
¿From the Hénon conservative map to the Chirikov
standard map for large parameter values

Narćıs Miguel, Carles Simó and Arturo Vieiro
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Abstract

In this paper we consider conservative quadratic Hénon maps and Chirikov’s
standard map, and relate them in some sense.

First, we present a study of some dynamical properties of orientation-preserving
and orientation-reversing quadratic Hénon maps concerning the stability region, the
size of the chaotic zones, its evolution with respect to parameters and the splitting
of the separatrices of fixed and periodic points plus its role in the preceding aspects.

Then the phase space of the standard map, for large values of the parameter,
k, is studied. There are some stable orbits which appear periodically in k and are
scaled somehow. Using this scaling, we show that the dynamics around these stable
orbits is the one of above Hénon maps plus some small error, which tends to vanish
as k → ∞. Elementary considerations about diffusion properties of the standard
map are also presented.

Dedicated to our friend Sergey Gonchenko on his 60th birthday

1 Introduction

The universal character of the Hénon map (1) is well-known since, in particular, it appears
as a return map close to a quadratic tangency in the dissipative setting [1, 2]. Later the
conservative orientation-preserving Hénon map (1) was obtained as a universal return map
for quadratic tangencies of conservative maps preserving orientation, see, for instance,
[3, 4, 5]. Recently, it has been proved that the orientation-reversing Hénon map also
appears as a universal return map in non-orientable cases, either for maps defined in non-
orientable manifolds or for hyperbolic points with eigenvalues λ and µ such that λµ =
−1, see [6]. On the other hand, in [7] the authors consider non-transversal heteroclinic
cycles for reversible maps having symmetric saddle fixed points, and they show that the
corresponding return map can be written as the composition of either two orientation-
preserving or two orientation-reversing Hénon maps.

In this work we investigate both orientation-preserving and orientation-reversing cases.
Several properties concerning the stability region, the size of the chaotic zones, the split-
ting of separatrices of the fixed/periodic points, etc, are presented in Sections 2 and 3.

In Section 4 we perform an extensive numerical exploration of the relative regular area
of the phase space of Chirikov’s standard map [8] for large values of the parameter, by
means of the computation of Lyapunov exponents. This allows us to detect stable islands
appearing periodically in the parameter that show some scaling properties.

In Section 5 we analyse the properties of such little islands, which are of period 1, 2
and 4. More concretely, we focus on the renormalisation properties of these islets and we
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derive suitable limit maps. It turns out that the obtained limit maps correspond to the
orientation-preserving Hénon map, the composition of two of these and the composition
of two orientation-reversing Hénon maps, respectively. The results obtained fit within the
same spirit of previous results in [8, 9]. The effect of these islets of stability in the diffusion
properties of the Chirikov standard map are also analysed by means of the elementary
quasi-linear approximation of the diffusion coefficient.

2 The Hénon conservative orientation-preserving map

In 1969 M. Hénon [10] started the study of quadratic area preserving maps in R2. He
proved that quadratic maps with constant Jacobian can be reduced to the form

F : (x, y) → (1− ax2 + y, bx) (1)

for some constants a, b ∈ R, with minors exceptions. If b = −1 the map is area and
orientation-preserving. If b = 1 it is area preserving and orientation-reversing. The case
b = −1 has a very simple geometric interpretation as the composition of two maps. The
first one is (x, y) → (x, y+1− ax2), one of the so-called “de Jonquières” maps, while the
second is just a rotation by an angle of −π/2.

However, in what follows, we use another representation of the case b = −1 given by:

HPc :

(

x
y

)

→
(

x+ 2y + c
2
(1− (x+ y)2)

y + c
2
(1− (x+ y)2)

)

, (2)

where it is enough to consider c > 0. We name it HP which stands for Hénon orientation-
preserving map. This representation is obtained from a minimal modification of the
version given in [11]: Fc : (x, y) → (c(1 − x2) + 2x + y,−x) after the change (X, Y ) =
(x−y, x+y)/2, and renaming (X, Y ) as (x, y). The subscript c in these maps is introduced
to stress that they depend on this parameter. The map (2) has two fixed points. One of
them, H , is located at (−1, 0) and it is hyperbolic for all c > 0. The other one, E, located
at (1, 0), is elliptic for 0 < c < 2, parabolic for c = 2 and reflection hyperbolic for c > 2.

2.1 Symmetries, reversors, limit flow and rotation number

The inverse map can be expressed as HP−1
c = S ◦HPc ◦S, where S is the symmetry given

by S(x, y) = (x,−y). Defining R = S ◦HPc, which is clearly an involution like S, we have
HPc = S ◦ R and HP−1

c = R ◦ S. Both S and R are called reversors. We can consider
the sets, Fix(S) and Fix(R), of fixed points of both reversors, i.e., either points z = (x, y)
such that S(z) = z (which are the points with y = 0) or points such that R(z) = z, which
belong to a parabola.

A reversor like S plays an important role to locate periodic points on Fix(S). If for a
point p ∈ Fix(S) there exists m ∈ N such that HPm

c (p) ∈ Fix(S), then p is periodic, of
period m if p = HPm

c (p) and of period 2m if p 6= HPm
c (p). Furthermore, for any of these

periodic points, if it is hyperbolic, the image under S of the unstable manifold W u(p) is
the stable one W s(p). Similar properties hold for the reversor R.

For a preliminary study of the dynamics of an arbitrary map F , provided it is close
to the identity map, Id, it is quite useful to look for the existence of some ODE such that
the time-1 map associated with the flow gives a good approximation to F . In the case of

2



(2) this can be done by introducing the new variables (ξ, η) = (x, 2y/
√
c). Then, in the

(ξ, η) variables, HPc differs from Id by O(
√
c). A scaling of time also by

√
c leads to:

dξ

dt
= η,

dη

dt
= 1− ξ2, (3)

an ODE which is Hamiltonian with H(ξ, η) = 1
2
η2 − ξ + 1

3
ξ3. The solutions are contained

in the level curves of H and the main features are shown in the elementary Figure 1
left. It has also H = (−1, 0) and E = (1, 0) as fixed points, of hyperbolic and elliptic
type respectively. The level H−1(2/3) contains the separatrix. Points inside the domain
bounded by the separatrix belong to a foliation of periodic solutions. In the right side
plot we show some confined orbits for HPc, as well as the right branches of the invariant
manifolds of the hyperbolic fixed point. They seem to be coincident but, of course, they are
not (see Section 2.4). For this small value of c the main difference between both plots is the
change in the y variable by a factor

√
c/2 when going from the left plot to the right one.
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Figure 1: Left: the phase portrait of system (3). Fixed points are shown in blue, as are the
invariant manifolds of the hyperbolic point. The periodic orbits are shown in red. Right: the
right branches of the invariant manifolds of the hyperbolic point and (part of) the orbits of
several initial points under HPc, for c = 0.2.

