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ON HOLOMORPHIC DISTRIBUTIONS ON FANO THREEFOLDS

ALANA CAVALCANTE, MAURICIO CORRÊA, AND SIMONE MARCHESI

To Israel Vainsencher on the occasion of his 70th birthday

Abstract. This paper is devoted to the study of holomorphic distributions of dimension and
codimension one on smooth weighted projective complete intersection Fano manifolds threedi-
mensional, with Picard number equal to one. We study the relations between algebro-geometric
properties of the singular set of singular holomorphic distributions and their associated sheaves.
We characterize either distributions whose tangent sheaf or conormal sheaf are arithmetically
Cohen Macaulay (aCM) on smooth weighted projective complete intersection Fano manifolds
threefold. We also prove that a codimension one locally free distribution with trivial canonical
bundle on any Fano threefold, with Picard number equal to one, has a tangent sheaf which either
splits or it is stable.

1. Introduction

In complex manifolds, holomorphic distributions and foliations have been much studied (see [1],
[5], [8], [16]). An important problem is to analyse when the tangent and conormal sheaves split, as
well as the properties of singular schemes of distributions. With this properties make it possible to
classificate of codimension one distributions and study the stability of the tangent sheaf.

The relation between the tangent sheaf of a holomorphic distribution and its singular locus has
been recently of great interest. Indeed, L. Giraldo and A. J. Pan-Collantes showed in [16] that the
tangent sheaf of a foliation of codimension one on P3 splits if and only if its singular scheme Z is
aCM, and more recently, M. Corrêa, M. Jardim and R. Vidal Martins extended this result in [8],
showing that the tangent sheaf of a codimension one locally free distribution on P

n splits as a sum
of line bundles if and only if its singular scheme is aCM.

The section 3 is devoted precisely to extend this result for the smooth weighted projective com-
plete intersection Fano threefolds with Picard number one. Such varieties have been classified by
Iskovskih [20, 21] and Mukai [26]. The index of X is a basic invariant of these manifolds. This is
the largest integer ιX such that the canonical line bundle KX is divisible by ιX in Pic(X).

In [23], Kobayashi and Ochiai showed that the index ιX is at most dim(X) + 1 and ιX =
dim(X) + 1, if and only if X ≃ Pn. Moreover, ιX = dim(X), if and only if X ≃ Qn ⊂ Pn+1, where
Qn is a smooth quadric. In particular, when X is a Fano threefold, its can have index ιX = 4, 3, 2, 1.
Separating the varieties by the index, we prove the following result.

Theorem 1.1. Let F be a distribution of codimension one on a smooth weighted projective complete
intersection Fano threefold X, such that the tangent sheaf TF is locally free. If Z = Sing(F ) is the
singular scheme of F , then:

(1) If ιX = 3 and TF either splits as a sum of line bundles or is a spinor bundle, then Z is
arithmetically Buchsbaum, with h1(Q3, IZ(r − 2)) = 1 being the only nonzero intermediate
cohomology for Hi(IZ ).
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Conversely, if Z is arithmetically Buchsbaum with h1(Q3, IZ(r − 2)) = 1 being the only
nonzero intermediate cohomology for Hi(IZ) and h2(TF (−2)) = h2(TF (−1− c1(TF ))) = 0,
then TF either split or is a spinor bundle.

(2) If ιX = 2 and TF has no intermediate cohomology, then H1(X, IZ(r + t)) = 0 for t < −6
and t > 8. Conversely, if H1(X, IZ(r+ t)) = 0 for t < −6 and t > 8, and H2(X,TF (t)) = 0
for t ≤ 8 and H1(X,TF (s)) = 0 for s 6= −t − ιX − c1(TF ), then TF has no intermediate
cohomology.

(3) If ιX = 1 and TF has no intermediate cohomology, then H1(X, IZ(r + t)) = 0 for t < −4
and t > 4. Conversely, if H1(X, IZ(r+ t)) = 0 for t < −4 and t > 4, and H2(X,TF (t)) = 0
for t ≤ 4 and H1(X,TF (s)) = 0 for s 6= −t − ιX − c1(TF ), then TF has no intermediate
cohomology.

In section 4 we will focus on the conormal sheaf N∗
F

of a foliation of dimension one on Fano
threefold. M. Corrêa, M. Jardim and R. Vidal Martins showed in [8] that the conormal sheaf N∗

F

of a foliation of dimension one on Pn splits if and only if its singular scheme Z is arithmetically
Buchsbaum with h1(IZ(d − 1)) = 1 being the only nonzero intermediate cohomology. We manage
to extend the mentioned result for any Fano threefolds and obtain the following result.

Theorem 1.2. Let F be a distribution of dimension one on a smooth weighted projective complete
intersection Fano threefold X, with index ιX and Picard number one. If Z = Sing(F ) is the singular
scheme of F , then:

(1) If N∗
F

is arithmetically Cohen Macaulay, then Z is arithmetically Buchsbaum, with h1(X, IZ(r)) =
1 being the only nonzero intermediate cohomology for Hi(IZ).

(2) If Z is arithmetically Buchsbaum with h1(X, IZ(r)) = 1 being the only nonzero intermediate
cohomology for Hi(IZ) and h2(N∗

F
) = h2(N∗

F
(−c1(N

∗
F
)− ιX)) = 0 and ιX ∈ {1, 2, 3}, then

N∗
F

is arithmetically Cohen Macaulay.

We addrees the properties of their singular schemes of codimension one holomorphic distributions
on a threefold in section 5. D. Cerveau and A. Lins Neto in [7] have classified codimension one
foliations on P

3 with trivial canonical bundle. In [5], O. Calvo-Andrade, M. Corrêa and M. Jardim
have studied codimension distributions by analyzing the properties of their singular schemes and
tangent sheaves. In [28], F. Loray, J. Pereira and F. Touzet have studied codimension one foliation,
with numerically trivial canonical bundle, on Fano threefolds with Picard number one.

In [5], O. Calvo-Andrade, M. Corrêa and M. Jardim showed a cohomological criterion for the
connectedness of the singular scheme of codimension one distributions on P3 [5, Theorem 3.7]. We
extend this result for the others Fano threefolds with Picard number one. More precisely, we prove
the following result.

Theorem 1.3. Let F be a distribution of dimension one on a smooth weighted projective complete
intersection Fano threefold X, with index ιX and Picard number one. Denote by C the component
of pure dimension one of Z = Sing(F ). If h2(TF (−r)) = 0 and C ⊂ X, C 6= ∅, then Z = C is
connected and TF is locally free. Conversely, for r 6= ιX , if Z = C and it is connected, then TF is
locally free and h2(TF (−r)) = 0.

In section 6 we will prove that if F is a codimension one distribution on Fano threefold with
tangent sheaf locally free and c1(TF ) = 0, then TF is either split or stable.

In [5], O. Calvo-Andrade, M. Corrêa and M. Jardim showed that if F is a codimension one
distribution on P

3 with TF is locally free and c1(TF ) = 0, then TF is either split or stable. We
prove that this in fact holds for any Fano threefold with X Picard number ρ(X) = 1.

Theorem 1.4. Let F be a codimension one distribution on a Fano threefold with X Picard number
ρ(X) = 1. If TF is locally free and c1(TF ) = 0, then TF is either split or stable.
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Notation and Conventions. We always work over the field C of complex numbers. Given a
complex variety X , we denote by TX the tangent bundle (Ω1

X)∗ and to simplify the notation, given
a distribution F let us write Z := Sing(F ).

Assume that the Picard Group of X is Z. We will denote E(t) = E ⊗OX
OX(t) for t ∈ Z when

E is a vector bundle on X, and OX(1) denotes the its ample generator.
If F is a sheaf on X, we denote by hi(X,F ) the dimension of the complex vector space Hi(X,F ).

Remark 1.5. [18, Proposition 1.10] For any holomorphic vector bundle E of rank r,

k
∧

E ≃
r−k
∧

E∗ ⊗ detE.

