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Hydrodynamic and geometric effects in the
sedimentation of model run-and-
tumble microswimmers

Andrea Scagliarini *ab and Ignacio Pagonabarraga cde

The sedimentation process in an active suspension is the result of the competition between gravity and

the autonomous motion of particles. We carry out simulations of run-and-tumble squirmers that move

in a fluid medium, focusing on the dependence of the non-equilibrium steady state on the swimming

properties. We find that for large enough activity, the density profiles are no longer simple exponentials;

we recover the numerical results through the introduction of a local effective temperature, suggesting

that the breakdown of the Perrin-like exponential form is a collective effect due to fluid-mediated

dynamic correlations among particles. We show that analogous concepts can also fit the case of active

non-motile particles, for which we report the first study of this kind. Moreover, we provide evidence of

scenarios where the solvent hydrodynamics induces non-local effects which require the full three-

dimensional dynamics to be taken into account in order to understand sedimentation in active

suspensions. Finally, analyzing the statistics of the orientations of microswimmers, the emergence of a

height-dependent polar order in the system is discussed.

1 Introduction

A number of microorganisms (bacteria, algae, etc.. . .) have the
ability to swim in a liquid environment through the generation
of autonomous motion at the expense of their metabolism,
thus being intrinsically out-of-equilibrium. As such, these
systems lead to new challenges such as the understanding of
how collective phenomena and self-organization emerge from
the relevant features of the propulsion mechanism.1–4 In this
perspective a suspension of active particles is qualitatively
different from a suspension of passive ones. Maybe the sim-
plest, yet not trivial, example of this is the case of a constant
external forcing on the suspension, such as gravity in the
sedimentation process. In fact, when thermal fluctuations are
negligible (as in the case of particles above the micron size),
while passive particles would inevitably precipitate, active
suspensions maintain a finite sedimentation length that grows

with the self-propulsion speed. This result was predicted the-
oretically for dry suspensions (i.e. where the solvent hydrody-
namics is neglected) of non-interacting run-and-tumble
particles5,6 and, then, confirmed in numerical simulations with
point-like dipoles7 and experimentally in suspensions of active
colloids.8 Suspensions of self-propelled particles under gravity
have been also reported to display a complex orientational
dynamics, with the development of an associated polar
order9,10 or even, in the case of bottom-heavy particles, to the
inversion of the sedimentation profiles.11 In this paper we
present a computational study of sedimentation in active
suspensions, where hydrodynamics is fully resolved near and
far from the particle surface. We provide evidence that hydro-
dynamic correlations induce important deviations from the
phenomenology for dry suspensions in the steady state of both
self-propelled swimmers and ‘‘shakers’’, namely active particles
that stir the fluid around them without achieving a directed
motion, for which, to the best of our knowledge, this study
represents the first of this kind. The sedimentation profiles
observed when activity is intense are captured through a simple
extension of a drift-diffusion model with height dependent
effective temperature. We show that pullers develop a distal
region of constant density (a supernatant) whose emergence
depends on both the activity/gravity ratio and the confining
geometry (i.e. the cell aspect-ratio). We also address the statis-
tics of the microswimmer orientation, finding that, in the
regime of small tumbling frequency, the suspension develops
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a polar order whose characteristics are strongly dependent on
the type of swimmer.

2 Numerical method and simulation
details

The velocity field of the solvent (of dynamic viscosity Z) is
evolved by means of a lattice Boltzmann (LB) method12 with
nineteen lattice speeds in three dimensions (D3Q19).13 Swim-
mers are modelled as solid spherical objects of radius R. The
correct momentum exchange and mass conservation through
the set of boundary links (between grid points in and out the
sphere) representing the particles is implemented according to
the bounce-back-on-links scheme.14–16 In order to mimic the
surface deformations inducing the microswimmer motion, we
adopt a simplified version of the squirmer model,17,18 whereby
only the tangential polar component of the axisymmetric
velocity prescribed at the particle surface is non-zero, us =
us(y)ŷ. Furthermore, just the first two terms in the series
expansion of us(y) are retained:19,20

us(y) = (B1 + B2 cos(y))sin(y), (1)

