17,939 XP_021749487.1 MLP-like protein 43 
XP_021745405.1 MLP-like protein 43 
XP_021745404.1 MLP-like protein 43 

17,975 XP_021767152.1 desiccation protectant protein Lea14 homolog 
18,084 XP_021769109.1 17.8 kDa class I heat shock protein-like 

42 18,173 1.27 0.41 1.32 0.98 18,084 XP_021769109.1 17.8 kDa class I heat shock protein-like 
18,127 XP_021767915.1 uncharacterized protein LOC110732302 

XP_021757753.1 uncharacterized protein LOC110722767 

(continued on next page) 
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matrix prepared in a hydroorganic acidic solution of lower volatility (e. 
g. SA in 50:50 (v/v) ACN:water with 0.1 % (v/v) of TFA). In a typical 
variant of this method, the sample is mixed 1:1 (v/v) with the hydro-
organic acidic solution, and only the mixture is deposited after the fast- 
evaporated layer. With quinoa protein extracts, both method variants 

led to non-homogeneous crystal size distribution, bad quality mass 
spectra and unreproducible results. In order to improve spot homoge-
neity, it was necessary to add a second sample layer between the first 
sample layer and the last matrix layer (as described in section 2.3). 
Under these conditions, different laser intensities ranging between 

Table 1 (continued ) 

PLS-DA protein variablesa Tentative identificationsb 

Protein Experimental Mr
c VIP Scoresd Theoretical Mr Accession number (ID)e and protein name 

RO W B R 

18,168 XP_021749113.1 14 kDa zinc-binding protein-like 
XP_021745801.1 14 kDa zinc-binding protein-like 

18,195 XP_021733566.1 oleosin 16.4 kDa-like 
18,214 XP_021746976.1 mitochondrial fission 1 protein A-like 

XP_021744566.1 mitochondrial fission 1 protein A-like 
18,221 XP_021738830.1 oleosin 16 kDa 
18,227 XP_021732378.1 18.3 kDa class I heat shock protein 

XP_021769094.1 18.3 kDa class I heat shock protein-like 
18,238 XP_021765145.1 60S ribosomal protein L24-like 

XP_021754139.1 60S ribosomal protein L24 
XP_021730109.1 60S ribosomal protein L24 
XP_021735902.1 60S ribosomal protein L24-like 

18,240 XP_021753128.1 peptidyl-prolyl cis–trans isomerase 1-like 
18,254 XP_021775867.1 peptidyl-prolyl cis–trans isomerase 1 

43 18,317 1.35 0.86 1.38 1.16 18,238 XP_021765145.1 60S ribosomal protein L24-like 
XP_021754139.1 60S ribosomal protein L24 
XP_021730109.1 60S ribosomal protein L24 
XP_021735902.1 60S ribosomal protein L24-like 

18,240 XP_021753128.1 peptidyl-prolyl cis–trans isomerase 1-like 
18,254 XP_021775867.1 peptidyl-prolyl cis–trans isomerase 1 
18,271 XP_021730326.1 universal stress protein PHOS32 
18,276 XP_021744114.1 17.3 kDa class II heat shock protein-like 
18,348 XP_021738936.1 17.3 kDa class II heat shock protein-like 

44 18,640 0.79 1.16 0.92 0.92 18,577 XP_021775345.1 SKP1-like protein 1A 
XP_021743046.1 SKP1-like protein 1A 
XP_021728238.1 SKP1-like protein 1A 
XP_021714061.1 SKP1-like protein 1A 

18,607 XP_021770354.1 60S ribosomal protein L21-1 
XP_021721611.1 60S ribosomal protein L21-1 

18,641 XP_021743659.1 universal stress protein PHOS34-like 
45 18,994 1.34 1.45 1.24 1.42 18,937 XP_021742166.1 peptidyl-prolyl cis–trans isomerase CYP19-3-like 

XP_021742165.1 peptidyl-prolyl cis–trans isomerase CYP19-3-like 
XP_021742164.1 peptidyl-prolyl cis–trans isomerase CYP19-3-like 

18,997 XP_021756574.1 peptidyl-prolyl cis–trans isomerase E-like 
XP_021718372.1 peptidyl-prolyl cis–trans isomerase E-like 