In particular, if E is a rank 2 reflexive sheaf, then E∗ = E ⊗ (detE)∗.

2. Preliminaries

In this section we recall some basic facts of the theory. Throughout this section, unless otherwise
noted, X denotes a smooth weighted projective complete intersection Fano threefold with Picard
number one.

2.1. Fano manifolds. A compact complex manifold X is Fano if its anticanonical line bundle
OX(−KX) ≃

∧n
TX is ample.

Definition 2.2. We say that X ⊂ P(a0, ..., aN ) is a smooth n-dimensional weighted complete in-
tersection in a weighted projective space, when X is the scheme-theoretic zero locus of c = N − n
weighted homogeneous polynomials f1, ..., fc of degrees d1, ..., dc.

Smooth weighted projective complete intersection Fano threefold of Picard number one group
have been classified by Iskovskikh [20, 21] and Mukai [26]. They are:

(a) the projective space P3;
(b) a quadric hypersurface Q3 = X2 ⊂ P

4;
(c) a cubic hypersurface X3 ⊂ P4;
(d) an intersection X2,2 of two quadric hypersurfaces in P5;
(e) a hypersurface of degree 4 in the weighted projective space X4 ⊂ P(1, 1, 1, 1, 2);
(f) a hypersurface of degree 6 in the weighted projective space X6 ⊂ P(1, 1, 1, 2, 3);
(g) an intersection X2,3 of a quadric and a cubic in P5;
(h) an intersection X2,2,2 of three quadrics in P6;
(i) an intersection of a quadratic cone and a hypersurface of degree 4 in P(1, 1, 1, 1, 1, 2).

A basic invariant of a Fano manifold is its index.

Definition 2.3. The index of X is the maximal integer ιX > 0 dividing −KX in Pic(X), i.e.
−KX = ιX ·H, with H ample.

Theorem 2.4. [23] Let X be Fano, dim(X) = n. Then the index ιX is at most n+ 1; moreover, if
ιX = n+ 1, then X ≃ Pn, and if ιX = n, then X is a quadric hypersurface Qn ⊂ Pn+1.
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By Theorem 2.4, a Fano threefold X can have ιX ∈ {1, 2, 3, 4}. Then, ιX = 4 implies X = P3,
while ιX = 3, implies that X is a smooth quadric hypersurface Q3 in P4. In case ιX = 2, the variety
X is called a del Pezzo threefold, while ιX = 1, the variety X is called a prime Fano threefold.

By [12, Theorem 3.3.4],

(2.5) KX
∼= OX





c
∑

j=1

dj −
N
∑

i=0

ai





In particular, when X is Fano, its index is

(2.6) ιX :=
N
∑

i=0

ai −
c

∑

j=1

dj .

Let St be the t-th graded part of S/(f1, ..., fc). By [10, Lemma 7.1],

(2.7) Hi(X,OX(t)) ∼=







St if i = 0;
0 if 1 ≤ i ≤ n− 1;
S−t+ιX if i = n.

Let Y be an n-dimensional Fano manifold with ρ(Y ) = 1, and denote by OY (1) the ample
generator of Pic(Y ). Let X ∈

∣

∣OY (d)
∣

∣ be a smooth divisor. We have the following exact sequences:

(2.8) 0 → Ωq
Y (t− d) → Ωq

Y (t) → Ωq
Y (t)|X → 0,

and

(2.9) 0 → Ωq−1
X (t− d) → Ωq

Y (t)|X → Ωq
X(t) → 0.

2.10. Cohomology of cotangent sheaf. In this subsection we address important facts about the
cohomology of X with coefficients in an analytic coherent sheaf.

Let p, q and t be integers, with p and q non-negative. Then,

hp
(

P
n,Ωq

Pn(t)
)

=



















(

t+n−q
t

)(

t−1

q

)

for p = 0, 0 ≤ q ≤ n and t > q,

1 for t = 0 and 0 ≤ p = q ≤ n,
(

−t+q
−t

)(

−t−1

n−q

)

for p = n, 0 ≤ q ≤ n and t < q − n,

0 otherwise.

Throughout the work, we refer to this formula as classical Bott’s formula.
In [33], Snow showed a vanishing theorem for the cohomology of Ωq(t) for quadric hypersurfaces

X = Qn in P
n+1 and for a Grassmann manifold X = Gr(s,m) of s-dimensional subspaces of Cm.

Theorem 2.11. [33] [Bott’s formula for Quadric] Let X be a nonsingular quadric hypersurface of
dimension n.

(1) If −n+ q ≤ k ≤ q and k 6= 0 and k 6= −n+ 2q, then Hp(X,Ωq(k)) = 0 for all p;
(2) Hp(X,Ωq) 6= 0 if and only if p = q;
(3) Hp(X,Ωq(−n+ 2q)) 6= 0 if and only if p = n− q;
(4) If k > q, then Hp(X,Ωq(k)) 6= 0 if and only if p = 0;
(5) If k < −n+ q, then Hp(X,Ωq(k)) 6= 0 if and only if p = n.

In [12], Dolgachev generalized the classical Bott’s formula for the cohomology of twisted sheaves

of differentials to the case of weighted projective spaces (Ω
q

P(t)) as follows:
Let P = P(a0, . . . , aN ) = Proj

(

S(a0, . . . , aN )
)

be a weighted projective space.
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Consider the sheaves of OP-modules Ω
q

P(t) defined in [12, Section 2.1.5] for q, t ∈ Z, q ≥ 0. If
U ⊂ P denotes the smooth locus of P, and OU (t) is the line bundle obtained by restricting OP(t) to

U , then Ω
q

P(t)|U = Ωq
U ⊗ OU (t). The cohomology groups Hp

(

P,Ω
q

P(t)
)

are described by:

Theorem 2.12. [12, Section 2.3.2] Let hp
(

P,Ω
q

P(t)
)

= dimHp
(

P,Ω
q

P(t)
)

. Then:

- h0
(

P,Ω
q

P(t)
)

=
∑q

i=0

(

(−1)i+q
∑

#J=i dimC

(

St−aJ

)

)

, where J ⊂ {0, . . . , N} and aJ :=
∑

i∈J ai;

- h0
(

P,Ω
q

P(t)
)

= 0 if t < min{
∑

j∈J aij |#J = q};

- hp
(

P,Ω
q

P(t)
)

= 0 if p 6∈ {0, q, N};

- hp
(

P,Ω
p

P(t)
)

= 0 if t 6= 0 and p /∈ {0, N}.

In particular, if q ≥ 1, then

(2.13) h0(P,Ωq
P
(t)) = 0 for any t ≤ q.

Notice that P(a0, . . . , aN ) = PN is a projective space we obtain the classical Bott’s formulas.
Now assume that P has only isolated singularities, let d > 0 be such that OP(d) is a line bundle

generated by global sections, and X ∈
∣

∣OP(d)
∣

∣ a smooth hypersurface. We will use the cohomology

groups Hp
(

P,Ω
q

P(t)
)

to compute some cohomology groups Hp
(

X,Ωq
X(t)

)

. Note that X is contained
in the smooth locus of P, so we have an exact sequence as in (2.9):

(2.14) 0 → Ωq−1
X (t− d) → Ω

q

P(t)|X → Ωq
X(t) → 0.

Tensoring the sequence

0 → OP(−d) → OP → OX → 0.

with the sheaf Ω
q

P(t), and noting that Ω
q

P(t) ⊗ OP(−d) ∼= Ω
q

P(t − d), we get an exact sequence as in
(2.8):

(2.15) 0 → Ω
q

P(t− d) → Ω
q

P(t) → Ω
q

P(t)|X → 0.

Now, we will conclude this section by recalling the cohomological computations on weighted
complete intersections X. The next theorem in terms of cohomology of X, is due to Flenner:

Theorem 2.16. [14, Satz 8.11] Let X be a weighted complete intersection. Then,

- hq(X,Ωq
X) = 1 for 0 ≤ q ≤ n, q 6= n

2
.

