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Abstract

In this paper we review, based on massive, long term, numerical simulations, the
effect of islands on the statistical properties of the standard map for large parameter
values. Different sources of discrepancy with respect to typical diffusion are identified,
the individual roles of them are compared and explained in terms of available limit
models.
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1 Introduction

One of the main goals of Dynamical Systems is the description, explanation and prediction
of the properties of the orbits of a given system. In some cases the individual orbits behave
in a seemingly random way, with different properties in different domains of the phase space.

This occurs already in simple models, like area preserving maps. One of the typical
models which displays many of the general properties of this class of maps is the Chirikov
standard map [1]. For large enough values of the parameter the behavior of the orbits seems
like a diffusive process. But this is far from being true for some ranges of the parameter, as
noticed by many authors in the past (see references in the Bibliography).

The purpose of the present work is to present the results of massive simulations for
large sets of values of the parameter and to explain the different phenomena that lead to
the destruction of the diffusive character. This is done using quantitative and qualitative
approaches. The results are compared to some limit theoretical models which deal with
several of the involved phenomena.

In Section 2 we review, first, some properties of the Hénon conservative map [14]. As it
will be shown in Section 3, devoted to describe some key properties of the standard map, the
Hénon map is quite useful to understand more general area preserving maps. In particular,
it clarifies the strong changes in the behaviour of the diffusion in the standard map.

Simple approaches to the diffusive properties of the standard map are considered in
Section 4: the quasi-linear approximation and the Fourier methods to take into account the
correlation effects. These methods are useful for many of the values of the parameter when
it is large enough.

Section 5 is devoted to methods and results obtained from massive simulations. After
looking at the problem for a large set of values of the parameter, we consider narrower and
narrower ranges to focus on the main difficulties. A scaling effect shows up and, hence,
details on the dynamics in a narrow parameter domain allow us to understand the behavior
at all the other places where the standard diffusion is no longer valid.
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Quantitative and qualitative explanations of the numerical results, as well as a com-
parison with limit renormalization schemes are the contents of Section 6. The main result
concerns the behaviour of the standard deviation of the iterates of points, initially in a given
ensemble in the chaotic domain, as a function of the number of iterates T . While for a
typical diffusive process it behaves as the square root of T , for some intervals, in the do-
main of large parameter values, it behaves as a larger power of T , whose exponents range,
approximately, between 0.7 and 1.

A description of what the orbits do, which explains the main features of the plots which
summarize the numerical results, is presented at the end of Section 6.4.

The topic discussed in this paper is a very popular one and has a large amount of
contributions and theoretical discussions. Anyway there are still many open questions. In
particular, it is not known if microscopic islands occupy a large part of what can seem to be a
chaotic domain in the phase space. The results of Duarte [6] show that there is a residual set
of large enough parameters in the standard map for which any point is at a small distance of
an elliptic periodic point, the distance tending to zero when the parameter tends to infinity.
The existence of these elliptic points follows from homoclinic tangencies and a conservative
version of Newhouse theorem.

In this context it appears the problem of the positiveness of the metric entropy as one of
the key problems. It is not known a single value of the parameter of the standard map for
which the metric entropy has been proved to be positive. In particular, it has not been proved
that the set of points with positive Lyapunov exponent has positive measure, a fact which
would imply positive metric entropy thanks to Pesin’s work [34]. The problem becomes more
tractable if some amount of noise is added to the deterministic conservative map, see [18].

This contribution has to be seen as an attempt to find quantitative explanations to
the results of a large number of simulations, so that one could find the main theoretical
reasons which allow to predict, accurately, which should be the observed behaviour of the
diffusive properties of the standard map for some special ranges, near integer values, when
the parameter is large.

2 A summary of properties of the Hénon conservative

orientation-preserving map

The well-known Hénon map,

F : (x, y) → (1− ax2 + y, bx), a, b ∈ R , (1)

is the simplest map with nontrivial dynamics in R2. In turn, generic (in fact, almost all)
quadratic maps in R2 with constant Jacobian can be reduced to (1). For b = ±1 it preserves
area: for b = −1 it also preserves orientation and for b = 1 it reverses it.

For the case b = −1, a parameter depending change of variables [40] gives us a more
suitable representation of (1) for our purposes,

HPc :

(

x
y

)

→
(

c(1− x2) + 2x+ y
−x

)

. (2)

Here HP stands for Hénon orientation preserving, and the subscript c is added to stress out
the explicit dependence on the parameter c. It is enough to consider c > 0. The map (2) has
two fixed points, whose position in the plane does not depend on c : a hyperbolic fixed point
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for c > 0 at (−1, 1) and an elliptic fixed point at (1,−1). Last one is elliptic for 0 < c < 2,
parabolic for c = 2 and reflection hyperbolic for c > 2.

The orientation-preserving Hénon map is recovered as a universal return map that ap-
proximates the local dynamics around a periodic orbit created at the unfolding of a quadratic
tangency of a general area-preserving map, see for example [12] and references therein for de-
tails. Also the orientation-reversing Hénon map, that will be introduced later in Section 3.2,
appears as a universal return map in non-orientable cases, either for maps defined in non-
orientable manifolds or for hyperbolic points with eigenvalues λ and µ such that λµ = −1,
see [11].

In a previous paper [31] the authors considered several aspects of the orientation pre-
serving Hénon map (2), and also of the orientation reversing case, (8). The representations
used for both maps were slightly different: the symmetry line was located in y = 0 instead
of y = −x. One can obtain the representations used in [31] via the change of variables
(X, Y ) = (x− y, x+ y)/2, and renaming (X, Y ) as (x, y).

For reader’s convenience we briefly recall some relevant facts for the orientation-preserving
case, summarizing part of the results in [31]. This map will appear as a limit map modelling
the dynamics of the main accelerator mode islands which cause the changes in the diffusive
behaviour. For these purposes one needs to investigate the relative area of the accelerator
modes and, also, the chaotic area confined inside the islands since trajectories within the
confined chaotic region can be ejected to the chaotic sea by changing the relevant parameters.
In this section we analyse these properties for the Hénon map.

2.1 Measure of the set of confined orbits

In Figure 1 we show the measure, µ(c), of the set of bounded orbits as a function of c for
the map HPc, as given in (2).

To produce Figure 1 we compute the maximal Lyapunov exponent, Λ(p), for initial
points p chosen in a narrow grid of points, and for many values of c. A typical spacing in the
coordinates x and y for the grid is 0.0005. In most of the cases we first compute a transient
of 106 iterates before starting to compute Λ(p). In this way we detect most of the points
which escape. A simple escaping criterion follows from the fact that if some forward iterate
of p has x-component with x < −1, it will escape. A number of iterates m = 106 is also
used to produce an estimate of Λ(p). If the value obtained is below 2× 10−5, the orbit of p
is considered to be regular and, hence, bounded. Otherwise it is considered to be chaotic.
In the latter case, we continue with additional iterations (up to 108 and in some cases up to
1010) to check if we can consider the chaos as confined or if the orbit of p is finally escaping.

The sudden decrease of µ(c) at some values of c corresponds to the destruction of the
last invariant curves surrounding the islands. For example, near c = 1 we observe a sudden
change in µ(c) which corresponds to the destruction of all the rotational invariant curves
surrounding the period-4 islands.

The magnification shown in Figure 1, right, displays the self-similarity of µ(c) due to
islands of a higher period. Such a Figure was first published in [17], and with higher precision
in [28] for an equivalent version of the Hénon map given by Karney et al. in [17]. It appears
as an approximation of the dynamics of the accelerator modes. This approach was refined in
[31] and is summarized in Section 3. As an example, the large jump near c = 0.91 corresponds
to the breakdown of invariant curves around the islands of rotation number 2/9, while the
jump shortly after c = 0.96 corresponds to the breakdown of invariant curves around the
islands of rotation number 3/13. It is not difficult to identify all the jumps shown in these
plots.

3



 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

c

µ

 0.88

 0.92

 0.96

 1

 1.04

 0.8  0.84  0.88  0.92  0.96

c

µ

Figure 1: Left: measure µ(c) of HPc of the set of confined points as a function of c. Right: a
magnification in the range c ∈ [0.77, 0.97] to provide evidence of the self-similar properties of µ(c).

The patterns shown in Figure 1 will show up again for some parameters of the standard
map in next section. But similar patterns appear in more general systems, see [38]. In
particular they appear in problems like the Michelson system [7] or in the Restricted Three-
Body Problem [39].

2.2 Measure of the set of confined chaotic orbits

Among the points with bounded orbit there are, however, some which display chaotic be-
haviour. The Lyapunov exponent allows us to detect them. A natural question is, hence,
how does the measure M of this set change with the value of c. This is shown in Figure 2
left. The plot shows quite a sharp change in its behaviour due to the infinitely many chains
of islands in the system (which exist for any rotation number ρ ∈ Q ∩ (0, 1/2]). Each chain
of islands has an associated hyperbolic periodic orbit, whose invariant manifolds generically
split, generating some amount of chaos. It is confined until the invariant curves, that sur-
round these chaotic orbits, break down. Even considering that the computations shown in
Figure 2 have been done with a 10−3 step in c, a careful examination of the data allows us
to detect several hundreds of peaks.

 0

 0.05

 0.1

 0.15

 0  0.5  1  1.5  2

M

c

 0

 0.04

 0.08

 0.12

 0.16

 1.005  1.01  1.015

M

c

Figure 2: Left: Measure M of the set of confined points with chaotic dynamics as a function of c.
Right: Magnification of the left plot to show what happens before and after the breakdown of the
rotational invariant curves surrounding the period-4 island.

