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A B S T R A C T   

State-of-the-art machine learning models, and especially deep learning ones, are significantly data-hungry; they 
require vast amounts of manually labeled samples to function correctly. However, in most medical imaging 
fields, obtaining said data can be challenging. Not only the volume of data is a problem, but also the imbalances 
within its classes; it is common to have many more images of healthy patients than of those with pathology. 
Computer-aided diagnostic systems suffer from these issues, usually over-designing their models to perform 
accurately. This work proposes using self-supervised learning for wireless endoscopy videos by introducing a 
custom-tailored method that does not initially need labels or appropriate balance. We prove that using the 
inferred inherent structure learned by our method, extracted from the temporal axis, improves the detection rate 
on several domain-specific applications even under severe imbalance. State-of-the-art results are achieved in 
polyp detection, with 95.00 ± 2.09% Area Under the Curve, and 92.77 ± 1.20% accuracy in the CAD-CAP 
dataset.   

1. Introduction 

Obtaining gastrointestinal (GI) images has traditionally been an 
intrusive intervention until the advent of Wireless Capsule Endoscopy 
(WCE) technology [1]. WCE imaging eases the process of securing a 
continuous stream of images, but at the same time, it introduces its own 
set of problems. 

The videos recorded by the capsule, although usually with a low 
frame rate, can have a duration of up to 12 h [2]. Unlike traditional 
methods, it is not a targeted exploration but rather a complete recording 
as the capsule travels through the entire system. A physician must go 
over the full length of the video, possibly at multi-image speeds, while 
looking for any abnormality. Not only do they have to invest consider
ably more time, but the fatigue and repetitiveness of the task could affect 
their ability to detect such abnormalities. 

Providing a reliable and accurate computer-aided diagnosis (CADx) 
system capable of selecting the most promising frames would ease the 
pressure on those professionals, cutting down the time spent on the task 
while obtaining comparable—if not better—results. 

Also of great importance, especially when designing automated 
systems that rely on images obtained from patients, is to examine the 
properties of the data. In day-to-day examinations, not all patients have 
an associated pathology, and the data used in research to train CADx 

models directly reflects it. In polyp detection, for example, the majority 
of videos have no polyp present in a video at all. One must also consider 
that, even in the case that there might be polyps, they would appear only 
in a small fraction of the frames [3]. A polyp might appear in several 
subsequent frames, perhaps slightly displaced or rotated, but the overall 
number would be negligible when considering the whole duration of the 
video. 

Combining the difficulty of obtaining said datasets with the amount 
and distribution of the data itself makes creating accurate and 
production-ready CADx systems a difficult task. Data is fairly scarce 
compared to other problems studied in deep learning, and the classes, 
such as polyp, or non-polyp, suffer significant imbalances. Not to 
mention that supervised algorithms, which dominate the field, require 
that all those videos are accurately labeled to function. 

Creating better models for the medical field which, ultimately, could 
be used in CADx, requires sorting out these issues. Techniques like data 
augmentation and regularization have been used to cope with over
fitting and under-generalizing models, but they are hard to train and can 
obtain sub-par results. As such, it is the aim of this work to produce a 
method that enables obtaining better WCE models without over-relying 
on these two approaches. The main motivation being that such models 
would help reduce the workload that physicians are facing when 
examining WCE videos while, perhaps even more importantly, not 
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sacrificing any accuracy, be it detecting polyps, bleeding, or any other 
critical condition. 

Thereafter, this work proposes the application of self-supervised 
learning (SSL) on WCE videos to obtain a better representation of the 
data, enabling future models to perform better in their classification 
tasks. Self-supervision has been canonically considered a variant of su
pervised learning [4], as the network learns from supervisory signals 
obtained from the data itself, often leveraging the underlying structure 
in the data. Based on this definition, we derive a novel pseudo-labeling 
method for WCE that works with several unlabeled videos, enabling the 
use of SSL, which helps train models for downstream tasks. 

In SSL, instead of directly training a model with a set objective in 
mind, the process is divided into two steps. SSL is done during an initial 
phase named pretrain, where a deep neural network is trained to learn a 
better representation, or embedding, of the data. It encodes the most 
essential information into a smaller vector by using the data without 
their final labels, learning its inherent structure. This information is 
learned accordingly to the data’s nature, the model’s architecture, and 
the task used for SSL. Then, during a second pass, the finetune process, 
the embedding is used in conjunction with the labels to perform su
pervised classification. 

With the present work, summarized in Fig. 1, we aim to use self- 
supervision to provide more accurate models for domain-specific tasks 
derived from WCE images. In particular, given unlabeled WCE videos, 
we exploit their temporal nature to perform SSL and then train several 
supervised models. These models can then be used for CADx, which 
would improve the results with respect to current methods, reducing the 
workload for physicians. 

The paper is organized as follows. First, we give an overview of the 
related work in the field, followed by a description of our methodology, 
presenting the self-supervised training, supervised training, and system 
architecture. Further, we explain the experimental setup and results and, 
finally, present the main conclusions and give directions for future work. 