where y = arccos(ê�r̂s) is the angle formed by the squirmer
orientation unit vector, ê, and the position on the surface, r̂s =
xs/R, relative to the particle centre of mass position (see Fig. 1
for a schematic representation of the model microswimmer

just described). It should be pointed out that the prescription
(1) cannot cope with unsteady flows, like those occurring when
flagellar beating is involved, in short times, but it is effective on
scales much longer than a typical flagellar or ciliary cycle.21 The
parameter B1 4 0 in eqn (1) is related to the propulsion speed,

which is vp ¼
2

3
B1ê, whereas the second parameter, B2, deter-

mines the strength of the stresslet, SpZR2B2, generated by the
swimmer in the surrounding fluid (and, hence, it is related to

the amplitude of the injected vorticity).19 The ratio b � B2

B1
, such

that b A (�N, + N), quantifies the relative intensity of apolar
stresses and polar self-propulsion and classifies swimmers in
‘‘pushers’’, b o 0 (including bacteria like, e.g., E. coli), ‘‘pull-
ers’’, b4 0 (such as the algae Chlamydomonas), and ‘‘potential’’
swimmers, b = 0 (i.e. swimmers that simply self-propel without
generating vorticity, like the alga V. carteri or certain artificial
swimmers).17,19,22–24 Every t time step the particles randomise
their orientation ê with uniform probability over the interval [0,
p], thus accounting for the characteristic run-and-tumble
mechanism, which can be seen as a source of diffusion for
particles that, we recall here, are insensitive to thermal
fluctuations.25,26 Different probability distributions of tum-
bling angles can, in principle, characterise actual microswim-
mers. For E. coli, for instance, the distribution is peaked around
B651 and is rather skewed towards smaller values.25 It is
known, though, that, when looked at over time scales t c t,
the run-and-tumble motion leads to a diffusive dynamics,
irrespective of the specific statistical properties of the tumbling
events, but for a dependence of the diffusion coefficient on the
mean angle.25,27–29

Our model, featuring finite size resolved particles, equipped
with the squirming motion, is then able to capture hydrody-
namic effects in the sedimentation of active suspensions, both
in their far and near field manifestations, although when
particles are close to contact or swimming takes place near
the walls, the dynamics on short time scales might be not
accurately described for flagellated microorganisms.

We simulate suspensions, of volume fraction f = 0.07, in
three-dimensional boxes of size L� L� H, with height H E 80R
and variable aspect-ratio G = L/H (see Fig. 1 for a graphical
sketch). The height value is chosen to be large enough to exceed
the maximum theoretically expected sedimentation length
(over the explored range of parameters and for cases where
such theoretical control is available), so as to guarantee that the
upper bound will not affect the results. Two solid walls (with
no-slip boundary conditions for the fluid velocity) confine the
system in the z-direction, while periodic boundary conditions
along the x, y directions hold. The number of particles, with
radius R = 2.3 (in lattice-spacing units), range between B500
and B3 � 104). We introduce a reference velocity, vg = mFg

(where Fg is the gravity force magnitude and m = 1/(6pZR) is the
particle mobility), i.e. the sedimentation velocity of a passive
particle, and a reference time, tc = R/vp (where vp = |vp|), that is
basically the time an isolated particle takes to displace its own
radius. In terms of vg and tc, the following dimensionless

Fig. 1 Snapshot of a simulation, seen on the (x, z) plane, in the statistically
steady state; L and H indicate the sizes of the box, L � L � H. Inset: Sketch
of a squirmer particle of radius R. X is the position of the centre of mass, xs

is the position on the surface, ê is the characteristic orientation unit vector,
defining the appropriate swimming direction, and the polar angle reads

y ¼ arccos
ê � xs
R

� �
.
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parameters can be defined, namely

w1 ¼
vp

vg
¼ 2B1

3vg
; w2 ¼

B2

3vg
; �t ¼ t

tc
; (2)

which, together with b, govern the squirmers’ motion. In order
to investigate how the swimming characteristics and the system
geometry affect the sedimentation profiles, we performed sev-
eral runs exploring the parameter space spanned by (w1, w2, b,
G). Unless differently specified, we fix �tE 4.3, corresponding to
a run time much longer than the typical time the flow field
takes to relax and adapt to the new orientation; the latter, given
the low Reynolds number dynamics, can be taken as tn B R2/n,
the viscous time of diffusion around the particle (n being the
solvent kinematic viscosity), so that t/tn E 30.

