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Abstract 

We make use of own geological mapping, interpretations of seismic reflection profiles and deep geophysical data 
to build a lithospheric-scale cross-section across the European Western Southern Alps (Varese area) and to model a 
progressive restoration from the end of Mesozoic rifting to present-day. Early phases of Alpine orogeny were charac-
terized by Europe-directed thrusting, whereas post-Oligocene shortening led to basement-involving crustal accretion 
accompanied by backfolding, and consistent with the kinematics of the adjoining Ivrea Zone. Wedging was favored 
by a significant component of reactivation of the inherited Adriatic rifted margin. Our results also suggest that, during 
the collisional and post-collisional tectonics, lithosphere dynamics drove diachronically the onset of tectonic phases 
(i.e., wedging and slab retreat), from east to west, across the Western Southern Alps.
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1 Introduction
The European Southern Alps represent a notewor-
thy example of an ancient passive margin that was later 
involved into an orogenic wedge, from initial subduction 
to continental collision and indentation (e.g., Butler, 1986; 
Handy et  al., 1999; Manzotti et  al., 2014; Schmid et  al., 
2017). Here, we document first-order field observations 
related to the Mesozoic rifted margins of Europe and 
Adria, (e.g., Bernoulli, 1964) and on their later involve-
ment in the orogenic belt (Bertotti, 1991). The role of rift 
inheritance in shaping Alpine chain has been explored 
in detail (Butler, 1986, 2013) and new insights have been 
lighted up with the better understanding of hyperexten-
sion and mantle exhumation processes leading (or not) 

to oceanization (e.g., Agard & Handy, 2021; Butler, 2013; 
Lescoutre & Manatschal, 2020; McCarthy et  al., 2021; 
Mohn et al., 2010, 2011).

Nonetheless, the internal architecture of the South-
ern Alps orogenic wedge is still debated. Two appar-
ently opposite interpretations for the involvement of 
the upper plate lithosphere are presently considered: a 
lithospheric detachment model (sensu Butler & Maz-
zoli, 2006), applied to the Central Southern Alps (e.g., 
Laubscher, 1985; Roeder, 1992; Rosenberg & Kissling, 
2013; Schönborn, 1992) as opposed to buttressing 
and backfolding as documented for the Ivrea Zone, in 
the Western Southern Alps (e.g., Schmid et  al., 2017; 
Zingg et al., 1990; Fig. 1). In detail, the Ivrea Zone rep-
resents an upright section of exhumed lenses of upper 
mantle and lower continental crustal rocks. At depth, 
these lenses have been correlated with a denser body 
of mantle rocks (i.e., the so-called Ivrea Geophysical 
Body; Fig.  1), interpreted as the north-western tip of 
Adria’s upper mantle indented into the inner arc of 
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Fig. 1 a Tectonic scheme of the Alps (Codes: CSA, Central Southern Alps; ESA, Eastern Southern Alps; WSA, Western Southern Alps); b simplified 
geological map of the Central and Western Southern Alps with emphasis on the Alpine and rift-related structures (i.e., Maggiore Line, Pogallo Line 
and Lugano Valgrande Fault, in blue); the extent of the Ivrea Geophysical Body (IGB), the surface projection of the Adria Crustal Wedge tip (ACW) 
and the extent of the Varese Ara (black box) are also indicated; Fault Codes: AT: Arosio thrust; CMB: Cossato–Mergozzo Line; GB: Gonfolite backthrust; 
IGB:Ivrea Geophysical Body; MF: Marzio Fault; VT and VTb: Villafortuna-Trecate thrust and backthrust, respectively (sources for the maps: Amadori 
et al., 2019; Fantoni et al., 2002, 2004; Mazzucchelli et al., 2014; Rosenberg & Kissling, 2013; Scardia et al., 2015; Scarponi et al., 2021; Schmid et al., 
2017; Zanchi et al., 2019 and this study for the Varese area)
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the Western Alps at upper crustal depths (e.g., Handy 
et  al., 1999; Schaltegger & Brack, 2007; Schmid et  al., 
2017). In our area of investigation, since cover units 
are not exposed, kinematic constraints are few and 
limited to those recorded in high-grade metamorphic 
rocks and mantle slivers (e.g., Schmid et  al., 1989). 
However, extensive Permian-Mesozoic cover units 
crop out to the east where the Southern Alps have 
been mostly interpreted as a tapered tectonic wedge 
composed of stacked thin slices of basement and cover 
units (Pfiffner, 2016; Rosenberg & Kissling, 2013; 
Schumacher et  al., 1997). The interpretation of stack-
ing in our area of research, i.e., the Western Southern 
Alps, is mainly based on the interpretation of deep 
seismic reflection profiles (see e.g., the NRP-20 and 
EGT results in Laubscher, 1985; Roeder, 1992; Schön-
born, 1992; Schumacher et al., 1997), even though not 
directly constrained by deep wells or shallow seismic 
reflection data. So far, detachment-dominated mod-
els have also been adopted for the Western Southern 
Alps (e.g., Pfiffner, 2016; Rosenberg & Kissling, 2013; 
Schumacher et  al., 1997), resulting in poorly consist-
ent geometries of the orogenic wedge that try to con-
sider both the exhumed lower crustal units in the 
Ivrea Zone and the presence of a thick stack of thrust 
sheets. Moreover, the extent to which the backfolding 
of the Adriatic crust can be traced towards the Central 
Southern Alps (Fig.  1), is also unknown, apart from 
the evidence that upturned Mesozoic crustal faults 
(i.e., the Lugano-Valgrande Fault; Fig. 1) continue east 
of Lake Como (e.g., Bertotti et  al., 1999). These two 
apparently opposite views could probably reflect an 
important along-strike transition between different 
structural levels, namely a transition from the involve-
ment of mantle, lower crust and Paleozoic basement in 
the Western Southern Alps to a shallower stack includ-
ing Mesozoic rocks and thin upper crustal slices, to the 
east. This along-strike change offers an opportunity to 
integrate all these observations into a geometrically 
and kinematically consistent evolutionary model.

In this contribution, we focus on the Varese area 
(Fig.  1 and Additional file  1), a relatively overlooked 
region located in between the two aforementioned 
sectors. We mapped in detail the Mesozoic cover and 
its autochthonous upper crustal basement and inte-
grated available geophysical data to provide a new 
lithospheric-scale cross section. We then perform a 
sequential structural restoration to decipher timing 
and partitioning of deformation among different crus-
tal levels, which allows defining an alternative model 
for the evolution of this part of the European Alps.

