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Abstract 24 

Global warming is an environmental phenomenon to which species must adapt to 25 

survive. The chromosomal inversion polymorphism of Drosophila subobscura 26 

constitutes a genomic architecture that provides this species with an adaptive capacity. 27 

Until now, the impact of global warming on this polymorphism has been studied in 28 

populations located either on continental mainland or on islands not far from a 29 

continent. In this context, gene flow could be a relevant mechanism allowing the 30 

movement of thermally adapted inversions between populations. We sampled and 31 

studied chromosomal polymorphism on Madeira, a small isolated in the Atlantic Ocean. 32 

We compared our findings with those reported in the same location approximately four 33 

and five decades ago. Moreover, we studied whether global warming has occurred on 34 

this island by analyzing mean, maximum and minimum temperatures over a fifty-five- 35 

year period. All atmospheric parameters have increased significantly, consistent with 36 

climate change expectations. Frequencies and CTI (Chromosomal Thermal Index) 37 

values of thermal adapted inversions remained quite stable over years. Furthermore, J, 38 

U and O chromosomes are almost fixed for ‘warm’ adapted inversions. Thus, if there is 39 

little genetic variability remaining and temperatures continue increasing, island 40 

populations of D. subobscura might be on the threshold of endangerment. However, 41 

apart from selection, genetic drift and inbreeding, other processes, such as phenotypic 42 

plasticity or thermoregulatory behavior could be involved in the survival of the species’ 43 

populations. Finally, D. subobscura is a generalist species that lives in humanized 44 

environments, and this fact could favor its persistence on the island of Madeira. 45 

Key words: chromosomal inversions; climate change; temperature; selection; 46 

thermoregulatory behavior   47 
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INTRODUCTION 48 

Obviously, global warming has a profound impact on living organisms, but it can 49 

provide an excellent opportunity to study the genetic components of adaptation 50 

(Hoffmann & Sgrò 2011; Franks & Hoffmann 2012). For instance, in a given species a 51 

possible experimental approach is to collect samples either over time or in distinct 52 

localities of the distribution area with different climatic conditions and to study 53 

differences in genetic composition (Solé et al. 2002; Hoffmann et al. 2004; 54 

Heerwaarden & Hoffmann 2007).  However, a large number of species could adapt to 55 

global warming by migrating to other places. In this sense, it could be interesting to 56 

study the effects of climatic changes on species located in small oceanic islands. 57 

Compared with continental populations, they usually have reduced gene flow, whilst 58 

genetic drift and inbreeding are important evolutionary factors (for recent examples see 59 

Hoeck et al. 2010; Rogell et al. 2010; Mattila et al. 2012; Furlan et al. 2012; Wang et 60 

al. 2014; Fountain et al. 2016; Funk et al. 2016).  61 

 Chromosomal inversion polymorphism is considered one of the most useful 62 

genetic markers in studies of adaptation to global warming. Inversions were discovered 63 

by Sturtevant (1921) and their adaptive value was widely recognized by Dobzhansky 64 

(see Lewontin et al. 1981). These kind of chromosomal mutations are considered 65 

cornerstones in the adaptation or speciation of a large number of organisms (see, for 66 

instance, Feuk et al. 2005; Kirkpatrick & Barton 2006; Hoffmann & Rieseberg 2008; 67 

McAllister et al. 2008; Kirkpatrick 2010; Nie et al. 2012; Ayala et al. 2014; Fuller et al. 68 

2018). In particular, the role of inversions with regard to thermal adaptation was studied 69 

in depth using different species of the Drosophila genus (for example, Dahlgaard et al. 70 

2001;  Hoffmann et al. 2004; Anderson et al. 2003, 2005; Levitan 2003; Umina et al. 71 
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2005; Levitan & Etges 2005; Rane et al. 2015; Kapun et al. 2016). In this context, D. 72 

subobscura can be considered a global warming model species. It presents a rich 73 

chromosomal polymorphism, that is, a large number of different inversions and 74 

combinations of inversions (overlapped or not) called arrangements (Krimbas 1992, 75 

1993, Balanyà et al. 2009).  This polymorphism is adaptive to many environmental 76 

conditions and many inversions (and arrangements) have changed in frequency 77 

according to global warming expectations (Orengo & Prevosti 1996; Rodríguez-Trelles 78 