3 Sedimentation profiles

We start each run with the active particles homogeneously
distributed in space, with random orientations. To check that
a (non-equilibrium) statistically steady state is reached, we
follow the time evolution of the average height

hðtÞ ¼ 1

H

ÐH
0
zrðz; tÞdz, where r(z, t) is the (unsteady) normalized

particle density (i.e. r(z, t)dz is the probability of finding a
particle centred between z and z + dz at the time t). We consider
as the steady state the time interval during which h(t) fluctuates
by less than B5%. All data shown hereafter are meant to be
averaged over such time interval. Our aim is to study the impact
that activity, in terms of w1 and b, has on the squirmer
sedimentation, and to characterize the emerging dynamical
regimes, checking whether and how hydrodynamic effects
come into play. According to the theory,5,6 as w1 - 1, all
particles concentrate at the bottom wall. Instead, when w1 c

1 (i.e., in the self-propulsion dominated regime) the steady state
sedimentation profile should display an exponential form
r(z) B e�z/l, with a sedimentation length depending on the
single particle velocity (and, hence, on w1) as

l ¼ vp
2t

3vg
¼ ‘

3
w1; (3)

where c = vpt E 4.3R E 0.06H is the microswimmer’s run length.
This result has been found to be in agreement with experimental
observations8 and numerical simulations.7 The exponential profile
also characterizes equilibrium systems, as in the classical Perrin’s
experiment for (thermal) colloids;30 the sedimentation length is
determined by the particle diffusivity, D, and the gravity force as
l(eq) = D/(mFg) and depends, therefore, through the Stokes–Einstein
relation D = mkBT, on the system temperature T, namely l(eq) = kBT/
Fg. The formal analogy with the passive (equilibrium) case suggests,
then, to introduce an effective temperature as follows:

kBT
ð1pÞ
eff ¼

vp
2t
3m

; (4)

such that the sedimentation length reads l = kBT(1p)
eff /Fg.

In Fig. 2 we plot the time-averaged steady state density
profiles of potential swimmers (b = 0) for w1 A [1, 20]. This

range of values is compatible with those expected for typical
bacteria, such as E. coli or B. subtilis whose swimming speeds
are vp B 15–30 mm s�1,25,31,32 in terrestrial gravity (vg B
1–2.5 mm s�1), for which it would be w1 B 6–30.6

For values close to one, as expected, microswimmers uni-
formly fall down under the action of gravity; however, due to
the finite size of particles, the sedimentation length remains
finite. The particles in the sediment tend to organize them-
selves in layers with a crystal-like order, noticeable from the
peaks in the density profile, close to the bottom wall, displaced
from each other by about one diameter (2R), as found also in a
previous computational study.10 At increasing w1, swimmers
occupy an increasingly larger volume of liquid and, correspond-
ingly, r(z) shows, over the whole box length, the predicted
exponential profile6 with a sedimentation length growing line-
arly with w1 (see inset of Fig. 2).

If we increase |b| (thus intensifying the activity) to large
enough values, for a fixed w1, the deviation from the exponen-
tial profile can be important, as one can see from Fig. 3, where
we plot the particle density r(z) for three cases with same w1 =
10 and b = 0, �10. For the sake of comparison of the chosen
values of b with those expected for actual microswimmers,
consider that, e.g., E. coli swims at a speed vp B 20 mm s�1,25

exerting a force dipole of amplitude f B 0.4 pN and length

dB 2 mm;31 therefore, B1 ¼
3

2
vp � 30 mm s�1 and |B2| BS/(Zd2)

B f/(Zd) E 200 mm s�1, where S B fd is the stresslet, give |b| =
|B2|/B1E7.