An extremely relevant parameter is the rotation number. If we consider the time-
√
c

map associated to the flow, the rotation number corresponding to a periodic orbit of
period T is ρ =

√
c/T . It decreases monotonically from

√
c/(

√
2π) to 0 when going from

E to H . The values agree very well with the corresponding rotation numbers for HPc, for
c small, when ρ is defined, i.e., on the curves invariant under HPc.

For increasing values of c the rotation number, when it is defined, gives a very good
information on the dynamical properties. Figure 2 tells us about the value of ρ on the
(c, x)-plane, when the initial point to compute ρ is in Fix(S), i.e., of the form (x, 0). For the
places in white the iteration of an initial point (x, 0), under HPc, leads to escape. In par-
ticular, for c=3/2, for which value the E point has as eigenvalues −1/2± i

√
3/2, all other

points on the x-axis, with x > −1, escape (unless they belong to some stable manifold).
To compute ρ we have used a topological method based on the order of the iterates

on the curve, see, e.g., the Appendix in [12]. The tolerance used to stop the compu-
tation of ρ is 10−10. Then, if the value of ρ can be identified, with this tolerance, as
a rational m/n with n < 104, it is decided to consider ρ ∈ Q and, hence, they be-
long to islands with a period equal to the denominator. Otherwise we consider ρ /∈ Q.
Points in light grey in Figure 2 are considered to have ρ irrational. Points with ρ of
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Figure 2: The plot shows, as a function of c (horizontal variable), the values of x (vertical
variable) for points in Fix(S) for which ρ has been computed. The dots in light grey correspond
to points for which there is good evidence that ρ /∈ Q, while for other points (in grey or black)
a value ρ ∈ Q has been found. See the text for details.

the form m/n, with n ∈ {3, 5, 7, 9, 11} are shown in black, while points with other
rational values of ρ are shown in grey. The wedges in black, from left to right, have
ρ = 1/11, 1/9, 1/7, 2/11, 1/5, 2/9, 3/11, 2/7, 1/3, 4/11, 2/5, 3/7, 4/9 and 5/11, the last five
showing up for c>3/2. We note that all denominators are odd. A similar plot, but taking
initial points in Fix(R) would give even values for n, see [13]. We also note that, in this
plot, odd values of m appear in the lower part, while even values appear on the upper
part.

We remark that most of the wedges associated with islands reach x = 1, but they are
extremely narrow; below the pixel resolution. As rational numbers are dense, the light grey
domains on the figure have, in fact, a Cantor-like structure. Furthermore, some of the is-
land domains in the figure do not emerge from x=1. They are related to satellites (and
satellites of satellites, and so on) of the main islands. In some sense, the structure around
each island and around its satellite islands repeats the structure of the full set, as a fractal
object. This can be checked by magnifying the black domains in Figure 2.

2.2 Measure of the set of regular and chaotic confined orbits

In Figure 3 we show the measure, µ(c), of the set of bounded orbits as a function of c for
the map HPc, as given in (2). We should stress that there are many other more general
conservative models (e.g., Hamiltonian systems with two or three degrees of freedom,
such as the Restricted Three-Body Problem, or traveling waves of some PDE, such as the
Michelson system [14, 15]) which have many features in common with what we display
for the Hénon conservative map.

To produce Figure 3 we compute the Lyapunov maximal exponent, Λ(p), for initial
points p and for many values of c and a narrow grid of points. A typical spacing in
the coordinates x and y for the grid is 0.0005. In most of the cases we first compute a
transient of 106 iterates before starting to compute Λ(p). In this way we detect most of
the points which escape. A simple escaping criterion follows from the fact that if some
forward iterate of p has x-component with x < −1, it will escape. A number of iterates
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m = 106 is also used to produce an estimate of Λ(p). If the value obtained is below
2 × 10−5, the orbit of p is considered to be regular and, hence, bounded. Otherwise it is
considered to be chaotic. In the latter case, we continue with additional iterations (up to
108 and in some cases up to 1010) to check if we can consider the chaos as confined or if
the orbit of p is finally escaping.
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Figure 3: Left: measure µ(c) of the set of confined points as a function of c. Right: a magnifi-
cation in the range c ∈ [0.77, 0.97] to provide evidence of the self-similar properties of µ(c).

Note the sudden decrease of µ(c) at some values of c. Going from right to left one can
see a first decrease near c = 1.5, a fact already mentioned in the discussion after Figure 2.
The small confined area for c = 1.5 is due to the existence of tiny period-3 islands. Later
on we see a sequence of sudden changes in µ(c) which correspond to the destruction of all
the invariant curves surrounding the islands of periods 4, 5, 6 and so on.

The magnification shown in Figure 3, right, provides strong evidence of what happens
with islands of a higher period and displays the self-similar properties of µ(c). As an
example, the large jump near c = 0.91 corresponds to the breakdown of invariant curves
around the islands of rotation number 2/9, while the jump shortly after c = 0.96 corre-
sponds to the breakdown of invariant curves around the islands of rotation number 3/13.
It is not difficult to identify all the jumps shown in these plots.

Among the points with bounded orbit there are, however, some which display chaotic
behaviour. The Lyapunov exponent allows us to detect them. A natural question is,
hence, how the measure of this set changes with the value of c. This is shown in Figure 4.
The plot shows quite a sharp change in its behaviour. This is to be expected, because of
the infinitely many chains of islands in the system (there are for any ρ ∈ Q∩(0, 1/2]). Each
chain of islands has an associated hyperbolic periodic orbit, the splitting of whose invariant
manifolds generates some amount of chaos. It is confined until the invariant curves, that
surround these chaotic orbits, break down. Even considering that the computations shown
in Figure 4 have been done with a 10−3 step in c, a careful examination of the data allows
us to detect several hundreds of peaks. See Sections 2.3 and 2.4 for details on the splitting
properties.

In Figure 5 we show three magnifications, computed with step 10−4 in c. They corre-
spond to what happens before the breakdown of the invariant curves around the islands
of periods 6, 5 and 4, respectively. For the moment, we do not consider the small jumps
on these curves; just a kind of average or, better, a curve fitting the successive minima.
For the left plot, for instance, this is produced by the change in the size of the chaotic
zone created by the homoclinic points associated to the period-6 hyperbolic orbit. But
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Figure 4: Measure of the set of confined points with chaotic dynamics as a function of c.

this orbit has been created at c = c01/6 = 0.5, while the destruction of all the invariant

curves around the islands of rotation number ρ = m/n = 1/6 occurs for a critical value
cm/n = c1/6 ≈ 0.6204. Hence, why does it take so long to see that the size of this zone is
relevant? The answer will be give in Section 2.4. Similar things occur for the other two
plots. The respective creation of islands and destruction of all the surrounding invariant
curves occur, for period 5, at c = c01/5 = 1− cos(2π/5) ≈ 0.690983 and c = c1/5 ≈ 0.7649,

and, for period 4, at c = c01/4 = 1 and c = c1/4 ≈ 1.0141.
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Figure 5: Magnification of Figure 4 corresponding to the breakdown of the invariant curves
which surround the islands of period 6 (left), period 5 (centre) and period 4 (right).