The magnification in Figure 2 right, computed with step 10−4 in c, shows what happens
before the breakdown of the invariant curves around the islands of period 4. The confined
chaotic region is created by the homoclinic tangle formed by the invariant manifolds of the
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period-4 hyperbolic orbit. This period-4 orbit is created at c = c01/4 = 1. The destruction of

all the outermost invariant curves surrounding the islands of rotation number ρ = 1/4 takes
place at c = c1/4 ≈ 1.0141. Hence, for values of c & c1/4, the trajectories that were previously
confined (i.e. those trajectories in the confined chaotic regions for c . c1/4) diffuse. The
different chains of small islands contained in the zone that was confined capture orbits for
long times (stickiness) and change the global diffusion properties of the system.

3 The standard map for large parameter values

In this Section we consider Chirikov’s standard map [1]:

Mk :

(

x
y

)

→
(

x̄
ȳ

)

=

(

x+ ȳ
y + k sin(2πx)

)

, (3)

defined on the unit torus T2 = S1×S1, and for large values of the parameter k. By large here
we mean that most of the phase space is filled apparently by a chaotic sea, so for k = O(1),
at least. But we shall be mainly interested also on the map defined in the cylinder S1 ×R1,
to study the diffusion in the action variable. We shall denote then the standard map as M̄k,
that is,

M̄k :

(

x
y

)

→
(

x̄
ȳ

)

=

(

x+ ȳ (mod 1)
y + k sin(2πx)

)

, (4)

where no (mod 1) is taken for ȳ. For instance, for k integer, the point (1/4, 0), which is fixed
under Mk, jumps for k units under M̄k.

Here, for reader’s convenience, the results of [31] on the existence, size and local dynamics
of accelerator mode orbits for M̄k are summarized. Numerics on the destruction of invariant
curves around islands are also presented, with emphasis on the evolution, as the parameter
increases, of the full set of such objects.

3.1 Measure of the set of regular points

For large enough values of k the map (3) has no rotational invariant curves. This has been
proved for 2πk > 63/64, see [23]. We also refer to [15] where it was proved for k = 0.9718.
On the other hand, the so-called Grenee’s threshold kG [13] refers to the smallest value of
k such that for k > kG the map (3) has no rotational invariant curves. There is strong
numerical evidence that 2πkG ≈ 0.971635406 . . . . See [33] for example, where a geometrical
method based on the appearance of heteroclinic intersections preventing the existence of
these curves, allows to obtain refined values for kG. For increasing values of k > kG, the
phase space gets filled by a chaotic sea only showing small stability islands, though often
there are none that are visible.

In [31] extensive numerics on the size of the regular area of the phase space were presented,
showing that there are some special islands appearing periodically in k, and scaled in some
sense. The existence of some of these islands (around p1,21 and p2 for Mk, given in Table
1) was already proved by Chirikov in [1]. In a fine grid on the phase space, let us denote
as Ar(k) the fraction of initial conditions for which we consider the maximal Lyapunov
exponent to be zero, which depends on k (as we did in Section 2). In Figure 3 one can see
the quantity Ar(k), computed on a (5 × 10−5) × (5 × 10−5) grid for values of k between 1
and 11. There seem to be some structures around integer and half-integer values of k, which
appear repeated but scaled, both in area and range in k, when they exist. At a first glance,
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Figure 3: Relative measure Ar(k) in the phase space of Mk of points whose maximal Lyapunov
exponent can be considered to be zero, as a function of the parameter k = 1.75(0.00005)10.75. As
usual the notation k = α(β)γ denotes values of k between α and γ with step β.

the area scales as 1/k2 (1/k in both x and y variables) and the range in k scales as 1/k.
Other structures, not close to these values of k are very small.

Table 1 summarizes the orbits whose nearby dynamics produce the variation in the
relative regular area Ar(k) shown in Figure 3. These orbits appear near each integer n and
half-integer n′ values of k, and numerical continuation of them allows to conjecture for which
values of the parameter they have an elliptic-hyperbolic and period-doubling bifurcations,
which in turn depend on the integer or half-integer values to which the parameter k is close.

The orbits near integer values lying on y = 0 are the well-known accelerator mode orbits
of M̄k [35].

Position Period k-EH k-PD

n ∈ Z

p11 = (1/4, 0) 1 n ⋆ n+ 2/(nπ2)
p21 = (3/4, 0) 1 n ⋆ n+ 2/(nπ2)
p2 = (1/4, 1/2)

2 n− 2/(nπ2) n ⋆
(3/4, 1/2)

n′ ∈ Z+ 1/2

p4 = (1/4, 1/2)

4 n′ − 1/(2n′π2) n′ ⋆
(1/4, 0)
(3/4, 1/2)
(3/4, 0)

Table 1: Position, period and values of the parameter for which the orbits have elliptic-hyperbolic
bifurcation (EH) and period-doubling bifurcation (PD). The inputs in the table labelled with ⋆
mean that it happens exactly at these particular values of k.

3.2 Some theoretical results on the main islands in the standard

map

The numerics shown in Figure 3 and Table 1 suggests that these special orbits appear scaled
at each integer and half-integer value of k. In [31] this fact was used to derive an expression
of the limit dynamics around them. This is summarized in the following

Proposition 1. There exists a limit behaviour of the dynamics around p1,21 and p2 (resp. p4)
under scalings in x, y and k by 1/n for n ∈ Z (resp. n − 0.5 ∈ Z). Moreover, these limit
maps are conjugated to area preserving orientation-preserving (resp.-reversing) Hénon maps,
depending on a suitably scaled parameter.
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The proof of this result follows from considering suitable Taylor expansions in x, y and k
ofMk around the orbits and values of the parameter in Table 1 labelled with ⋆, using suitable
scalings for k near an integer (or half-integer) value n. Concretely, in the case of p11 for period
ν = 1 in Table 1 we introduce new variables X, Y defined by x = 1/4 +X/n, y = Y/n and
a new parameter k′ by k = n + k′/n. Expanding (3) we obtain a limit map L1 (5) plus a
remainder R. In (5) we use again x, y instead of X, Y to denote the phase variables, while
we keep the name of the new scaled parameter as k′ to stress out that it measures the scaled
distance to the nearest integer.

Taking into account that the confined points under (5) are contained in a compact set,
the remainder R has a bound of the form |R| < B/n2, where B depends on k′. This follows
immediately from the Taylor expansions and of the alternating character of the series.

For a given value of k′ we have estimated, numerically, the set of non-escaping points
under L1 using a fine grid. Given n ∈ N we compute k = n + k′/n, as said before. For
each one of these points, the image under Mk (using the above mentioned scalings) has been
computed and compared to the one given by L1. The value R is taken as a measure of the
error and multiplied by n2 gives a bound for B. It is checked that this bound is essentially
independent of the value of n.

For values of k′ such that the corresponding value of c (see Table 2) belongs to [0, 1]
(i.e., up to the value of c for which the 1:4 resonance appears) one can take B = 0.004; for
c ∈ [1, 1.5] (i.e., up to the 1:3 resonance) one can take B = 0.02, and up to c = 2 (period
doubling) one can take B = 0.05 (except, perhaps, at some tiny islands far away from the
main confined domain). Higher bounds of B (up to 0.085) have to be taken at the end of
the period doubling cascade. But this is quite irrelevant due to the tiny size of the islands.

The case of p21 is identical to p11 via a rotation of angle π around the point (1/2, 0). For
the case p2 of period ν = 2 one can introduce new variables X1, Y1 around (1/4, 1/2) by
x=1/4+X1/n, y=1/2+Y1/n and X2, Y2 around (3/4, 1/2) by x=3/4−X2/n, y=1/2−Y2/n.
As before, we introduce k′ by k = n+k′/n. Then the image of (X1, Y1) underMk is expressed
in the (X2, Y2) variables as given by (6) plus a remainder R and the same happens for the
image of (X2, Y2) expressed in the (X1, Y1) variables. In (6) we also rename the phase space
variables as x, y. The bounds of the remainder are identical to the ones in the ν = 1 case.

For ν = 4 let us denote as p
(j)
4 , j = 1, 2, 3, 4, the points which appear in Table 1, in

the order given there. It turns out that the passage from a vicinity of p
(1)
4 to a vicinity of

p
(3)
4 under M2

k is described by the map given in (7) plus a remainder R. The value of |R|
is bounded, similar to the above cases, by B/(n′)2, where n′ is the closest element to k in
Z+ 1/2. We assume n′ ≥ 3/2. The same expression is found for the passage from a vicinity

of p
(3)
4 to a vicinity of p

(1)
4 under M2

k .

To this end we introduce new variables (X1, Y1), (X2, Y2), (X3, Y3) around p
(1)
4 , p

(2)
4 , p

(3)
4 ,

respectively, by x = 1/4 + X1/n
′ y = 1/2 + Y1/n

′, then x = 1/4 + X2/n
′, y = Y2, /n

′ and,
finally, x = −1/4 − X3/n

′, y = 1/2 − Y3/n
′. We also introduce a new parameter k′ given

by k = n′ + k′/n′. The passage from (X1, Y1) to (X3, Y3) is the one given in (7), again
using (x, y) for the variables, plus the remainder R. In the range of interest of k′, from
the elliptic-hyperbolic bifurcation at −1/(2π2) till the end of the period-doubling cascade at
≈ 0.00778 one can take the bound B < 0.0251.