& Rodríguez 1998; Solé et al. 2002; Balanyà et al. 2004, 2006, 2009; Rezende et al. 79 

2010; Zivanovic & Mestres 2011; Zivanovic et al. 2012, 2015; Orengo et al. 2016). All 80 

these studies have been carried out either in populations located on the continent or on 81 

islands close to the mainland. That is why we considered it would be interesting to 82 

study the impact of global warming on an oceanic island population.  83 

The chosen island was Madeira, located in the Atlantic Ocean at 978 km south 84 

of Portugal, 700 km west of Africa and 450 km north of the Canary Is. Its total area is 85 

796 km2. It enjoys a mild climate with temperature variations through the year and 86 

differences between the regions facing north and those facing south. These conditions 87 

favor agricultural activity based on Mediterranean and tropical species. The island is 88 

considered a hotspot of biodiversity with a large number of endemic species (Borges et 89 

al. 2008). D. subobscura was reported for the first time on Madeira by Prevosti (1972), 90 

although previous studies of Drosophilid fauna could have mistakenly classified this 91 

species as D. obscura (Monclús 1984; Bächli & Báez 2002). Furthermore, within the 92 

laurisilva environment, D. subobscura coexists with its closely related species of the 93 

obscura group, D. madeirensis, which is endemic to the island (Monclús 1984). D. 94 

subobscura from Madeira has been used to study distinct evolutionary problems by 95 

means of diverse genetic markers (Pinto et al. 1997; Khadem et al. 1998, 2001; Brehm 96 
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et al. 2004; Herrig et al. 2014), but only two previous analyses of inversion 97 

chromosomal polymorphism have been carried out (Prevosti 1972; Larruga et al. 1983).  98 

 Our main aim was to compare the current composition and frequencies of D. 99 

subobscura inversion chromosomal polymorphism on Madeira with that reported 100 

earlier. Also, we wanted to ascertain whether predicted climatic effects of global 101 

warming could be observed on the island analyzing rainfall and minimum, maximum 102 

and mean temperatures, over years.  Finally, if variation both in inversions and climatic 103 

change were observed, the final objective was to assess a possible relation between the 104 

adaptive inversions and global warming.  105 

 106 

MATERIALS AND METHODS 107 

Fly samples 108 

D. subobscura individuals were collected at Camacha (32°40′N 16°50′W), Curral das 109 

Freiras (32°43′N 16°58′W) and Prazeres (32°45′N 17°12′W), during November and 110 

December 2016 (Fig. 1). Flies were collected using open banana baits, sampled by 111 

netting in the morning and late afternoon. The captured flies were put in bottles together 112 

with some local vegetation and kept in darkness. The samples were transferred to the 113 

laboratory, at the end of the day, where they were separated and classified. Males were 114 

put together (20 to 30 individuals) in large plastic vials with Caroline Instant 115 

Drosophila Medium (17-3200), whereas females were placed in individual vials and 116 

allowed to lay eggs. All vials were sent to Barcelona for the chromosomal analysis. 117 

Individual wild males (or sons of isofemale lines) were crossed with two virgin females 118 

of the chcu homokaryotypic strain that carries the recessive mutations ch (cherry eyes) 119 

and cu (curled wings), both located in the O chromosome. With regard to chromosomal 120 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Camacha&params=32.679_N_-16.845_E_type:adm1st_region:PT_dim:50000
https://tools.wmflabs.org/geohack/geohack.php?pagename=Curral_das_Freiras&params=32_43_12_N_16_58_11_W_region:PT-30_type:city(2001)
https://tools.wmflabs.org/geohack/geohack.php?pagename=Prazeres,_Madeira&params=32_45_4_N_17_12_16_W_region:PT-30_type:city(704)
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inversions, the strain is homokaryotypic Ast, Jst, Ust, Est and O3+4. Third instar F1 larvae 121 

were dissected to obtain the polytene chromosomes of the salivary glands, which were 122 

stained and squashed in aceto-orcein solution. For the study of inversions we have 123 

followed the classification and nomenclature of Kunze-Mühl & Müller (1958) and 124 

Krimbas (1993). The inversion chromosomal polymorphisms from our Madeira 125 

collections were compared with those obtained previously in Terreiro da Luta (32°41′N 126 

16°53′W) and Curral das Freiras (32°43′N 16°58′W) in 1970 by Prevosti (1972) and in 127 