In the pushers/pullers case (ba 0), dynamic correlations are
so intense that recovering a Perrin-like form just with the
introduction of a global effective diffusion coefficient as com-
ing from single particle dynamics is no longer possible.8 The
larger the |b|, the stronger is the departure of the

Fig. 2 Main panel: Density profiles in microswimmer suspensions for
various values of the propulsion/gravity ratio w1, at b = 0 and G = 0.35.
For w1 close to one, the particles accumulate at the bottom wall, showing a
crystal order (as the regularly spaced peaks in r suggest). For large w1 the
expected exponential profile is recovered. Inset: Dependence of the
sedimentation length l (computed out of exponential fits of the density
profiles) (&) on the propulsion/gravity ratio w1. The dashed line depicts the
theoretical expectation l/w1 = c/3 E 1.45R, eqn (3), valid for w1 c 1.
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sedimentation profile from being exponential; indeed we found
that deviations start to be relevant from |b| E 5.7

4 Extended diffusive model
4.1 Local effective temperature

Due to hydrodynamic correlations the dynamics of an active
particle in the suspension is affected by the presence of the
others through the generation of motion within the liquid,
which acts as a bath at an effective temperature (measuring the
fluid agitation). We can understand these effects extending a
diffusive model proposed to describe sedimentation in active
colloidal suspensions,8 based on the Smoluchowski equation
qtr = �r�J, determined by the flux J = �D̃rr + ~mFgr. The ratio of
the local diffusion coefficient, D̃, and particle mobility, ~m, by
virtue of a generalized Stokes–Einstein relation, represents the
effective temperature field. Assuming that in the steady state
the density will depend only on z, the zero flux boundary
conditions at the walls gives

dr
dz
¼ � Fg

kBTeff
r: (5)

We propose an effective temperature of the form Teff =T(1p)
eff +

T(coll)
eff , consisting of two terms: the single-particle effective

temperature, eqn (4), accounting for the self-propulsion, plus
a contribution proportional to the fluid velocity fluctuations,
T(coll)

eff , capturing the collective effects due to hydrodynamic
interactions. However, since in the steady state microswimmers
are distributed inhomogeneously over the volume (with a
density increasing from top to bottom), the fluid velocity

fluctuations s2du ¼
P3
i¼1
ðuiðr; tÞ � huiðr; tÞiÞ2
� �

(where

hð� � �Þi ¼ 1

L2

Ð Ð
ð� � �Þdxdy) are also expected to vary with z (as

indeed it can be seen in the inset of Fig. 3). This entails a height
dependent effective temperature Teff(z) = T(1p)

eff + T(coll)
eff (z), lead-

ing, upon insertion in (5), to an equation for the sedimentation
density which can be recast in the following form:

dr
dz
¼ �1

l
r

1þ T
ðcollÞ
eff ðzÞ
T
ð1pÞ
eff

 !; (6)

where l = (kBT(1p)
eff )/Fg is the sedimentation length discussed in

the previous section. We assume, then, T(coll)
eff (z) psdu

2(z) to
hold, so that we can finally write

dr
dz
¼ �1

l
r

1þ a1
sdu2ðzÞ
vp2

� �; (7)

with a1 a free parameter representing the proportionality con-
stant between T(coll)

eff and sdu
2. Eqn (7) is integrated numerically,

with sdu
2 taken from the simulations. Comparing the result

with the measured density profiles (see Fig. 3), we find that the
proposal of gauging the global effective temperature to a height
dependence works well for b = 0 and b o 0. The phenomen-
ology of pullers (b 4 10) appears, however, to be more
complicated: in fact, while the density profile can be recovered
where the concentration is higher, the presence of a region of
constant density, denoting the formation of a supernatant
floating over the sedimentation layer, eludes the generalized
diffusive model.