Summarizing, one obtains the limit maps

L1 :

(

x
y

)

7→
(

x̄
ȳ

)

=

(

x+ ȳ
y + k′ − 2π2x2

)

(5)
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Map Sym. line Hénon map New parameter Scaling

L1 y = 0 HPc c = π
√
2k′

√
2π/c

L2 y = 2x HPc c =
√
4 + 2k′π2

√
2π/c

L4 y = 2x (HRc)
2 c =

√
1 + 2k′π2 2π2/c

Table 2: Hénon maps to which Lν , ν = 1, 2, 4 are conjugated. The new parameter and scalings in
x and y are given in the last two columns.

around p11 and p21,

L2 :

(

x
y

)

7→
(

x̄
ȳ

)

=

(

−x+ ȳ
−y − k′ + 2π2x2

)

(6)

around p2 and

L4 :

(

x
y

)

7→
(

x̄
ȳ

)

=

(

−x− y − s0 + ȳ
−y − s0 − s1

)

(7)

around p4, where s0 = k′ − 2π2x2 and s1 = k′ − 2π2(x+ y + s0)
2.

For the different limit maps Lν , ν = 1, 2, 4 one can explicitly find the changes of variables
which relate them to area preserving Hénon maps HPc for ν = 1, 2 andHRc (8) for ν = 4. For
the area preserving orientation reversing Hénon map we consider the following representation

HRc :

(

x
y

)

→
(

c(1− x2) + y
x

)

. (8)

These changes of variables consist in performing a suitable rotation to match the symme-
try lines of Lν with the ones of the corresponding area preserving Hénon maps, some scalings
in the x and y variables (with the same scaling factor in both variables) which include a
reparametrisation.

In Table 2 one can find the original symmetry lines of each of the Lν , the area preserving
Hénon map to which they are conjugated to and the reparametrisation and the scaling factor
of the x and y variables needed to relate them to Hénon maps. See Figure 4, right, for an
example.
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Figure 4: Comparison of the plot in Figure 3 with the evolution of the scaled areas obtained directly
from the Hénon map (see Figure 1) via the changes available in Table 2. Left: Superimposed scaled
areas n2Ar(k) as a function of n(k − n), for n = 2, 3, . . . , 10. Right: Evolution of the regular area
of the islands around the points p1,21 and p2 (see Table 1). Concretely, we plot µ(c)c2/(2π2) as a

function of k′(c), where k′(c)=c2/(2π2) for p1,21 and k′(c)=(c2 − 4)/(2π2) for p2.
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This result allows us to recover the information of the scaled evolution of the regular
areas directly from the evolution of the Hénon map in Figure 1, left. Hence, we can relate
the local loss of the diffusive behaviour of M̄k, with the evolution of the phase space of Hénon
maps.

The idea to derive a return map around the islands via Taylor expansions was already
used by Karney et al. in [17], with a truncation to obtain the simplest nontrivial expression
around the accelerator modes.

3.3 Numerical evidences on the size of the main islands

The scalings in Proposition 1 describe how the size of the main islands scales as k increases,
and the order of the truncation error given in (5), (6) and (7) gives an idea of how the
dynamics differs from an area preserving Hénon map.

Mainly, the islands responsible for the loss of diffusive behaviour of M̄k are the accelerator
mode orbits lying on y = 0 (p1,21 in Table 1). In Figure 4 we show the data in Figure 3 around
integer values of the parameter, where we have used the scalings by plotting n2Ar(k) as a
function of the scaled parameter n(k − n) for n = 2, 3, . . . , 10.

One can observe that, even though n is at most only of the order of 10 in Figure 3, the
evolution of the islands is fairly well approximated by the evolution of the main stability
islands of the Hénon maps obtained when we neglect the higher order terms in the limit
expressions (5), (6) and (7).

3.4 On the destruction of rotational invariant curves

If our system depends on a parameter which measures the distance to integrability [41], a
KAM approach tells us that for a prescribed invariant curve there has to be a balance between
the twist condition, the Diophantine properties of the rotation number of the invariant curve
and the size of the parameter, so that the sequence of iterations to obtain a conjugation
between the dynamics of the invariant curve and a rigid rotation converges. The estimates
on the maximal size of the parameter for fixed twist and Diophantine properties are far from
practical, and a geometrical approach, such as the obstruction criterion [33] is more suitable
for actual computations.

The effect of the presence of stability islands in the dynamics of orbits in a chaotic sea
can not be always averaged out due to the stickiness effect, produced by the rich hierarchical
island-around-island structure surrounding it, that is, the satellite islands and the invariant
Aubry-Mather Cantor sets surrounding both the main island and the satellite islands (and
the islands around satellite islands and so on). This structure can be very different for close
values of the parameter, and as it evolves it can produce significant changes in the overall
dynamics of our system.

In Figures 5 and 6 we show how the distribution of invariant curves around islands evolves
as the parameter changes. As an example we have used the accelerator mode orbit which
is in (1/4, 0) for k = 1. We have estimated the values of the pairs (x, k) of x at the right
hand side of the hyperbolic periodic point and of parameter k for which there are invariant
curves. For the 1/4 hyperbolic periodic point in Figure 5 (see Figure 9 right for a sketch of
the phase space near these parameter values) and for the 3/13 and 2/9 hyperbolic periodic
points in Figure 6. In the last case the points are taken to the left of the corresponding
periodic hyperbolic point.

We have proceeded as follows: for a fixed value of k, we consider a grid of points with
spacing 10−6 on the y = 0 line. For each of these points, we have computed an approximation
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Figure 5: Initial conditions in the (x, k) plane taken on y = 0 for which there exist rotational
invariant curves surrounding the accelerator mode island. The right plot is a magnification of
the box in the left plot. Computations for values of the parameter after the 1/4 resonance. The
parameter k̂ in the right plot is related to k by k̂ = k − 1.051225.

of the Lyapunov exponent. If considered zero, it was a candidate to invariant curve so its
rotation number was approximated via the method explained in the appendix of [36]. If it
could be considered irrational, we plotted this pair (x, k).

In these figures we observe black bands emanating from the horizontal axis. The white
strips in these bands correspond to islands which are perfectly identifiable. In the black
bands, one can see “tongues” which, when zooming, reach the x axis: they correspond to
instability zones produced by the splitting of the separatrices of hyperbolic periodic points.

For k = 1.051, at the bottom of Figure 5 one can observe relatively large gaps in the
Cantor structure of invariant curves. They correspond to the existence of islands. The
rightmost gap, for x ∈ [0.314050, 0.314312], corresponds to a rotation number ρ = 10/41,
while the leftmost one, for x ∈ [0.309577, 0.309634], corresponds to ρ = 30/121. The rotation
numbers of the islands in the largest gaps are of the form 2j/(8j + 1), j = 5, . . . , 15. Due to
the symmetry properties of Mk, islands with ρ of the form p/q with p even appear to the
right of the fixed point, while if p is odd they appear to the left.

Furthermore, to the right of the displayed domain for k = 1.051 an island with ρ = 8/33
appears for x ∈ [0.315087, 0.315453] and one to the left, with ρ = 32/129, is found for
x ∈ [0.309386, 0.309443].

It is also easy to identify some periodic hyperbolic points, which are at the birth of
the destruction of nearby invariant curves. For instance, for the approximate values x =
0.309508, 0.313708 and 0.314701 periodic orbits with ρ = 31/125, 11/45 and 9/37, respec-
tively, are found.

For each elliptic periodic point, one can see that there are 2 invariant curves, one to the
right and one to the left, surrounding a chain of islands. They both have similar rotation
number, but their destruction is not simultaneous. In particular, the continued fraction ex-
pansion of the rotation numbers of the two highest tips which are shown in the magnification
of Figure 5 are

[4, 14, 1, 1, 1, 1, 1, . . .] and [4, 13, 1, 1, 1, 1, 1, . . .],

for the tips located near x = 0.3125 and x = 0.3129 respectively.
Finally, we note the quadratic shape of the envelope of the red points in the Figures 5

and 6. This can be explained as follows. To study the dynamics in the chaotic zone between
the 1/4-periodic island surrounding the accelerator mode island and the last invariant curve
(if exists) one can use a separatrix map model, see [1, 41]. At some (fixed) distance y0 from
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Figure 6: Initial conditions in the (x, k) plane taken on y = 0 for which there exist a rotational
invariant curve with respect to the accelerator mode. Computations for values of the parameter
after the: Left: 2/9 resonance. Right: 3/13 resonance.

the separatrices bounding the 1/4 islands, the separatrix map can be approximated by a
standard map M̄k with k ∼ 1/|y0|. This explains why the boundary of the black points
in Figures 5 and 6 resembles the critical function of the standard map Mk. We recall that
the critical function (also referred as fractal diagram) relates the frequency ω with the value
of k = k(ω) for which the invariant curve with frequency ω breaks down. In our plots
we represent x instead of ω as the x-coordinate, but there is a one-to-one correspondence
guaranteed by the non-vanishing twist property. The breakdown of invariant curves can
be investigated using a renormalization scheme approach, see [24]. The renormalization
scheme implies that the locally most robust invariant curves correspond to noble rotation
numbers. Hence the maxima observed in the figures are related to noble numbers, as was
noticed above for the two highest tips. Moreover, for the golden rotation number g the
corresponding renormalization operator implies that the distance ∆ω to the nearby noble
numbers scales as

∆k ∼ −|∆ω|η,
where η = | log(δ)/(2 log(g))| ≈ 0.5063, see [24]. Here δ refers to the inverse of the conver-
gence ratio of the renormalization scheme, see (13) in Section 6.4. See also related comments
in [25]. Moreover, a similar behaviour is expected for any noble number. This implies that
each of the tips shown is expected to have (locally) a quadratic shape again. We remark
that the renormalization process gives local information around the most robust noble in a
given interval. Nevertheless, in the figures one observes that the quadratic shape has a more
global character (although the considered range of x relatively small).