2. Related work 

2.1. Wireless Capsule Endoscopy research 

WCE, due to the nature of its long data streams, has been a popular 
candidate for computer-aided automation. For instance, bleeding 
detection was first done by means of superpixels in conjunction with a 
support vector machine [5], using super-vector machines (SVM) and 
manually found color invariants [6], through saliency maps [7], and 
using hand-crafted textures and multiple machine learning algorithms 
like classification trees, random forests, and logistic model trees [8]. 
Other tasks explored are polyp detection through image subdivision and 
SVM [9], ulcer detection with texture and color invariants [10], and 
motility events with pattern recognition, color decomposition, and 
chromatic stability [11]. 

These processes saw an increase in performance with the advent of 
deep-learning-based models. In Ref. [12], convolutional neural net
works (CNN) automate the process of texture finding, no longer 
requiring hand-crafted features and achieving better results at motility 
event classification. Likewise, other WCE domains such as polyp 
detection [13–15], bleeding [16,17], ulcer detection [18], and celiac 
disease diagnosis [19], have benefited from the use of CNNs. 

Recently, WCE models have thrived with more advanced methods, as 
the works in Refs. [3,20–24] demonstrate. Attention mechanisms to let 
the network learn the important features [20], the use of residual con
nections with the ResNet model [25] along with metric learning with 
triplet loss (TL) [26] in Ref. [3], and the ability to create deeper and 
denser models [21] have enabled them to produce more robust and 
accurate methods. Noteworthy, disease detection in the gastrointestinal 
tract has greatly gained from recent advances, with CADx systems being 
explored in bleeding detection, vascular lesions, ulcers, polyp, and tu
mors [27–29]. 

Notwithstanding the recent advances, both traditional machine- 
learning-based methods and the deep-learning variants suffer from the 
same problems—lack of labeled data and, in some domain-specific tasks 
like polyp detection, also highly imbalanced classes. This is formalized 
and analyzed in Refs. [21,30], where the difficulties of producing 
models that generalize and do not overfit, product of imbalance, low 
inter-class variance, and high intra-class variance are inspected in detail. 
Techniques like dropout, L1 or L2 regularization, and sampling mech
anisms have also been applied to WCE in an attempt to soften the 
problems derived from data imbalances and inter-class and intra-class 
variances, such as overfitting and failing to generalize [31]. Other 
works, like [3], show that using TL to learn better embeddings also 
contributes toward obtaining more robust models. Nonetheless, the 
problem still remains, WCE is tedious to label due to its length, which 
often means that researchers have low amounts of labeled data to work 
with. Moreover, several fields must still tackle with huge imbalances 
within the data. 

2.2. Self-supervised learning 

Other approaches to tackle low amounts of labeled data, when 
pseudo-labeled data is available, and class imbalances in downstream 
tasks are self-supervision methods, of which a wide range of options are 
available. For instance, a popular architecture choice was autoencoders 
[32–34], whose dimensionality-reducing capabilities were believed to 
be useful for SSL. However, it has been demonstrated that they fail to 
capture rich information [35], focusing only on compressing data. Thus, 
their capacity to adapt to any future generic task is hindered at best. 

In contrast to the former generative method, where the network 
learns from a single image, contrastive learning trains on multiple ex
amples or instances of the same image to learn the inherent information 
[36]. One such way to introduce multiple samples of a single image has 
been by reordering subsections [37]. This type of SSL encourages the 
network to learn invariant representations, unlike their generative 
counterparts. Similarly, when the time dimension is available, reorder
ing can be done based on fragments of the input, as done with audio 
streams [38]. Additional techniques, like rotation, color jittering, blur
ring, and cropping, can be applied as shown in Refs. [39,40]. The au
thors propose SimCLR, an architecture based on ResNet [25] that can be 
trained with multiple contrastive approaches and a new contrastive loss. 
They provide a simple framework to perform SSL and benchmark the 
different methods. 

More specifically and related to our application, contrastive SSL from 
videos has been done by predicting the order of a sequence [41–43], 
object tracking [44–46], and specialized losses [47,48]. In particular, 
our method resembles the single-view approach of Time-Contrastive 
Networks [48], which uses metric learning for temporal coherence. 
Their work, however, diverges from ours because they do not focus on 
the embeddings’ richness nor task-generalization. Given the nature of 
their action imitation task, they limit their triplets to be in a single 
sequence and do not explore the embedding quality, whereas our work 
aims to learn generalized and rich embeddings from hours-long videos, 
exploring inter-sequence and inter-video triplets, for further usage in 
downstream tasks. 

In medical imagining, some efforts have been made in regards to SSL 
and semi-supervised training [49,50]. For instance Ref. [51], uses a 
generative network to create simulated postoperative MRI images, 
which used in an SSL step obtains better results. Other tasks, such as 
pneumonia detection and multi-organ segmentation [52], also show 
improvements by means of SSL-based on samples’ patch reordering. 
Likewise, SSL has also been applied to WCE related tasks, using distor
tions to the original images in Ref. [53], combined with multi-task 
learning to detect inflammatory and vascular lesions. Similarly [54], 
minimizes the difference in predictions between the SSL head and the 
supervised head, leveraging unlabeled data. 