- hp
(

X,Ωq
X(t)

)

= 0 in the following cases
- 0 < p < n, p+ q 6= n and either p 6= q or t 6= 0;
- p+ q > n and t > q − p;
- p+ q < n and t < q − p.

2.17. aCM and aB schemes. A closed subscheme Y ⊂ X is arithmetically Cohen-Macaulay
(aCM) if its homogeneous coordinate ring S(Y ) = k[x0, . . . , xn]/I(Y ) is a Cohen-Macaulay ring.

Equivalently, Y is aCM if Hp
∗ (OY ) = 0 for 1 ≤ p ≤ dim(Y )− 1 and H1

∗ (IY ) = 0 (cf. [6]). From
the long exact sequence of cohomology associated to the short exact sequence

0 → IY → OX → OY → 0

one also deduces that Y is aCM if and only if Hp
∗ (IY ) = 0 for 1 ≤ p ≤ dim (Y ).

Similarly, a closed subscheme in X is arithmetically Buchsbaum (aB) if its homogeneous coordi-
nate ring is a Buchsbaum ring (see [35]). Clearly, every aCM scheme is arithmetically Buchsbaum,
but the converse is not true: the union of two disjoint lines is arithmetically Buchsbaum, but not
aCM.
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2.18. Rank 2 vector bundles on quadrics. Let E be rank 2 vector bundle on a smooth quadric
Qn ⊂ Pn+1, with n ≥ 3. We set

R = ⊕
t≥0

H0(Qn,OQn(t)) and m = ⊕
t>0

H0(Qn,OQn(t)),

and also
Hi

∗(Q
n, E) = ⊕

t∈Z

Hi(Qn, E(t)) for i = 0, . . . , n,

which are modules of finite length on the ring R.

Definition 2.19. We say that E is k-Buchsbaum, with k ≥ 0, if for all integers p, q such that
1 ≤ p ≤ q − 1 and 3 ≤ q ≤ n it holds

m
k ·Hp

∗ (Q
′, E|Q′) = 0,

where Q′ is a general q-dimensional linear section of Qn, i.e. Q′ is a quadric hypersurface cut out
on Qn by a general linear space L ⊂ Pn+1 of dimension q + 1, that is Q′ = Qn ∩ L.

Remark 2.20. Note that E is 0-Buchsbaum if and only if E has no intermediate cohomology, i.e.
Hi(Qn, E(t)) = 0 for every t ∈ Z and 1 ≤ i ≤ n − 1. Such a bundle is also called arithmetically
Cohen-Macaulay.
Observe also that E is 1-Buchsbaum if and only if E has every intermediate cohomology module
with trivial structure over R. Such a bundle is also called arithmetically Buchsbaum.

Now, we recall the definition and some properties of spinor bundles on Qn. For more details see
[29, 30].

Let Sk be spinor variety which parametrizes the family of (k − 1)−planes in Q2k−1 or one of the
two disjoint families of k−planes in Q2k.

We have dim(Sk) = (k(k + 1))/2, Pic(Sk) = Z and h0(Sk,O(1)) = 2k. Spinor varieties are
rational homogeneous manifolds of rank 1. When n = 2k − 1 is odd, consider for all x ∈ Q2k−1 the
variety

{Pk−1 ∈ Gr(k − 1, 2k)/x ∈ P
k−1 ⊂ Q2k−1}.

This variety is isomorphic to Sk−1 and we denote it by (Sk−1)x. Then we have a natural embedding

(Sk−1)x → Sk.

Considering the linear spaces spanned by these varieties, we have for all x ∈ Q2k−1 a natural
inclusion H0((Sk−1)x,O(1))∗ → H0(Sk,O(1))∗ and then an embedding

s : Q2k−1 → Gr(2k−1 − 1, 2k − 1),

in the Grassmannian of (2k−1 − 1)-subspaces of P2k−1.

It is well known that S1 ≃ P1, S2 ≃ P3. The embedding s : Q3 → Gr(1, 3) corresponds to a
hyperplane section.

Definition 2.21. Let U be the universal bundle of the Grassmannian. We call s∗U = S the spinor
bundle on Q2k−1, whose rank is 2k−1.

The spinor bundle S on Q3 is just the restriction of the universal sub-bundle on the 4-dimensional
quadric.

Remark 2.22. The spinor bundle on Q3 is a globally generated vector bundle of rank 2, by con-
struction.

The next theorem shows the existence of bundles that are indecomposable on quadric.
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Theorem 2.23. [29, Theorem 2.1] The spinor bundle on Q3 is stable.

We have that S is the unique indecomposable bundle of rank 2 on Q3 with c1(S) = −1 and
c2(S) = 1, (see [3]).

2.24. Holomorphic Distributions. Let us now recall facts about holomorphic distributions on
complex projective varieties. For more details about distributions and foliations see [13, 8, 9, 5].

Definition 2.25. Let X be a smooth complex manifold. A codimension k distribution F on X is
given by an exact sequence

(2.25) F : 0 −→ TF

φ
−→ TX

π
−→ NF −→ 0,

where TF is a coherent sheaf of rank rF := dim(X) − k, and NF := TX/φ(TF) is a torsion free
sheaf.

The sheaves TF and NF are called the tangent and the normal sheaves of F , respectively.
The singular set of the distribution F is defined by Sing(F ) = {x ∈ X |(NF )x is not a free OX,x−

module}.
The conormal sheaf of F is N∗

F
.

A distribution F is said to be locally free if TF is a locally free sheaf.
By definition, Sing(F ) is the singular set of the sheaf NF . It is a closed analytic subvariety of X

of codimension at least two, since by definition NF is torsion free.

Definition 2.26. A foliation is an integrable distribution, that is a distribution

F : 0 −→ TF

φ
−→ TX

π
−→ NF −→ 0

whose tangent sheaf is closed under the Lie bracket of vector fields, i.e. [φ(TF ), φ(TF )] ⊂ φ(TF ).

Clearly, every distribution of codimension dim(X)− 1 is integrable.

From now on, we will consider codimension one distributions on Fano threefold X. Thus, sequence
(2.25) simplifies to

(2.26) F : 0 −→ TF

φ
−→ TX

π
−→ IZ/X(r) −→ 0,

where TF is a rank 2 reflexive sheaf and r is an integer such that r = c1(TX)− c1(TF ). Observe
that NF = IZ/X(r) where Z is the singular scheme of F .

A codimension one distribution on X can also be represented by a section ω ∈ H0(Ω1
X(r)), given

by the dual of the morphism π : TX → NF . On the other hand, such section induces a sheaf map
ω : OX → Ω1

X(r). Taking duals, we get a cosection

ω∗ : (Ω1
X(r))∗ = TX(−r) → OX

whose image is the ideal sheaf IZ/X of the singular scheme. The kernel of ω∗ is the tangent sheaf
F of the distribution twisted by O(−r).

Remark 2.27. From this point of view, the integrability condition is equivalent to ω ∧ dω = 0.

3. Tangent sheaf vs. singular scheme

In this section, all the distributions that we will consider will be defined for Fano manifolds as
described in Section 2.1, of codimension one, and with singular set of codimension ≥ 2.

For codimension one foliations in P3, L. Giraldo and A. J. Pan Collantes showed in [16] that the
tangent sheaf is locally free if and only if the singular scheme is a curve, i.e. a Cohen-Macaulay
scheme of pure dimension one, cf. [[16], Theorem 3.2]. More recently, O. Calvo-Andrade, M. Corrêa,
and M. Jardim obtained in [5] the following generalization of this theorem.
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Lemma 3.1. [5, Lemma 2.1] The tangent sheaf of a codimension one distribution is locally free if
and only if its singular locus has pure codimension 2.

We characterize when the tangent sheaf splits (i.e. direct sum of line bundles) in terms of the
geometry of the singular scheme of the distribution.

The projective space case has been already considered. Indeed, when ιX = 4, L. Giraldo and A.
J. Pan-Collantes showed in [16], that the tangent sheaf of a foliation of dimension 2 on P3, splits if
and only if its singular scheme Z is aCM [16, Theorem 3.3].