4 Elementary approaches to the diffusion properties

We start here with simple approaches to the diffusion properties of the M̄k as given in (4)
for large k. In fact these approaches provide a good idea of the diffusion for most of the
values of the parameters if they are sufficiently large. Then we shall compare with a better
measure of the properties of the dynamics. Concrete details and explanations will be given
in the next sections.

We consider here the diffusion in the y variable for M̄k. The main conclusion will be that
there are ranges of the parameter where the behaviour is not of diffusive type, even starting
in the chaotic domain. But the width of these ranges tends to zero as k → ∞.
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4.1 The quasi-linear approximation

For large k the statistical description of the dynamics in the chaotic zone, assuming that the
measure of the regular zone is negligible in front of the one of the chaotic zone, can be done
via the simplest (homogeneous) diffusion equation [2]

∂f

∂t
=

1

2
D(k)

∂2f

∂y2
,

where f = f(y, t) is the density of points, t denotes the number of iterations and y is the
momentum. The transition density of a Brownian motion starting at 0 with variance σ2 = 1
satisfies the previous heat equation, that is, the infinitesimal generator of the underlying
Feller process is 1

2
∂2f
∂y2

. Note that this approach assumes that the effect of the angles x
averages properly, and then the diffusion equation describes the dynamics in the y direction.
An improvement to take into account the influence of x will be given in Section 4.2.

Let us denote as (xj , yj) = M̄ j
k(x0, y0) the values of the successive iterates of a point

(x0, y0) ∈ S1 × R1. Let ∆jy = yj − y0 be the difference in actions after j iterates. The
average diffusion rate for M̄k, D(k), can be evaluated as the limit

D(k) = lim
n→∞

〈(∆ny)2〉
n

. (9)

where 〈·〉 stands for the ensemble average. Note that in this definition the mean 〈(∆ny)〉 is
assumed to be zero, so it is not included in (9). Despite this fact holds true in our setting,
when we compute D(k) or some variant of it, to obtain the variance we include that missing
term: σ2 = 〈(∆ny)2〉 − 〈(∆ny)〉2.

Under the assumption that we can average out the effect of the angles in M̄k, and no
accelerator modes show up in the phase space, D(k) takes the value

Dql(k) =
k2

2
, (10)

which is usually referred to as the quasi-linear value. If we normalize (10), to skip the effect
of k, one should obtain the value Dql,n = 1/2.

4.1.1 Selecting initial points

An important point, for this section and next one, is the selection of initial points to be
iterated under M̄k, to measure the diffusion properties. We want to make sure that these
points are taken on the “chaotic sea”, i.e., outside any island. To this end we have used the
following method to select initial points:

a) Compute an approximation of the unstable manifold W u
k,p of some periodic hyperbolic

orbit of period p. This can be done in an efficient way via the parametrisation method
(see [37]) at some high order (typically between 20 and 50). Except in the case p = 1
(i.e., for the hyperbolic fixed point) one has to compute first the Taylor expansion of
Mp

k around the chosen point.

b) Let z be a parameter of the manifold and g(z) the corresponding point in W u
k,p. The

invariance condition reads Mp
k (g(z)) = g(λz), where λ is the dominant eigenvalue at

the chosen point and z has been normalized so that the linear term in g(z) has modulus
1. Select a fundamental domain in U = [z0/λ, z0] in which the invariance condition is
satisfied with a prescribed tolerance (typically 10−20).

c) Choose points in U , e.g. with uniform step in log scale, and iterate them n0 times
under Mk as a transient. These will be the selected initial points.
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4.1.2 Results and interpretation

An idea on the goodness of the quasilinear approximation Dql,n(k) can be obtained by com-
puting the first term 〈(∆1y)2〉 in the limit (9) via the method just described. We have used
p = 1 in subsection 4.1.1 a), N = 250, 000 points in U and have done T = 106 iterates.
Note that, since we recorded ∆1y and (∆1y)2 at each iterate, assuming uncorrelation, it is
equivalent to take just one initial point and iterating it T = 2.5× 1011 times or to consider
N = 2.5× 1011 initial conditions and doing just one iteration.

We have considered the values of the parameter k = 0.72(0.001)6.1, for which the phase
space is filled with what seems to be a chaotic sea, except for the islands appearing near
integer and half-integer values of the parameter studied in Section 3. After skipping the
effect of k, the obtained approximation D̃ql,n(k) of Dql,n(k) differs from 1/2 by less than
2× 10−6 for most values of k.

However, there are parameters for which the computed value D̃ql,n(k) differs in a signi-
ficative way from 1/2 and it is below the expected value. The parameters k for which this
occurs are seen to coincide with the ones for which islands are detected for Mk, as described
in Section 3.3.

In Figure 7 we display the values of 1/2−D̃ql,n(k) as a function of k in the range mentioned
above. Compare the left plot with Figure 3 in Section 3.3. Further details can be seen on the
right plot, with k ∈ [1.87, 2.13]. No differences have been observed if we replace the unstable
manifold of the fixed point by unstable manifolds of other periodic hyperbolic orbits to select
the initial conditions.
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Figure 7: Values of ∆Dql = 1/2 − D̃ql,n(k), where D̃ql,n(k) is the numerically estimated average
one step diffusion rate, as a function of k. Left: results for k ∈ [0.72, 6.1]. Right: a magnification
for k ∈ [1.87, 2.13].

There is an easy interpretation to the results. The places where some islands are located,
according to Section 3.3, are close to x = 1/4 and x = 3/4. The iterates of points in the
chaotic zone can not enter into them. Hence, as in these domains the value of (∆y)2 is,
approximately, equal to k2 and close to maximal, the contribution to the average is missing.
This produces a decrease in the value of D̃ql,n(k) roughly proportional to the size of the
island.

Note that this first term in the limit (9) is significatively different form all other terms.
When one considers more than one single iterate, the value of 〈(∆ny)2〉 can not be easily
averaged since functions like k sin(2π(x + y + k sin(2π(x + · · · )))) appear. This kind of
expressions are typically expanded in k by sums of Bessel functions as will be seen in the
next Section, producing larger oscillations, as noted in [2].
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4.2 A first improvement

A first improvement with respect to the quasi-linear approximation consists in taking into
account the effects of the correlations between successive iterates. A nice description can be
found in [19] and references therein. These effects can be studied using Fourier techniques.
A simple correction factor, adapted to the notation and normalizations we use in this work,
follows from formula (5.5.21) in [19] and the comments that follow after that formula. See
also [29] and [42].

Hence, we should expect a corrected value for the normalized average diffusion rate given
by

Dcc(k) =
1

2

[

1− J2(2πk) + (J2(2πk))
2
]

, (11)

where Dcc stand for “correlation corrected” and J2 denotes the second Bessel function. The
values of Dcc(k)− 1/2 tend to 0 as k−1/2 when k → ∞ with sinusoidal oscillations around 0.
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k
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Figure 8: For a range of values of k, as horizontal variable, and using a large step in k, we show
the values of the estimated diffusive properties of M̄k, after 10

3, 104 and 105 iterates (in red, green
and blue, respectively), for a sample of 105 initial conditions. The magenta curve shows the values
of Dcc(k) as given by (11). Here D̃ simply denotes the values for the different number of iterates
including the normalization mentioned at the end of subsection 4.1.

In Section 5 we provide a method to estimate the true diffusive properties of M̄k. We shall
see that the results depend on the number of iterates, T , after the transient. Explanations
for these results will be provided in Section 6. For the moment being we display, in Figure
8, the comparison between the results using a sample of 105 initial conditions and values of
T equal to 103, 104 and 105 (in red, green and blue, respectively) and the ones using (11) (in
magenta). Even taking into account that we have used the values of k = 0.8(0.1)10.1, one can
observe big differences, mainly near 1 and 2. In fact, these differences appear shortly after
every integer value of k in domains which become narrower as 1/k when k increases. Outside
these domains, to be discussed in next section, the approximation provided by (11) is quite
good. The two peaks seen in Figure 8 are just a preliminary indication of the richness that
in subsection 5.2 will be shown to exist. This is one of the main motivations of this work.

5 Numerical evidences on the real diffusion properties

To have a correct estimate of the diffusive properties of M̄k we should take into account how
the “diffusion” depends on time, that is, on the number of iterates T and check that it is
essentially independent on the size of the sample N , i.e. the number of initial points which
are iterated under the map.
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It is well-known that in a diffusive process, with constant diffusion coefficient, a sample
of N points starting at a give value of y (or nearby values) after T iterates has a standard
deviation σT which behaves as

√
T . Hence, when dividing σT by

√
T it should tend to a

constant, the diffusion coefficient, when T increases and, to minimize the effect of N , when
the size of the sample also increases.

Consider a given initial value of y, say y0 after the transient and reducing it to T2, that
is 0 ≤ y0 ≤ 1 (or, equivalently, −1/2 ≤ y0 ≤ 1/2). Let yT the value after T iterates, without
any further reduction to T2, that is, using M̄k. The standard deviation can be measured for
the “jump” in y: ∆Ty = yT − y0.
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Figure 9: For k = 1.05123 the left plot shows an orbit of an initial point in the chaotic zone,
reducing y to the range [−1/2, 1/2). Two domains, around fixed points of Mk, are seen to be non
accessible. The right plot shows details on the dynamics around the fixed points on the “left”
island.