To the best of our knowledge, however, there has been no work that 
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leverages the temporal aspect of WCE videos, using an SSL process to 
obtain better representations, which, in turn, would help tackle data- 
derived problems. 

3. Method 

An overview of our proposed self-supervised approach is illustrated 
in Fig. 1. Similar to most methods relying on self-supervised training, 
our approach is divided into two distinct stages: (a) pretraining a self- 
supervised network using unlabeled data to obtain rich representa
tions, and (b) finetuning the model using labeled data for a specific task. 
This section follows the same pattern, explaining both phases first, and 
finishes by explaining the architecture used. 

3.1. Self-supervised pretraining 

During the first stage of the process, we aim to extract useful generic 
information from the unlabeled images, which then can be transferred to 
deal with many specific tasks by finetuning the model with limited 
labeled data. In other words, it creates a reduced representation 
(embedding) of the original image that contains its most important 
information. 

Extracting an embedding can be understood as a process f(x), where 
a neural network transforms a sample x from the dataset to its com
pressed and rich representation. 

Out of all the possible ways to obtain said embedding, we have 
chosen to exploit the temporal nature of WCE videos. Our method works 
by taking sequences of N contiguous frames and creating a relationship 
between them. Namely, given two frames i, j in the sequence, their 
relationship is established as the distance d(i, j) between them, counted 
by the number of frames that separates them. 

Unlike the work in Ref. [48], where all samples come from a single 
sequence, our method must generalize to multiple videos and sequences. 
Per-frame pseudo-labels are introduced to encode their video identifier 
along with their position. Given an image i, its pseudo-label is a com
bination of its video identifier γ(i), which can be a simple numbered 
sequence, and the position inside the video δ(i), as seen in Equation (1). 

y(i) = Mγ(i) + δ(i) (1) 

Where M must be a large enough number so that ∀i, M > δ(i). For our 
particular experiments and datasets, we have chosen M = 106. 

Next, we impose a similarity measure between frames on the 
sequence so that contrastive learning can be done by finding the 
inherent relationship between similar and dissimilar images. For that 
purpose, two images will be consider similar if they are close enough, 
formalized as d(i,j) = |y(i) − y(j)| ≤ w, where w ≤ N is a constant chosen 
beforehand. The pair (i, j) is considered similar (positive) in such cases, 
and negative otherwise. 

In other words, taking a reference image (anchor) in a sequence, all 
other images within a window of size 2w (w images per side) are 
considered similar. In general, given an N-sequence, all images have 
between min(N, 2w) and w positive samples. Images around the edges of 
the sequences lose up to half the positives, tending towards the latter, 
while those on the center have the whole spectrum. 

The pseudo-labels guarantee that (i, j) negative pairs are consistent 
with images coming from different videos, as γ(i) ∕= γ(j), thus d(i, j) ≈ |Mγ 
(i) − Mγ(j)|≥ M > w. Additionally, for two frames i, j extracted from the 
same video, the formula reduces to the distance in frames between them, 
d(i, j) = |y(i) − y(j)| = |δ(i) − δ(j)|. 

Given the above approach to create a similarity measure, the Triplet 
Loss (TL) [26], a contrastive loss, is introduced to learn the embeddings. 
TL works by using triplets of samples, where two of the triplet’s ele
ments, the anchor a and the positive p, pertain to the same class. The 
remaining element, the negative n, is of a different class than a. That is, 
given the embedding of an anchor f(a), a triplet (f(a), f(p), f(n)) is formed 
so that y(a) = y(p) ∕= y(n), where y(⋅) is the class of a sample. 

Using Equation (2), TL forces f(p) to be close to f(a) while moving 
away f(n). It eases the problem by introducing a soft margin α between 
the positive and negative pairs. 

TL = max
( ⃦
⃦f (a) − f (p)‖2

−
⃦
⃦f (a) − f (n)‖2

+ α, 0
)

(2) 

Translated to our domain, a triplet is formed by two similar images 
and a dissimilar image, so that d(a, p) ≤ w and d(a, n) > w. As shown, TL 
is directly applicable to WCE videos when used in conjunction with the 

Fig. 1. Overview of the proposed method, including the pretain phase, in the upper half, and the final finetune phase in the lower half.  
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pseudo-labels, forcing close images in a sequence to have similar rep
resentations in the embedding space. 

It must be noted that this method is bound to have incorrect pairs, as 
different videos or sequences could contain similar images, regardless of 
their distance. Also, WCE videos tend to have periods where the capsule 
moves at a slow rate, producing many similar images in a relatively long 
interval, or, on the contrary, moves fast and captures rapidly changing 
sequences. We estimate those cases to be negligible compared to our 
dataset’s size, being effectively treated as noise during the process. 