2  Geological setting
The European Western and Central Southern Alps are 
located at the north-western border of the Adria plate 
and are bound by segments of the Periadriatic Lineament 
(e.g., Schmid et al., 1989): the Canavese Line to the north-
west, the Tonale Line to the north, and the Giudicarie 
Line to the east (Fig.  1b). The Western Southern Alps 
include a series of tectono-metamorphic units assembled 
during the Variscan orogeny: lower crustal units (Ivrea 
Zone) are represented by high-grade metamorphic rocks 
and upper crustal units consists of schists and gneisses, 
outcropping more to the east (e.g., Boriani & Villa, 1997; 
Boriani et  al., 2003; Di Paola et  al., 2001; Diella et  al., 
1992; Siletto et al., 1993; Spalla et al., 2006). During the 
early Permian, all these crustal levels were intruded by 
basic-to-acid igneous bodies (i.e., 280–285  Ma; Karakas 
et  al., 2019; Lardeaux & Spalla, 1991; Marotta & Spalla, 
2007; Roda et al., 2019; Spalla et al., 2014) and were cov-
ered by volcanogenic deposits (e.g., Kälin & Trümpy, 
1977; Schaltegger & Brack, 2007) synchronous to the 
exhumation of lower crustal rocks (Boriani & Sacchi, 
1973; Boriani et  al., 1990; Handy, 1987; Handy et  al., 
1999; Rutter et al., 1993; Sinigoi et al., 2010; Zingg, 1983) 
along the Cossato-Mergozzo-Brissago shear zone in the 
Ivrea Zone (Fig. 1b; Mazzucchelli et al., 2014; Schaltegger 
& Brack, 2007).

During the late Permian—Middle Triassic, a regional 
transgression affected the area with the deposition of 
siliciclastic and carbonate deposits (Bernoulli et al., 1990; 
Bertotti et al., 1993; Lemoine & Trümpy, 1987). Late Tri-
assic to Jurassic rifting led to the formation of the Alpine 
Tethys passive margin and dismembered the Adriatic 
crust into a series of asymmetrical basins and swells sep-
arated by mainly N–S striking listric normal faults (e.g., 
Bernoulli, 1964; Berra et al., 2009; Bertotti, 1991; Bertotti 
et al., 1993; Fantoni & Scotti, 2009; Winterer & Bosellini, 
1981): the Pogallo Line, Maggiore Line and the Lugano-
Valgrande fault (Fig. 1).

During Early Jurassic, rifting localized along a system 
consisting of a few and newly developed listric normal 
faults that accommodated significant extension (Ber-
totti et al., 1993). Rift localization occurred during a sec-
ond pulse of crustal attenuation and exhumation of the 
lower and middle crust that resulted in the deposition 
of thick syn-rift sequences (e.g., Bernoulli, 1964; Berra 
et  al., 2009; Handy & Stünitz, 2002; Handy & Zingg, 
1991; Handy et al., 1999; Jadoul et al., 2005; Winterer & 
Bosellini, 1981).

The Southern Alps developed as a south verging retro-
wedge of the Alpine chain (e.g., D’Adda et  al., 2011; 
Doglioni & Bosellini, 1987; Mittempergher et  al., 2021; 
Zanchetta et al., 2011, 2012, 2015). During the post-Oli-
gocene Europe-Adria indentation (see Fig. 1 for a trace of 
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the external tip of the Adria crustal wedge), the lower and 
upper crustal sectors and slices of mantle of the West-
ern Southern Alps were tilted, overturned and exhumed 
along shear zones presently steeply dipping (Berger et al., 
2012; Handy et al., 1999; Schmid et al., 1989, 1996, 2017; 
Siegesmund et al., 2008; Wolff et al., 2012). Close to the 
Canavese Line, the deeper crustal levels of the Western 
Southern Alps are presently exposed in a large-scale box 
fold (i.e., the Proman Antiform; Fig. 1; Brodie & Rutter, 
1987; Rutter et  al., 2007; Schmid, 1967; Schmid et  al., 
1987). The fold’s northwestern limb is sheared off against 
the Canavese Line and the axial trace is truncated to the 
SW, probably by the latest movement of the Canavese 
Line. To the southeast of the Proman Antiform hinge 
zone, the succession is involved into regional backfold-
ing, exposing progressively shallower crustal levels to the 
SE, toward the Varese Area. As a result of backfolding, 
the inherited Early Jurassic normal faults were back-tilted 
as well (e.g., the Maggiore Line and Lugano-Valgrande 
Fault; Zingg et al., 1990; Bertotti et al., 1991; Fig. 1b), and 
locally overturned (i.e., the Pogallo Line; Handy, 1987; 
Handy & Zingg, 1991; Hodges & Fountain, 1984). Some 
secondary thrusts (e.g., the Arosio thrust, AT in Fig. 1b), 
have been mapped in the basement north of the Varese 
area, based on well-developed cataclastic zones at the 
surface and imaged at depth in seismic reflection profiles 
(Schumacher, 1997).

3  Methods and datasets
The approach that we adopt here is based on the inte-
gration of several data sources (Fig. 3), characterized by 
different reliability and spatial resolutions, into a single 
interpretative model at lithospheric scale. We proceed, 
by means of a top-down approach, from surface geology 
(Fig.  2) to deeper sectors, thanks to a comparison with 
published geophysical and seismological data (Fig.  3; 
Additional files 2 and 3). We underline that the mapped 
area is characterized by poor outcrop conditions, a dense 
vegetation cover and is dominated by karstified carbon-
ates: conditions that somehow hampered the geological 
surveying. Mapped units are referred to the main tec-
tono-sedimentary cycles recognized in the Southern Alps 
(e.g., Gaetani et  al., 1998) and their equivalents in the 
subsurface traced by means of seismic imaging in the Po 
Plain area to the south (Fantoni & Franciosi, 2008; Fan-
toni et al., 2002, 2004; Turrini et al., 2014).