A typical orbit of a point in the chaotic zone is shown, reducing it to T2, in Figure 9 left.
We see that it avoids a couple of islands located, approximately, around (0.3, 0) and (0.8, 0),
where there are fixed points of Mk. The value used for the figure is k = 1.05123 and reasons
for that choice of k will be given later. Compare also with the results shown in Figure 5.
The right plot in Figure 9 shows a detail on the dynamics near the left fixed point. As points
near the fixed point jump up by an amount close to one unit under iteration by M̄k, we call
it “the positive island”. In a similar way, the island on the right side of Figure 9 left will
be denoted “the negative island”. Accordingly, the fixed points inside these islands will be
denoted as E+ and E−, respectively. Around the fixed point one can see several KAM curves,
then a hyperbolic periodic orbit of period 4, the related islands of period 4 and, as given by
the evidence in Figure 5 there are still invariant curves around these period-4 islands.

According to Figure 5 right, these curves persist until a value of k located in the range
(1.05123, 1.05124). Hence, the iterates of initial points in the chaotic domain can not enter
inside the islands, because of the existence of these invariant curves.

The reason why we have selected values of k near the destruction of the invariant curves
around the period-4 islands, as it can be seen in the details shown in Figure 13, relies on the
measure of the confined chaotic domains for the Hénon map, see Figure 2 right. For period 4
it turns out that this measure is one of the largest ones. See more details in Figure 5 in [31].
However, a detailed inspection of the diffusive properties shortly after the destruction of the
last invariant curve around islands with other rotation numbers (like 1/5, 1/6, 1/7,...,2/9,
2/11, ...,3/13,...) shows the same properties that will be described for rotation number 1/4.
But to go deeply into some of the details of the phenomena for these rotation numbers the
number of iterations has to be increased.
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The results of the computations of σT /
√
T show a strong dependence in T when period-1

islands exist, independently of the size of N if this one is large enough to provide a good
estimate of σT . The methods used (some of them to be used also in Section 6.2) and which
kind of data are recorded, are presented in Section 5.1, with results shown in Section 5.2.

5.1 Methods

As mentioned in Section 4.1.1 we have used initial data in T2 after a transient of n0 = 103

starting in a fundamental domain of the unstable manifold W u
k,1. Most of the results have

been checked using also starting points in W u
k,2, having an excellent agreement.

After the transient every initial point is iterated T times. The current values of yT for
different values of T (typically for powers of 2) are stored. At the end of the computation,
for each selected value of k and each value of T , one has the standard deviation of a sample
of N initial points, which is scaled by the current value of

√
T and also by k to obtain a

normalized value, as described in Section 4.1. Concretely, if a value σT (k) has been obtained
as standard deviation, we record the value

σT,k = σT (k)/(k
√
2T ), σ2

T (k) =
〈

(∆T y)2
〉

−
〈

(∆Ty)
〉2

(12)

The additional
√
2 has been introduced to allow for comparisons with the normalized quasi-

linear value Dql,n.
It has been checked that the iterates of initial points can remain close to the islands for

many iterations. Suitable explanations are given in Section 6.
One of the quantitative questions to decide is how to give a concrete meaning to the

sentence “to remain close to the islands”. This has been used for the computations whose
results are shown in Figure 13, i.e., for a very narrow range of values of k. Looking at Figure
9 right we decide to consider as “close to the islands” points which pass at a distance less
than some amount rb (fixed as 0.0775 for the data shown in Figure 13) from either E+ or E−.
But it is clear that there are points clearly in the chaotic zone that enter this domain. Hence,
to consider that the orbit of a point passes close to, say, the positive island, we require to be
at a distance less than rb from E+ for, at least nb consecutive iterates. As suitable value for
nb we have taken 27. The set of points where these two conditions are satisfied (proximity
and permanence) will be denoted as “the vicinity of the island” and represented as WE+

or
WE

−

.
This will allow us to have average estimates on the “trips” of the different initial points,

that is, how many iterates they spend in the chaotic domain, how many close to the positive
or negative islands, the probability to pass from the chaotic domain to WE+

∪WE
−

and the
mean time spent in these vicinities. All these data will be useful to understand the global
dynamics, as described in Section 6.

Note that after the transient of 103 iterates it can happen that some point is already
in WE+

or in WE
−

. This really do happens but the fraction of points in each one of these
vicinities is below 1.5%.

5.2 Results

Figure 10 shows the results for σT,k for T =218, a sample size N=250, 000 and k = 0.8(0.001)
10.1. Beyond the oscillations around 0.5, already observed in Figure 8, sufficiently well
modelled by the values in (11), we see some wild behavior with several large peaks shortly
after integer values of k. The size of the peaks and also the width of the ranges where this
occurs behave, approximately, like 1/k. A similar type of results can be found in [42].
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Figure 10: For k = 0.8(0.001)10.1 as horizontal variable, we represent the values of the estimates
of σT,k, as vertical variable. See the text for the values of T and N .

Note that the ranges correspond to part of the places where Mk has fixed points (in T2),
but not to the ranges where period-2, period-4 and several other periodic islands are found.
The reason for this different behavior is elementary and will be given in Section 6.

In Figure 11 we show a detailed view of the previous result shortly after k = 1 and k = 4.
Similar results have been obtained for many other ranges of k following integer values. The
corresponding values have been obtained using N = 106 and for T = 2j, j = 16, 18, 20 are
displayed in different colors. The values of σT,k increase with T .

Both parts of Figure 11 are quite similar, except by the different scaling in both the
horizontal and vertical variables and minor details. The peaks are almost gone for k near
1.06 in the left plot and for k near 4.015 in the right one. For these values the elliptic fixed
points ofMk have rotation number close to 1/3. According to the study of the standard map
islands, and based on the properties of the Hénon map presented in Section 2, the islands
around E+ have a negligible size.
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Figure 11: Details on the behavior of σT,k near k = 1 (left) and k = 4 (right) for three increasing
values of T . The concrete ranges of k are 1(0.0001)1.24 and 4(0.00003)4.06. See the text for the
values of N and the different values of T used in the computations.

In Figure 12 we restrict our attention to the k intervals [1, 1.06] and [4, 4.015]. As
expected, both plots are quite similar. The values of N and the steps in k are the same
as before, but the values used for T are now 2j, j = 18, 20, 22. Comparing with the parts of
Figure 11 corresponding to the same intervals, we realize that the peaks have, roughly, the
double value when T increases by a factor 4.

Each one of the peaks seen in Figure 12 occurs shortly after the breakdown of all the
outermost invariant curves surrounding the islands around E+ and E− with a given rotation
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Figure 12: Further details on σT,k in narrower ranges near k = 1 (left) and k = 4 (right). The
values used for T have been increased by a factor 4 with respect to Figure 11.

number, ρ, which occurs for a critical value to be denoted as kc,ρ. Approximate values of
the location of the peaks in that figure and the corresponding rotation numbers are given in
Table 3.

104(k−1) 514 465 419 392 298 260 198 146 115 94 80 69 61
ρ 1/4 3/13 2/9 3/14 1/5 2/11 1/6 1/7 1/8 1/9 1/10 1/11 1/12

Table 3: A sample of the values of k for which large peaks appear in Figure 12. For each value of
k we give the rotation number of the islands such that the outermost invariant curve surrounding
them has been destroyed for a nearby, smaller, value of k.

From now on we concentrate on the vicinity of the largest peak in Figure 12 using a large
number of iterates. That is, for k around kc,1/4. A similar behavior has been observed for
other major peaks. It is apparent that the peak that we consider is the largest one for all
k > 1.
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Figure 13: A sample of results near the largest peak in Figure 12 for large values of T . In the left
plot the values of T go up to 225 and in the right one they reach 230. See the text for additional
details.

In Figure 13 the results in narrow domains around k = 1.0514 are shown. In the left plot
the number of initial points is N = 106 while the values of σT,k are shown for T = 2j , j =
20(1)25. We have used k = 1.051(10−5)1.052. In the right plot one has used N = 105 and
the values of T = 2j, j = 25(1)30. The step in k is the same as in the left plot, but the range
is reduced to [1.0512, 1.0515].

The upper curve in the left plot, which reaches a value slightly larger than 92, can be
identified with the lower one that can be seen in the right plot. The upper one in the right
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plot reaches a value slightly larger than 483. The ratio of these values is 5.25, a little bit
below the square root of the ratio of the number of iterates (T = 230 on the right, T = 225

on the left).
We can summarize the observed results near a peak of σT,k related to the breakdown of

the invariant curves around an island of rotation number ρ as follows:

1. The maximal value of σT,k, for a given T , occurs for values of k = k(T ), the function
k(T ) is decreasing and tending to kc,ρ as T → ∞.

2. The values of σT,k(T ) tend to scale as
√
T . That is, the non-scaled standard deviation

σT (k), see (12), reaches a linear dependence in T , at least selecting the values of k
in a way which depends on T . This implies that the dynamics in y is not Gaussian
and the diffusion coefficient diverges. Otherwise, σT,k would have finite limit. This is
related to the fact that the escape time distribution from the stickiness region around
the accelerator modes has infinite variance, see related comments in Section 6.3. At
the end of Section 6.2 we return to this key point, and in Section 6.4 we will give a
theoretical justification of it.

Note also that for large T the effect of little islands starts to be seen, see Figure 13.
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Figure 14: Comparison of the results for T = 2m,m = 20(1)25 and a reduced set of values of
k using double precision (in red, part of Figure 13, with a sample of 106 points) and quadruple
precision (in blue, with a sample of 2× 105 points).