19,030 XP_021769148.1 oleosin 18.2 kDa-like 
19,037 XP_021762572.1 uncharacterized protein LOC110727319 

XP_021725318.1 uncharacterized protein LOC110692594 
19,083 XP_021732650.1 oleosin 18.2 kDa-like 

46 20,816 0.62 0.59 0.71 0.56 20,781 XP_021775343.1 translocator protein homolog 
XP_021775344.1 translocator protein homolog 
XP_021763024.1 translocator protein homolog 

20,799 XP_021753718.1 60S ribosomal protein L11-1 
XP_021732924.1 60S ribosomal protein L11-1 

20,844 XP_021763208.1 60S ribosomal protein L18-3-like 
XP_021732173.1 60S ribosomal protein L18-3-like 
XP_021722341.1 60S ribosomal protein L18-3-like 
XP_021772839.1 60S ribosomal protein L18-2 

20,852 XP_021763370.1 monothiol glutaredoxin-S10-like 
XP_021722128.1 glutaredoxin-C5, chloroplastic-like 

20,903 XP_021771897.1 uncharacterized GPI-anchored protein At3g06035-like 
XP_021742916.1 uncharacterized GPI-anchored protein At3g06035-like 

20,909 XP_021739907.1 nucleolin-like 
XP_021730379.1 nucleolin-like 

47 21,028 0.67 1.30 1.00 0.87 20,942 YP_009380200.1 AtpF (chloroplast) 
YP_009380116.1 AtpF (chloroplast) 

21,121 XP_021733985.1 glycine-rich RNA-binding protein 3, mitochondrial-like  

a PLS-DA variables correspond to the detected protein peaks by MALDIquant. 
b The quinoa seed proteome map obtained by shotgun LC-MS/MS proteomics in our previous work (Galindo-Luján et al., 2021) was used as a reference for the 

tentative identification. Only a mass error ± 0.5 % between the theoretical and experimental Mr was considered acceptable for proposing an identity. This threshold 
value was established considering the mass error observed for the analysis of a ribonuclease A standard (from bovine pancreas) under the same instrumental con-
ditions, Mr = 13,690. 

c Experimental Mr were calculated from the m/z values considering the formation of single-charged molecular ions by MALDI-TOF-MS. 
d VIP scores ≥ 1 were considered important for discrimination and are marked in bold red. 
e Acession numbers (IDs) of the identified proteins correspond to the IDs of our previous work (Galindo-Luján et al., 2021). 
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6,000 and 7,000 were investigated to obtain an appropriate sensitivity. 
A value of 6,300 (80 % of maximum intensity) was selected to avoid 
excessive sample destruction, as no significant differences in sensitivity 
were observed with higher laser intensities. Fig. 1-a shows the MALDI- 
TOF mass spectrum acquired for a RO quinoa protein extract over a 
range of 5,500–25,000 m/z using the mid mass positive mode under 
optimized conditions. As can be observed, the mass spectrum presented 
single-charged molecular ions corresponding to different protein com-
ponents with Mr comprising the full measured range. These results agree 
with our previous studies based on sodium dodecyl sulfate- 
polyacrylamide gel electrophoresis (SDS-PAGE) (Galindo-Luján et al., 
2021), where we tentatively associated the most abundant protein bands 
detected between 5,000–15,000 and 15,000–25,000 Mr with 2S albu-
mins and 11S globulins, respectively. Then, the rest of protein extracts 
from the different quinoa grains were analyzed under the selected 
conditions. As an example, Fig. 1 b-d show the MALDI-TOF mass spectra 
for the protein extracts of a W, a B, and a R quinoa sample. As can be 

observed, similarities and differences in the mass spectra profiles for the 
four quinoa grain samples were hard to distinguish at naked eye. In 
addition, direct peak detection for protein fingerprinting from this 
complex mass spectra profiles was extremely difficult because most of 
the peaks overlapped. As an alternative, we explored the use of MAL-
DIquant for a reliable and improved peak detection before applying 
chemometrics (i.e. PCA and PLS-DA) for multivariate analysis and 
classification of the different quinoa grains. 