The differences between an averaged behaviour of the rate of increase and the true
behaviour in Figure 5 is due to the role of other minor islands. For instance, the jump seen
in the left plot shortly after c = 0.61 corresponds exactly to the same kind of phenomenon,
created by the periodic orbit of rotation number ρ = 3/19. The measure of the chaotic
zone associated with this periodic orbit has to be added, in some sense, to the largest
chaotic zone due to the period-6 orbit.

2.3 Splitting of the invariant manifolds of the hyperbolic fixed

point

For their intrinsic interest and to compare with the behaviour in Section 2.4, we shall
consider now a measure of the lack of coincidence of the unstable and stable manifolds,
W u

H ,W
s
H of the hyperbolic fixed point. As a suitable measure we will use the splitting

angle, that is, the angle between the manifolds, computed at the symmetric homoclinic
point found on the first intersection with y = 0, x > 1. Let us denote the angle as σ(c).

6



A useful parameter to present the results is h(c), defined as follows. Let λ(c) be the
dominant eigenvalue at H , which is equal to 1 + c +

√
2c+ c2 for HPc. Then we define

h(c) as log(λ(c)). We note that h(c) =
√
2c + O(c). If in the limit vector field (3) we

scale time by an additional factor
√
2 then the map HPc will be well approximated by

the h(c)-time map of (3). It is easy to check that the separatrix of the flow has the
closest singularities to the real axis of the time, located at a distance τ = π of that axis.
According to [16, 17], for any η > 0, there exists N(η) such that the splitting angle is
bounded by N(η) exp(−2π(τ − η)/h(c)). This type of result is true for general analytic
area preserving maps close to the identity map.
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Figure 6: Different representations of the splitting angle σ(c) between the manifolds at the
first intersection with y = 0, x > 1. Left: σ as a function of c, showing that σ seems negligible
for c < 0.2. Right: log(σ) as a function of log(c), which allows to see how small σ(c) is for c
approaching zero.

For HPc we have computed σ(c) for many small values of c and the following formula
fits the numerically computed data:

σ(c) =
9

2
× 106π2h(c)−8 exp

(

− 2π2

h(c)

)

× Ω(h), (4)

the factor Ω(h), or correcting factor, being of the form ω0 + O(h). Using a local repre-
sentation of W u

H to order 400 and 500 decimal digits in the computations it is possible
to compute σ(c) and, hence, to derive from (4) values of Ω(h) and to look for a formal
expansion in powers of h2: Ω(h) =

∑

m≥0 ω2mh
2m. See more details in [18, 19], but in

contrast to [19], in the present case we have computed the splitting angle instead of the
homoclinic invariant and derived the coefficients in Ω(h) using finite differences instead
of polynomial fitting. The package PARI/GP [20] is useful for these simple problems.

As a result, the first digits of ω0 are 2.4893128029367119625065982560123949997046
and, furthermore, there is a strong numerical evidence that the formal series is, in fact, a
divergent one. However, the related series

∑

m≥0 ωmh
2m/(2m)! (i.e., the Borel transform

of Ω(h)) seems to be convergent. In Figure 7, left, we plot log10(ω2m(2π
2)2m/(2m + 6)!)

as a function of m up to m = 375, i.e., up to the power h750. The values seem to tend
to a constant, a strong evidence of the Gevrey-1 character of Ω(h) and of the fact that
its Borel transform seems to have radius of convergence equal to 2π2. If we assume that,
despite the divergent character of Ω(h), a good approximation is obtained for small h, if
we truncate the expansion at the smallest term (in absolute value), the relative errors are
shown in Figure 7, right. They are acceptably small, even for h = 1.

If we compare the left plot in Figure 3 with Figure 5 we check that up to c = 0.35 the
behaviour of µ(c) just follows from the measure of the domain bounded by the separatrix

7



-2.5

-2

-1.5

-1

 0  100  200  300

-0.01

 0

 0.01

 0  0.2  0.4  0.6  0.8  1

Figure 7: Left: log10(ω2m(2π2)2m/(2m + 6)!) as a function of m, which gives evidence of the
Gevrey-1 character of Ω(h). Right: the relative errors Ωtr(h)/Ω(h) − 1 as a function of h, with
step 0.01, where Ωtr(h) denotes the formal power series truncated at its smallest term, m = m∗.
Note that this is achieved for different m∗ = m∗(h) depending on the value of h. The different
pieces shown, from right to left, correspond to values of m∗(h) equal to 4, 5, 6, . . ..

in Figure 1 and the change of scale. It is proportional to
√
c. No sign of the effect of

the splitting seen on Figure 6 shows up. But this has to be expected, because all the
points with chaotic orbits created by the splitting of W u,s

H escape to infinity. In contrast,
Figure 8 displays, for the standard map in T2 (no escape), see (7), a comparison between
the relative measure of the set of points with chaotic orbit (detected by computation of
the Lyapunov exponent) and a multiple of the splitting angle of the manifolds of the
hyperbolic fixed point, computed at the homoclinic point lying on the line x = 1/2. The
agreement is good, even for large values of the parameter k in (7). In this formulation
the Greene’s critical value appears for k ≈ 0.15464.

-12
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-4

 0

 0.04  0.08  0.12  0.16

Figure 8: Fraction of points with chaotic orbit (line with points) and a multiple of the splitting
angle of the hyperbolic fixed point for the standard map (continuous line). Horizontal variable:
the parameter k, see (7). In the vertical line the natural logarithms of the values are displayed.

2.4 Splitting of the invariant manifolds of periodic hyperbolic

points

Consider a map F having an elliptic fixed point E0. Under generic conditions there is a
domain of stability D surrounding E0. Inside D the phase space has different Birkhoff
resonant chains of islands of stability, located in an annular domain around E0. Gener-
ically, these stability islands have a pendulum-like phase space structure formed by the
invariant manifolds of the hyperbolic periodic points. Hence, for a concrete island, one
can consider two “main” splittings of separatrices, geometrically related to the upper and
lower separatrices of the classical pendulum. We refer to the inner/outer splittings ac-
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cording to the distance to E0 of the separatrices of the pendulum structure. It turns out
that both splittings are generically different, being the outer one the largest [11]. Hence,
the size of the confined chaotic zone is expected to grow, essentially, proportionally to the
outer splitting of the separatrices of the main chain of islands inside the stability domain.