To check the role of the arithmetics on the computations we have reproduced, using
quadruple precision, the results in a subinterval of Figure 13 left. Concretely, we have taken
a reduced set of values of the parameter k = 1.0512(2× 10−5)1.0516, a number of iterations
of the form T = 2m, m = 20(1)25 and a smaller size of the sample, N = 2×105. The results,
displayed in Figure 14, show a good agreement with the ones that have been produced with
double precision.

6 Qualitative and quantitative approaches to the in-

terpretation of the numerical results

In this section we first comment on the role that different invariant objects have on the
statistical properties. Then we provide additional numerical information, mainly extracted
from the computations leading to Figure 13. To compare with this information we include a
study of the breakdown of the last rotational invariant curve (the one with golden rotation
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number) at the Greene’s critical value of the parameter. After a presentation of some the-
oretical limit renormalization results, we are in condition to explain the shapes seen in the
previous figures, concerning the behavior of the standard deviation as a function of T and N .

6.1 The role of different objects and phenomena

i) The accelerator modes.

For k integer the fixed point E+ of Mk, located at (1/4, 0), jumps k units up under
M̄k. Despite starting at the chaotic sea, when entering WE+

the orbit can mimic the
behavior of E+ for many iterates. Going away from y = 0 it will produce a major
contribution to the standard deviation. The same is true for points entering WE

−

, or
even if an orbit visits WE+

for a while, then it visits WE
−

(or, perhaps, WE+
again)

and successive visits to both domains are produced.

The situation is different when an orbit approaches the islands of period 2 or 4 (or
higher periods). After visiting the vicinity of an island going up, the orbit visits the
vicinity of one island going down in next iterate, having close to zero average (after 2
or 4) iterations. This explains the qualitative differences between Figures 3 and 10.

ii) The Cantor sets.

Consider, first, k ≤ kc,1/4, that is a value such that there still exist invariant curves
around the period-4 islands. Orbits in the chaotic sea can not cross these curves to
become trapped by the island. But when they have a breakdown, they are replaced
by Cantor sets, the iterates can penetrate inside the domain that was bounded by the
previous invariant curves, approach the period-4 islands, spend some time near tiny
islands, etc, and, eventually, leave the domain through the gaps of the cantorus.

If k > kc,1/4 the size of the gaps increases with the difference k−kc,1/4. It becomes easier
“to enter”, but also the residence time in that domain decreases. This phenomenon is
repeated at different scales around all the tiny islands visited by the iterates.

The effects can be seen on the “bumps” presented in Figure 15 and, in a cleaner way,
in Figure 16.

iii) The stickiness.

In fact we should consider not just the breakdown of the last invariant curve around
the period-4 islands. For k ≤ kc,1/4 there are other curves, inside and outside, which
were broken before. See Figures 5 and 6. For k > kc,1/4, before penetrating through
the narrow gaps of the “last created” Cantor set, they should enter the previously
created Cantor sets, spend some time around the remnant islands, etc. This collective
phenomenon, denoted as stickiness, tells us that it is difficult to approach an island
from outside: there are several gaps to cross. But when the orbit is inside it can remain
there for a long time. Upper bounds on the speed of diffusion go back to the pioneer
work of Nekhorosev [32], where the author assumed that no channels of dynamics
blocked at resonance exist, a requirement which is formulated in terms of a steepness
condition. Similar bounds, based on estimates of the remainder of the normal form
around a totally elliptic fixed point with an application to the triangular Lagrangian
points can be found in [10]. For multiple examples, discussions on fast and slow escape
and many illustrations on the dynamics, see [5].

These collective effects can be seen in the linear behavior (in log10− log10 scale) of part
of the plot shown in Figure 15.
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6.2 Determining additional numerical information

From the last numerical simulations in Section 5, more concretely, the ones illustrated in
Figure 13, forN = 105 and T = 230, we can extract valuable additional information. We have
collected data on the “trips” of the N initial points. In particular the residence time in the
WE+

and WE
−

domains. That is, when we have detected that an iterate approaches, say, the
positive island (see end of Section 5.1), we count for how many iterates, m, it remains inWE+

until leaving it. We introduce some intervals, of the form Ij = [2j/2, 2(j+1)/2), j = 14, . . . , 60,
and if m ∈ Ij we add one unit to a counter Cj. At the end of the computations we collect
the counts in each box. This gives an estimate of the average “residence time” in the vicinity
of the islands.

The results are shown in Figure 15 left. In it we plot all the curves corresponding to
data for k = 1.0512(10−5)1.0515 simultaneously (a total of 31 curves). For the data in each
counter Cj we display, on the horizontal axis, the value of log10(2

j/2) and on the vertical
axis the final value of log10(Cj), adding the visits to WE+

and WE
−

. For instance we can
read, from the left upper corner of the plot, that for all used values of k, the number of visits
with a stay between 128 and 181 consecutive iterates exceeds the value of 108. Note that in
very few cases the length of the “stays” exceeds the value 229 and they occur, mainly, for
k = 1.05125 and k = 1.05126.
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Figure 15: Left: number of times that the iterates visit WE+
∪ WE

−

with a stay in the range
Ij as a function of 2j/2. For both variables the log10 scale has been used. All the values of
k = 1.05120(10−5)1.05150 are plotted simultaneously. Right: A measure of the size of the bumps
in the left plot. See the text for details.

In the plot we see some monotonous decrease until a value of j which depends of k. The
smaller the value of k is, the larger the value of j up to which the decrease holds. For a
given k, after the monotonous, close to linear, decrease until some value of j, one can see a
“bump” in the value of log10(Cj).

To analyze the bumps seen in Figure 15 left, we proceed as follows. For a fixed k assume
that the close to linear behavior on the plot holds up to some value jc of j. Then we do a linear
fit of the data for j ∈ [14, jc]. Note that the bumps only show up for k > 1.05126. Decreasing
k from 1.05150 to 1.05127 the approximate values of the slopes decrease monotonically from
-1.11 to -1.21. Then we subtract from the counts Cj the values predicted by the linear fit
for j > jc. The results are shown in Figure 15 right. Again in log10 scale for both variables,
we plot in the horizontal direction the value of 2j/2 and in the vertical one the difference
between the value of Cj and the one predicted by the fit. This is a way to obtain a qualitative
representation of the behavior of the bumps in the left plot.

Note that for larger values of k the height of the bumps is larger. This is natural, because
they remain for less iterates in the “linear” regime of Figure 15 left, before entering into the
bump.

21



To study the source of the bumps, with the shape seen in Figure 15 right, we place our
study in a different range of values of k for the Mk, concretely around the destruction of the
last invariant rotational curve (IRC) for Greene’s value k̄G ≈ 0.971635406. The parameter in
classical formulations of the standard map is denoted as k̄, which is related to the parameter
k we use in this work as k̄ = 2πk.

The last IRC appears for a rotation number ρ = (
√
5− 1)/2 and, by symmetry, also for

(3−
√
5)/2. Let us denote them as the upper Wu and lower Wl last IRC. For values k̄ < k̄G

global diffusion is impossible. But for k̄ > k̄G, but close to k̄G, initial points located on a
strip between Wu and Wl can move away.

The method given in Section 4.1.1 has been used to generate initial points in the unstable
manifold of the period-2 hyperbolic orbit. Then these points are iterated until they “escape”
from the previous strip. To detect the escape several methods can be used. The simplest
one is to check if, in the formulation Mk of the standard map, they cross either y = 0 or
y = 1. Another method looks for an approximate representation of Wu and then this curve
is slightly shifted up (down for Wl). When an iterate crosses some of these shifted curves it
is considered as escaped. Both methods agree very well for parameters close to the critical
one.

For a decreasing set of values of k̄ tending to k̄G we have taken 107 initial points, for
every value of k̄, and performed up to 1010 iterates of each of them until escape is detected.
From the more than 2× 109 initial points tested for many values of k̄, only 46 have not yet
escaped for 1010 iterates.
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Figure 16: Statistics concerning the number of iterates to escape from an initially confined strip
when the parameter k̄ becomes larger than the critical Greene’s value k̄G. In the top left and right
plots the horizontal scale is log10(T ). The data on the left are represented in true scale and in the
top right in log10 scale. Bottom: total number of iterates nit to have escape of all initial points
(upper set) and maxima M of the previous plots (lower set), both in log10 scale, as a function of
log10(k̄ − k̄G). Both sets have a behavior close to linear in these scales. For these plots we have
used k̄ = 0.980(0.001)1.200. See the text for additional details.

The Figure 16 shows some statistics of escapes for k̄ = 0.98(0.005)1.04. To this end we
count, in a similar way to what has been described to obtain Figure 15, how many points, Cj ,
escape after a number of iterates T in the interval Ij = [100.02j, 100.02(j+1)), j = 100, . . . , 500.
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The top left plot in Figure 16 displays the values of Cj as a function of 0.02j. Obviously, the
closer k̄ is to k̄G, the larger the number of iterates is. In the top right plot the representation
is similar, but instead of Cj we display log10(Cj). From one side, it is remarkable to see that,
beyond a shift and a small deformation, the curves are very similar. On the other hand there
is a strong similitude between the middle plot and the one that we have seen in Figure 15.
This shows that the bumps in Figure 15 are due to the effect of the cantori gaps surrounding
the stability regions of E+ and E−. See Section 6.1 for further details.

To complete the information displayed in Figure 16, top plots, we can display, as a func-
tion of log10(k̄− k̄G), both the total number of iterates to have escape of (essentially) all the
points, and the location of the maxima in the previous two plots, both numbers in log10 scale.
This is shown in Figure 16 bottom. The straight lines show the corresponding linear fits.
The slope for the upper data (iterates) is ≈ −3.05 while the one for the lower data (maxima)
is ≈ −3.13. They are in good agreement with the expectations from renormalization theory
around the golden rotation number curve breakdown, see Section 6.4, specially with (13).