3.2. MALDIquant 

Once the raw data from the protein extracts from RO, W, B and R 
quinoa samples (72 protein extracts × 3 spots) were imported into the R 
environment, different preprocessing methods were applied to the mass 
spectra. First, variance stabilization using a square root transformation 
was performed (Purohit & Rocke, 2003). After that, a smoothing pro-
cedure employing the Savitsky-Golay filter was applied to reduce noise 

Fig. 2. Scores plots of the PCA model applied to the 72 quinoa protein extracts using the intensities of the 47 protein peaks detected by MALDIquant. Labelled 
samples were considered outliers (11), and were discarded before applying PLS-DA. (a) PC2 vs. PC1, (b) PC3 vs. PC1 and (c) PC3 vs. PC2. 
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coming from artefacts and, consequently, to improve SNR (Savitzky & 
Golay, 1964). A baseline correction was also mandatory in order to 
remove background effects. With this purpose, we used the statistics- 
sensitive non-linear iterative peak-clipping (SNIP) algorithm (Ryan 
et al., 1988). After that, a normalization step using the total ion current 
(TIC) method, which is the most common normalization procedure for 
MALDI-TOF-MS data (Borgaonkar et al., 2010), was applied to allow 
proper comparison of intensity values across different preprocessed 
mass spectra. Finally, an alignment procedure was performed using the 
locally weighted scatterplot smoothing (LOWESS) warping algorithm, 
which performed better extracting local variability from data subsets 
than other regression methods (linear, polynomial, etc.) (Cleveland, 
1979). After the alignment, the preprocessed mass spectra obtained for 
the 3 spots of the different protein extracts were averaged to obtain a 
mean mass spectrum for each protein extract. As an example, Supple-
mentary Fig. S1 a-b and Fig. 1 c-d show the MALDI-TOF mass spectra 
obtained for a B and a R quinoa sample before and after mass spectra 

preprocessing, respectively. 
Protein peaks were detected with the median absolute deviation 

(MAD) method (Friedman, 1984). In this procedure, a window is moved 
across the spectra and local maxima are detected. These local maxima 
are then compared against a noise baseline estimated by the MAD 
method. If a local maximum is above a given SNR, it is considered a 
peak, whereas local maxima below the SNR threshold are discarded. At 
this point, it is worth mentioning that a priori knowledge of mass spectra 
can help in selecting a suitable window size for data subsets and SNR. In 
our case, after investigating SNR values from 1 to 3, a value of 2 was 
selected, as a good compromise to detect a large set of characteristic 
protein peaks. Finally, in order to correct small m/z shifts across mass 
spectra from different protein extracts, a peak binning procedure was 
applied, so that the peak intensities were assigned to a set of common m/ 
z values, based on the similarity of their original values. The mass 
spectra preprocessing and peak detection by MALDIquant allowed 
detecting 47 proteins in the mass spectra. The detected proteins were 

Fig. 3. Scores plots of the PLS-DA model applied to the 61 quinoa protein extracts after removing outliers using the intensities of the 47 protein peaks detected by 
MALDIquant. (a) LV2 vs. LV1, (b) LV3 vs. LV1 and (c) LV3 vs. LV2. 
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tentatively identified, taking as a reference the quinoa grain proteome 
map obtained for similar protein extracts by shotgun liquid 
chromatography-tandem mass spectrometry (LC-MS/MS) proteomics in 
a previous study (Galindo-Luján et al., 2021). Table 1 shows the 
experimental Mr calculated for the detected proteins, as well as the 
theoretical Mr, the accession number (ID) and the name of the tenta-
tively identified proteins. As can be seen in this table, we could propose 
an identity for 30 out of the 47 detected proteins. 