Poiso (32°43′N 16°58′W) and Ribeiro (32°46′N 16°51′W) in 1978 by Larruga et al. 128 

(1983).  129 

Statistical analyses and meteorological data 130 

All computations were carried out using R language (R Development Core Team, 131 

2014). To compare the inversion chromosomal polymorphism between different 132 

locations and/or years, a Fisher exact test was used and the corresponding P-values were 133 

obtained using the bootstrap procedure (100,000 runs; statistically significant P < 0.05). 134 

All analyses were carried out using the fisher.test function of the package stats. As 135 

multiple testing was computed, results were corrected by means of the false discovery 136 

rate (FDR) method (Benjamini & Hochberg 1995) using the function p.adjust (package 137 

stats).  138 

To estimate the probability of appearance or disappearance of several inversions 139 

in our Madeira collection (2016), the following permutation procedure was used. Using 140 

Prevosti’s collection as a base, we generated B=50,000 samples with replacement with 141 

our Madeira sample size and we estimated the probability that infrequent inversions 142 

were included in the 2016 collection. Also, we fixed the 2016 collection as a base and 143 

Prevosti’s plus Larruga’s sample size, and then we generated B=50,000 samples with 144 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Terreiro_da_Luta&params=32_41_03.3_N_16_53_55.8_W_type:landmark
https://tools.wmflabs.org/geohack/geohack.php?pagename=Terreiro_da_Luta&params=32_41_03.3_N_16_53_55.8_W_type:landmark
https://tools.wmflabs.org/geohack/geohack.php?pagename=Curral_das_Freiras&params=32_43_12_N_16_58_11_W_region:PT-30_type:city(2001)
https://tools.wmflabs.org/geohack/geohack.php?pagename=Curral_das_Freiras&params=32_43_12_N_16_58_11_W_region:PT-30_type:city(2001)
https://tools.wmflabs.org/geohack/geohack.php?pagename=S%C3%A3o_Roque_do_Faial&params=32.770_N_-16.857_E_type:adm1st_region:PT_dim:50000
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replacement to estimate the probability that the new inversions were included in the 145 

previous samples.  146 

Finally, to place the Madeira polymorphism with regard to other Palearctic and 147 

American D. subobscura populations, comparisons between O chromosome inversion 148 

polymorphisms (the most studied chromosome in this species) were carried out (Table 149 

S1). The Bhattacharyya distance (Bhattacharyya 1946) was used and a Principal 150 

Coordinate Analysis was carried out with this set of populations (Balanyà et al. 2006; 151 

Mestres et al. 2009). The computations were carried out using the mds function from 152 

vegan package and graphically displayed with the eqscplot function of MASS package. 153 

Finally, GEVA-Ward was chosen as cluster method, because it is considered excellent 154 

for chromosomal inversion data (Irigoien et al. 2010; Zivanovic et al. 2016). The cluster 155 

was obtained using the hclust function of stats package of R. To measure how faithfully 156 

the cluster preserved the pairwise distances between the original data, the Pearson 157 

cophenetic correlation was computed (cophenetic function of stats package).  158 

Values of minimum (Tmin.), maximum (Tmax.) and mean (Tmean) 159 

temperatures and rainfall were obtained from Funchal Meteorological Station. Although 160 

this is not one of our trapping sites, it allows for the tracking of meteorological variables 161 

on the island. To analyze the possible effect of global warming in Madeira, we used 162 

data from each October (the month before trapping the flies) between 1961 and 2016. 163 

For each of the three temperatures (Tmin., Tmax and Tmean), a temporal series was 164 

computed using Statgraphics software (Statgraphics Technologies, Inc. USA). As 165 

rainfall was appreciably erratic, a temporal series was not computed. Finally, the CTI 166 

(Chromosomal Thermal Index, Arenas et al. 2018) was computed to measure the 167 

thermal adaptation of the whole karyotype. The index varies from 0 to 1, where 1 means 168 

that only ‘warm’ adapted inversions are present. Chromosomes were classified as 169 
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‘warm’ or ‘cold’ using the well-established criterion of Menozzi & Krimbas (1992) and 170 

Rego et al. (2010). Thus, in Madeira the following inversions (or arrangements) were 171 

considered ‘warm’: A2, J1, U1+2, U1+8+2, E1+2+9, E1+2+9+12 and O3+4, whereas Ast, Jst, Ust, 172 