Structural measurements were analysed regarding their 
orientation thanks to a classical π-diagram approach for 
folds and the structural measurements of faults’ kinemat-
ics were grouped and inverted for paleostress orienta-
tion, using the WinTensor structural software (Delvaux, 
1993) and the Right Dihedra approach. The mapped units 
include: a Triassic shallow-water deposits, followed by a 

Jurassic syn-rift deep-water carbonates succession sealed 
by Upper Cretaceous syn-orogenic terrigenous deposits. 
Basement in the Varese area consists of Variscan-related 
metamorphic units covered by an early Permian volcanic 
succession and intruded by an almost coeval granitic 
stock (e.g., Bakos et al., 1990; Schaltegger & Brack, 2007).

The geophysical dataset is composed of: (i) three deep 
tomographic sections (blue lines in Fig. 3) derived from 
a 3D velocity model below the Alps (see Additional 
file 3_S3) (Diehl et al., 2009, 2017; Rosenberg & Kissling, 
2013), (ii) three crustal seismic reflection profiles (see 
Additional file  2_S2) from the NRP-20 Project (green 
lines in Fig. 3; Pfiffner & Heitzmann, 1997; Schumacher, 
1997 in Pfiffner et  al., 1997), (iii) two already published 
seismic reflection lines (fn_02 and fn_10 in Fig. 3; Fantoni 
et al., 2002; Fantoni & Franciosi, 2010), adopted with the 
original interpretations down to the depth of the top of 
basement, (iv) one seismic reflection profile that we re-
interpreted and provided with line drawing of the main 
reflectors (mc_13 in Fig. 3; Michetti et al., 2012) and (v) 
six deep exploration wells (Fig. 3; Videpi project https:// 
www. videpi. com/ videpi/ videpi. asp; and Fantoni et  al., 
2002). Additionally, we added the Moho depth map 
from Spada et al. (2013) and the well-constrained earth-
quake foci for the 1985 to 2020 period (ISIDe Database 
at http:// terre moti. ingv. it/ search) within a 30  km wide 
corridor (see Additional file 4_S4). All the datasets have 
been integrated into the structural geology modelling 
software MOVE™ to build a new crustal-scale geological 
cross-section that integrated all the datasets described 
above (i.e., the Varese Section, see trace in Fig. 1).

We restored the Varese section using the 2D Move-on-
fault and 2D Unfolding modules of the MOVE™ suite. 
Fault propagation folds have been restored by means 
of a trishear numerical code (i.e., Erslev, 1991; Hardy & 
Ford, 1997; Zehnder & Allmendinger, 2000). The trishear 
model describes the deformation induced by a growing 
fault as a triangular zone of shear emanating from the 
tip of a propagating fault (Fig. 4). The algorithm deforms 
beds in a single (homogenous trishear), or series of 
nested, triangular zone(s) of shear (heterogeneous tris-
hear), where the magnitude of slip is varied from a user 
defined value at the top of the zone to zero at the base 
of the zone and the direction of slip is varied from par-
allel to the fault dip at the top of the zone to parallel to 
the base of the zone at the lower boundary of the zone 
(Hardy & Ford, 1997). We adopted only a homogenous 
trishear model: the only parameter defining the triangu-
lar velocity field is the trishear angle offset (Fig. 4). This 
value indicates the fraction of the triangular area com-
prised between the fault projection and the upper tris-
hear boundary. Other variables that can be controlled 
are the apical angle (or angle between the boundaries of 

https://www.videpi.com/videpi/videpi.asp
https://www.videpi.com/videpi/videpi.asp
http://terremoti.ingv.it/search
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the trishear zone; “a” in Fig.  4), fault dip (“b” in Fig.  4), 
slip and the propagation to slip ratio (“p/s ratio” in Fig. 4). 
Area is preserved within the zone during deformation 
thus assuring that the section is balanced.

Given a fault or a fault-related fold of a certain geom-
etry, the slip is determined by the structural relief of a 
reference horizon across the structure (“h” in Fig. 4) and 
outside the trishear zone whereas the remaining param-
eters (i.e., “apical angle”, “b”, “p/s ratio” and “trishear 
angle”; Fig.  4) need to be fine-tuned in order to restore 
the reference horizon to a viable pre-deformation geom-
etry. We moved the hanging wall sector of each fault 

according to a fault-parallel flow model (Egan et al., 1997; 
Kane et  al., 1997). This algorithm assumes particle flow 
parallel to the fault surface and parallel to the plane of 
cross-section (plane strain assumption). Compared to 
other geometric construction models like those predicted 
by fault bend fold theory, the fault parallel flow is not 
restricted to simple ramp-flat-ramps with a dip less than 
30° thus, may be better applied to faults with a complex 
geometry or curved hinge sectors.

Our kinematic approach, that was firstly thought for 
basement-cored structures (Allmendinger, 1998; Erslev, 
1991), is intended for providing a bulk description of a 

Fig. 2 Simplified geological map of the Varese area based on the geological survey performed for this study (1:25.000 scale)
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deforming zone, without dictating any specific structural 
geometry and/or processes by which those strains occur 
(e.g., duplex thickening in an anticlinal stack or passive 
roof duplex can be both modelled with trishear). Instead, 
it is useful in the prediction of gross structural geom-
etries in areas of poor (or non-existent) subsurface data 
(Allmendinger, 1998). Trishear, in fact, has previously 
been used for the modelling of basement-involved fault-
propagation folds (Hardy & Finch, 2007; Mitra & Miller, 
2013).

Note that the trishear kinematic model provides non-
unique balanced solutions for the considered geometries 
but, conversely, includes only weak validations on the 
structural interpretations. In the result section we will 
discuss the procedure that led to the selection of the 
appropriate parameters during restoration. For unfold-
ing, we adopted a flexural shear algorithm that uses a pin 
and a slip-system parallel to the template bed to control 
the unfolding of the remaining horizons.

4  Results
4.1  Structural and geological field data
Thanks to our new geological map of the Varese Area 
(see Additional file 1_S1 for the full resolution map), we 
compiled a series of shallow geological cross-sections 
(Fig.  5) and analyzed the structural data of faults and 
folds (Fig. 6).

Cover units, together with the underlying basement, 
are involved into a series of NE-SW striking folds. We 
recognize two sets of folds, with opposite-dipping axial 
surfaces, related to Alpine deformation.