4.2 The case of shakers

Another striking instance of how crucial the role played by
hydrodynamics can be is provided by the regime where |b| -

N, i.e. B1 goes to zero while B2 stays finite. This regime
corresponds to active suspensions where particles do not self-
propel but generate motion in the fluid and are relevant for
microswimmers known as shakers,1,33 like, e.g., melanocytes.34

Since both their propelling velocity and the effect of thermal
fluctuations are negligible, such a suspension would undergo a
gravitational collapse, if one could completely neglect the
presence of the solvent. However, as shown in Fig. 4, the steady
state density profiles develop a sedimentation layer, whose
width increases with w2 (defined in (2)). The observed width
cannot be interpreted simply as a result of the close packing of
the particles, which would imply, in fact, a value of around 8R,
much smaller than the measured one. We try to recover the
sedimentation profiles of shakers following the same ideas of
the previous section. We must integrate numerically eqn (5),
with a vanishing one-particle contribution to the effective
temperature, T(1p)

eff = 0, since for shakers B1 = 0 3 vp = 0, such
that Teff(z) = T(coll)

eff (z) = a2(sdu
2(z)/vB2

2) (here we indicate the
phenomenological parameter as a2 in order to distinguish it
from that of self-propellers). The reference speed vB2 = |B2|/3 is
the magnitude of the velocity field generated by a shaker,

averaged over its surface, i.e. vB2
¼
Ð
jusj

dO
4p

, where us is given

Fig. 3 Main panel: Density profiles in microswimmer suspensions with
w1 = 10, b = 0, �10 and G = 0.35 (data are vertically shifted for clarity). The
lines represent the predictions coming from the numerical integration of
eqn (7) with l = 15 and a1 = 1 (see the text for the discussion of the model
parameters) for b = 0 (dashed line), b = �10 (solid line) and b= + 10 (dotted

line). Inset: Fluid velocity fluctuations s2duðzÞ ¼
P3
i¼1
hðuiðr; tÞ � huiðr; tÞiÞ2i as a

function of the system height for the case b = � 10.
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by eqn (1). The stationary Smoluchowski equation, then, reads

dr
dz
¼ �Fg

a2

r
sdu2ðzÞ=vB2

2
� �; (8)

the results of the numerical integration of eqn (8) for shakers
with negative w2 with two different values of gravity are reported
in Fig. 4, showing, again, good agreement.

Analogously to the case of pullers, shakers with w2 4 0
develop (for w2 large enough) a distal region of constant density
in the sedimentation profile (see the inset of Fig. 4). The
emergence of such supernatant is due to the sediment which
acts as a pump and generates motion in higher layers of fluid. It
is, then, a genuinely three-dimensional and non-local effect,
two features which make also our formalism based on a height
dependent effective temperature fail. To support this picture,
we show that, for a fixed value of w2, the supernatant disappears
when decreasing the aspect-ratio G of the cell below unity (see
Fig. 5).

This is, indeed, a manifestation of three-dimensionality:
using an analogy with a Rayleigh–Bénard system,35 we argue
that the geometry favors (or does not) the development of a
large scale flow which can (or cannot) sustain the supernatant.
In fact, the difference in the fluid flow pattern generated by a
single particle, either a pusher or a puller, is not strong enough
to sustain the different macroscopic patterns observed if the
swimmers are randomly oriented (as a matter of fact, no
supernatant is observed for pushers, or shakers with w2 o 0).
Hence, a collective organization of the swimmers is required to
produce the observed macroscopic flows. We will next address
the emergence of orientational order in the sedimentation
profiles of microswimmers.

5 Orientational statistics

The emergence and the dynamical relevance of anisotropic
ordering in active fluid systems has been widely recognized in
the literature.1,9,36 We study the orientational statistics measur-
ing the joint probability distribution function (PDF) of the
particle elevation and vertical component of the squirmer
characteristic vector, P(z, êz). For squirmers with w1 = 10,
b = 0 and run time �t E 4.3 we find a bimodal distribution
symmetrically peaked at êz = �1 (with a slight imbalance
towards êz = �1), for any z, as expected under the assumption
of a factorized joint PDF, P(z, êz) B r(z)F(êz).

26 However, it was
shown theoretically, in the context of active Brownian particles,
that such factorization could only be possible for the vanishing
Péclet number;9 otherwise, when Pe B O(1), the suspension
develops a polar order which is non-trivially correlated with the
height. We recall, here, that for athermal, run-and-tumble
particles an effective diffusivity can be defined, proportional
to the tumbling rate, �t�1;26 hence the effective Péclet number
grows at Pe B �t. We increase, therefore, �t to probe this regime.
We remark, incidentally, that it is also possible to modulate the
effective diffusivity by changing the mean tumbling angle; thus
in real systems one must expect that the statistics of reorienta-
tions also affects the polar order. Indeed, for �tE 30, we observe
from the joint PDF, shown in Fig. 6(A) as a colour map, a larger
probability of finding downward oriented particles close to the
wall, whereas the opposite trend appears at higher elevations,
which means that in the bulk the active particles preferentially
swim upwards (i.e. against gravity), in line with the theoretical
results.9 To highlight this behaviour we also report the orienta-
tion PDFs, P(z*, êz)/r(z*), as histograms at two heights, z* = 2R
and z* = 30R.