Est and Ost were classified as ‘cold’. The remaining inversions were considered 173 

unrelated to thermal adaptation. 174 

 175 

RESULTS  176 

Inversion chromosomal polymorphism 177 

It is interesting to compare the chromosomal polymorphism from this study (Table 1) 178 

with data from previous studies (Prevosti 1972; Larruga et al. 1983). From a qualitative 179 

point of view, the chromosomal composition is rather similar. However, the inversions 180 

A2+6, E1+2+9+3 and Ost, previously detected by Prevosti (1972), are absent in both Larruga 181 

et al. (1983) and the present research. The probabilities that these inversions were 182 

included in our 2016 sample were estimated as 0.6501, 0.8558 and 0.9997, respectively. 183 

Therefore, the most likely scenario is that they disappeared from the Madeira 184 

populations. Also, in the present study, inversions Ust and U1 were detected for the first 185 

time and a new inversion, never before reported, was observed in the species 186 

(E1+2+9+new). The probabilities that these inversions were present in the previous Madeira 187 

collections were estimated as 0.9536, 0.9538 and 0.9576, respectively. Thus our 188 

hypothesis is that they appeared recently. The detection, for the first time, of common 189 

inversions in the species distribution area (albeit with low frequencies) seems to 190 

indicate a certain level of gene flow from the continent. The observation of new 191 

inversions in D. subobscura is a recurrent phenomenon previously reported (Orengo & 192 

Prevosti 1996; Zivanovic & Sperlich 2000; Solé et al. 2002; Balanyà et al. 2003, 2004), 193 
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but their fate is usually extinction (Sperlich & Pfriem 1986; Powell 1997). Finally, it is 194 

worth pointing out that, although the O chromosome is highly polymorphic for 195 

inversions (Krimbas 1992, 1993), our Madeira collections are almost monomorphic for 196 

O3+4 (Table 1).     197 

 We compared the chromosomal polymorphism composition in Curral das Freiras 198 

between our sample and Prevosti’s (1972) and no significant differences were obtained 199 

for any chromosome (A, P = 0.725; J, P = 1; U, P = 0.358; E, P = 0.801 and O, P = 1).  200 

In our collections, as no significant differences were observed between Camacha, Curral 201 

das Freiras and Prazeres, it is possible to consider all the D. subobscura samples from 202 

Madeira as a unique population (Table S2). We observed significant differences in 203 

chromosomal compositions between the three studies: Prevosti (1972), Larruga et al. 204 

(1983) and the present research, when all chromosomes were considered together (Table 205 

2). Moreover, we detected significant differences in E and O chromosomes between the 206 

two former samples. This could be a product of an increase in frequency of Est,  E1+2 and 207 

E1+2+9 and a decrease of E1+2+9+12 (E1+2+9+3 disappeared in the second study). 208 

Furthermore, in the second study, Ost was absent and O3+4 increased. The loss of Ost and 209 

the increase of E1+2+9 are in accordance with global warming expectations although this 210 

loss could equally be due to genetic drift. The increase of Est (considered a ‘cold’ 211 

inversion) is most probably attributable to genetic drift. In the comparison between the 212 

second study and the present research only the A chromosome was significant, due to an 213 

increase of Ast and a decrease of A2. This result is at odds with the global warming 214 

hypothesis, because Ast and A2 are considered ‘cold’ and ‘warm’, respectively. Finally, 215 

when comparing both extreme samples (Prevosti (1972) and the present study), A and O 216 

chromosomes showed significant variations: Ast increased and A2 decreased, we saw an 217 
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increase in O3+4 whereas Ost was not detected in the present analysis. Therefore, these 218 

results could be interpreted in the same way as those previously explained. 219 

The multivariate analysis using the O chromosome frequencies in natural 220 

populations showed that collections from the island of Madeira were clearly 221 

differentiated from other populations (Fig. 2). In the principal coordinate analysis, first, 222 

second and third axes explained the 50.77%, 19.72% and 15.89%, respectively (Fig. 2 223 