In Figure 9 we show the behaviour of the outer splitting of separatrices of the islands
with ρ = 1/6, 1/5 and 1/4 as the parameter c of the Hénon map (2) changes. Consider that
the periodic orbit with rotation number ρ is created at the value c = c0ρ (see Section 2.2).
The fact that the invariant manifolds do not coincide creates a bounded chaotic region
around the islands. However, the splitting of separatrices behaves in an exponentially
small way in (maybe a power of) ν = c − c0ρ. This means that the size of the splitting
becomes large enough to be observable for relatively large values of ν. Then, the effect of
the chaotic zone around the island of rotation number ρ contributes in a significant way
to the total size of the confined chaotic region only for ν values for which the splitting can
be observed. The Figure 9 shows the value of the splitting, for period 6, 5 and 4, from
left to right, starting at the creation of the periodic island. Note the agreement with the
Figure 5. The values of c at which the splitting starts to be seen in Figure 9 agree very
well with the ranges shown in Figure 5.
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Figure 9: Behaviour of the outer splitting of the separatrices of the islands of period 6 (left),
period 5 (centre) and period 4 (right). Compare with Figure 5.

The fact that the range in c, from the creation of the periodic islands of a given
rotation number ρ, at c = c0ρ, till the destruction of the surrounding invariant curves,
at c = cρ, becomes shorter when ρ increases (as observed in Figure 9 for ρ = 1/6, 1/5
and 1/4) has an easy explanation. The islands travel “faster” across the confined domain
around the point E because, when increasing c, the twist condition becomes weaker. A
simple computation of the normal form around E shows that ρ changes from having the
maximum at E to have a local minimum at E for c = 5/4.

2.5 The mechanism of destruction of invariant curves and the

associated Cantor sets

The destruction of invariant curves can be seen, from an analytical point of view, as the
lack of convergence of the sequence of iterations to obtain a conjugation between the
dynamics on a candidate to be an invariant curve and a rigid rotation, with Diophantine
rotation number, in S1, following the KAM approach (see e.g. [21]).

Another approach, from a geometrical point of view, is the obstruction method [22].
We will illustrate this last approach with an example. The invariant curves surrounding
period-6 islands are destroyed for c = c1/6 ≈ 0.6204, as said in Section 2.2. In Figure 10
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some orbits are shown. The period-6 islands would be found to the right of the displayed
orbits.

In the left plot, to improve visibility, we skip some of the invariant curves around
the elliptic periodic orbits of rotation number 3/19 (with one point on y = 0) and 4/25
(without points on y = 0 in the displayed domain). Beyond many other chains of little
islands, some invariant curves (according to the value of the rotation number, using the
criterion explained in Section 2.1) are found passing close to the point (−0.138, 0). In the
right plot one can see again the islands of rotation numbers 3/19 and 4/25. Furthermore,
the large dots on the plot show the location of some of the points in the related periodic
hyperbolic orbits (with the same rotation numbers than the elliptic ones). We also show
part of the manifolds of these hyperbolic periodic orbits. On the points shown the unstable
manifolds leave the points with positive slope. It is easy to see that W u

3/19 intersects

W s
4/25 (and, symmetrically, W s

3/19 intersects W u
4/25). Hence, due to these heteroclinic

intersections, there is no room for invariant curves with ρ ∈ (3/19, 4/25).
A description of the destruction of invariant curves can also be found in [23].
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Figure 10: Several relevant orbits on the left part of the period-6 islands for values close to the
destruction of the invariant curves around these islands. Left: Plot for c = 0.618 < c1/6. Right:
Plot for c = 0.63 > c1/6. See the text for details.

It can seem strange that we must go to c = 0.63 to discover the existence of these
heteroclinic intersections, while we claimed before that the destruction has been found
for c = c1/6 ≈ 0.6204. Plots similar to Figure 10, right, for c = 0.625 or c = 0.628 do not
provide evidence of the existence of heteroclinic points. The reasons of this are simple:

1) The arc length of the part of the manifolds shown in the figure is short. Much longer
parts will show heteroclinic points for values slightly larger than 0.6204.

2) Beyond the hyperbolic periodic orbits with ρ = 3/19, 4/25 there are infinitely many
other hyperbolic periodic orbits with intermediate values of ρ. It would be possible
to find a long chain of heteroclinic connections between the ones we consider here.

The “gaps” produced by the heteroclinic intersections on the candidate to invariant
object are the responsible of the Cantor-like structure of these objects. Therefore, the
points with chaotic dynamics that were confined when the invariant curve still existed,
can escape when the curve is destroyed and it is replaced by a Cantor set. If the gaps of
that set are rather small, however, it will take a long time for the iterates to find their
way to escape.
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2.6 Explaining the birth and death of islands

In the previous subsections we presented some elements which allow to have a fairly good
understanding of the changes in the measure of the set of confined points under iteration
by HPc. We give here the main items concerning the fate of the islands.

1) For small values of c the map HPc has a dynamics quite similar to the flow (3). The
measure of the confined orbits is very close to the measure in the case of (3), scaled
by

√
c/2. Periodic orbits of rotation number ρ ∈ Q and the corresponding islands

are born at E for c = c0ρ = 1− cos(2πρ) and travel away from E when increasing c.

2) Simultaneously the hyperbolic periodic orbits with the same ρ go also away from E,
the splitting σρ(c) of their manifolds creates first tiny chaotic domains which, later
on, increase with c as σρ(c) increases. Finally the invariant curves surrounding the
islands of a given ρ are destroyed due to the existence of heteroclinic intersections
of the manifolds of hyperbolic periodic orbits of slightly smaller ρ and the confined
chaotic domains can escape. The islands still exist for a while, until their central
elliptic point becomes reflection hyperbolic.

3) For larger values of c the mechanism of creation of islands is different. The value of
ρ at E is a local minimum for c > 5/4. Then, periodic orbits of a given ρ are created
in pairs (two of elliptic type and two of hyperbolic type) near some place, away from
E, close to a local maximum of the rotation number. This is related to the loss of the
twist condition for a nearby integrable model and to the creation of the so-called
meandering curves, see, e.g., [24]. When c increases, one of the periodic islands
approaches E and the other approaches the boundary of the domain of confined
orbits. As an example, for ρ = 4/13 the couple of periodic islands is created for
c ≈ 1.345. One of them ends at E for c ≈ 1.3546, while the other has surrounding
invariant curves until c ≈ 1.369 and, finally, the island is destroyed near c = 1.391.