For completeness we have also computed, from the data shown in Figure 16, the average
and standard deviation of the number of iterates to escape, as a function of k̄. We found
a good agreement with a power law of the form (k̄ − k̄G)

−β, for the value of β in (13),
both for the mean and for the standard deviation. Furthermore, as it is well-known from
renormalization theory [21], these two values tend to coincide when k̄ tends to k̄G and the
numerical computations show this tendency.

We return now to M̄k for k slightly greater than 1, with the same set of values of k used
in Figure 13 right and in Figure 15. As mentioned in Section 5.1 we can count how many
times a temporary capture, i.e., entrance in WE+

∪WE
−

, is produced. This can be divided
by the total number of iterates (105 × 230 for each value of k). This gives an estimate of
the probability that a point in the chaotic domain is temporary captured by an island. The
results are represented in Figure 17 top left as a function of k.

On the other hand we can check how many iterations are spent in these temporary
captures. The results are shown in Figure 17 top middle. Note, however, that for the
contribution to the standard deviation σT,k for the present T = 230 it is not just the total
number of iterates inWE+

∪WE
−

what matters, but how long are the “stays” near the islands.
A stay 106 units long counts as much as 100 stays 105 units long. Furthermore, to check
that what really matters are the iterates and “stays” in WE+

∪WE
−

, for the set of values of
k used in Figure 17, we have computed the standard deviation looking only to the stays in
WE+

∪WE
−

. Concretely, if some initial point has visited m+ times WE+
and m− times WE

−

,
it contributes as m+ −m− to the computation of the standard deviation. All the iterates in
the chaotic domain are discarded. The values of the σT,k computed in that way have a relative
error below 0.0005 with respect to the correct values for k = 1.05120(0.00001)1.05150.

Finally we plot at the top right part of Figure 17 the evolution of the estimated value
of the non-normalized standard deviation σT (k), see (12), as a function of T for the values
of k used to produce Figure 13 right. We use log10 scales. Globally one can see that up to
T ≈ 104 the behavior is close to linear, with a slope larger than 1/2. Concretely, it is close
to 0.63, due already to the effect of the points near the islands. From that value of T on,
there is a change and the values of σT (k) lie between two lines of slopes 0.7 and 1, say the
lower and the upper lines. If we look at the individual behavior of the lines for the different
values of k, see the details in the magnification shown in the bottom plot, it is checked that
up to k = 1.05123 the curves stay near the lower line. For k = 1.05124 the curve ends in
the middle of the lower and upper lines, with σT (k) ≈ 107 for T = 230. For k = 1.05126 it
reaches the upper line at the end of the T domain. From that value of k on, the curve has
a tangency with the upper line, for values of T which decrease as k increases (compare with
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Figure 17: Top left: Number of temporary captures tc in the WE+
∪ WE

−

domains divided by
the total number itt of iterates of all the initial points. Top middle: total lengths tl of the stays
near islands divided by the same quantity. Both data are represented as a function of k. Top right:
For all the k values of the previous plots the standard deviation σ is represented as a function of
the number nit of iterates in log10 scale. Bottom: A magnification of the top right plot for nit
between 220 and 230 with the lines for k = 1.0512(0.0001)1.0515 shown as thick blue lines. For
reference two straight lines with slopes 0.7 and 1, mentioned as lower and upper lines in the text,
are also shown.

Figure 15), and then it decreases approaching the lower curve. The curves shown with thick
blue lines illustrate this behavior.

Up to this point we have commented on the numerical results obtained. These results
show that for a generic area-preserving map with a divided phase space the diffusion prop-
erties are far from trivial. Despite of the difficulties, and motivated by the interest in ap-
plications, many authors have investigated the diffusive properties both from numerical and
theoretical points of view. Next subsection relates the numerical results obtained with the
available theoretical approaches to the diffusive properties in the different regimes observed.

6.3 Available theoretical frameworks from renormalization

schemes

In what follows we briefly present the theoretical frameworks that either support or even
explain some of the numerical results shown.

The correlation function is related to the probability P e(t) of leaving a fixed region of
the phase space in time t. To fix ideas, consider the accelerator mode islands of Mk. The
probability P e(t) relative to these islands was shown in Figure 15 left. First we note that in
a purely diffusive regime the correlation function decays exponentially in time, see [19] and
references therein (“time” here means “number of iterates of the map”). That would mean
that the points can escape from the chaotic region region easily as time evolves. However,
we observed a power-law decay of P e for the region. Similar results were obtained in many
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other works, see [2, 3, 4, 16] for example. This means that trajectories are expected to be for
a large number of iterates in the neighbourhood of the accelerator mode island, as confirmed
by the numerical experiment in Section 5. See also [8, 9] for more recent computations on
the statistics of the Poincaré recurrences using the Ulam method.

What causes the power-law decay and the stickiness effect has been analysed from dif-
ferent points of view. The analysis performed in [2] derived a power-law behaviour in terms
of the non-homogeneous diffusion coefficient D(y) of the separatrix map. The analysis of
self-similar solutions of the diffusion equation (which was suggested to include a suitable
exponent α) lead to the power-law probability distribution. This self-similarity was then re-
lated with suitable scalings in time and space of the island-around-island structure, meaning
that for long-time evolution is this hierarchy the responsible of the behaviour of P e. Further
developments of this point of view were done by Zaslavsky and collaborators, giving rise to
a renormalization approach related to the hierarchical islands, see [44]. Let us give some
details of this approach.

The presence of accelerator modes causes the divergence of the diffusion coefficient since
the variance of a power-law distribution grows to infinity. Assume that the density of prob-
ability is of the form fP e ∼ a/T b. For 2 < b ≤ 3 the expected value exists but the variance
diverges. According to the Zaslavsky renormalization scheme, see [45], one has

b = 1 +
log λs
log λT

,

where λs is the corresponding scaling factor of the area of two consecutive islands in the
hierarchical structure and λT is the scaling factor related to the period of the last invariant
curves of these islands. These scalings are assumed to hold approximately and obtained from
computations of the first islands in the structure. Several computations for the web map and
the standard map for different hierarchies of islands show that b ≈ 2.2. It is worth noting
that the same factor was numerically observed in [27] for the Mather’s ∆W [26] measured in
different consecutive islands of a hierarchy (referred there by a class, see [27]), concretely it
was observed that ∆Wc = ∆Wc−1q

−ψ, with ψ = 2.2 and where p/q, p, q ∈ Z is the frequency
of the periodic point of the class c orbit. We refer to [45] and references therein for further
details. On the other hand, in [45] it was also observed that the variance of the fractional
Fokker-Planck-Kolmogorov equation

∂βf

∂tβ
=

1

2

∂α

∂(−x)α
(

∂α(Bf)

∂(−x)α − ∂αB

∂(−x)α f
)

,

behaves like tβ/α, which provides an explicit relation with the scalings λs and λT of the
renormalization scheme. Further discussions on scaling laws can be found in [43].

In our experiments we also observed the stickiness effect of cantori. To analyse this
phenomenon MacKay in [20], and in an extended version in [21], defines a renormalization
operator in a class of area preserving twist maps. Let ω be an irrational number whose
continued fraction expansion and rational convergents are

ω=a0 + 1/(a1+1/(a2+· · · )) ≡ [a0, a1, a2, . . .], ai≥1, i>0; pn/qn=[a0, . . . , an].

Then pn/qn → ω as n → ∞. Let Fµ : (I, θ) = (Ī , θ̄) be a twist APM 1-periodic in θ and
having a critical invariant circle of rotation number ω for µ = 0, and R(I, θ) = (I, θ − 1).
The results obtained suggest that there are scalings Bn such that the sequence

B−1
n F qn

µδ−nR
pnBn
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converges to a universal map F ⋆, where Bn ≃ BBn−1, B(x, y) = (αx, βy) and it does
geometrically with ratio 1/δ. In particular he did computations for noble rotation numbers,
that is, for which ai = 1 for i > i0, i0 ≥ 0 obtaining

δ = 1.62795, α = −1.4148360, β = −3.0668882 . (13)

The impact of these results in transport properties of the map in the vicinity of the just
broken invariant circle are worth noting. One of the consequences of these scalings is that
Mather’s ∆W [26] scales as follows. If ∆k is some small quantity,

∆Wω(kc +∆k/δ) ≈ ∆Wω(kc +∆k)/(αβ),

so that there exists a 1-periodic universal function U(x) = U(x+ 1) such that

∆Wω(kc +∆k) ≈ A(∆k)BU(logδ(αβ)), B = logδ(αβ) ≈ 3.0117220 .

This quantity ∆W(p/q), as is proved in [22] is exactly the flux, the area per iterate that
crosses through the gaps in a periodic orbit, and ∆Wω is the area that crosses through
a cantorus (when it is an invariant curve the flux is zero, as expected). As a function of
the parameter k in the case of Mk (3), the time to cross an invariant Cantor set 〈N〉 (k),
conditioned to do it eventually, is related to the flux and the accessible area A(k) via the
Kac formula [28]

〈N〉 (k)×∆ωW (k) = A(k),

where A(k) can be assumed to be bounded between two close positive constants for small
enough variations of k so that the time to cross an Aubry-Mather set, sufficiently close to
the breakdown, behaves as

〈N〉 (k) ∼ 1

∆kB
,

where logδ-periodic fluctuations are expected. Note that this law is exactly the same observed
by Chirikov in [1]. In order to be able to use this approach to the escape from an island, the
effects of islands-around-islands should be included, as in the Markov tree model in [30].