(a)). Four groups are manifestly differentiated: from left to right it is possible to observe 224 

the collections from Madeira, the group of Balkan populations, the remaining European 225 

collections and the American populations. European populations are distributed along 226 

the second axis and follow a clinal distribution, with Mediterranean samples at the 227 

bottom, central and north European at the top. American populations are separated, due 228 

to the strong founder event, and are sorted along latitude. However, although they 229 

belong to different hemispheres, North and South American populations are mixed in 230 

the graphic, following a climatic pattern. According to weather, Atlantic climate 231 

populations are at the top of the group, regardless of their American origin and the same 232 

happens with Mediterranean climate populations, which appear at the bottom of the 233 

group. Equivalent results were obtained from the cluster analysis (Fig. 2 (b)). The 234 

cophenetic correlation coefficient was 0.813, indicating that the tree properly describes 235 

the genetic distance between populations. According to the O chromosome inversion 236 

polymorphism, the first partition separated off the Madeira collection. The second 237 

divergence was between American and European populations. Inside the first group, 238 

samples with a Mediterranean climate were clustered together (including samples from 239 

North and South America), whereas the second group contained those belonging to an 240 

Atlantic climate (also with North and South American populations). Analyzing the 241 

European cluster, two groups are clearly differentiated: one containing the populations 242 
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with a Mediterranean climate, the other Atlantic. In the Mediterranean group it is 243 

possible to detect the populations from Majorca (Calvià), Catalonia and other Iberian 244 

Peninsula samples. In the other large European group, two clusters can be observed: one 245 

with Balkan populations and the other with the remaining European collections. In this 246 

last group, the first cluster contained the French populations and one Catalan sample 247 

and the second, the central and north European samples are grouped.         248 

 249 

Climatic change and chromosomal inversions 250 

Temperatures showed a significant increase, according with global warming 251 

expectations. For Tmin, Tmax and Tmean, the P values were lower than 0.0001 in all 252 

cases. Graphical displays and lineal trends for these temperatures are presented in Fig. 253 

S1. The rainfall pattern was irregular, in accordance with global warming expectations. 254 

These results are in agreement with those reported in Santos et al. (2004), Cropper & 255 

Hanna (2014) and Tomé et al. (2014). 256 

We analyzed the chromosomal polymorphism for all available Madeiran 257 

collections but considered only those inversions classified as ‘warm’ or ‘cold’, using the 258 

CTI index (Table 3). These values ranged between 0.714 and 0.781 and can be 259 

considered high, being surpassed only by the sample from Etna on Sicily (0.958), 260 

analyzed by Prevosti et al. (1984). No significant differences were detected for the 261 

comparisons between the CTI values of our whole Madeira sample and the two earlier 262 

samples (Table S3), which could indicate that thermal adapted chromosomal inversions 263 

have not changed in frequency over time.   264 

  265 

DISCUSSION 266 
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There is widespread concern about the different phenomena that can damage our planet, 267 

and one of the most urgent is climate change (Ripple et al. 2017). The way in which 268 

living organisms are able to adapt to survive this environmental change is an essential 269 

issue in evolutionary biology. Studies of Drosophila genus have proved it to be an 270 

excellent biological model (Levitan 2003; Levitan & Etges 2005; Umina et al. 2005; 271 

Overgaard et al. 2014; Tobler et al. 2015). The D. subobscura species has been 272 

especially interesting due to its rich chromosomal inversion polymorphism and the 273 

accumulation of a large number of studies carried out in different biogeographic areas, 274 

over time (Orengo & Prevosti 1996; Rodríguez-Trelles & Rodríguez 1998; Solé et al. 275 

2002; Balanyà et al. 2004, 2006, 2009; Rezende et al. 2010; Zivanovic & Mestres 2011; 276 

Zivanovic et al. 2012, 2015; Orengo et al. 2016). However, it was scientifically 277 

valuable to study the inversion chromosomal polymorphism of this species in an 278 

isolated place with low gene flow, such as the island of Madeira. As this is a small 279 

island and its D. subobscura populations have suffered many bottlenecks (due, for 280 

instance, to forest fires or floods), their effective population sizes (Ne) are expected to 281 

be small. In these conditions, genetic drift and inbreeding could be evolutionary 282 

mechanisms with relatively dramatic effects. In natural D. subobscura populations, the 283 

number of generations per year has been estimated at 4-6 (Begon 1976; Mestres et al. 284 