To see the evolution of the set of confined orbits as a function of c, details on the
evolution of an island and on the changes in the set of chaotic confined orbits the reader can
have a look at some movies, available in http://www.maia.ub.es/dsg/QuadraticAPM.

3 The Hénon conservative orientation-reversing map

For our purposes, to study the islands in the standard map, it is also relevant to consider
the Hénon conservative map, but with orientation-reversing, HRc, which is given (using
a setting similar to the one in (2)) by

HRc

(

x
y

)

→
(

x+ c
2
(1− (x− y)2)

−y − c
2
(1− (x− y)2)

)

, (5)

where, again, it is enough to consider c > 0. We name it HR which stands for Hénon
conservative-reversing map. It has two fixed points, H±, located at (±1, 0), hyperbolic for
all c. Because of the orientation-reversing character, they have a positive and a negative
eigenvalue, given by λu

± = ∓c ∓
√
c2 + 1, λs

± = ∓c ±
√
c2 + 1. Note that the absolute

value of the unstable eigenvalues, coincides. Furthermore, it has a period-2 periodic
orbit, whose points E± are located at (0,±1). They are elliptic for c ∈ (0, 1), with limit
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rotation number ρ(c) = cos−1(1− 2c2)/(2π), parabolic for c = 1 and reflection hyperbolic
for c > 1.

The map HRc has a reversor Ŝ, defined by Ŝ(x, y) = (−x, y) and, hence, an additional
reversor R̂ = Ŝ ◦HRc. Both of them are involutions and satisfy similar properties to the
HPc case. In particular Ŝ ◦HRc ◦ Ŝ = HR−1

c , quite useful to obtain stable manifolds from
unstable ones.

The square of the map can be approximated by a limit flow. No scaling of the variables
is needed now. Only a scaling of time by a factor 2c. The reason to select this scaling
will be given later. Letting c go to zero we obtain the limit flow

dx

dt
=

1

2
(1− x2 − y2),

dy

dt
= xy, (6)

whose Hamiltonian is H = y(1− x2 − y2/3)/2. The separatrices are given by y = 0 and
1 − x2 − y2/3 = 0. It is immediate to check that the separatrix going from x = −1 to
x = 1 on y = 0 has a singularity for t = iπ, while the other separatrices, upper and lower,
going from (1, 0) to (−1, 0) along x2 + y2/3 = 1, with extremal values |y| =

√
3, have

singularities for t = iπ/2. The Figure 11 shows the flow of (6) and several iterates of HRc

for c = 0.2. In the right part of the figure, the upper points (on top of what seems to be
a connection between the saddles, close to y = 0) are mapped by HRc to the lower ones,
and reciprocally. As in the case of HPc, shown in Figure 1, for small c the dynamics of
the map is rather close to the one of the flow. No trace of chaotic behaviour is seen at
the resolution level of the plot.

-1

 0

 1

-1 -0.5  0  0.5  1
-2

-1

 0

 1

 2

-1 -0.5  0  0.5  1

Figure 11: Left: Phase portrait of the limit flow given by (6). Right: Some orbits of HRc

for c = 0.2, which seem to correspond to an integrable map. The invariant manifolds of the
hyperbolic fixed points H± seem to be coincident.

However, there exist transversal heteroclinic points inW u
H

−

∩W s
H+

(near the line y = 0)

and in the upper and lower branches of W u
H+

∩W s
H

−

. Due to the symmetry Ŝ it is easy
to locate these points on x = 0. In Figure 12 we use as parameter h(c) = log((λu

−)
2) =

2 log(c+
√
c2 + 1) = 2c+O(c2). The reason to use the square is the fact that we are doing

the computations with the map HR2
c . Furthermore, the fact that the dominant term in

h(c) is 2c is what justifies the time scaling done to obtain (6).
The splitting of the invariant manifolds has been measured by computing the splitting

angle σ(c) on x = 0, both at the heteroclinic point in W u
H

−

∩W s
H+

, that we denote as σ0(c),
and at the one in the upper branches of W u

H+
∩W s

H
−

, that we denote as σ+(c). Assuming

a behaviour similar to the one in (4), i.e., of the form σ(h) = AhB exp(−C/h)(1 +O(h)),

12
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Figure 12: Values of the splitting angle for the separatrices in the case of HRc. Here we plot
log(σ(c))h(c) as a function of h(c). The upper curve corresponds to the separatrix in the upper
part of Figure 11, right, and the lower one to the separatrix near y = 0. For the separatrix in
the lower part of Figure 11, right, the values are close to the ones in the upper part. See the
text for details.

for suitable constants A,B,C, suggests to plot log(σ(c))h(c) as a function of h(c). This
is done in Figure 12, the upper curve corresponding to σ+(c) and the lower one to σ0(c).
A fit of the data gives values for the constant C in the exponential term which clearly
tend to π2 and 2π2, when the data used are restricted to domains in the left part of the
plot (i.e., smaller values of h(c)). This is in perfect agreement with the location of the
singularities of the separatrices of the vector field in (6).

Finally, as we did in theHPc case in Section 2.2, we plot a measure of the set of confined
points as a function of c in Figure 13. One can check that the limit value, for c → 0, is
π
√
3, in agreement with the flow case in Figure 11, left. For c =

√
3/2, corresponding to

elliptic fixed points with limit rotation number 1/3, the measure goes to zero. It is easy
to detect jumps near c = 0.709, 0.608, 0.538, 0.487, . . ., corresponding to the destruction of
invariant curves surrounding the islands of period 4, 5, 6, 7, . . ., respectively, under HR2

c ,
both in the upper and lower part.

The behaviour of the measure of the set of confined chaotic points, the mechanism of
destruction of invariant curves, etc, under the map HR2

c are similar to the ones described
for HPc.

 0

 1

 2

 3

 4

 5

 6

 0  0.25  0.5  0.75  1

Figure 13: Measure of the set of confined points for HRc as a function of c.
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4 The standard map for large parameter values

In this Section we consider Chirikov’s standard map [8]:

Mk :

(

x
y

)

→
(

x̄
ȳ

)

=

(

x+ ȳ
y + k sin(2πx)

)

, (7)

defined on the unit torus T2 = S1 × S1. Here k is a distance-to-integrable parameter
[25]: for k = 0 the phase space is foliated by horizontal invariant curves and the chaotic
zone becomes visible as k increases. A remarkable value of the parameter k is Greene’s
threshold, k ≈ kG = 0.971635 . . . /(2π), at which the last rotational invariant curves (the
ones with g = (

√
5 − 1)/2 and 1 − g as rotation numbers) is critical. Hence, for k > kG

the motion in the y variable can be unbounded.
For large enough values of k one would expect the chaotic sea to fill the whole phase

space. When dealing with the problem of the relative measure of the stochastic zone,
Chirikov and Izraelev in [26] and [8] proved the existence of some special stable fixed
points and 2-periodic orbits in the torus T2 appearing near integer values of k, named by
them as islets of stability. They also suggested that such orbits should scale both in area
as 1/k2 and in the range of the parameter where they existed as 1/k.