3.2. Supervised learning 

During the second phase of our method, the same model is reused to 
learn a domain-specific task with limited amounts of data. For instance, 
the rich representations could be used to model motility events, classify 
several conditions like bleeding or inflammation, evaluate keyframes, or 
detect polyps, to name a few. 

For that purpose, the process starts with the SSL model’s parameters, 
obtaining embeddings produced by the new dataset and feeding them 
into a classifier. That classifier needs to access the ground truth labels, as 
it uses a softmax cross-entropy loss to model the problem. 

Following SimCLR findings [39], we have confirmed that fixing the 
weights obtained during SSL is counterproductive. However, unlike 
SimCLR, which assumes balanced problems, we use the approach pro
posed by Laiz et al. [3], where the TL is used to modify the embeddings. 
As such, the gradient coming from the linear classifier is removed so that 
it cannot negatively impact the embeddings due to the imbalance. 
Instead, a TL is imposed on them to facilitate the network to finetune the 
dataset representations. 

However, unlike in the previous step, the TL no longer uses the 
pseudo-labels created through our method. Triplets are formed by 
considering the real labels of the images, which are domain-specific and 
help finetune the embeddings to the particular task. To further reference 
it and avoid confusion, the term TLsup will be used. 

The TLsup is trained in batch all mode, which considers all triplets 
regardless of their difficulty. No special sampling algorithm is intro
duced; the only restriction we impose is for a batch to have a propor
tional representation from all classes. Other than that, data is randomly 
sampled. 

The final loss obtained in this model is the linear combination of both 
the cross-entropy loss and the triplet loss, as shown in Equation (3). 

Lsup = TLsup + Lcrossentropy (3)  

3.3. Architecture 

The backbone of our architecture consists of a ResNet-50 [25], as can 
be seen in Fig. 2a. Most works that extract or require embeddings use the 
output of the ResNet model directly as their representations, but 
following the work in SimCLR, we decided to explore the possibility of 
including several projection layers. 

Each projection layer consists of a ReLU activation followed by a 
dense layer. We restrict all the projection layers to have the same 
dimensionality, which must be lower than the 2048 given by ResNet. 
While our pretrain phase benefits from the reduced complexity after the 
projection, the final finetuning network utilizes the whole 2048-sized 
embedding to allow for better detection rates. These layers, along with 
their configuration, hyperparameters, and performance, are studied 
below. Ultimately, they are found to be beneficial for domain-specific 
tasks. 

Once the pretrain is done, at the beginning of the finetune phase all 
learned parameters are kept except for the projection layers, which are 
removed from the model, as can be observed in Fig. 2b. Classification is 
done through a linear layer (a dense layer without any activation) and a 
cross-entropy loss. As denoted in red and a dashed line in Fig. 2b, we 
eliminate the gradient coming from the linear classifier to stop it from 

modifying the embedding. Only the TL loss is able to tune the 
representations. 

It must be remarked that the TL losses used in both phases of the 
architecture are different. As pointed out, the first phase uses the 
pseudo-labels deducted from videos, while the second uses the ground 
truth labels. 

4. Discussion and results 

This section begins by laying out the datasets used during both steps 
of the method. Further, it explains the implementation details, such as 
preprocessing steps and training strategies. A subsection is devoted 
explicitly to the SSL hyperparameters, justifying and proving the choices 
made. Finally, individual results are shown for each dataset, discussing 
the results qualitatively and quantitatively. 

4.1. Datasets 

Three datasets are used throughout the process. The Generic WCE 
videos dataset is employed only for the common SSL stage, while the 
other two are each used to evaluate their own downstream tasks. 

4.1.1. Generic WCE videos 
This dataset consists of a total of 49 unlabeled WCE videos, each from 

different patients, obtained with Medtronic PillCam SB2. From those 
videos, only the small intestine and colon segments are used, selecting a 
total of 1,185,033 frames. 

Even though these images are not labeled, pseudo-labels can be 
introduced through our method, which makes this dataset suitable for a 
pretrain step using SSL. 

4.1.2. Polyp WCE 
The dataset consists of 248,136 frames sampled from 120 procedures 

performed using Medtronic PillCam SB3 and PillCam Colon 2. Notably, 
they are not the same videos as the subsection above. Of those frames, 
2,080 contain polyps, while 246,056 do not. An initial report is pro
duced by eight expert readers, endoscopy nurses with at least three 
months of experience, who tag potential polyp frames, and others that 

Fig. 2. Detailed network architecture. The parameters obtained during pretain 
for ResNet are used in the finetune phase, while the projection layers are 
removed. Here, the dashed red line denotes that gradient is stopped. 
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require detailed revision. Then, two medical doctors (one gastroenter
ologist, and one internal medicine) obtain the final version of the 
dataset. The polyp’s sizes, as reported in Table 2, were obtained through 
Rapid PillCam Software V9. The largest polyp was determined to be 16 
mm. Tumors were considered positive, while any other pathology, like 
ileal lymphoid hyperplasia, bleeding, and diverticulitis, were discarded 
from the dataset. 