2001). Therefore, selection and/or genetic drift plus inbreeding could have been active 285 

through 32-48 and 152-228 generations (representing the time lapses between first and 286 

second studies and second and third, respectively).   287 

 From our study, it seems that all populations, at least in the southern half of the 288 

island were fairly uniform. For this reason, we analyzed the inversion polymorphism, 289 

considering Madeira as a single population. Although this island is distant from the 290 

continent, the tourist industry means large amounts of food are imported, mainly from 291 
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continental Portugal. Fruits and other vegetables could act as carriers for D. subobscura 292 

individuals, most likely in the larvae or pupa stages. However, the composition of the 293 

chromosomal inversions was stable over time and, in the present study, only two 294 

Palearctic inversions were detected for the first time on Madeira. There are two 295 

competing hypotheses for their presence: either they were already present on the island 296 

but remained undetected or they are newly arrived from the continent. The first is 297 

improbable due to the large sample sizes analyzed by Prevosti (1972) and Larruga et al. 298 

(1983). We think that continental inversions are able to reach Madeira via unintentional 299 

human transport, but would soon disappear due to genetic drift or selection, because 300 

they are non-adaptive to the particular island environment. Although significant 301 

differences were observed for several particular chromosome comparison between the 302 

three collections from Madeira (Prevosti 1972; Larruga et al. 1983; present study), the 303 

chromosomal composition over time is fairly constant in the type of inversions and their 304 

relative abundance, even though eight (32-48 generations) and thirty-eight years (152-305 

228 generations) have elapsed between these three collections. Different reasons could 306 

explain some of the particular differences detected.  For instance, Larruga et al. (1983) 307 

like us, collected the samples in the autumn, but Prevosti (1972) trapped flies in the 308 

summer. Furthermore, we sampled D. subobscura individuals just after extensive forest 309 

fires in August and floods in October had ravaged the island, and these events could 310 

have produced population bottlenecks altering the inversion frequencies.  311 

 If we focus only on the chromosomal inversions considered thermally adapted 312 

(Krimbas & Menozzi 1992; Rego et al. 2010; Arenas et al. 2018), although small 313 

fluctuations have been observed, in general their composition has not changed over 314 

time. The consistency of the CTI values is very similar in the three collections available 315 

and no significant differences were detected. The similarity of the CTI values over time 316 
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contrasted greatly with the dramatic global warming observed when analyzing Tmin, 317 

Tmax and Tmean over a fifty-five-year period (an increase of around 2ºC). Also, the 318 

erratic pattern of rainfall during these years was in accordance with the expectations of 319 

climate change. The main evolutionary question is: why has thermally adapted 320 

chromosomal polymorphism on Madeira not responded to global warming? It was 321 

demonstrated that the chromosomal polymorphism of the island is poor and particular 322 

when compared to closer mainland populations: a product of a historic founder event 323 

and adaptations to the special island environment. This situation was demonstrated 324 

beyond doubt when comparing the O chromosome inversion composition on Madeira 325 

with other D. subobscura populations from the whole distribution area, using 326 

multivariate analyses (PCA and cluster). Moreover, D. subobscura on the island seems 327 

to be close to the thermal adaptation limit, because ‘warm’ inversions appear in 328 

dramatically high frequencies for three of the chromosomes (0.903, 0.994 and 0.987, for 329 

J, U and O, respectively). However, ‘cold’ inversions are present in non-negligible 330 

frequencies for the A (0.228) and E (0.257) chromosomes. Two considerations must be 331 

taken into account: the inversions considered ‘warm’ or ‘cold’ probably do not imply a 332 

direct adaptive effect of temperature (Santos et al. 2005) and other karyotypic regions 333 

not covered by inversions could contain thermal adaptation genes (Arenas et al. 2018). 334 

For instance, the Ast frequency (considered as a ‘cold’ inversion) that we detected on 335 

Madeira (0.228, collected in autumn/winter) was significantly higher than that found by 336 

Prevosti (1972) (0.110, but trapped in summer) and Larruga et al. (1983) (0.115, also 337 

collected in autumn), which could indicate that this inversion might response to 338 

something other than temperature, because it has changed over the years in the opposite 339 

direction to that expected. However, the different trapping seasons and/or genetic drift 340 

could explain these differences. On the other hand, although thermal adapted genes in 341 
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D. subobscura could be distributed throughout the whole karyotype, a larger than 342 

expected number of these genes were located inside inverted regions (Laayouni et al. 343 