In Section 4.1 we give numerical evidence of the fact that these islets appear to be
the largest islands in the phase space for large enough k, and that such scalings hold.
Moreover, a similar structure is observed near half-integer values of the parameter, with
similar scaling properties.

4.1 Measure of the set of regular points

In order to detect any regular area in the phase space of the standard map Mk, we have
computed on a fine grid (typically with step 5×10−5 both in x and y) the measure of the
set of points in the phase space which are regular, the ones for which we can consider the
Lyapunov exponent to be zero [27] as a function of the parameter k, say Ar(k). Note that
it is a lower bound on the total regular area, since one could find other islands, islands
below the pixel size, or even below the machine precision used. See [28] and [29].

In Figure 14 one can see the regular area of Mk as a function of k in the range
k ∈ [1.75, 10.75]. In this figure one observes that the area seems to vanish everywhere
but near integer and half-integer values of k, where some peaks show up. Moreover, the
non-vanishing area seems to decrease as a negative power of k. The same seems to happen
concerning the range in the parameter where these peaks appear.

In fact, it is easy to check thatMk has, when considered on T2, the following remarkable
orbits:

• If k = n ∈ Z it has 4 fixed points on the line y = 0: x = 0, 1/2 are hyperbolic and
reflection hyperbolic respectively, and x = 1/4, 3/4 are unstable parabolic. In fact
they are on an elliptic-hyperbolic (EH) bifurcation, where a fixed hyperbolic and a
fixed elliptic point are born. These four fixed points and the two which are born at
integer values of k lie on y = 0 as k varies. It also has a 2-periodic parabolic orbit
at (1/4, 1/2) ↔ (3/4, 1/2) at a period-doubling (PD) bifurcation. These points lie
on symmetry lines of Mk (see [30]), y = 2x and y = 2x− 1 respectively.

Let us denote these points as p11 = (1/4, 0), p21 = (3/4, 0) and p2 = (1/4, 1/2) when
dealing with k near integer. The subscript denotes the period.
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Figure 14: Relative measure Ar(k) in the phase space of Mk of the number of points with zero
Lyapunov exponent as a function of the parameter k = 1.75(0.00005)10.75.

• If k = m + 1/2, m ∈ Z the map Mk has a parabolic 4-periodic orbit at a PD
bifurcation (1/4, 1/2) → (1/4, 0) → (3/4, 1/2) → (3/4, 0). The points on y = 1/2
lie on y = 2x as k evolves, and the other two points remain on y = 0.

Let us denote p4 = (1/4, 1/2) when dealing with k near to half-integer. Again the
subscript denotes the period.

Remark 1. Near half-integer values of k, there is another stable 4-periodic orbit of Mk

near p4, but contrary to this last, its position in the phase space depends on the value of k.
In Section 5.1 we are going to justify that, due to a symmetry, the structure and evolution
of such orbit can be obtained directly from the study of the dynamics around p4.

Concerning the parameter, numerical continuation of some of these orbits suggests
that the range in k where the islands evolves scales as 1/k, as predicted by Chirikov [8].
Namely,

• the island around p2 is born at k ≈ n− 2/(nπ2), in an EH bifurcation, and passes
through PD at k = n, n ∈ Z,

• the islands of p1,21 are born simultaneously at k = n and have their PD at k ≈
n+ 2/(nπ2), n ∈ Z, and

• all islands of the orbit of p4 are born at k ≈ m + 1/2 − 1/(2π2(m + 1/2)) where
they have a degenerate saddle-centre bifurcation (see [29]), also referred as ‘0–4’-
bifurcation in [7]), and have their PD at k = m+ 1/2, m ∈ Z.

In Figure 15 we have plotted magnifications near such values and we have superim-
posed them scaled as we have just suggested: we have plotted n2Ar(k) as a function of
n(k − n), where n is integer or half-integer. These plots show that these islands scale as
predicted, and the larger is k, the better these scalings fit. This suggest the existence of
a limit behaviour for k → ∞, which is the contents of Section 5.
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Figure 15: Superimposed scaled areas n2Ar(k) as a function of the scaled parameter n(k − n)
near: Left: n = 2, 3, . . . , 10. Right: n = 2.5, 3.5, . . . , 10.5.

In the left plot in Figure 15 one can see that the fixed points and the 2-periodic orbit
coexist in some range of the parameter close to integer, and that the evolution seems to
repeat. This is to be clarified in Section 5.1. Moreover, a rougher version of each of them
was previously computed by Karney et al. in [9], where the author studies the effect of
these islands in the overall diffusion of the standard map in the presence of noise.

5 Relating the islands in the standard map to the

Hénon map

The numerical results of the previous section suggest that the islands appearing near each
integer and half-integer value of k for Mk (7) scale in the x and y variables, and in the
range of the parameter k where they subsist as 1/k, and that this scaling becomes more
exact as k increases. In contrast with usual cases where the limit map is derived from
a return map including a passage of the orbits near a homoclinic tangency, see, e.g., [1],
now it is obtained directly: no points of the relevant orbits come close to any saddle of
the initial map.

In Section 5.1 we prove the existence of a limit behaviour of the dynamics around
p1,21 , p2 and p4 as k → ∞, and that such limits are, in fact, Hénon maps with a suitable
reparametrisation. In Section 5.2 we compare the numerical results for the Hénon map
given in Sections 2.2 and 3 and the ones in Section 4.1 for the standard map, using the
scalings of Proposition 1. Finally, in Section 5.3 we give evidence of the role of the islets in
the overall diffusion properties of the standard map via the one-step diffusion coefficient.

5.1 Theoretical results

The contents of this subsection is summarized in the following

Proposition 1. There exist a limit behaviour of the dynamics around p1,21 and p2 (resp. p4)
under scalings in x, y and k by 1/n for n ∈ Z (resp. n− 0.5 ∈ Z). Moreover, these limit
maps are conjugated to area preserving orientation-preserving (resp.-reversing) Hénon
maps, depending on a suitably scaled parameter.
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Proof of proposition 1 part I: Limit maps

In this subsection we derive limit maps for the dynamics around p1,21 , p2 and p4 by means
of expanding a suitably scaled Mν

k in Taylor series around each pν , where ν denotes its
period. The symmetries of the standard map are used to reduce computations and to
simplify the limit maps, but in any case one can obtain them without its aid. Let us
introduce

E :

(

x
y

)

7→
(

n∗x
n∗y

)

,

where we will set n∗ = n ∈ Z for ν = 1, 2 and n∗ = m+ 1/2, m ∈ Z for ν = 4. Consider
also the translation and central symmetry

T(x0,y0) :

(

x
y

)

7→
(

x− x0

y − y0

)

, S :

(

x
y

)

7→
(

−x
−y

)

.