Let us now consider the quadric hypersurface Q3 in P4, i.e. ιX = 3. Let E a bundle on Q3. It is
well known that if E splits on Q3, then:

Hi(Q3, E(t)) = 0 for 0 < i < 3, for all t ∈ Z.

The following result characterizes when the tangent sheaf of a distribution of dimension 2 on Q3,
is split or spinor.

Theorem 3.2. Let F be a distribution on Q3 of codimension one, such that the tangent sheaf TF is
locally free. If TF either splits as a sum of line bundles or is a spinor bundle, then Z is arithmetically
Buchsbaum, with h1(Q3, IZ(r− 2)) = 1 being the only nonzero intermediate cohomology for Hi(IZ).
Conversely, if Z is arithmetically Buchsbaum with h1(Q3, IZ(r − 2)) = 1 being the only nonzero
intermediate cohomology for Hi(IZ) and h2(TF (−2)) = h2(TF (−1− c1(TF ))) = 0, then TF either
split or is a spinor bundle.

Proof: Suppose that TF either split or is a spinor bundle. By considering the short exact sequence
(2.26), after tensoring with OQ3(t), and taking the long exact sequence of cohomology we get:

· · · → H1(Q3, TF (t)) → H1(Q3, TQ3(t)) → H1(Q3, IZ(r + t)) →(3.2)

→ H2(Q3, TF (t)) → H2(Q3, TQ3(t)) → H2(Q3, IZ(r + t)) → · · ·

Since TF has no intermediate cohomology, we have that

H1(Q3, TF (t)) = H2(Q3, TF (t)) = 0 for all t ∈ Z,

thus,

H1(Q3, TQ3(t)) ≃ H1(Q3, IZ(r + t)).

By Bott’s formula for quadrics (Theorem 2.11), we have that H1(Q3, TQ3(t)) = 0 for all t 6= −2,
i.e. H1(Q3, TQ3(−2)) 6= 0. Hence, H1(Q3, IZ(r − 2)) 6= 0 and Z is arithmetically Buchsbaum.

To prove the converse, suppose that Z satisfies the properties in the statement and that h2(TF (−2)) =
h2(TF (−1− c1(TF ))) = 0.

Consider the long exact cohomology sequence (3.2) for all t 6= −2. By Theorem 2.11, we obtain
that H1(Q3, TQ3(t)) = 0, for all t 6= −2. Applying Serre duality and Bott’s formula, respectively, we
get H0(Q3, IZ(r+ t)) = H3(OQ3(−t− r− 3)) = 0, for all r 6= 2. Thus, we have H1(Q3, TF (t)) = 0.

By Serre duality, we conclude that

0 = H1(Q3, TF (t)) = H2(Q3, TF (s)), for all s 6= −1− c1(TF ),

where s = −t − 3 − c1(TF ). As by hypothesis h2(TF (−1 − c1(TF ))) = 0, we conclude that
H2(Q3, TF (s)) = 0 for all s. Then, for all t 6= −2, TF either split or is a spinor bundle.

Now, consider the long exact cohomology sequence (3.2), with t = −2. By Bott’s formula, we
have that H0(Q3, TQ3(−2)) = 0 and H2(Q3, TQ3(−2)) = 0. By hypothesis, we get h2(TF (−2)) = 0
and h1(Q3, IZ(r − 2)) = 1. Moreover, applying Serre duality and Bott’s formula, respectively, we
get H0(Q3, IZ(r − 2)) = H3(OQ3(−1− r)) = 0, for all r 6= 2. So, from the exact sequence

0 → H1(Q3, TF (−2)) → H1(Q3, TQ3(−2)) ≃ C
β
−→ H1(Q3, IZ(r − 2)) ≃ C → 0
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we conclude that H1(Q3, TF (−2)) = 0, since β is injective and ker(β) = H1(Q3, TF (−2)). Then,
for t = −2, TF either split or is a spinor bundle. Therefore, TF either split or is a spinor bundle,
for all t ∈ Z.

Based on the result in [5, Theorem 11.8], we can construct examples of codimension one distri-
bution on Q3.

Example 3.3. The bundle Spinor on Q3 twisted by OQ3(1−t), is the tangent sheaf of a codimension
one distribution F , for all t ≥ 0. Indeed, since the spinor bundle S is globally generated, S(t) is
globally generated, for all t ≥ 0. Moreover, its rank 2 reflexive sheaf on Q3, and S(t)⊗ TQ3 is also
globally generated, since TQ3 is globally generated. Now, apply [5, Theorem 11.8] with L = OQ3

to obtain the desired codimension one distribution

0 → S∗(−t) ≃ S(1− t) → TQ3 → IZ(r) → 0.

If ιX = 2, we characterize when the tangent sheaf of a distribution of dimension 2 on a smooth
weighted projective complete intersection del Pezzo Fano threefold X, has no intermediate cohomol-
ogy. More precisely, we prove the following results:

Lemma 3.4. Let X be a smooth weighted projective complete intersection del Pezzo Fano threefold.
Then, H2(X,Ω1

X(t)) = 0 for t > 4, and H1(X,Ω2
X(t)) = 0 for t > 10.

We omit the proof of the previous lemma, being a computation of the cohomolology groups
Hp(X,Ωq

X(t)) with p, q ∈ {1, 2} and p 6= q, where X is each one of the varieties with index two
described in Section 2.1. For this calculation, we use the sequences and cohomology formulas of the
Section 2.10. We summarize the computations in the following table:

X ιX H2(X,Ω1
X(t)) t H1(X,Ω2

X(t)) t
X3 2 0 t > 1 0 t > 4
X2,2 2 0 t > 0 0 t > 2
X4 2 0 t > 2 0 t > 6
X6 2 0 t > 4 0 t > 10

Table 1. Values of t for which H1(X,Ω2
X(t)) = H2(X,Ω1

X(t)) = 0.

Theorem 3.5. Let F be a distribution of codimension one on a smooth weighted projective complete
intersection del Pezzo Fano threefold X, such that the tangent sheaf TF is locally free. If TF has
no intermediate cohomology, then H1(X, IZ(r + t)) = 0 for t < −6 and t > 8. Conversely, if
H1(X, IZ(r+ t)) = 0 for t < −6 and t > 8, and H2(X,TF (t)) = 0 for t ≤ 8 and H1(X,TF (s)) = 0
for s 6= −t− ιX − c1(TF ), then TF has no intermediate cohomology.

Proof: Suppose that TF has no intermediate cohomology. By considering the short exact sequence
(2.26), after tensoring with OX(t), and taking the long exact sequence of cohomology we get:

· · · → H1(X,TF (t)) → H1(X,TX(t)) → H1(X, IZ(r + t)) →(3.5)

→ H2(X,TF (t)) → H2(X,TX(t)) → H2(X, IZ(r + t)) → · · ·

Since TF has no intermediate cohomology, we have that

H1(X,TF (t)) = H2(X,TF (t)) = 0 for all t ∈ Z.

Thus, we get H1(X,TX(t)) ≃ H1(X, IZ(r + t)).
By Remark 1.5, we have that H1(X,TX(t)) ≃ H1(X,Ω2

X(t + 2)) and by Lemma 3.4, we get
H1(X,TX(t)) = 0, for t > 8. Moreover, by using Serre duality, we obtain H1(X,TX(t)) ≃



10 ALANA CAVALCANTE, MAURICIO CORRÊA, AND SIMONE MARCHESI

H2(X,Ω1
X(−t − 2)) and thus, by Lemma 3.4, we get H1(X,TX(t)) = 0, for t < −6. Therefore,

H1(X, IZ(r + t)) = 0 for t < −6 and t > 8.
Conversely, suppose that h2(TF (t)) = 0 for t ≤ 8. Consider the long exact cohomology sequence

(3.5). Applying Serre duality and Theorem 2.16, respectively, we get H2(X,TX(t)) = 0 for t > −2.
Since by hypothesis, h1(X, IZ(r + t)) = 0 for t < −6 and t > 8, we get H2(X,TF (t)) = 0 for t > 8.
Thus, H2(X,TF (t)) = 0 for all t ∈ Z.

