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Abstract

We study the dynamics of a family of 4D symplectic mappings near a doubly
resonant elliptic fixed point. We derive and discuss algebraic properties of the
resonances required for the analysis of a Takens type normal form. In particular,
we propose a classification of the double resonances adapted to this problem,
including cases of both strong and weak resonances.

Around a weak double resonance (a junction of two resonances of two differ-
ent orders, both being larger than 4) the dynamics can be described in terms of
a simple (in general non-integrable) Hamiltonian model. The non-integrability
of the normal form is a consequence of the splitting of the invariant manifolds
associated with a normally hyperbolic invariant cylinder.

We use a 4D generalisation of the standard map in order to illustrate the
difference between a truncated normal form and a full 4D symplectic map. We
evaluate numerically the volume of a 4D parallelotope defined by 4 vectors
tangent to the stable and unstable manifolds respectively. In good agreement
with the general theory this volume is exponentially small with respect to a
small parameter and we derive an empirical asymptotic formula which suggests
amazing similarity to its 2D analog.

Different numerical studies point out that double resonances play a key role
to understand Arnold diffusion. This paper has to be seen, also, as a first step
in this direction.

Keywords: Symplectic maps; Double resonances; Normal forms; Homoclinic
orbits
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1. Introduction

It is generally accepted that resonant phenomena play an important role in
the theory of Hamiltonian systems and its applications. An important example
is the Nekhoroshev theory which provides an upper bound on the rate of Arnold
diffusion. In this theory the analysis of dynamics near resonances of higher
orders is at the centre of the argument [1, 2]. Several numerical studies [5, 6, 7, 8]
support the fact that multiple resonances should play an important role in
an explanation of the Arnold diffusion [3]. It is expected that along a simple
resonance, crossed by high or very high order resonances, the main tool is the
well-known transition chain mechanism similar to the one originally proposed
by Arnold [9]. The main effect of the resonance is to create a “pendulum-
like” system and, hence, integrable. Analysis of multiple resonances, even in
the simplest approximations, leads to a Hamiltonian system with two or more
degrees of freedom, generically non-integrable.

Resonances usually appear in one of the following contexts:

• small perturbations of an integrable system,

• small oscillations near an equilibrium,
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• small oscillations near a periodic orbit.

In the last case the dynamics can also be described by a Poincaré map near
its fixed point. In each one of these cases, the normal form theory provides a
powerful tool for the study of the local dynamics [4].

Each resonance can be characterised by a number of independent resonant
relations between the frequencies, this number being called the multiplicity of
the resonance. In the case of a simple resonance the normal form is integrable,
while a double resonance can lead to non-integrability (see e.g. the book [10]).
In particular, in a near-integrable system with three or more degrees of freedom
the dynamics near a double resonance can be described by a two degrees of
freedom Hamiltonian system, which has the form of a sum of a quadratic form
in action variables plus a periodic potential [4]. In general this normal form does
not contain any perturbation parameter, a fact that substantially complicates
its analysis. Haller [10] showed non-integrability of the corresponding normal
form in the case when one of the two fundamental resonances has a relatively
small amplitude compared to the other one. This situation should generically
arise if one of the resonances has a very high order [11, 10]. On the other hand
this assumption is not expected to be satisfied if both fundamental resonances
are of comparable orders.

In this paper we provide a detailed analysis of the normal form near a fixed
point of a 4D symplectic map. The fixed point is assumed to be elliptic and with
simple eigenvalues, that is, we explicitly avoid the cases of double eigenvalues
in 1 : 1 or 1 : −1 resonance. We recall that small perturbations in the former
case lead generically to a pair of simple eigenvalues (it is a structurally stable
situation) while might lead to complex instability in the later case, see [12, 13,
14, 15] for details. In contrast, the analysis we present extends and completes
the original analysis carried out in [16]. In particular, we provide a more detailed
classification of the cases with different dynamical behaviour in the normal form.

The paper contains the following results. In the next section we provide
mostly known results on the classification of the resonances, describe the Takens
normal form adapted to the Hamiltonian set up, and analyse the symmetries of
the normal form Hamiltonian. In Section 3 we discuss arithmetic properties of
the double resonances which can be considered as a two dimensional sub-lattice
of Z2. In particular, we prove that all the resonances can be generated by two
independent resonances of the lowest orders, which we call minimal generators .
These pairs are not unique. For a majority of resonances this non-uniqueness
is rather trivial – it originates from the symmetry of the set of resonances with
respect to the reflection around the origin. But for some frequencies the non-
uniqueness is not trivial and it is reflected in a more complicated structure of a
normal form truncated at the order corresponding to the lowest resonant order.