Unlike the Generic WCE videos, this dataset uses SB3 and Colon 2 as 
sources. It is shown in Ref. [55] that using SB3 from SB2 is possible, 
while [3] demonstrates that having mixed sources poses no problems for 
polyp detection. 

Overall, this dataset suffers from the exact problems this publication 
aims to tackle: only 0.85% of all images contain polyps. It is a highly 
imbalanced problem with an objectively low amount of samples 
compared to traditional deep learning settings. 

4.1.3. CAD-CAP WCE 
This public dataset was compiled during the Gastrointestinal Image 

ANAlysis (GIANA) challenge [56]. It consists of three balanced classes: 
normal, inflammatory, and vascular lesion, each with approximately 
600 images for a total of 1,800 images. 

Although the classes are balanced, the total amount of samples is 
much smaller than the other supervised dataset. Thus, this set can be 
used to test if the SSL process has captured enough rich information to 
avoid overfitting. 

4.2. Implementation details 

We performed all the experiments on one NVIDIA Titan Xp GPU, 
implementing the entire architecture in TensorFlow 2.4. The backbone 
network, a ResNet-50, was initialized using the Imagenet trained model, 
while the projection layers were randomly initialized. 

4.2.1. Preprocessing 
All data, including the used in pretrain and finetune, was processed 

using standard data augmentation (DA) techniques during the training 
phase, such as color jittering, grayscale conversion, and random rota
tions and flips. 

Only RGB channels are used during all stages, keeping the images’ 
size at 256 by 256 pixels and downsizing them using bilinear interpo
lation without antialias when needed. We also introduced a mask with a 
radius of 128 pixels to eliminate any artifacts present at the borders of 
the images, making sure that no specific noise or patterns could identify 
either a dataset or a particular video. 

For our finetune step, as is customary in the field due to the low 
number of images, the use of DA is mandatory to avoid overfitting. We 
found that not introducing this same augmentation on the pretrain step 
negatively affected our final classification results. Thus, all sections 
below assume the use of DA techniques for training. During evaluation 
no prepocessing, other than resizing, is done to the data. 

4.2.2. Self-supervised learning 
The unlabeled Generic WCE videos were used as training data during 

this stage. The network was optimized using stochastic gradient descent, 
without momentum, for a total of 21,000 batches with 72 images each 
(about 2 h and 30 min on our GPU). In our best-performing configura
tion, the network processes 21,000 sequences. The learning rate was 
fixed to 0.1, and was divided by 5 every 4,300 iterations. Throughout 
the process, we used an L2 weight decay of 0.0001. We experimented 
with multiple values, reaching the same conclusion as SimCLR [39], 
whereas any low value helps regularize the embedding pre-projection. 
Finally, we used a batch all strategy for triplet loss, with unnormal
ized embeddings and a margin of 0.2. 

While the SSL network will be used as is, after training with the 
Generic WCE videos, it is required to find the best set of hyper
parameters. To such means, a procedure has been devised. For a 
particular set of hyperparameters, the network is normally trained, then 
finetuned over the polyp dataset, and finally evaluated using Area Under 
the Curve (AUC) computed from Receiver Operating Characteristics 
(ROC). Here, the polyp dataset is only used as a proxy to evaluate how 
the hyper-parameters perform and not as a proper evaluation of the 
downstream task. For instance, this procedure uses a five-fold cross- 
validation over randomly selected samples from the Polyp WCE videos, 
whereas the downstream task will be evaluated with complete videos. 

4.2.3. Supervised learning 
For each of the two supervised datasets, Polyp and CAD-CAP, the 

entire pretrained network was finetuned with a linear classifier on top of 
the learned representation. All datasets were equally trained with a 
learning rate of 0.01, decaying it by 10 every 1,500 iterations for a total 
of 4,500 steps. 

4.3. SSL hyperparameters 

We first performed experiments to choose the sequences’ length N, 
window size w, and whether multiple videos should be used in a single 
batch or not. Due to our available GPU memory, we could fit at most 72 
images in a single batch, which set an upper bound to N. We designed 
several models, see Table 1, to select the best performing combination. 
Although the results show no statistically significant difference among 
some, it can be observed that sequences of 72 images, where all images 

Table 1 
Hyperparameters tested during the self-supervised training, combining different 
Sequence Sizes (N) and Window Sizes (w). Resampling indicates that, in a single 
batch, all sequences come from the same video. Note that resampling only makes 
sense if N is smaller and multiple of the batch size.  

Sequence 
Size 

Sequences per 
Batch 

Window 
Size 

Resample AUC (%) 

9 8 3 No 93.51 ±
1.35 

9 8 3 Yes 93.23 ±
1.78 

9 8 6 No 93.49 ±
1.31 

9 8 6 Yes 93.81 ±
2.12 

18 4 3 No 93.68 ±
1.97 

18 4 6 No 93.47 ±
1.11 

18 4 6 Yes 92.91 ±
2.70 

18 4 9 No 93.42 ±
1.62 

18 4 9 Yes 93.62 ±
1.63 

72 1 6 – 94.12 ±
1.35 

72 1 9 – 94.60 ± 
1.15 

72 1 18 – 94.14 ±
2.12 

72 1 32 – 94.53 ±
0.96  

Table 2 
Morphology - Polyp’s size in the Polyp WCE dataset, as reported in Ref. [3].    