The folds belonging to Set 1 (Fig. 6a) are N60E striking, 
with the axis gently plunging to the SW, and they indi-
cate a tectonic transport to the NW. This set is mainly 
represented by the Arbostora Anticline, a large wave-
length fold that entirely occupies the southern sector of 
the Varese Area (Sections C and D in Fig. 5). The Arbos-
tora Anticline is an asymmetric, kink-type open fold 
with a forelimb steeply dipping to the NW and a large 

Fig. 3 Datasets and sources used for the building of the Varese Section, including: deep seismic reflection profiles (C2 and S3: Schumacher, 1997; 
C2: Pfiffner & Heitzmann, 1997), shallow seismic reflection profiles (mc_13: Michetti et al., 2012; fn_02: Fantoni et al., 2002; fn_10: Fantoni & Franciosi, 
2010), tomographic sections (E1, E2 and D2: Diehl et al., 2009, 2017; SMPL: Simplon section after Rosenberg & Kissling, 2013), well logs BR: Brenno; 
MR: Morazzone; SM: Settimo Milanese; TC 1: Trecate 1; TR1: Trenno 1; VF: Villa Fortuna). Same Fig. 1 legend
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monoclinal back-limb. The axial plane of this large fold 
dips N147/77 with an axis plunging N231/25.

The axial trace of the Arbostora Anticline runs par-
allel to the Marzio Fault, a NE-SW striking fault, verti-
cal at the surface, that puts in contact the Permian and 
basement units, outcropping in the core of the Arbos-
tora Anticline, with the deep water syn-rift limestone 
north of it. These two structures can be interpreted as a 
high-angle fault-propagation fold system, whose tectonic 
transport direction, deduced from the dip direction of 
the fold axial surface and by its asymmetry, is to the NW.

The folds belonging to Set 2 (Fig.  6b) show a N80E 
strike, an axial surface moderately dipping to the NNW, 
and an axis plunging at low angle to NE. These struc-
tures, indicating a ca. N-S compression with a tectonic 
transport direction to the south, are mainly located in 
the north-western sector of the Varese area. Here, a cou-
ple of SSE-verging recumbent folds, namely the Pizzoni 
di Laveno Anticline and the Valcuvia Syncline, crop out 
(Section A in Fig. 5).

The Pizzoni di Laveno Anticline, mostly eroded and 
submerged beneath the Maggiore Lake, is preserved only 
in its overturned frontal limb, with an axial plane dip-
ping N354/38 and an axis plunging N54/21. The Valcuvia 
syncline deforms a thick sequence of syn-rift lower Juras-
sic limestones, into a close and recumbent fold with an 
axial plane dipping N354/38 and with an axis plunging 
N55/20. It is noteworthy that the Mesozoic Monte Nudo 

Fault (i.e., MNN in Figs.  2 and 5), bounding a syn-rift 
basin to the east, was not inverted during contraction but 
it was rather folded into the Valcuvia syncline, instead.

The Valcuvia and Pizzoni di Laveno folds are separated 
by the Pizzoni di Laveno Fault, a reverse structure dip-
ping steeply to the NW. This fault puts in contact the 
overturned Lower Jurassic limestones of the southern 
limb of the Pizzoni di Laveno Anticline in the hanging 
wall against the overturned flank of the Valcuvia syncline, 
here represented by shallow water Triassic carbonates, in 
the footwall. The present-day younger-on-older tectonic 
relationship across the Pizzoni di Laveno Fault (Section 
A in Fig. 5) can be explained if interpreted as an inherited 
normal fault that was positively inverted during Alpine 
tectonics. The fault nucleated during the Mesozoic rifting 
stage and cumulated a normal throw of ca. 1000 m, based 
on a minimum thickness estimation, by extrapolating the 
top of the syn-rift units from the Valcuvia sector to the 
hanging wall of the Pizzoni di Laveno Fault.

Field measurements of fault slip data provided two sets 
of reverse and strike slip structures (Fig. 6) with a rotation 
of the compressive direction in between. Consistently 
with the distribution of the two sets of folds, also the data 
populating the two sets of faults are located at the two 
sides of the Marzio Fault, that acted as a rigid backstop 
during contraction. As a consequence, direct observa-
tions on the crosscutting relationships of faults are rare 
or non-conclusive. Only a few field observations provide 

Fig. 4 The trishear kinematic model (modified after Pei et al., 2014), based on Erslev (1991)
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evidence of a polyphase reactivation along the Marzio 
Fault zone, with strike-slip slickenlines overprinting the 
down-dip ones and suggesting that Set 2 postdated Set 1.

From the data above, we infer that, in the Varese area, a 
progressive clockwise rotation of the maximum compres-
sive stress (i.e., from NNW to NNE) happened during 
Alpine tectonics, with an associated set of north-verging 
folds predating the development of south-verging ones, 
and marking a change in the structural style of Alpine 
contraction through time.

4.2  The Varese section
In a first step, we integrated surface geology (Fig.  2) 
with shallow seismic reflection profiles (Fig. 3), tied to 
available well logs. The geometry of the syn-orogenetic 
sequence (Gonfolite Gr.) in the Pedealpine syncline has 
been constrained by interpreting the mc_13 seismic 
reflection profile (Fig. 7; see section trace in Fig. 3). The 

location of the Gonfolite backthrust is constrained at 
the surface, and the projected Morazzone and Brenno 
wells, together with the intersection of the published 
fn_02 section, provide the constraints to the inter-
preted horizons. The sequence stratigraphy records the 
major unconformities at the northern margin of the 
Pedealpine syncline, consistently with a syn-growth 
architecture of the sequence, during backthrusting 
and backfolding. A regional unconformity is recorded 
at the top of Chattian, extended over the entire basin 
and sealing the main phase of folding. Some secondary 
thrusts, with flat-ramp-flat geometries, are interpreted 
in the Rupelian sequence, based on the downward ter-
mination of axial surfaces. These faults, resembling 
flexural slip faults due to their apparent lack of a deep 
rooting, are in line with a secondary backthrust in the 
Gonfolite Group, as pointed out by Bernoulli et  al. 
(1993). The root of the Gonfolite backthrust and the 
geometry of the top of carbonates to the north are only 
supposed and not directly imaged at depth.