By Serre Duality and by Remark 1.5, we conclude that

0 = H2(X,TF (t)) = H1(X,TF (s)),

where s = −t− ιX − c1(TF ). As by hipothesis h1(TF (s)) = 0 for s 6= −t− ιX − c1(TF ), we conclude
that H1(X,TF (t)) = 0 for all t ∈ Z. Therefore, TF has no intermediate cohomology.

In [2], Arrondo e Costa classify all aCM bundles on the Fano threefolds Xd ⊂ P d+1 d = 3, 4, 5
of index 2. Such bundles are isomorphic to a twist of either SL, or SC , or SE , where L ⊂ Xd is a
line, C ⊂ Xd is a conic and E ⊂ Xd is an elliptic curve of degree d+ 2, respectively. Moreover, the
authors showed that SL(1), SC and SE(1) are globally generated vector bundles.

By using the result [5, Theorem 11.8], we can construct examples of codimension one distribution
on Xd. Consider E ≃ SL(1);SC ;SE(1). We have that E is generated by global sections.

Example 3.6. Let E be a globally generated rank 2 reflexive sheaf on Xd. Then E∗(−t) is the tangent
sheaf of a codimension one distribution F , for all t ≥ 0. Indeed, since E is globally generated, E(t)
is globally generated, for all t ≥ 0. Moreover, its rank 2 reflexive sheaf on Xd, and E(t) ⊗ TXd

is also globally generated, since TXd is globally generated. Now, apply the Theorem [5, Theorem
11.8] with L = OXd

to obtain the desired codimension one distribution

0 → E∗(−t) → TXd → IZ(r) → 0.

Finally, if ιX = 1, we characterize when the tangent sheaf of a distribution of dimension 2 on
a smooth weighted projective complete intersection prime Fano threefold X, has no intermediate
cohomology. More precisely, we prove the following results.

Lemma 3.7. Let X be a smooth weighted projective complete intersection prime Fano threefold.
Then, H1(X,Ω2

X(t)) = 0 for t > 5, and H2(X,Ω1
X(t)) = 0 for t > 3.

We will omit the proof of the previuos lemma, being a very similar computation of the del Pezzo
Fano’s case. We summarize the computations in the following table:

X ιX H2(X,Ω1
X(t)) t H1(X,Ω2

X(t)) t
X2,3 1 0 t > 2 if X2,3 ⊂ X2 and t >

3 if X2,3 ⊂ X3

0 t > 5 if X2,3 ⊂ X2 and t >
5 if X2,3 ⊂ X3

X2,2,2 1 0 t > 3 0 t > 5
Y 1 0 t > 5 if Y ⊂ C2 and t > 5 if

Y ⊂ X4

0 t > 9 if Y ⊂ C2 and t > 3 if
Y ⊂ X4

Table 2. Values of t for which H1(X,Ω2
X(t)) = H2(X,Ω1

X(t)) = 0.

Theorem 3.8. Let F be a distribution of codimension one on a smooth weighted projective complete
intersection prime Fano threefold X, such that the tangent sheaf TF is locally free. If TF has
no intermediate cohomology, then H1(X, IZ(r + t)) = 0 for t < −4 and t > 4. Conversely, if
H1(X, IZ(r+ t)) = 0 for t < −4 and t > 4, and H2(X,TF (t)) = 0 for t ≤ 4 and H1(X,TF (s)) = 0
for s 6= −t− ιX − c1(TF ), then TF has no intermediate cohomology.
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Proof: Suppose that TF has no intermediate cohomology. Consider, for each t ∈ Z, the exact
sequence

0 → TF (t) → TX(t) → IZ(r + t) → 0

and the long exact sequence of cohomology (3.5).
Since TF has no intermediate cohomology, we get

H1(X,TF (t)) = H2(X,TF (t)) = 0 for all t ∈ Z.

Thus, we have H1(X,TX(t)) ≃ H1(X, IZ(r + t)).
By Remark 1.5, we get that H1(X,TX(t)) ≃ H1(X,Ω2

X(t + 1)) and by Lemma 3.7, we get
H1(X,TX(t)) = 0, for t > 4. Moreover, using Serre duality, we obtain that H1(X,TX(t)) ≃
H2(X,Ω1

X(−t − 1)) and thus, by Lemma 3.7, we get H1(X,TX(t)) = 0, for t < −4. Therefore,
H1(X, IZ(r + t)) = 0 for t < −4 and t > 4.

Conversely, suppose that h2(TF (t)) = 0 for t ≤ 4. Consider the long exact cohomology sequence
(3.5). Applying Serre duality and Theorem 2.16, respectively, we get H2(X,TX(t)) = 0 for t > −1.
Since by hypothesis, h1(X, IZ(r + t)) = 0 for t < −4 and t > 4, we get H2(X,TF (t)) = 0 for t > 4.
Thus, we have H2(X,TF (t)) = 0 for all t ∈ Z.

By Serre Duality and by Remark 1.5, we obtain that

0 = H2(X,TF (t)) = H1(X,TF (s)),

where s = −t− ιX − c1(TF ). As by hipothesis h1(TF )(s) = 0 for s 6= −t− ιX − c1(TF ), we conclude
that H1(X,TF (t)) = 0 for all t ∈ Z. Therefore, TF has no intermediate cohomology.

In [25], Madonna classify aCM bundles on a prime Fano threefold X2g−2 := X of genus g. Let l
be a line in X and consider that E is associated to a line l in X with c1 = −1, c2 = 1. It holds that
E is generated by its global sections. Again, by using the result [5, Theorem 11.8], we can construct
examples of codimension one distribution on X.

Example 3.9. Let E be a globally generated rank 2 reflexive sheaf on a prime Fano threefold X.
Then E∗(−t) is the tangent sheaf of a codimension one distribution F , for all t ≥ 0.

4. Conormal sheaf vs. singular scheme

In this section, all the distributions that we will consider will be defined for Fano threefolds, of
codimension two, and with singular set of codimension ≥ 2.

Looking at Definition 2.25 we can alternatively define a foliation through a coherent subsheaf
N∗

F
of Ω1

X such that

(1) N∗
F

is integrable (dN∗
F

⊂ N∗
F

∧ Ω1
X) and

(2) the quocient Ω1
X/N∗

F
is torsion free.

The codimension of F is the generic rank of N∗
F

.
We characterize when the conormal sheaf is split, in terms of the geometry of the singular scheme

of the distribution. M. Corrêa, M. Jardim and R. Vidal Martins, showed in [8] that the conormal
sheaf of a foliation of dimension one on P

n splits if and only if its singular scheme is arithmetically
Buchsbaum with h1(IZ(d − 1)) = 1 being the only nonzero intermediate cohomology [8, Theorem
5.2].

Based in this result, we prove the following:

Theorem 4.1. Let F be an one-dimensional distribution on a smooth weighted projective com-
plete intersection Fano threefold X. If N∗

F
is aCM, then Z is arithmetically Buchsbaum, with

h1(X, IZ(r)) = 1 being the only nonzero intermediate cohomology for Hi(IZ).
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Proof: Suppose that N∗
F

is aCM. For the case ιX = 4, i.e. X ≃ P3, the result follows from Theorem
5.2 in [8].

Consider, for each t ∈ Z, the exact sequence

(4.2) 0 → N∗
F (t) → Ω1

X(t) → IZ(r + t) → 0,

where r is a integer such that r = c1(Ω
1
X)− c1(N

∗
F
). Taking the long exact sequence of cohomology

we get:

· · · → H1(X,N∗
F (t)) → H1(X,Ω1

X(t)) → H1(X, IZ(r + t)) →(4.3)

→ H2(X,N∗
F (t)) → H2(X,Ω1

X(t)) → H2(X, IZ(r + t)) → · · ·

Since N∗
F

has no intermediate cohomology, we have that

H1(X,N∗
F (t)) = H2(X,N∗

F (t)) = 0, for all t ∈ Z.