Morphology Total 

Sessile Pedunculated Undefined 

Size Small (2–6 mm) 65 4 19 88 
Medium (7–11 mm) 29 4 20 53 
Large (12+ mm) 8 3 13 24 

Total  102 11 52 165  
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come from the same video, tend to give better results. Sampling from 
one video or multiple at once, within a set sequence and window size, 
has a lower effect on the results than the length of the sequence. Due to 
hardware limitations, further combinations could not be tested. For 
instance, it is encouraged to try whether multiple sequences of 72 im
ages are beneficial for a particular downstream task. 

Most images will be relatively similar and close when using a 
continuous stream of 72 images. Therefore, triplets formed for TL will 
consist of hard negatives, namely from samples that are difficult to 
distinguish. Oppositely, mixing several short sequences in a single batch 
will produce negatives that are too easy to distinguish from their 
anchors. 

We believe this added difficulty, albeit making the training process 
slower, helps the network extract more meaningful information from the 
images. Thus, richer embeddings are produced, which can then perform 
better in later downstream tasks. For future experiments, N was fixed to 
72, obtained continuously from a single video, and w to 9 images. 

Next, we pinpointed the benefits of adding projection layers. We 
verified, as can be observed in Table 3, whether adding these additional 
parameters during the pretraining phase yielded better results during 
polyp detection. It is of particular importance to remark that any pro
jection layer added is then removed during the second phase; thus the 
same number of parameters is kept regardless of the choices made here. 

Particularly, the optimal combination for our particular task seemed 
to be at 3 layers, each of 128 parameters, which yields a substantial 
improvement compared to using none and outperforms more complex 
solutions. 

After finding the set of hyper-parameters that performs best, all 
models used for hyper-parameter evaluation are discarded. Downstream 
tasks are finetuned with the SSL network trained with the Generic WCE 
videos dataset, with N = 72, w = 9, and 3 projection layers with 128 
parameters each. 

4.4. Results 

In this subsection, first the quality of the embeddings learned during 
the self-supervised learning is evaluated. Then, we explore the results 
obtained with two downstream specific tasks. 

4.4.1. SSL embeddings 
As stated, our SSL process aims to learn rich embeddings. To such 

end, we use the temporal sequences extracted from WCE videos to make 
the network learn when two images are close or not in the video. It is 
expected that two embeddings of consecutive images are similar. 

Taking into account that euclidean distance is used to measure 
similarity in the TL function, two embeddings are considered close if 
their distance is relatively near the margin parameter, or distant 
otherwise. As can be seen from Fig. 3, the network successfully distin
guishes not only images that are completely different but also correctly 
represents images that are similar while not being consecutive. 

Similarly, some samples are close to frames of other videos while 
maintaining evident similarities, which serves to justify that the network 
has not learned features specific to a video, but, rather, it has trained for 

rich information. Our time-based contrastive learning implicitly enables 
the model to identify similarities between different videos with similar 
events, which is vital for SSL, as the finetune process needs this 
augmented information to function properly. 

To further validate the embeddings, we obtained a t-SNE represen
tation [57] of one WCE video. As can be seen in Fig. 5a, frames that are 
visually close, containing similar structures and colors, are densely 
packed in the same area of the representation. This indicates that their 
embeddings are also close, verifying that the network has learned our 
contrastive metric successfully. Likewise, the network has learned that 
images that are close in the video, are naturally similar, Fig. 5b. The 
smooth gradient of colors, following the viridis scheme, along with the 
clusters of similar colors, further indicate that similar images have 
similar embeddings. 

4.4.2. Polyp dataset 
Following previous work from Laiz et al. [3], we abandon traditional 

metrics used in polyp detection. Accuracy, for instance, is a skewed 
metric under such data imbalances, favoring the class with most ex
amples in detriment to the overall performance. Thus, as proposed in 
their publication, we adopt AUC ROC as the primary metric. Moreover, 
following the same procedure in Ref. [3], sensitivity at set specificity 
thresholds, namely 95%, 90%, and 80%, are also reported. Not only are 
they robust towards imbalance, but most importantly, they provide 
helpful information regarding the number of images a physician needs 
to check to obtain a certain level of performance in polyp detection. For 
instance, this metric gives a measure of how many polyps would be 
detected if a percentage of negatives was discarded based on the 
classifier. 

To ensure that similar images, which are commonly found in 
sequential frames in videos, are not present in both train and evaluation 
simultaneously, we split the dataset based on whole videos. Conse
quently, a patient can only be found either in train or evaluation, but 
never in both. Failing to do so would overestimate the performance, 
producing better results while probably failing to generalize with new 
data. 