In a second step, we integrated some deeper-reach-
ing geophysical data, including a 3-D high-resolution 
P-wave tomography of the Alpine crust (Diehl et  al., 
2009, 2017, Rosenberg & Kissling, 2013; Figs. 3 and 8) 

Fig. 5 Geological cross-sections across the Varese Area (see Fig. 2 for 
section trace); same codes as Fig. 2

Fig. 6 a, b π-diagram of the Set 1 and Set 2 of folds with the 
calculated axial surfaces and axes (A1 and A2, respectively); c, d 
fault slip data inversion, after unfolding for faults of Set1 and Set2, 
respectively



Page 9 of 21     4 Anatomy and kinematic evolution of an ancient passive margin involved into an orogenic wedge (Western Southern Alps,  
Varese area, Italy and Switzerland)

into the Varese Section. Following Diehl et  al. (2009), 
we define the boundary between lower and upper Adria 
crust by the 6.5  km/s Vp contour line, where other 
external constraints are lacking. The Triassic cover 
units, unconformably overlying the metamorphic base-
ment and Permian intrusive bodies, have a thickness 
of ca. 2–3  km and are overlain by a syn- to post-rift 
sequence up to 3 km of thickness.

Basement and cover units are involved in a north-
verging reverse fault-propagation-fold related to the 
inversion of the Marzio Fault (Fig. 8). The Marzio Fault 
represents a long-lived inherited fault that was prob-
ably active since Late Carboniferous (Casati, 1978). The 
Marzio Fault bounds an early Permian sub-volcanic body 
(Bakos et al., 1990) suggesting a certain structural control 
for its emplacement. During Triassic and Jurassic, the 
fault separated two structural blocks that experienced 
differential uplift, as highlighted by an abrupt change in 
the thickness of the Mesozoic sequences across the struc-
ture (Fig. 6). To the west, the Marzio Fault is concealed in 
a 2 km-thick zone of distributed deformation within the 
syn-rift units (Fig. 2).

South of the Marzio Fault, the NE-SW trending asym-
metric Arbostora anticline runs for more than 20  km 
along strike, plunging 22° towards N235E. Immediately 
south, the Pedealpine syncline is buried below the Po 
Plain recent sediments (Fig. 1), and hosts the Oligocene–
Miocene Gonfolite Lombarda Group (e.g., Gelati et  al., 
1988; Tremolada et al., 2009); this sequence is deformed 
by shallowly-rooted thrusts, such as the Gonfolite back-
thrust (Fig.  6, e.g., Bernoulli et  al., 1989, 1993; Fantoni 

et  al., 2002), formed to accommodate shortening as an 
out-of-the-syncline back-thrust.

The considerable wavelength of the Arbostora anti-
cline (ca. 25  km) and the coupled involvement of cover 
and basement (Fig. 8) suggest a deep-seated origin for the 
Marzio Fault. We have tried to constrain the geometry of 
the Marzio Fault at depth by applying a structural method 
whereby hanging wall rocks follow displacement trajecto-
ries parallel to the fault line at depth (Fig.  8). Based on 
this approach we obtained a thick-skinned N-verging 
high-angle reverse fault, with an associated hanging wall 
harpoon anticline resembling a break-through fault-
propagation fold with a maximum structural relief of ca. 
10 km with respect to the base of the Pedealpine syncline 
foredeep sequence.

South of the Canavese line, we traced the Proman 
Antiform, sheared to the south against the Pogallo line, 
the Arosio thrust (Schumacher, 1997): the extrapolated 
geometry of the Lower Jurassic syn-rift sequence is 
purely hypothetical, based on the presence of this unit 
close to the Canavese line (Brack et  al., 2010). We also 
traced two well-defined deep-seated northwest-dipping 
seismic reflectors (i.e., J and L2 in Fig. 6). Reflectors J and 
L2 had been previously recognized and interpreted as 
shear zones in the deep seismic reflection profile NRP-
20 by Pfiffner and Heitzmann (1997) and Schumacher 
(1997), in sections S3 and C3 (see Fig.  3 for location). 
We interpreted the Marzio Fault to be linked with the L2 
shear zone and constituting a crustal-scale wedge. The L2 
shear zone dips northwestwards and crosses the Adriatic 
Moho boundary, separating domains with differing lower 
crustal thicknesses. Stacking of thin lower crustal slices 

Fig. 7 Depth-migrated seismic section mc_13 imaging the Gonfolite Lombarda Gr. of the Pedealpine syncline to south of the Varese area 
(re-interpreted after Michetti et al., 2012). Intersection with section fn_02 and projected well logs are shown (see Fig. 3 for data locations)
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Fig. 9 Sequential restoration of the Varese section: a present-day, b top Serravallian, c top Chattian, d top Rupelian, e top Aptian—end of rifting. 
Fault slip values are listed on Table 1. See further comments on the text
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attached to their corresponding upper crust can also pro-
vide a similar up-warping of Vp trajectories below the 
Ivrea Zone (see Fig. 8).

Seismic reflector J, on the other hand, corresponds to 
a major shear zone in the core of the presently upright 
to overturned Adria crust and uppermost mantle slices. 
Reverse slip along this shear zone would ideally pro-
vide both uplift and backfolding of the northern sector, 
including the inherited Liassic normal faults (i.e., the 
Pogallo and Maggiore Lines; Fig.  1) and back-tilting/
folding of the Marzio Fault and its hanging wall. A late-
stage backfolding of the Marzio Fault would explain 
the present-day steeply dipping geometry of the struc-
ture that would not be consistent with a simple fault-
propagation fold, if we consider the theoretical field 
of existence according to kink-band theory (Suppe 
& Medwedeff, 1990). Crustal stacking and wedging, 
including the positive reactivation of the Marzio Fault 
as a back-thrust in the wedge’s tip, could have contrib-
uted to the formation the Pedealpine syncline, where 
Oligocene–Miocene syn-orogenic deposits accumu-
lated. A major pulse of uplift related to such crustal 
wedging is recorded in the Pedealpine syncline by the 
large erosional unconformity at the base of the Aquita-
nian, as well as the development of the Gonfolite back-
thrust resulting from flexural slipping and out-of-the 
syncline thrusting (see Tavani et al., 2017).

4.3  Kinematic restoration: insights on the tectonic 
evolution of the Western Southern Alps

We tested our hypothesis through a sequential restora-
tion of the Varese section (Fig. 9). We restored the sec-
tion in four steps from present-day to the end of the 
Jurassic rifting by means of a kinematic approach aided 
by well-tied and dated reference horizons and well tops 
belonging to the Gonfolite Lombarda Group within the 
Pedealpine syncline. The complete parametrization of the 
trishear restoration modeling for each of the faults that 

slipped during each of the restoration steps is provided 
in Table 1.