Thus, we get H1(X,Ω1
X(t)) ≃ H1(X, IZ(r + t)). By Theorem 2.16, H1(X,Ω1

X(t)) = 0 for all t 6= 0,
and h1(X,Ω1

X) = 1. Then, we have H1(X, IZ(r)) 6= 0 and Z is arithmetically Buchsbaum.

If X is a Fano threefold, meaning that K−1
X =

∧3
TX is ample, then the Kodaira vanishing

Theorem shows that Hq(X,OX) = 0 and Hq(X,O(K−1
X )) = 0 for q > 0, see [32].

A similar result for converse of Theorem 5.2 in [8] is the following:

Theorem 4.4. Let F be an one-dimensional distribution on a smooth weighted projective com-
plete intersection Fano threefold X, with index ιX ∈ {1, 2, 3}. If Z is arithmetically Buchsbaum
with h1(X, IZ(r)) = 1 being the only nonzero intermediate cohomology for Hi(IZ), and h2(N∗

F
) =

h2(N∗
F
(−c1(N

∗
F
)− ιX)) = 0, then N∗

F
is aCM.

Proof: Suppose that h2(N∗
F
) = h2(N∗

F
(−c1(N

∗
F
) − ιX)) = 0 and that Z is arithmetically Buchs-

baum with h1(Q3, IZ(r)) = 1 being the only nonzero intermediate cohomology.
Consider the long exact cohomology sequence (4.3), for all t 6= 0. By Theorem 2.16, we have that
H1(X,Ω1

X(t)) = 0, for all t 6= 0. Applying Serre duality and the Kodaira vanishing Theorem,
respectively, we get

H0(X, IZ(r + t)) = H3(OX(−r − t− ιX)) = 0 for r 6= −ιX .

Thus, we get H1(X,N∗
F
(t)) = 0 for t 6= 0.

By Serre duality and by Remark 1.5, we conclude that

0 = H1(X,N∗
F (t)) = H2(X, (N∗

F )∗(−t− ιX)) = H2(X,N∗
F (−t− ιX − c1(N

∗
F ))).

Let s = −c1(N
∗
F
)− t− ιX and t 6= 0. Thus, we get

H2(X,N∗
F (s)) = 0 for s 6= −ιX − c1(N

∗
F ).

Since by hypothesis h2(N∗
F
(s)) = 0 for s = −ιX − c1(N

∗
F
), we conclude that

H2(X,N∗
F
(t)) = 0. Then, for all t 6= 0, N∗

F
is aCM.

Now, consider the following piece of the long exact cohomology sequence (4.3), for t = 0 :

. . . → H1(X,N∗
F ) → H1(X,Ω1

X) ≃ C
β
−→ H1(X, IZ(r)) ≃ C → 0.

The map β is surjective and injective. Thus, ker(β) = H1(X,N∗
F
) is trivial, i.e.

H1(X,N∗
F
) = 0. As by hypothesis, h2(N∗

F
) = 0, we conclude that for t = 0, N∗

F
is aCM. Therefore,

N∗
F

is aCM for all t ∈ Z.

5. Properties of the singular locus of distributions

In this section we analyze the properties of their singular schemes of codimension one holomorphic
distributions on a threefold X.
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5.1. Numerical Invariants. Let F be a codimension one distribution on threefold X given as in
the exact sequence (2.26), with tangent sheaf TF and singular scheme Z.

Following [5, section 2.1], let Q be the maximal subsheaf of OZ/X of codimension > 2, so that
one has an exact sequence of the form

(5.2) 0 → Q → OZ/X → OC/X → 0

where C ⊂ X is a (possibly empty) subscheme of pure codimension 2.
The quotient sheaf is the structure sheaf of a subscheme C ⊂ Z ⊂ X of pure dimension 1.

Definition 5.3. If Z is a 1-dimensional subscheme, then Z has a maximal pure dimension 1 sub-
scheme C defining a sequence

(5.4) 0 → IZ → IC → Q → 0,

where Q is the maximal 0-dimensional subsheaf of OZ .

If X is a Kähler manifold of dimension n, and Z ⊂ X is an analytic subset of codimension k,
then

(5.5) ck(IZ) = (−1)k(k − 1)![Z],

(for more details, see [15]).
In the next theorem we obtain the following expressions for the Chern class of the tangent sheaf

in terms of the cycle of C. We will denote H = c1(OX(1)).

Theorem 5.6. Let F be a codimension one distribution on a threefold X, with ρ(X) = 1, given as
in the exact sequence (2.26), with tangent sheaf TF and singular scheme Z. Then,

c2(TF ) = c2(TX)− r ·K−1
X + r2H2 − [C],

and

c3(TF ) = c3(TX)− c3(IZ/X ) + rH · [C]−K−1
X · [C]− rH · c2(TX) + r2H2 ·K−1

X −H3r3.

Proof: Considering the exact sequence (2.26), we use that c(TX) = c(TF ) · c(IZ/X(r)) to obtain

(5.7)
c1(TX) = c1(TF ) + c1(IZ/X (r)),
c2(TX) = c1(TF ) · c1(IZ/X (r)) + c2(TF ) + c2(IZ/X(r)),
c3(TX) = c3(TF ) + c3(IZ/X (r)) + c1(TF ) · c2(IZ/X(r)) + c2(TF ) · c1(IZ/X(r)).

The first equation gives c1(TF ) = c1(TX) − rH. From the exact sequence (5.4), it follows that
c2(IZ/X (r)) = c2(IC/X(r)) = [C], thus substitution into the second equation yields

c2(TF ) = c2(TX)− rH ·K−1
X +H2r2 − [C].

Moreover, the substituting the expressions for the first and second Chern classes into the third
equation we obtain

(5.8) c3(TX) = c3(TF ) + c3(IZ/X (r)) +K−1
X · [C]− 2rH · [C] + r · c2(TX)− r2H2 ·K−1

X +H3r3.

Note that

(5.9) c3(IZ/X (r)) = c3(IZ/X ) + rH · c2(IZ/X ) +H2r3,

while

(5.10) c2(IZ/X ) = [C]−H2r2.

Substituting 5.10 into the equation 5.9, we obtain

(5.11) c3(IZ/X (r)) = c3(IZ/X ) + rH · [C],

and thus

(5.12) c3(TF ) = c3(TX)− c3(IZ/X ) + rH · [C]−K−1
X · [C]− rH · c2(TX) + r2H2 ·K−1

X −H3r3.
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5.13. Connectedness. Now, we will see when the singular locus of a codimension one distribution
is connected. In [5], O. Calvo-Andrade, M. Corrêa and M. Jardim present a homological criterion
for connectedness of the singular scheme of codimension 1 distributions on P3.

We will extend this criterion for others smooth weighted projective complete intersection Fano
threefold with Picard number one. Before, we need prove the vanishing of H1(TX(−r)) and
H2(TX(−r)).

Lemma 5.14. Let X be a smooth weighted projective complete intersection Fano threefold with
Picard number ρ(X) = 1. Then, H1(TX(−r)) = 0 for r > 6 and H2(TX(−r)) = 0 for r 6= ιX .