It is worth noting that the chosen value of �t is comparable,
for instance, with that of E. coli, for which, having

Fig. 4 Main panel: Density profiles of shakers with two different w2 o 0
and G = 0.35 (here and in the inset data are vertically shifted for clarity). The
larger the |w2| the longer the density tail (i.e. the wider is the region
occupied by particles). The lines are the theoretical predictions coming
from the numerical integration of eqn (8), where the function sdu

2(z) is
taken from the simulations, with a2 = 4.4. Inset: Density profiles of shakers
with |w2| = 5 (green triangles), |w2| = 10 (red squares) and |w2| = 20 (blue
circles). Data for both pullers (w2 4 0, full symbols) and pushers (w2 o 0,
empty symbols) are reported; notice the formation of the supernatant in
the puller case for large enough w2.

Fig. 5 Main panel: Density profiles for shakers with w2 = 8.3 for various
aspect ratios G = L/H (data are vertically shifted for clarity). Inset: Fraction
of particles in the supernatant region, computed as Xsn ¼

ÐH
z0
rðzÞdz

(z0 being the minimum height such that r(z) = 0, for some G and for
z 4 z0), as a function of the aspect ratio of the cell: notice that for G o 1,
Xsn = 0, i.e. no supernatant develops.
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vp E 25 mm s�1 and a typical run time of B1 s 25,37 and size
R B 1 mm, one gets �t = vpt/R E 25.

For ba 0 we expect this scenario to break down, because the
generation of fluid motion acts as an effective source of noise;
in fact, we observe that, close to the wall, the PDF is peaked
around êz E 0 for b o 0, and it is bimodal (with a higher peak
at êz E �1) for b 4 0, while in the bulk it is rather uniform in
both cases (panels (B) and (C) of Fig. 6). As anticipated in the
previous section, such different orientational ordering between
pushers and pullers turns out to have an impact also on the
swimmers’ distribution in space, as indicated by the sedimen-
tation profiles.

6 Conclusions

We have presented a computational study of suspensions of
run-and-tumble squirmers under gravity. Thanks to the built-in
properties of the mesoscopic approach adopted we could take
into account both the finite size of particles and the hydro-
dynamics of the solvent. In the case of potential swimmers,
agreement has been found with theoretical predictions regard-
ing (i) the dependence of the density profiles on the activity/
gravity ratio and (ii) the emergence of a polar order from the
inspection of distributions of particle orientations. We have
provided evidence, not reported so far, that, for pushers and
pullers with large enough b, the hydrodynamic flows induced

by their collective motion determine sedimentation profiles
that cannot be understood in terms of a single swimmer
response to the gravitational field. This feature appeared parti-
cularly distinctive in the emblematic case of shakers, whose
sedimentation problem was never studied before. We have,
then, proposed a generalised diffusive model, based on the
concept of a height dependent collective effective temperature
that proved to be able to recover the observed sedimentation
profiles. Moreover, we showed that the profiles of pullers and
shakers with positive b may develop a tail in the bulk of roughly
constant density, signalling the presence of a supernatant,
depending on the activity/gravity ratio (the parameter w2) but
also on the system geometry (the aspect-ratio G). The emer-
gence of such a supernatant, no previous observation of which
we are aware of, is probably connected to the complex correla-
tion between spatial organization of the microswimmers in the
sediment and generated flows in the solvent, which deserves
further investigation.

Overall, our findings, along the lines of recent studies,10,38

emphasize the importance of exploring, theoretically, numeri-
cally and experimentally, the full three-dimensional dynamics
for the sake of a better understanding of the sedimentation
phenomenology in active suspensions.
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