Let us start with k close to n ∈ Z and set n∗ = n. Consider a new parameter
k′ = n(k − n), which controls the scaled distance to the nearest integer

1. Near p11 = (1/4, 0), consider the change of variables

L1 = E ◦ T(1/4,0) ◦Mk ◦ T−1
(1/4,0) ◦ E−1.

This gives

(

x
y

)

(i)7→
(

x/n+ 1/4
y/n+ 1/2

)

(ii)7→
(

3/4 + (x+ y)/n+ (k/n+ n) sin(2π(x/n+ 1/4))
1/2 + y/n+ (k/n+ n) sin(2π(x/n+ 1/4))

)

=

(

1/4 + (x+ y + k − 2π2x2)/n
(y + k − 2π2x2)/n

)

+ O(n−3)

(iii)7→
(

x+ y + k − 2π2x2

y + k − 2π2x2

)

+O(n−2),

where (i) is the map T−1
(1/4,0) ◦ E−1, (ii) corresponds to Mk and (iii) is the map

E ◦ T(1/4,0). Then, near p1 and for k near integer we have the following behaviour:

L1 :

(

x
y

)

7→
(

x̄
ȳ

)

=

(

x+ ȳ
y + k′ − 2π2x2

)

+O(n−2). (8)

The map around p21 is the same as L1, but composed with S.

2. Near p2 = (1/4, 1/2), if we perform the following change of variables

L2 = E ◦ T(1/4,1/2) ◦ S ◦Mk ◦ T−1
(1/4,1/2) ◦ E−1

we obtain

L2 :

(

x
y

)

7→
(

x̄
ȳ

)

=

(

−x+ ȳ
−y − k′ + 2π2x2

)

+O(n−2). (9)
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Here we have taken S ◦ Mk instead of M2
k . This fact allows us to deal with a

quadratic map instead of a quartic one. To obtain this expression one has to mimic
the previous computation of L1.

Now consider n∗ = m+ 1/2, m ∈ Z. Here k′ = (m + 1/2)(k −m− 1/2) is the new
parameter to be used.

3. Near p4 = (1/4, 1/2), the change of variables

L4 = E ◦ T(1/4,1/2) ◦ S ◦M2
k ◦ T−1

(1/4,1/2) ◦ E−1

gives

L2 :

(

x
y

)

7→
(

x̄
ȳ

)

=

(

−x− y − s0 + ȳ
−y − s0 − s1

)

+O(n−2), (10)

where s0 = k′−2π2x2 and s1 = k′−2π2(x+y+s0)
2. Here we have also used S ◦M2

k

instead of M4
k . This allows to reduce the degree of the limit map from 16 to 4.

Proof of proposition 1 part II: L1, L2 and L4 are Hénon maps

To find the conjugacies which relate our limit maps to a Hénon map HPc or HRc we shall
just move their symmetry lines to y = 0 for HPc and to x = 0 for HRc, and to make the
position in the phase space of some particular orbits not to depend on the parameter.
After these changes, a new parameter is going to be defined, plus some scalings in the
(x, y)-variables, which coincide in all cases and depend on the new parameter. The results
in Table 1 summarize the suitable scalings and reparametrisations.

Map Sym. line Hénon map New parameter Scaling

L1 y = 0 HPc c =
√
2
√

k′ + 2/π2 2π/c

L2 y = 2x HPc c =
√
2
√
2 + k′π2 2π2/c

L4 y = 2x (HRc)
2 c =

√
1 + 2k′π2 2

√
2π2/c

Table 1: Hénon maps to which L1, L2 and L4 are conjugated. The new parameter and scalings
in x and y are given in the last two columns.

Concerning the second 4-periodic orbit near p4 (see Remark 1), it corresponds to the
2-periodic orbit of the orientation-reversing Hénon map HRc. Such 4-periodic orbit can
be found on the symmetry lines of Mk, {y = 2x} → {y = 0} → {y = 2x− 1} → {y = 0}.
Its position depends on the value of the parameter, but its distance to the 4-periodic orbit
of p4 scales as 1/k in distance measured on the symmetry lines.

With these results, up to terms of the order of 1/k2 for both integer and semi-integer
values of the parameter, the scalings predicted by Chirikov and Izraelev in [26] and [8]
are fully justified. Moreover, since the bifurcations of fixed points of conservative Hénon
maps are well known, this allows to identify, up to some controlled error, the bifurcations
of the orbits of p1,21 , p2 and p4.

This ends the proof of Proposition 1.
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Remark 2. Karney et al. in [9] used the fact that the fixed point p1,21 was in its EH-
bifurcation to derive an approximate mapping to describe its dynamics, which they trun-
cated at order 2. In this paper the authors also give the relation of such a map with HPc,
and give the scalings for L1 as in Table 1, but there is no justification for the suppression
of higher order terms in the limit k → ∞.

Remark 3. The same procedure applies exactly for Zaslavsky’s web map [31] whose most
studied version is the so-called four-fold web map, which has the form

Wk :

(

x
y

)

7→
(

x̄
ȳ

)

=

(

y
−x− k sin(2πy)

)

. (11)

Here again, we consider (11) in the torus T2. For values of k near an integer there
are two fixed points at (1/4, 1/4) and (3/4, 3/4) and a 2-periodic orbit (1/4, 3/4) ↔
(3/4, 1/4), and for k near a half-integer, there is a 4-periodic orbit (1/4, 1/4) 7→ (1/4, 3/4)
7→ (3/4, 3/4) 7→ (3/4, 1/4). Again, the dynamics around these orbits near integer and half-
integer values of k is a quadratic area-preserving Hénon map, which can be easily found
with the aid of the symmetries of this map, y = x and y = −x and using exactly the same
scalings as in Proposition 1.

Remark 4. Far from the separatrix, by setting y = y0+ s, y0 >> 1 in the separatrix map
model

SMa,b :

(

x
y

)

7→
(

x̄
ȳ

)

=

(

x+ a+ b log |ȳ|
y + sin(2πx)

)

, (12)

the standard map (7) is recovered, depending on k = b/|y0|, with an error O(y−2
0 ) (see

[25]). The 2-periodic and 4-periodic stable islands of this section appear in the phase space
of SMa,b for b large enough (then the SMa,b is a good model of a close to integrable area-
preserving map F , provided b/y20 is small enough), see [29]. In particular the 4-periodic
islet was shown to be born at a degenerate saddle-centre bifurcation.