Proof: Suppose X a smooth weighted projective complete intersection Fano threefold. If ιX = 4, i.e.
X ≃ P3, by classical Bott’s formula we have that H1(TX(−r)) = 0 for all r and H2(TX(−r)) = 0
for r 6= 2. If ιX = 3, i.e. X ≃ Q3, by Bott’s formula for quadric, we have that H1(TX(−r)) = 0 for
r 6= 2 and H2(TX(−r)) = 0 for r 6= 3. If ιX = 2, by using Serre duality we get that H1(TX(−r)) =
H2(Ω1

X(r − 2)). By Table 3, comparing the values of t for which H2(Ω1
X(t)) = 0 with ιX = 2, we

can see that the common vanishing of cohomology group for these varieties, occurs when t > 4.
Then, H2(Ω1

X(r − 2)) = 0 for r > 6 and H2(TX(−r)) = 0 for r 6= 2 by theorem 2.16. If ιX = 1, by
using Serre duality we get H1(TX(−r)) = H2(Ω1

X(r − 1)). By Table 3, comparing the values of t
for which H2(Ω1

X(t)) = 0 with ιX = 1, we can see that the common vanishing of cohomology group
for these varieties, occurs when t > 3. Then, H2(Ω1

X(r − 1)) = 0 for r > 4 and H2(TX(−r)) = 0
for r 6= 1 by theorem 2.16. Now, comparing the values of r for which H1(TX(−r)) = 0, we can see
that the common vanishing of cohomology group considering all indices of X, occurs when r > 6
and H2(TX(−r)) = 0 for r 6= ιX .

Theorem 5.15. Let F be a codimension one distribution with singular scheme Z and let X be
a smooth weighted projective complete intersection Fano threefold with Picard number ρ(X) = 1.
If h2(TF (−r)) = 0 and C ⊂ X, C 6= ∅, then Z is connected and of pure dimension 1, so that
TF is locally free. Conversely, for r 6= ιX , if Z = C is connected, then TF is locally free and
h2(TF (−r)) = 0.

Proof: Twisting the exact sequence (2.26) by OX(−r) and passing to cohomology we obtain,

H1(TX(−r)) → H1(IZ/X ) → H2(TF (−r)) → H2(TX(−r)).

By Lemma above, we get that H1(TX(−r)) = 0 for r > 6.
If h2(TF (−r)) = 0, then h1(IZ/X ) = 0, for r > 6. It follows from the sequence

0 → IZ/X → OX → OZ/X → 0

that
H0(OX) → H0(OZ/X) → 0,

hence h0(OZ/X ) = 1. From the sequence (5.2), we get

0 → H0(Q) → H0(OZ/X) → H0(OC/X) → 0

Thus either h0(OC/X) = 1, and Q = 0 and C is connected, or length(Q) = 1 and C is empty. This
second possibility is not valid because by hipothesis C 6= ∅. It follows that Z = C must be connect
and of pure dimension 1, and thus, by Lemma 3.1, TF is locally free.

Conversely, assume that Z = C is connected. Thus Z must be of pure dimension 1, and Lemma
3.1 implies that TF is locally free. It also follows that h1(IZ/X ) = 0, using Serre duality and the

formula 2.7. Since h2(TX(−r)) = 0 for r 6= ιX , we conclude that h2(TF (−r)) = 0, as desired.
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Corollary 5.16. If F is a codimension one distribution on X whose tangent sheaf splits as a sum
of line bundles, then its singular scheme is connected.

Proof: Assuming that TF = OX(r1) ⊕ OX(r2), then clearly h2(TF (−r)) = 0, where r = r1 + r2.
The result follows from Theorem 5.15.

Corollary 5.17. Let F be a codimension one distribution on X with locally free tangent sheaf. If
T ∗

F
is ample, then its singular scheme is connected.

Proof: We have, by Serre duality,

H2(TF (−r)) ≃ H1(T ∗
F (r)⊗KX) = H1(T ∗

F (r − c1(TX))⊗OX(c1(TX))⊗KX).

Observe that T ∗
F
(r − c1(TX))⊗OX(c1(TX))⊗KX = T ∗

F
⊗ det(T ∗

F
) ⊗ OX(c1(TX))⊗KX ; since

T ∗
F

and OX(c1(TX)) are ample, then, by Griffiths Vanishing Theorem [17], we get

h2(TF (−r)) = h1(T ∗
F ⊗ det(T ∗

F )⊗OX(c1(TX))⊗KX) = 0.

The result follows from Theorem 5.15.

6. Stability

In this section we will prove that If TF is locally free with c1(TF ) = 0, then TF is either split or
stable. Firstly, we will prove this for quadrics.

Theorem 6.1. Let F be a codimension one distribution on Q3. If c1(TF ) = 0, then TF is either
split or stable.

Proof: Since c1(TF ) = 0, we have the sequence

F : 0 → TF → TQ3 → IZ/Q3(3) → 0.

Suppose that F is non stable and non split. Let α ∈ H0(TF ) be a nonzero section. This section
induces a section σ on TQ3. Letting IΓ := cokerα, we have the following diagram after applying
the Snake Lemma:

0

��

0

��

OQ3

α

��

OQ3

σ

��

0 // TF
//

��

TQ3 //

��

IZ(3) // 0

0 // IΓ
//

��

G //

��

IZ(3) // 0

0 0

Dualizing the last line of diagram, we obtain

0 → OQ3(−3) → G
∗ → OQ3 → Ext1(IZ(3),OQ3) → Ext1(G ,OQ3) → Ext1(IΓ,OQ3)

→ Ext2(IZ(3),OQ3) → 0.
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By the sequence 0 → IZ → OQ3 → OZ → 0 we have the long exact sequence

0 → Hom(OZ ,OQ3) → Hom(OQ3 ,OQ3) → Hom(IZ ,OQ3) → Ext1(OZ ,OQ3) → · · · .

Because Z is a curve of codimension 2 we have Ext i(OZ ,OQ3) = 0 for i < 2, and thus

OQ3 = Hom(OQ3 ,OQ3) ≃ Hom(IZ ,OQ3).

Dualizing the first line of diagram, we obtain

0 → OQ3(−3) → Ω1
Q3 → F

∗ →

→ Ext1(IZ(3),OQ3) → Ext1(TQ3,OQ3) → Ext1(F ,OQ3 ) →

→ Ext2(IZ(3),OQ3) → Ext2(TQ3,OQ3) → · · ·

A sheaf E is locally free if and only if Ext i(E,OX) = 0 for each i ≥ 1. Thus,

Ext1(F ,OQ3 ) = Ext2(TQ3,OQ3) = 0

and by the sequence above we get Ext2(IZ(3),OQ3) = 0.

Twisting the sequence 6 by OQ3(3) and dualizing, we obtain

· · · → Ext1(OZ(3),OQ3) → Ext1(OQ3(3),OQ3) → Ext1(IZ(3),OQ3) →

→ Ext2(OZ(3),OQ3) → Ext2(OQ3(3),OQ3) → Ext1(IZ(3),OQ3) →

→ Ext3(OZ(3),OQ3) → Ext3(OQ3 (3),OQ3) → · · ·

We have Ext i(OQ3(3),OQ3) = 0 for each i ≥ 1 and Ext2(IZ(3),OQ3) = 0 by previous computa-
tions. Therefore, Ext3(OZ(3),OQ3) = 0 and

Ext1(IZ(3),OQ3) ≃ Ext2(OZ(3),OQ3) = ωZ(−3),

where ωZ is the dualizing sheaf of the curve Z.

Similarly, from the sequence 0 → IΓ → OQ3 → OΓ → 0, we get

Ext1(IΓ,OQ3) ≃ Ext2(OΓ,OQ3).

Since Γ is a codimension two, we have the local fundamental isomorphism

Ext2(OΓ,OQ3) ≃ Hom(det(IΓ/I
2
Γ ),OQ3 ) = O∗

Q3 ⊗OQ3 = OQ3 .

Therefore, Ext1(IΓ),OQ3) = OQ3 . Thus, we obtain

Supp(Ext1(F ,OQ3 )) ⊂ Sing(IΓ) = (α = 0) ⊂ Supp(Ext1(G ,OQ3)) = Sing(G ).

Since Γ is smooth, the Chern classes of TF are given by c1(TF ) = 0 and c2(TF ) = deg(Γ) = d.

Since ωQ3 ≃ OQ3(−3), we have ωΓ ≃ OΓ(c1− 3). If Γ is an irreducible nonsingular curve of genus
g, then ωΓ is the canonical sheaf, which has degree 2g − 2. Therefore,

2g − 2 = d(c1 − 3) = c2(c1 − 3) = −3c2.