2007).  344 

The particular chromosomal polymorphism composition seems to be properly 345 

adapted to the environmental and biotic conditions of the island, and gene flow appears 346 

irrelevant. In this situation, other possibilities must be considered in front of the increase 347 

of temperature. In continental populations, in addition to selection of the available 348 

genetic variability, other explanations are possible. Thus, D. subobscura individuals can 349 

migrate to areas of their thermal preference, because it is a species with a high capacity 350 

for dispersion (Greuter 1963; Loukas & Krimbas 1979; Serra et al. 1987) and reacts 351 

according to its thermal preference (Rego et al. 2010; Dolgova et al. 2010). 352 

Consequently, variations in the continental latitudinal clines according to global 353 

warming expectations could also be attributed to a greater or lesser extent to migration 354 

(Santos 2017). As this explanation is not applicable to an isolated island, other 355 

hypotheses have to be explored, such as, for example, thermal plasticity (Kelly 2019; 356 

Bonamour et al. 2019). In this case, the direct influence of environmental factors 357 

(including temperature) on the development of individual phenotypes is considered a 358 

key element in the phenotypic change of populations and their persistence (Chevin et al. 359 

2010; Fragata et al. 2016). However, phenotypic plasticity could involve many fitness 360 

costs for the individuals, regardless of the phenotype expressed (Dewitt et al. 1998).  361 

Furthermore, there is a limit to the effectiveness of plastic response (Mitchell et al. 362 

2011). Another possibility is that selection on thermal related traits is compensated by 363 

fly behavior (Huey & Pascual 2009). In this sense, the Bogert effect is defined as the 364 

ectoderm thermoregulatory behavior which compensates for environmental temperature 365 

variation (Huey et al. 2003; Castañeda et al. 2013). It was reported that behavior is 366 
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important in the Drosophila genus to maintain temperature within a physiological 367 

permissive range (Dillon et al. 2009). For instance, these thermoregulatory behaviors 368 

could manifest as variations in seasonal and daily activity patterns or displacements to 369 

beneficial microclimates (Stevenson 1985).  370 

 Global warming is altering both, the terrestrial and marine ecosystems of 371 

Madeira (Cruz et al. 2009; Clemente et al. 2014). Moreover, some extinctions and 372 

invasions have been reported (see, for instance, Gardiner 2003; Wirtz 2005; Ribeiro et 373 

al. 2009). These changes could even be harmful for the human population on the island, 374 

producing economic losses and health problems (Carvalho et al. 2013; Liu-Helmersson 375 

et al. 2016). Given the present situation, we are unable to predict the future of D. 376 

subobscura populations on Madeira. The particular ecosystem alterations inflicted by 377 

global warming may not be a serious problem for the species, because it is a generalist 378 

species closely associated with human or humanized environments (Krimbas 1992, 379 

1993). However, the direct impact of temperature on D. subobscura could pose a 380 

difficult problem to overcome, due to its limited genetic variability, plasticity and 381 

mobility in such a small and isolated island as Madeira. For all these reasons, D. 382 

subobscura could be an excellent model species for studying the effects global warming 383 

on the evolution of organisms inhabiting isolated oceanic islands.        384 

 385 
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Figure 1 Map of Madeira showing locations of the populations studied (Prazeres, 689 

Curral das Freiras and Camacha). The capital of the island, Funchal, is also shown, as a 690 

reference. 691 

 692 

Figure 2 Multivariate analysis of the O chromosome inversion polymorphism in natural 693 

populations of D. subobscura. (a) Principal Coordinate Analysis. Four groups of 694 

populations were clearly determined, from left to right: Madeira samples (white 695 

diamond, ◊), Balkan populations (dark square, ■), remaining European samples (white 696 

circle, ○) and American populations (dark circle, ●). (b) GEVA-Ward cluster study. The 697 

first partition separated Madeira collections from other D. subobscura collections. In 698 

both analyses, the populations analyzed were: 1. Montpellier (France), 2. Lagrasse 699 
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Peninsula), 8. Groningen (The Netherlands), 9. Louvaine-la-Neuve (Belgium), 10. 702 

Villars (France), 11. Tübingen (Germany), 12. Vienna (Austria), 13. Leuk 703 
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Valdivia (Chile), 18. Puerto Montt (Chile), 19. Coyhaique (Chile), 20. Gilroy (USA), 705 
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