The baseline for this particular task, further referred to as Imagenet, 
uses a ResNet-50 preinitialized with Imagenet and trained on this same 
dataset. Unlike our model, the Imagenet model uses no SSL nor any 
contrastive loss. A more advanced model, TLBA as trained in Laiz et al. 
[3], introduces a TL to the previous model. Finally, the state-of-the-art 
contrastive learning architecture SimCLR [39], is also compared. 

Every result, as seen in Table 4, is reported as the mean value and 
standard deviation obtained from a 5-fold cross-validation. Each eval
uation set is done with whole videos, not individual samples. Also, each 
fold is finetuned and evaluated independently, starting from exactly the 
same initial values taken from our pretrained network. 

Adding any kind of contrastive losses, as can be seen from TLBA and 
SimCLR in Table 4, already provides a significant boost over the baseline 
of 9.91% and 10.02% on the AUC score, respectively. Furthermore, our 
method based on SSL outperforms the former models by 2.24% and 
2.06%, respectively, reaching an AUC score of 95.00%. A detailed view 
of the ROC curve is provided in Fig. 4, where our model can be seen 
outperforming the rest, achieving higher true positive detections with a 
lower false positive rate. This significant improvement can be observed 
across all metrics, meaning SSL and our particular time-based contras
tive learning can extract information that remains otherwise hidden or 
ignored. Of particular interest are the improvements in the sensitivity at 
different specificity levels, as shown in Table 4. Our method can give a 
notable increase in the number of polyps correctly classified when dis
carding varying amounts of negatives. 

Another approach to validation, aside from the quantitative analysis 
above, is to inspect and visualize the results. In other words, performing 
a qualitative validation of the results by examining where the model is 
performing correctly and where it is failing. Miss-classified non-polyp 
images would add more work to the physician due to having to 

Table 3 
Study of the effect of adding several projection layers with a varying number of 
parameters. Each projection layer consists of a ReLU activation followed by a 
dense layer. All dense layers have the same amount of parameters 
(dimensionality).  

Projection Layers Projection Dimensionality AUC (%) 

0 – 92.97 ± 1.19 
1 128 93.02 ± 1.39 
2 128 94.09 ± 1.28 
3 128 94.60 ± 1.15 
3 256 93.56 ± 1.53 
6 128 93.85 ± 1.80  
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unnecessarily check false positives. However, not showing a polyp frame 
because the system has falsely classified it as negative can have a 
devastating effect, with implications more severe than its counterpart 
case. Fig. 6 depicts two examples of the mentioned cases. It can be seen 
that the network fails in especially tough cases, where the polyp would 
be hard to be seen even for a physician. The polyps have been circled for 
the reader to identify where they are. False positives occur in zones with 
a more pinkish tone, characteristic of polyps, and always in rugged and 

wrinkled surfaces, which could explain why the network is mistaking 
them for polyps. 

4.4.3. CAD-CAP dataset 
Following the procedure established in Ref. [54], we have split the 

data into 4 sets and performed a 4-fold cross-validation. As per the 
original challenge [56], we report in Table 5 the per-class Matthews 
correlation coefficient (MCC) and F1 scores, and the overall accuracy as 
p0. 

A naive implementation, using a ResNet-50 and without SSL, fails to 
correctly classify a significant portion of the data, achieving only a 
69.98% accuracy. However, adding SSL to this same model and using 
the method we propose in this publication immediately boosts every 
metric by more than 20%. Our implementation reaches a total of 92.77% 
accuracy without any change to the architecture. 

Further, we compare our results with those reported by Guo et al. 
[54], the current state-of-the-art model for CAD-CAP. They handcrafted 
a network for this dataset and provide six baselines and one additional 
model that uses semi-supervision to improve the results. With respect to 
the baselines, our model obtains higher scores across most metrics, as 
can be observed in Table 5. We also attain comparable results to their 
best implementation, which has a semi-supervised phase training over 
1807 unlabeled images provided by CAD-CAP that we do not use. 

These results, from a clinical point of view, provide a positive step 
towards the simultaneous detection of several pathologies. For instance, 
results show that standard models that do not rely on SSL tend to 
accurately classify normal images, but miss a notable amount of the 
positive classes. Their SSL counterparts, however, keep the same 
approximate level of detection for normal samples, while they signifi
cantly boost the ability to detect inflammatory and vascular lesions. This 
encouraging accuracy would enable bringing physicians and experts 
into the loop, further developing the model and producing a CADx 
system capable of aiding in diagnosis. 

5. Conclusion 

In this work, we propose an SSL method that leverages the infor
mation in the temporal axis of WCE videos to obtain rich embeddings. 

Fig. 3. Given samples from the test set, shown in the first column, each row represents other samples in the set sampled by distance in the embedding space. Each 
image is titled as video/frame: distance, and framed in red if they come from a different video, orange if it is the same video, and green if, additionally to being in the 
same video, they are within w distance. 