By using the Theorem 5.6, we have c2(TF ) = 4H2 − H · [Z]. Since Γ is a curve, it has at
least deg(Γ) = 1, thus H · [Z] is at most three. Then, if H · [Z] = 0 (deg(Γ) = 4), we have
2g − 2 = −12 ⇒ g = −5 and if H · [Z] = 2 (deg(Γ) = 2), then 2g − 2 = −6 ⇒ g = −2.

On the other hand, since TF is locally free, it has c3(TF ) = 0. By Riemann-Roch theorem
c3(IZ) = (2g − 2)H3 + c1(Q

3)c2(IZ). Since Z is a curve, we have c2(IZ ) = [Z] and we know that
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c1(Q
3) = 3H. Then, c3(IZ) = (2g− 2)H3 +3H · [Z]. Replacing these values in the Theorem 5.6, we

have
(2g − 2)H3 = −10H3 − 3H · [Z].

Now, by using the formula 6, if H · [Z] = 0, we have a curve of genus g = −4 and if H · [Z] = 2, we
have a curve of genus g = −7. It is a contradiction. Therefore, TF is either stable or split.

Remark 6.2. Note that if the subfoliation has only isolated singularities then TF has to be split.
Indeed, TF would have a section that does not vanish on a curve, so it would have to be split.

Theorem 6.3. Let X be a Fano threefold with Picard number one and F be a distribution of
codimension 1. If TF is locally free with c1(TF ) = 0, then TF is either split or stable.

Proof: If ιX = 4, then the result follows from [5, Theorem 9.5]. If ιX = 3, it follows from Theorem
6.1. If ιX = 2, suppose that TF has a global section, so such section induce a global section of TX.
It follows from [[28], Corollary 7.4] that the only Fano of index two with global field is X5. And
by [[28], Lemma 7.2], every global field of X5 has only isolated singularities. Thus, TF is split by
Remark 6.2. It is a contradiction. If ιX = 1, follows from the proof of Theorem 8.1 in [28] that X is
birational to X5. As in X5, every global field of X has only isolated singularities. Thus, TF is split
by Remark 6.2. Once again this is a contradiction.

References

[1] C. Araujo, M. Corrêa A. Massarenti, Codimension one Fano distributions on Fano manifolds. Commu-
nications in Contemporary Mathematics 20 (2018).

[2] E. Arrondo and L. Costa, Vector bundles on Fano 3-folds without intermediate cohomology, Comm.
Algebra 28 (2000), 3899–3911.

[3] E. Ballico, et al, On Buchsbaum bundles on quadric hypersurfaces, Cent. Eur. J. Math. 10 (2012), 1361–
1379.

[4] R. Bott, Homogeneous Vector Bundles, The Annals of Mathematics, 2nd Ser. 66 (1957), 203–248.
[5] O. Calvo-Andrade, M. Corrêa, M. Jardim, Codimension One Holomorphic Distributions on the Projective

Three-space, International Mathematics Research Notices, 251 (2018).
[6] M. Casanellas, R. Hartshorne, Gorenstein biliason and ACM sheaves, J. Algebra 278 (2004), 314–341.
[7] D. Cerveau, A. Lins Neto, Irreducible components of the space of holomorphic foliations of degree two

in CP(n). Annals of Math. 143 (1996), 577-612.
[8] M. Corrêa, M. Jardim, R. Vidal Martins, On the Singular scheme of split foliations. Indiana Univ. Math.

J. 64 (2015), 1359–1381.
[9] M. Corrêa Jr, L. G. Maza, M. G. Soares, Hypersurfaces Invariant by Pfaff Equations, Communications

in Contemporary Mathematics, 17 (2015).
[10] A. Corti, M. Reid, Explicit Birational Geometry of 3-folds, London Mathematical Society Lecture Note

Series, Cambridge University Press, 2000.
[11] O. Debarre, Introduction to Mory Theory, Université Paris Diderot, 2016.
[12] I. Dolgachev, Weighted projective varieties, vol. 956 de Lecture Notes in Mathematics. Springer Verlag,

1982.
[13] E. Esteves, S. L. Kleiman, Bounding Solutions of Pfaff Equations, Comm. Algebra 31 (2003).
[14] H. Flenner, Divisorenklassengruppen quasihomogener Singularitäten, J. Reine Angew. Math, 328 (1981),

128–160.
[15] W. Fulton, Intersection Theory, Ergeb. Math. Grenz., Springer-Verlag, 1983.
[16] L. Giraldo, A. J. Pan-Collantes, On the singular scheme of codimension one holomorphic foliations in

P3
, Internat. J. Math. 7 (2010), 843–858.

[17] P. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles. Global Analysis
(Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo (1969), 185–251.

[18] R. Hartshorne, Stable reflexive sheaves. Math. Ann. 254 (1980), 121–176.
[19] D. Huybrechts, Complex Geometry - an introduction, Springer, 2005.
[20] V. A. Iskovskikh, Fano threefolds I. Math. USSR-Izv. 11 (1977) 485–527.
[21] V. A. Iskovskikh, Fano threefolds II. Math. USSR-Izv. 12 (1978), 469–506.



18 ALANA CAVALCANTE, MAURICIO CORRÊA, AND SIMONE MARCHESI

[22] P. Jahnke, Submanifolds with splitting tangent sequence. Math.Z. 251 (2005),
491–507.

[23] S. Kobayashi, T. Ochiai: Characterizations of complex projective spaces and hyperquadrics. J. Math.
Kyoto Univ. 13 (1973), 31–47.

[24] C. Madonna, A Splitting Criterion for rank 2 vector bundles on hypersurfaces in P4, Rend. Sem. Mat.
Univ. Polit. Torino 56 (1998), 43–54.

[25] C. Madonna, ACM vector bundles on prime Fano threefolds and complete intersection Calabi-Yau three-

folds, Rev. Roumaine Math. Pures Appl. 47 (2002), 211–222.
[26] S. Mukai, Fano 3-folds. London Math. L. Notes 179 (1992), 255–263.
[27] C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Progress in Mathe-

matics 3 (1980).
[28] F. Loray, J.V. Pereira, F. Touzet, Foliations with trivial canonical bundle on Fano 3-folds, Mathematische

Nachrichten 286 (2013), 921-940.
[29] G. Ottaviani, Spinor bundles on quadrics, Trans. Am. Math. Soc., 307 (1988),

301–316.
[30] G. Ottaviani, Some extensions of Horrocks criterion to vector bundles on Grassmannians and Quadrics,

Annali di Matematica pura ed applicata, (1989), 317–341.
[31] G. Ottaviani, Varietá proiettive de codimension picola. Quaderni INDAM, Aracne, Roma, 1995.
[32] N. I. Shepherd-Barron, Fano threefolds in positive characteristic, Compositio Mathematica 105 (1997),

237–265.
[33] D. M. Snow, Cohomology of twisted holomorphic forms on Grassmann manifolds and quadric hypersur-

faces, Math. Ann. 276 (1986), 159–176.
[34] I. Sols, On Spinor Bundles, J. Pure Appl. Algebra 35 (1985), 85–94.
[35] J. Stückrad, W. Vogel, Buchsbaum rings and applications, Springer, New York, 1986.

Alana Cavalcante, UFOP, R. Trinta e Seis 115, 35931-008, João Monlevade, Brazil

E-mail address: alana.decea@ufop.edu.br

Mauricio Corrêa, UFMG, Avenida Antônio Carlos, 6627, 30161-970, Belo Horizonte, Brazil

E-mail address: mauriciojr@ufmg.br

Simone Marchesi, UNICAMP, Rua Sergio Buarque de Holanda, 651, 13083-859, Distr. Barão Ger-

aldo, Campinas, Brazil

E-mail address: marchesi@ime.unicamp.br


	1. Introduction
	2. Preliminaries
	3. Tangent sheaf vs. singular scheme
	4. Conormal sheaf vs. singular scheme
	5. Properties of the singular locus of distributions
	6. Stability
	References