We also would like to note that in [32], both accelerator modes and ballistic modes
are studied for the standard map and for the models in (11) and (12) related to the fixed
and period-2 points.

5.2 Comparing numerical results

Proposition 1 tells us that the limit maps around p1,21 , p2 and p4 are Hénon maps except
for a controllable error. With the aid of the data in Table 1 we can recover the plots of
the scaled regular area for the standard map as a function of the scaled parameter from
the numerical study we did for the Hénon maps in Sections 2.2 and 3. This is the contents
of Figure 16.

¿From the expression of the limit maps L1 (8) and L2 (9) one can easily see that
the relative regular area around the elliptic fixed point is the same, but shifted in the
parameter. We have plotted the corresponding scaled relative regular area for both limit
maps in Figure 16, bottom left. Note further that to recover the actual relative regular
area (non-scaled) as in Figure 14 one has also to take into account that near integer
values of the parameter there are two fixed points p11 and p21 and that p2 is 2-periodic.
Near half-integer values of the parameter there are two 4-periodic islands.
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Figure 16: Evolution of the relative regular area of: Top: Left: HPc, Right: HRc. Bottom: Left:
L1, L2 Right: L4. These last two figures are obtained from the evolution of the non-escaping
points of the area preserving Hénon maps plus the scalings in Table 1.

5.3 A preliminary study of the diffusion properties

For large values of k, at least 2/π in our setting (where the elliptic fixed point at (x, y) =
(0.5, 0) becomes unstable), the statistical description of the dynamics in the chaotic zone
(here it is required that the regular zone is negligible in front of the chaotic zone) can be
done via the simplest diffusional equation [33]

∂f

∂t
=

1

2
Dk

∂2f

∂y2
.

Here f = f(y, t) where t denotes the number of iterates and y is the momentum. Note
that here the angles x are averaged out. The average diffusion rate for Mk, Dk, can be
evaluated as the limit

Dk = lim
n→∞

〈(∆y)2〉
n

, (13)

which, under the assumption that one could average with respect to the angle and that
the effect of the islands is negligible, takes the value

Dql =
k2

2
, (14)

a value which is referred to as the quasi-linear value. The symbol ∆y denotes the difference
in momentum between two consecutive iterates of the map and 〈·〉 denotes ensemble
average.

Chirikov in [8] performed extensive numerical simulations to evaluate such rate, and
found the behaviour predicted in (13) plus fluctuations, for which he suggested the islets
of stability as responsible for that.
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To investigate the role of the islets of stability, in this simple approximation, we have
evaluated (13) (meaning the variance of the change of momentum per iterate) for the
standard map in an ensemble of points that fills, in an approximately uniform way, the
complement in the torus of the islets, using the following procedure:

1. Compute an approximation of the right branch of the unstable invariant manifold
of the origin W u

+, via any available method. In this case the results do not depend
on this choice.

2. Compute a fundamental domain U where the approximated expression of W u
+ differs

from the original map less than a prefixed tolerance.

3. Choose points in U and iterate them for a transient of n0 iterates. This will fill, in
a reasonable uniform way, the whole chaotic area.

In our computations, we have used the well-known parametrisation method (see [27]) at
order 10, with a tolerance 10−20 in our fundamental domain. Our transient was n0 = 103,
and we have performed n = 106 iterates per each of them = 105 initial conditions we took.
The results can be seen on Figure 17. No change in the results is observed if different
values are used for n0, n or m. The results also coincide if the unstable invariant manifold
of a 2-periodic hyperbolic point is used instead of W u

+.
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Figure 17: Left: Diffusion coefficient Dk/Dql normalised to the quasi-linear value and turned
upside down: 1 − Dk/Dql. Centre: Magnification near k = 2 of 1 − Dk/Dql, scaled. Right:
Magnification near k = 2.5 of 1−Dk/Dql, scaled

This figure gives a strong evidence that the dynamics outside islets is uniform. We
can ask why the effect of the islets in this simple approximation is to decrease Dk. The
reason is easy: the islets found around fixed points or points of period 2 or 4 are rather
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close to the values x = 1/4, 3/4 (see Section 4.1). But these are the values for which
(∆y)2 = k2 sin(2πx)2 is maximal and close to k2. As they are missing, the value of Dk

decreases proportionally to the size of the islands.
A better approach takes into account the fact that, even if we discard the effect of the

islets, values of x uniformly distributed for a given y, do not have the images uniformly
distributed in x. This leads to correction factors which can be expressed in terms of Bessel
functions. See, e.g., [34], Chapter 5, for background and details.

But, still, the approach is not satisfactory in the presence of islets. Preliminary com-
putations show that the diffusive properties are destroyed due to the effect of some of the
islets. Results in this direction will appear elsewhere, see [35], where the title is tentative.

6 Conclusions and outlook

In this work we have given a detailed and complete account of the dynamics of the well-
known conservative Hénon map, with emphasis on the evolution of the measure of the set
bounded orbits, on the confined chaotic orbits, on the splitting properties of the invariant
manifolds of fixed and periodic points, and on the destruction of the invariant rotational
curves surrounding most of the confined domain.

The paradigmatic character of this Hénon map, as a model for many other maps, and
the fact that it appears as relevant model near tangencies of general area preserving maps
[6], will allow to explain many of the general features observed in those maps.

A shorter study of the case of orientation-reversing Hénon map has also been presented.
It turns out that both maps are a key to understand the behaviour of the dominant

islets in the Chirikov standard map for large values of the parameter. Both a theoretical
approach and numerical comparisons with the results in the Hénon cases are presented.

Finally, preliminary considerations concerning some of the effects of these islands in
the diffusive properties of the standard map are presented. Future work will be devoted
to a complete clarification of the effect of the islands in the statistical properties of the
Chirikov map, for values of the parameters for which some of the detected islands play a
key role.
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Politècnica de Catalunya, 2013.

[7] Delshams, A., Gonchenko, S.V., Gonchenko, V.S., Lázaro, J.T. and Sten’kin, O., Abun-
dance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps,
Nonlinearity, 2013, Vo. 26, pp. 1–33.

[8] Chirikov, B.V., A universal instability of many-dimensional oscillator systems, Phys. Rep.,
1979, Vol. 52, no. 5, pp. 264–379.

[9] Karney, C.F.F., Rechester, A. and White, B., Effect of noise on the standard mapping,
Physica D, 1982, Vol. 4, no. 3, pp. 425–438.
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[13] Simó, C. and Vieiro, A., A numerical exploration of weakly dissipative two-dimensional
maps. In Proceedings of ENOC-2005, Eindhoven, Netherlands, 2005.
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singularity, Discrete Contin. Dyn. Syst. Ser. A, 2013, Vol. 33, pp. 4435–4471.
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