The choice of the parameters for the trishear restora-
tion is mostly guided by the geometry of the reference 
horizons themself. Given the position of the fault tip at 
each of the restoration steps, the apical angle and the 
trishear angle offset is determined by the position of the 
anticlinal and synclinal hinges, enclosing the fault-propa-
gation fold front limb, and bounding the triangular zone 
of deformation. For the first restoration step, we interac-
tively changed the position of the fault tip for J and Vt, 
along the fault lines, with a trial-and-error approach, 
resulting in the proposed solution. Conversely, for the 
MF, we constrained the fault tip position at the base of 
the cover units, after un-faulting during Step 1.

The remaining two parameters, i.e., slip and p/s ratio, 
were tested over a range of possible values, with a trial-
and-error approach, keeping the combination of the two 
values that lead to the most geological viable and likely 
solution. In particular, we rejected p/s ratios higher 
than ca. 1.5, because they lead to an incomplete resto-
ration of the hanging wall anticlines, and lower than ca 
1.0, because these result in unrealistic hanging wall res-
torations. The resulting range of the p/s ratio is consist-
ent with other published case studies, reporting a typical 
range between 1 and 3 (e.g., Pei et  al., 2014). Addition-
ally, a slightly higher value for the MF fault is somehow 
expected, considering the presence of the mechanically 
strong early Permian granitic stock and volcanic units in 
the deformation zone of the propagating fault tip.

Step 1 (present day—top Serravallian)
Fault J had to slip 2000 m in order to place the hang-

ing wall sector at the same elevation of the top Serraval-
lian reference horizon (i.e., no sediment accommodation 
space in the chain sector). This assumption comes from 
the consideration that foredeep deposits were not pre-
sent in these sectors of the chain. We thus adopted a 
fill-to-the-top approach (i.e., the structural relief of the 
structure compensated the thickness of the syn-growth 

Table 1 list of the parameters adopted for the Trishear kinematic modelling, during the first three steps of restoration; Step 4 was 
restored with unfolding only

Restoration steps Fault code Apical angle b 
(degrees)

Trishear angle 
offset

p/s ratio Slip (m)

Step 1
Present day—top Serravallian

J 45 0.73 1.5 2000

MF (fault parallel flow) – – – 1010

Step 2
Top Serravallian—top Chattian

J 50 0.80 1 7500

MF 40 0.60 1.5 1400

Step 3
Top Chattian—top Rupelian

J 46 0.71 1 4000

MF 50 0.54 1.5 2000

VT 37 0.60 1 4000
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sequence deposited in the basin) thus reaching an esti-
mation of the maximum value of slip for the considered 
time window.

The Marzio Fault (MF) was restored according to a 
fault parallel flow model by restoring the offset of the 
Aptian unconformity (i.e., a reference horizon for the 
end-of-rifting stage) and by obtaining a viable geometry 
for the top Serravallian reference horizon.

Step 2 (top Serravallian—top Chattian)
Both J and MF were restored by means of a trishear 

method with the parameters indicated in Table  1. Slip 
and parameters were estimated in order restore a top 
Chattian reference horizon and adopting a fill-to-the-top 
assumption.

Step 3 (top Chattian—top Rupelian).
Faults MF, J and VT were restored by means of a tris-

hear kinematic model with the parameters indicated 
in Table 1. Slip and parameters were estimated in order 
restore a top Rupelian reference horizon and adopting a 
fill-to-the-top assumption.

Step 4 (top Rupelian—top Aptian; end of rifting)

All the remaining deformation was restored by means 
of a 2D unfolding approach with a flexural slip method. 
We restored the upper crust thickness to likely values but 
realize that the position of the lower crust boundary at 
depth is not constrained by our restoration.

5  Discussion
According to the terminology proposed by Butler and 
Mazzoli (2006), a detachment-dominated solution for 
internal wedge anatomy of the Western Southern Alps 
has been proposed since the 90s (e.g., Schumacher, 1997; 
Pfiffner 2017). A similar model of thrust sheet stacking of 
cover units has been assumed for the Varese Area as well 
(Rosenberg & Kissling, 2013) by importing the surface 
geology outcropping to the east (Grigne stack, see Schmid 
et al., 1996). However, this proposal is solely based on the 
interpretation of deep seismic reflection profiles (i.e., the 
NRP20 profile in Schumacher et al., 1997), since contrary 
to the Orobic Alps, the Varese section is devoid of cover 
units (Figs. 1, 2 and 3). A slightly different interpretation 
has been provided by Fantoni et  al. (2002) and Fantoni 

Fig. 10 Composite geological cross-sections across the Alps: a section traces and estimated shortening across the Western Southern Alps: black 
lines from Handy et al., 2015; red line, this study); b Composite Section East (Engandine-Orobic Alps), after Rosenberg and Kissling (2013) and 
Fantoni et al. (2004); Fantoni and Franciosi (2008)—modified; c Composite Section West, including the Ticino section to the north (modified after 
Butler, 1986 and Schmid et al., 2017), integrated with the Varese Section, to the south (this work)
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Fig. 11 Key steps in the evolution of the Alps with focus on the Southern Alps and on the inheritance of rift-related extensional domains (sensu 
Mohn et al., 2010) during collision. See text for a detailed explanation (redrawn after Butler, 2013; Dezes et al., 2004; Handy & Stünitz, 2002; Mohn 
et al., 2014). Fault Codes: AT: Arosio thrust; CL: Canavese Line; GB: Gonfolite backthrust; J and L2 are deep-seated shear zones discussed in this study; 
MF: Marzio Fault; ML: Maggiore Line; PL: Pogallo Line; VT: Villafortuna-Trecate high
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and Franciosi (2008), who traced a stack of south-verging 
thrusts, ramping up from the basement and detached at 
a depth of ca. 15  km, but still framed in a detachment-
dominated interpretative model.

The lithospheric detachment solutions above imply 
the stacking of a south verging thrust pile accommodat-
ing a significant amount of shortening: close to 100 km, 
calculated in the Central Southern Alps (e.g., Schönborn, 
1992; Schumacher et al., 1997; see Carminati, 2009 for a 
discussion about this topic and Verwater et al., 2021 for 
different values calculated across the Giudicarie belt). 
At a more regional scale, the post-Adamello shortening 
estimates, calculated across for the Central and Western 
Southern Alps (Fig.  10a; Handy et  al., 2015), decrease 
westward from ca. 70  km, close to the Giudicarie belt 
(18 km of Neogene shortening, across the Giudicarie belt 
alone, according to Verwater et al., 2021) to about 45 km 
east of Lake Como. According to the proposed detach-
ment-dominated interpretation for the Western South-
ern Alps of Rosenberg and Kissling (2013), deep-seated 
structures, including the Marzio Fault, the Valcuvia syn-
cline and the inherited syn-rift normal faults (i.e., such 
as the Pogallo and Maggiore Lines) are crosscut by the 
thrust sheets and no clear explanation for their present-
day backfolding is offered.