6.4 Comparing with limit theoretical predictions

Now we are in situation to explain the changes observed on the behavior of the standard
deviation, for different values of k, T and N , at the light of the previous theoretical consid-
erations.

For a given initial point, located in the chaotic domain, there is some small probability,
say ε1, to enter WE+

∪ WE
−

. This is illustrated in Figure 17 left. Note that even for
k < kc,1/4 one has ε1 > 0. The iterates can enter in WE+

, say, but can not cross the still
existing invariant curves. Increasing k the value of ε1 increases up to some saturation. This
is due to the fact that the gaps of the more external cantori are larger.

For k < kc,1/4 the only contribution to σT (k) is the “residence” in WE+
but outside the

invariant curves. Hence, the values of the standard deviation, either scaled or not, are not
so large, as illustrated in Figure 13 (skip the effect of the small peaks). According to [45]
one should have a power law with exponent ≈ −2.2 in the residence time inside WE+

. Here
the power refers to the one in the probability density function (pdf) of the residence time
near islands. This is illustrated in Figure 15. In the fits of the corresponding cumulative
distribution functions (cdf) we did, to “extract” the bumps, we found slopes that were
tending to -1.21 when k > kc,1/4 was approaching kc,1/4. But in Figure 15 we show results
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for iterates in a sample with constant step in log10 scale. That is, not for a value of the
number of iterates but for a range of fixed amplitude in log scale. This means that in the
true iterate scale the exponent of the pdf of the residence time near islands is close to -2.21,
in very good agreement with [45].

Now assume k>kc,1/4. Immediately after kc,1/4 the gaps on the Cantor set which replaces
the last invariant curve (that we denote in what follows as the last Cantor), are so small
that they produce almost no effect. This can be seen, both in Figure 15, where the bumps
displayed on the right start at k=1.05127, and in description of the bottom plots in Figure 17.

Further increase of k leads to an increased probability to enter inside the last Cantor.
When inside, they remain there for an average number of iterates of the form c(k − kc,1/4)

β

for some c > 0 and β as given in (13). For a given T there exists a value of k, say k∗(T )
such that the mean residence time inside the last Cantor equals T . In other words: some
points enter inside that Cantor and for the full number of iterates they remain inside. The
final value of the jump ∆Ty = yT −y0 equals T . Even if the fraction of points is not so large,
there is a contribution to σT (k) of the order of T .

Increasing k from k∗(T ) on, should produce a decrease in σT (k), because the probability
to enter the last Cantor is larger, the mean residence time is less or much less than T .
Hence, the “large contributions” to σT (k) are no longer present. It is clear that the iterates
of a point which enter the last Cantor and leave it, can reenter later (after many additional
iterations), but the global effect will be less important. One would need many more iterates
(i.e., a larger T ) and this will decrease the slope in Figure 17 bottom plots.

This reasoning also explains the tangencies mentioned concerning Figure 17 bottom,
specially in the right one. When k increases, the value of T at the tangency decreases: the
function k∗(T ) decreases if T increases and tends to kc,1/4 when T → ∞. This is also related
to the fact that, in many previous figures, using the scaled standard deviation, the maximum
appears multiplied by a factor γ when T is increases by a factor γ2.

Finally we can comment on the behaviour of σT (k), for a fixed k around kc,1/4 for very
large values of T , producing a lower bound of the standard deviation. We start by stating
several simplifying assumptions. For concreteness we denote the domain WE+

∪WE
−

as the
islands zone, and the complement as the chaotic zone.

a) A point in the chaotic zone has a probability 1− ε to remain on it after one iteration
and equal probabilities, ε/2, to enter WE+

or WE
−

. Hence, to remain for m consec-
utive iterations in the chaotic zone and then to enter into the islands zone, one has
a probability (1 − ε)mε. Both the average and standard deviation are 1/ε + O(1).
According to the data in Figure 17 top left, the values of ε for k around kc,1/4 are close
to 5× 10−6.

b) A point which has entered into the islands zone remains on it at least for m0 iterates.
The probability to go out after m > m0 iterates is of the form c/mb where c > 0
and 2 < b < 3. From the normalization, requiring

∫

∞

m0
cm−b dm = 1, it follows c =

(b − 1)mb−1
0 (1 + o(1)). The distribution has average ≈ b−1

b−2
m0. The value of b can be

estimated from Figure 15 to be around 2.2 and m0 can then be estimated from the
average length of the stays in the islands zone, which follows from the plots in Figure
17 top, and the expression above for the average. The values of m0 derived in this way
range from 128 to 170, approximately.

The probability that the number of iterates in the islands exceeds a value M follows
easily and it is given by (m0/M)b−1. We recall, as already said, that the variance of
this distribution becomes unbounded.
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c) We assume that the different events (remaining in the chaotic zone, entering one or the
other islands zones and remaining a given number of iterates on it) are independent.
As commented in subsection 4.2 and illustrated in Figure 8, this is not true, but the
correction factor obtained for the diffusion coefficient due to the correlation is not too
far from one.

Under the above assumptions one has the following

Proposition 2. The standard deviation of a sample of initial points after T iterations, with
T large enough, is bounded from below by T 2−(b+1/b)/2.

Proof. Let γ > 0, δ > 0, to be selected during the proof. We consider the iteration of a given
initial point. Assume, first, that until an iterate such that the total number of iterates in
the chaotic zone is T γ, all the entrances in the islands zones have lengths bounded by T δ

until a long stay entrance occurs.
Applying the central limit theorem to the distribution in the chaotic zone, one has that

the number of times that an iterate enters the islands zone is εT γ(1+ o(1)). The probability
that in each one of the stays in the islands zone the number of iterates in the island is
bounded by T δ is bounded by

[

1−
(m0

T δ

)b−1
]εT γ

(1 + o(1)),

which behaves like exp(−εmb−1
0 T γ−δ(b−1)), that is, very close to 1 if γ − δ(b− 1) ≤ 0 for the

ranges of ε,m0, b that we are considering.
Now assume that a long stay in the islands zone occurs and the point remains there for,

at least, T iterates. The probability is (m0/T )
b−1. It is clear that the computation is stopped

as soon as the total number of iterates exceeds T . The number of possibilities of such event
to occur is εT γ(1+ o(1)). If we assume that this long stay occurs in the positive island, even
if the other stays are in the negative one, and neglecting the contribution O(T γ/2) due to
the stays on the chaotic zone, for the final value of |y| one has a value bounded from below
by T − 2εT γT δ(1 + o(1)) > 0.999T , provided γ + δ ≤ 1.

The contribution to the sum of squares of the changes in y is bounded from below by

εT γ(1 + o(1))
(m0

T

)b−1

(0.999T )2. (14)

From the conditions for γ, δ one has that the optimal choice is obtained if γ = δ(b−1), γ+δ =
1, which gives as exponent of T in (14) equal to 4−b−1/b. By the assumptions on the equal
probabilities to enter WE+

or WE
−

, the average of y is negligible in front of this quantity
and the Proposition follows. ✷

Figure 18 shows an illustration similar to Figure 17 bottom, for k = 1.0515, a number
of initial points N = 104 and a final number of iterations T = 240. For reference a line
with slope 0.7 is also shown. We note that, assuming b = 2.2, the lower limit of the slope
predicted by proposition 2 is ≈ 0.673. The contributions of other stays in the islands zones
are responsible of the difference of limit slopes for T very large. We should mention that
for T = 238 and T = 239 the results are below what we expected, while for T = 240 are a
little bit larger than expected. Looking at the behavior of the iterates of the initial points
one checks that for T = 238, 239 the largest values of |y| are slightly larger than 1.1× 109, a
little bit more than the value already reached for T = 237 iterates. On the other hand, for
T = 240 one of the points reaches y = 1.327× 1010. This single point gives half of the total
contribution to σ. But this anomaly is nothing else than a consequence of the reduced size
of the sample.
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Figure 18: The standard deviation σ as a function of the number of iterates T for k = 1.0515, for
large values of T . Both variables shown in log10 scale.

7 Conclusions

In this paper we have presented several numerical massive experiments concerning the non-
homogeneous diffusion properties of area preserving maps. Concretely we have focused on the
Chirikov standard map for (relatively) large values of the parameter. The obtained results
show the relevant role of the accelerator mode islands, whose local properties in the highly
chaotic regime of the standard map have been related with those of the Hénon map. The
effect of cantori and islands-around-islands structures surrounding these accelerator modes
on the regular diffusion characteristics has been analysed.

The normal diffusive behaviour observed for most of the parameter values no longer
persists for ranges at which sticky structures appear. In particular, our results confirm the
power-law decay in time of the probability of being trapped in an islands-around-islands
hierarchical structure. Furthermore, a different power-law decay in time, produced by the
effect of cantori gaps, has been also detected for some parameters. Both situations have
a theoretical framework which reasonably explain the results. In fact, it is possible to
understand the numerical results at the light of the limit cases described by the available
theories.

However, it would be of great interest for applications to be able to predict which of
these different regimes dominates for a given parameter value, hence being the mechanism
responsible of the expected average diffusion properties of the system. Furthermore, the
validity limits (either in phase space and/or parameter space) of the (quantitative) data
predicted by the theoretical approaches should be also investigated. It seems that some part
of the information required to make quantitative predictions valid for large domains in the
phase+parameter space requires some preliminary numerical experiments. These questions
will be considered elsewhere.
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