3.3. Multivariate data analysis 

Multivariate data analysis was performed considering as variables 
the intensities of the 47 detected proteins in the 72 quinoa protein 

extracts. First, we used PCA to explore the classes present in the data and 
the presence of outliers. Three principal components (PCs) allowed 
explaining 60 % of the variance (Fig. 2 a-c). As can be observed in the 
scores plots, PC1 (31 % of the explained variance) allowed a slight 
separation of W quinoa from the rest of classes, while PC2 (18 % of the 
explained variance) separated slightly B-R from W-RO quinoa samples. 
Additionally, the three PCs allowed detecting different outliers corre-
sponding to W, R and RO protein extracts (see labels of the samples 
appearing alone or clustered outside the 95 % confidence ellipse in Fig. 2 
a-c), which were discarded before applying PLS-DA. Once explored the 
data by PCA, four classes were defined (i.e. RO, W, B and R) to build a 
PLS-DA model with improved class separation and to reveal the 
importance of the different protein peaks for discrimination between 

Fig. 4. VIP scores of the different protein variables when considering the separation of (a) RO, (b) W, (c) B and (d) R quinoa grain samples from the rest of classes. 
Protein variables with a VIP score value higher than 1 are numbered (see also Table 1). 
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quinoa grain classes. As can be observed in the scores plots of Fig. 3 a-c, a 
PLS-DA model with three latent variables (LVs) (42 % of X-variance and 
53 % of Y-variance explained) allowed a proper discrimination between 
the four quinoa classes, with most of the variance explained by LV1 and 
LV2 (Fig. 3). As can be seen in these score plots, LV1 (27 % of the 
explained variance) allowed separating B and R from W and RO quinoa, 
LV2 (8 % of the explained variance) allowed discriminating B and W 
from R and RO quinoa, and LV3 (7 % of the explained variance) allowed 
slightly separating B and RO from R and W quinoa. The contribution of 
the different variables (proteins) to the LVs can be observed in the 
loadings plots of Supplementary Fig. S2 a-c. However, the VIP scores are 
more informative because they facilitated a direct estimation of their 
influence on separation between the quinoa grain classes. The bar plots 
of Fig. 4 a-d show the VIP scores of the different proteins considering 
separation of RO, W, B and R quinoa from the rest of classes, respec-
tively. Only those proteins with a VIP score over a particular threshold 
value (typically 1) were considered important for discrimination (Wold 
et al., 2001). As can be observed in this figure, 18, 25, 21 and 18 out of 
the 47 proteins were important for discriminating RO, W, B and R 
quinoa from the rest of classes, respectively, whereas 13 out of the 47 
proteins were non-critical for differentiation. Table 1 shows in red the 
VIP scores values higher than 1 for the 34 detected proteins that were 
important for discrimination. As examples of these proteins that cover 
all the measured range (5,500–25,000 m/z) were found ribosomal pro-
tein S29 (protein 2, Mr experimental = 6,392 and Mr theoretical =
6,413, VIP score of 1.09 to discriminate W quinoa from the rest of 
classes), 60S acidic ribosomal protein P3-like (protein 30, Mr experi-
mental = 11,892 and Mr theoretical = 11,902, VIP scores of 1.02 and 
1.06 for W and R quinoa, respectively), and AtpF (chloroplast) and/or 
mitochondrial glycine-rich RNA-binding protein 3 (protein 47, Mr 
experimental = 21,029 and Mr theoretical = 20,942 / 21,121 for AtpF 
(chloroplast) and mitochondrial glycine-rich RNA-binding protein 3, 
respectively, VIP scores of 1.30 and 1.00 for W and B quinoa, 
respectively). 

4. Conclusions 

We have demonstrated that protein profiling by MALDI-TOF-MS 
combined with MALDIquant preprocessing and peak detection fol-
lowed by multivariate data analysis is an efficient approach to classify 
commercial quinoa grains. After a rapid and simple protein extraction 
from different RO, W, B and R quinoa grains, MALDI-TOF-MS was 
applied to obtain mass spectra profiles of the protein extracts. Data 
processing with MALDIquant allowed the detection of the most relevant 
protein peaks in the mass spectra profiles, which were tentatively 
identified. The intensities of the 47 detected proteins were considered as 
fingerprints for multivariate data analysis. Classification of quinoa grain 
samples by PLS-DA was excellent, and 34 out of the 47 variables were 
critical for differentiation. The proposed methodology could find 
application in quality control and food fraud prevention programs. 
Furthermore, it could be also applied to protein profiling of other food 
products, presenting complex mass spectra profiles with highly over-
lapped peaks. 
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