As a matter of fact, the internal wedge architecture has 
never been verified from direct evidence (i.e., the Varese 
Area outcrops or wells), and the interpretation of avail-
able seismic lines results questionable. The only available 
well ties in front of the range could also be consistent 
with a steep regional folding, the Pedealpine flexure (the 
so-called “Flessura Pedemontana” Auct.; e.g., Castellarin 
et al., 1992), that has been correlated with the Neoalpine 
movements.

A deeply different perspective is offered by ramp-dom-
inated solutions, such as that proposed in the present 
work where lithospheric scale backfolding and upper 
crust accretion is proposed, resulting in much less short-
ening than the thrust stack solution (i.e., ca. 21  km of 
post-Adamello shortening: Fig. 8a).

A comparison of the anatomy of the wedge along differ-
ent transects across the Southern Alps highlights signifi-
cant differences in the contractional style (see composite 
Sections West and East of Fig. 10).

In the Composite Section East (Fig.  10b), located in 
the middle of the Mesozoic Lombardy basin, the main 
detachment levels are localized in the weak levels of the 
cover units, at the top of basement and at the lower–
upper crust boundary. Deformation involves the whole 
crust, but, due to the presence of many rheologically 
weak layers, it resembles a detachment-dominated style. 
Note that slip along deeply rooted thrusts (i.e., A and B 
in Fig. 10b) results in the development of wide anticlines 

at shallower levels, and the steepening of cover units at 
the southern margin of the range (the Pedealpine flexure; 
Fig. 10b). The presence of a weak level at the upper-lower 
crust boundary also results in a pronounced indenta-
tion of the Adria crustal wedge into the European crust 
(ACW in Fig. 10b).

Conversely, at the western margin of the Lombardian 
basin (i.e., Composite Section West; Fig.  10c), the duc-
tile parts of the crust had been thinned, extracted (sensu 
Froitzheim et  al., 2006), with the lower crustal section 
and uppermost mantle most likely exhumed upon the 
latest stages of rifting, making the brittle parts of the 
upper crust and uppermost mantle to become coupled, 
and importantly, the upper mantle to become serpenti-
nized (see Peron-Pinvidic & Manatschal, 2019 and Festa 
et al., 2020). At the end of rifting (Fig. 11a), the studied 
area was characterized by a subsiding sector delimited by 
the Pogallo Line and other detachment faults that would 
have been located close to the present-day Canavese Line 
(Fig. 1). These faults were responsible for a pronounced 
thinning and attenuation of the Adria crust (Ferrando 
et  al., 2004; Handy & Stünitz, 2002) and marked the 
external limit of the necking domain of Adriatic margin 
(sensu Peron-Pinvidic & Manatschal, 2019).

During convergence, the necking zone delimits the 
crustal sectors that can act as a buttress (Lacombe & Bel-
lahnsen, 2016; Lescoutre & Manatschal, 2020), inhibiting 
internal stacking.

Up to Rupelian times (e.g., Bersezio et  al., 1993; 
Fig.  11b), we record a period, encompassing the main 
stages of subduction, when deep-seated Marzio Fault is 
inverted (ca. 79  Ma; Beltrando et  al., 2015). Given the 
time constraints coming from the Varese section and the 
lack of reliable horizons older than Rupelian, we can pos-
sibly include into this time frame also the pre-Adamello 
deformation phase (i.e., up to early–middle Eocene). Such 
a style persisted also during the first stage between pro- 
to retro-wedge transition (Schmid et al., 1996; Fig. 9d and 
Fig. 9c), when the inception of the crustal wedge accre-
tion was accommodated mainly through north-verging 
thrusts. This first phase was also coupled with the posi-
tive inversion of rift-related structures such as the Mar-
zio Fault. Similar and coeval inversions are recorded also 
in other sectors of the chain, predating the deposition of 
syn-collisional deposits and the intrusion of the Tertiary 
bodies (i.e., the so-called pre-Adamello phase, e.g., Zan-
chetta et al., 2015). Additionally, other lines of evidence, 
indicate that during the subduction phase of conver-
gence, tectonic stacks developed in the Southern Alps 
(e.g., Fantoni et al., 2004; Zanchetta et al., 2015),

A dramatic change in the structural style is recorded 
from the Aquitanian onward (i.e., 23.03 Ma; Figs. 9c and 
b and 11d and e), when shortening was taken up also by 
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deeper structures. During this phase we record the inver-
sion of the inherited L2 shear zone and of the Marzio 
Fault into a crustal-scale wedge, whereas the most exter-
nal structures were inactive. The internal deformation of 
the orogenic wedge and crustal accretion was here mod-
eled by the slip on the J structure, whose growth caused 
the progressive back-tilting of the southern sectors and 
the closure of the Pedealpine syncline, including out-of-
sequence thrusting.

This change in structural style is consistent with the 
timing of Adria indentation of the Adriatic plate into the 
orogenic wedge resulted in the formation of the Van-
zone back-fold (Fig. 9e; Keller et al., 2006; Manzotti et al., 
2014), as deduced from the cooling of the Lepontine 
Dome and sediment accumulation within the Adriatic 
Foredeep basin (e.g., Di Capua et al., 2016; Di Giulio et al., 
2001; Garzanti & Malusà, 2008; Gianola et  al., 2014; Lu 
et al., 2019; Schmid et al., 1989). Backthrusting and exhu-
mation of the Central Alps started somewhat earlier than 
23  Ma in the Bergell area (e.g., Gianola et  al., 2014), as 
recorded within the sediments accumulated the Adriatic 
foredeep (Di Giulio et al., 2001; Garzanti & Malusà, 2008; 
Lu et al., 2019) and progressively migrated westward, with 
an exhumation period dated at ca. 17–14 Ma in the sector 
close to the Proman Antiform (Fig. 1). Another indication 
comes from the geochronological fingerprints of the Adri-
atic foredeep deposits, that recorded a shift of the Adria 
indenter at ca. 23–23 Ma (Malusà et al., 2016).