Fig. 4. Receiver Operating Characteristics (ROC) curve for the four models 
tested for the polyp dataset. Each cross-validation split is shown in lighter 
versions of its corresponding model color, the mean ROC value is outlined in a 
darker color, and the standard deviation is provided as the background shade. 
True Positive Rate indicates the percentage of polyps correctly identified, while 
False Positive Rate is the percentage of non-polyps misclassified as polyps. 
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Our method introduces a pseudo-labeling process that enables time- 
based contrastive learning, forcing frames close in a video to be repre
sented by similar embeddings. 

We demonstrate that using this process yields better results in sub
sequent models specializing in domain-specific tasks. Using the SSL 
model to classify polyps shows an increase in successful polyp detection, 
achieving a 95.00% AUC, a significant improvement over existing 
methods. Similarly, we test the method to detect several events in the 
GIANA dataset, obtaining comparable results to state-of-the-art models 
while offering reduced complexity and a more general approach. 

It is a limitation of our SSL method that the data used during the 

pretrain stage must come in a video format. This makes it directly 
applicable for WCE datasets, but would require adaptation for other 
medical fields. The pretaining phase is also limited by the hardware 
capacity, especially so since results show that longer sequences produce 
richer embeddings. If deployed as a CADx system, our work would only 
require individual samples and appropriate hardware to run. 

Thus, we claim that using SSL when leveraging temporal information 
is beneficial for WCE models. Most importantly, the method imposes no 
requirements for the dataset used during the supervised phase, effec
tively tackling the classical problems commonly encountered in medical 
imaging: low amounts of data—specially labeled—and severe class 
imbalances. 

Overall, we strongly believe the method is a good step towards better 
models that empower CADx models in medical interventions. For 
instance, a higher rate of polyp detection would decrease the time spent 
by physicians revising WCE videos, allowing for more accurate diagnosis 

Fig. 5. t-SNE of the embeddings post-projections obtained from one WCE video 
after the pretrain phase. The representation shows (a) that visually alike images 
have close embeddings, and (b) that order is preserved. 

Table 4 
Performance comparison of several methods with the same parameter count. 
Imagenet refers to a ResNet-50 pretrained on the imagenet dataset and then 
finetuned with a cross-entropy loss over our dataset. SimCLR has been trained 
with NT-Xent as per Chen et al. [39]. TLBA is equivalent to Imagenet but trained 
with an additional triplet loss. Ours is the self-supervised network.   

AUC Sensitivity % 

Model (%) Spec. at 95% Spec. at 90% Spec. at 80% 

Imagenet 82.85 ± 5.72 37.75 ± 9.12 51.49 ±
11.09 

66.71 ±
12.15 

SimCLR [39] 92.76 ± 1.62 68.13 ± 6.37 76.92 ± 5.40 87.91 ± 3.94 
TLBA [3] 92.94 ± 1.87 76.68 ± 4.93 82.86 ± 4.78 88.53 ± 3.76 
Ours 95.00 ± 2.09 80.16 ± 6.97 86.31 ± 6.20 92.09 4.63  

Fig. 6. Random samples from the test set. Row a) shows two false positives, 
images inaccurately classified as polyps. Row b) depicts two false negatives. 
The polyps have been circled to help with their identification. 

Table 5 
Per class and overall results of various methods in GIANA. ResNet is the same 
architecture as Ours but without the SSL step. Baseline 1 and 6 refer to the 
baselines reported by Guo et al. [54], while the model with the same name is 
their semi-supervised performing implementation. Here p0 indicates the mean 
accuracy across all classes.  

Method Class F1-Score (%) MCC (%) p0 (%) 

ResNet Normal 73.28 ± 3.57 60.58 ± 5.44 69.98 ± 1.35 
Inflammatory 65.19 ± 2.95 55.86 ± 1.77  
Vascular 70.79 ± 4.60 65.35 ± 3.80  

Baseline 1 [54] Normal 94.92 ± 0.71 92.37 ± 1.07 84.99 ± 0.80 
Inflammatory 79.24 ± 1.55 68.72 ± 2.15  
Vascular 80.75 ± 1.65 71.49 ± 2.57  

Baseline 6 [54] Normal 96.41 ± 0.84 94.61 ± 1.26 91.92 ± 1.71 
Inflammatory 88.98 ± 2.13 83.44 ± 3.24  
Vascular 90.27 ± 2.78 85.75 ± 3.73  

Ours Normal 95.00 ± 1.13 92.57 ± 1.66 92.77 ± 1.20 
Inflammatory 89.87 ± 1.65 84.99 ± 2.46  
Vascular 90.26 ± 1.76 85.78 ± 2.37  

Guo et al. [54] Normal 97.41 ± 0.45 96.10 ± 0.69 93.17 ± 1.14 
Inflammatory 90.30 ± 1.56 85.43 ± 2.24  
Vascular 91.69 ± 1.21 87.78 ± 2.06   
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in shorter amounts of time. 
Future work could focus on exploring other SSL architectures that 

might boost the downstream tasks’ performance, while exploring other 
hyper-parameters settings and sampling mechanisms. Moreover, 
expanding the method to other WCE domains and other medical fields 
would also be of high interest. 
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