The backfolding of the Adria margin, well-documented 
in the Ivrea Zone (Zingg et al., 1991), now finds additional 
evidence in the Varese area, directly linking the upturned 
lower crustal sectors, outcropping to the west, with fold-
ing of the Lugano–Valgrande Fault into a regional syn-
cline (Bertotti, 1991; Fig. 1).

In turn, the shallow accommodation of this folding 
resulted into flexural slip faulting along the Gonfolite 
backthrust between Varese and Lake Como (Fig. 1) that 
is mostly expressed at the surface (i.e., east of Varese; 
Bernoulli et  al., 1989; Bersezio et  al., 1993; Sileo et  al., 
2007) and rooted at depth (Michetti et al., 2012), in the 
hinge zone of the Pedealpine syncline, as a thrust flat. 
Consistently, earthquakes’ foci cluster in the sector on 
top of the J shear zone, and on top of the wedge-related 
Marzio Fault, where we infer that the most recent crustal 
deformation focused (i.e., Tortonian–present day). Resto-
ration resulted in 27 km of total shortening (i.e., 29% of 
a restored section of 92  km) for the stack of structures 
investigated in the Varese area and with much of the slip 
being accommodated by uplifting the inner part of the 
chain through internal deformation, and not by stacking 
of thin-skinned nappes as previously suggested.

Shortening is documented also in the Orobic Alps, for a 
pre-Adamello syn-collisional tectonic phase (55–45 Ma: 

Zanchetta et  al., 2015), and came to an apparent pause 
during Late Eocene–Early Oligocene (42–30 Ma), when Ji 
et al. (2019) framed a possible phase of lower slab steep-
ening below the Southern Alps, resulting in a higher dip 
of the slab to the east (ca. 80°) compared to the Varese 
area, where it is close to 60° (Zhao et al., 2016). Here, we 
documented wedging from the Chattian onward, i.e., 
later than in the Orobic Alps and after ceasing of slab 
retreat. Such a sequence of events, on a broader per-
spective, suggests that during the collisional and post-
collisional history of orogenesis, lithosphere dynamics 
diachronically drove the onset of tectonic phases (i.e., 
wedging and slab retreat), from east to west, across the 
Southern Alps. Even if based on a structural and kin-
ematic approach alone, our results are consistent with 
a recent numerical thermo-mechanical modeling (Dal 
Zilio et al., 2020) demonstrating that the rearrangement 
of forces after a possible breakoff, bending and rollback 
of the European slab would result in a compressive stress 
transferred to the shallow crust.

The wedge structure of the Southern Alps and its evo-
lution can be better framed if we consider that the deeply 
rooted structures proposed here resulted from a long-
lived and polyphase tectonic history where structural 
inheritance played a primary role. Some of the struc-
tures involved during Jurassic rifting (Fig. 9a) were posi-
tively inverted during a first phase of deformation that, 
in our dataset, is possibly also encompassing the Creta-
ceous development of a north-verging pro-wedge, during 
the subduction phase of convergence (Fig.  11b). Finally, 
contemporary to continental collision, and, possibly, a 
slab breakoff (Manzotti et al., 2014; von Blanckenburg & 
Davies, 1995), the Western Southern Alps wedge shows 
an inversion of the tectonic transport direction (Fig. 9d), 
contemporary to the deposition of a thick syn-collisional 
deposits (i.e., the Gonfolite Lombarda Group). During 
the last stages of convergence (Fig. 9e and f ) subcontinen-
tal mantle of the Ivrea Zone was finally exhumed together 
with the inversion of crustal rift-related structures.

In summary, the pre-collisional lithospheric configura-
tion was significantly different in the western and east-
ern margins of the Lombardian basin. In the composite 
Section West, collision resulted in the involvement of 
upper mantle lenses, and a thinned lower crustal sec-
tion; the weak interface represented by the upper and 
lower crustal levels interpreted for the Orobic Alps sec-
tion was missing, thus promoting the indentation of the 
Adriatic upper lithosphere into Europe. Reactivation of 
deep-seated, probably rift-inherited shear zones (L2 and J 
reflectors) upon convergence would have transferred slip 
into the upper crustal section, re-activating Permian and 
Jurassic faults (i.e., Marzio Fault, Maggiore Line).
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6  Conclusions
Analyzing and discussing the crustal structure of a 
key area of the orogenic wedge of the Western South-
ern Alps we provide a ramp-dominated balanced solu-
tion for the accretionary wedge that opposes previously 
proposed detachment-dominated interpretations (e.g., 
Fantoni & Franciosi, 2008; Fantoni et  al., 2002; Pfiffner, 
2016; Rosenberg & Kissling, 2013; Schumacher et  al., 
1997). The proposed solution depicts the presence of a 
retro-wedge involving the tip of the north-verging Adria 
mantle wedge, along with the reactivation of crustal rift-
inherited faults and shear zones cutting through previ-
ously thinned crustal sectors. The inversion of the deeply 
rooted normal faults as crustal thrust ramps could relate 
to the inherited thinning of the ductile parts of the con-
tinental crust, and the mechanical coupling between the 
brittle upper crustal and upper lithospheric mantle sec-
tions involved in the orogenic wedge (e.g., Lescoutre & 
Manatschal, 2020; Tavani et al., 2021). Consistently with 
Festa et al. (2020), our restoration implies that the South-
ern Alps acted as a backstop of the subduction-accretion 
complex and that most of the continental collisional 
deformation was efficiently accommodated inside the 
wedge through the thickening of the upper crust.

Finally, in relation to the Orobic stacks in the Central 
Alps, we do not have any evidence of an eroded upper stack 
of units in the Varese Area. The integration with the geo-
physical seismic reflection profiles at the front of the buried 
chain, shows that the outcropping structures find a good 
correspondence at depth, below the Po Plain, and the sup-
posed presence of another tectonic stack is definitely not 
necessary for the section interpretation. Based on these con-
clusions, we speculate whether a major discontinuity for the 
change of the basal depth of the contractional wedge could 
be related to the abrupt increase in the Jurassic syn-rift 
thickness to east of the Lugano-Valgrande fault, changes in 
the lower crustal thickness (and strength), and the rheology 
of the upper and lower crust interface. Such lateral discon-
tinuity could relate to the inherited non-cylindricity of the 
Adriatic rifted margin, as observed in rifted margins world-
wide and collisional orogens developed from those.
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