We will also show that for some frequencies two independent resonances of
the lowest possible orders may or may not generate all other resonances, and
we shall establish sufficient conditions to ensure they do it. The cases when the
minimal generators are not unique are discussed in Section 3.4.

In Section 3.2 we provide the complete list of eigenvalues which lead to two
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independent resonance relations of order 3 or 4. We call them doubly strong
resonances , since their normal forms have, generically, no integrable approxi-
mation.

In Section 4 we show that a weak double resonance has (in general) a non-
integrable normal form. Earlier Kovacic [17] and Haller [18] performed a similar
analysis for a nearly integrable system. That analysis required a set of addi-
tional hypothesis on the amplitudes of the coefficients in the normal form, which
cannot be guaranteed for a generic system. In particular, to ensure such a decay
of the coefficients, they obtain a model to describe the dynamics at the junction
of the two resonances that requires them to be of quite different order. In this
paper, using a similar method, we arrive to more generic conclusions because
we take advantage of the properties of the normal form near a fixed point. As
a consequence, the (non-integrable) model we obtain from the normal form de-
scribes the dynamics in a suitable vicinity around the junction of the resonances
provided they are of different order, including the case of similar orders.

Our numerical experiments also have some unusual consequences. Indeed,
numerically it can be difficult to distinguish between a very smooth and an
analytical invariant surface. On the other hand, it is well known that the general
theory of normal hyperbolicity guaranties the existence of invariant manifolds
which are smooth, but it is expected that they are not analytic. We provide a
strong numerical evidence that a normally hyperbolic invariant cylinder of the
truncated normal form is not analytic and has the degree of regularity expected
from empirical arguments. The details are placed in Section 4.2. We note that
similar experiments can be conducted with a 4D standard-like map used in this
paper as a model for the dynamics near a double resonance.

In Section 5 we analyse numerically the difference between an original map
and its normal form. We take the 4D standard-like map introduced before as
a model and we study the splitting of the invariant manifolds of its hyperbolic
fixed point. We find several primary homoclinic points. Our numerical study
shows that these points are transversal. Moreover, we show that a suitable
volume taken as a measure of transversality becomes exponentially small in
the bifurcation parameter. Such an exponentially small behaviour follows in-
deed from the standard suspension and averaging techniques since the map is
near-the-identity [32, 33], see related comments in Section 5. Note that as the
normal form is given by a Hamiltonian flow, the preservation of the energy of
the Hamiltonian implies that such a volume is zero in the normal form case.
Furthermore, we found an empirical formula for the asymptotic behaviour of
such splitting which resembles the well studied 2D case. This suggests that the
methods developed for the study of two dimensional maps can be extended to
higher dimensions, although we are not aware of any analytical result in this
direction.
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2. Resonant Normal Forms

2.1. Classification of resonances

In this paper we carry out the analysis of the normal forms for a 4-dimensional
symplectic map near a totally elliptic fixed point. More precisely, we consider
a two-parametric family of 4D symplectic maps Fδ which depend on a small
enough vector parameter δ = (δ1, δ2). We assume that the maps have a fixed
point at the origin for all δ

Fδ(0) = 0

and DF0(0) has four non-real eigenvalues on the unit circle λ1, λ̄1, λ2, λ̄2. With-
out losing in generality, we may assume that Imλk > 0. Then there exist
αk ∈ (0, 12 ) such that λk = exp(2πiαk), k = 1, 2. In this paper we will always
assume that the eigenvalues are simple, i.e., α1 6= α2.

The local dynamics of the map can be described in terms of a normal form
which depends on the arithmetic properties of αk in an essential way. More
precisely, the normal form is determined by the set of resonances which form a
subgroup Γ ⊂ Z2 defined by

Γ = { (k1, k2) : k1α1 + k2α2 = 0 (mod 1) } . (2.1)

We say that r = (k1, k2) ∈ Γ is a resonance of order |r| = |k1|+ |k2|. We note
that (k1, k2) ∈ Γ if and only if

λk11 λ
k2
2 = 1 . (2.2)

Of course (0, 0) is always resonant, and we call it the trivial (or unavoidable)
resonance.

The fixed point of F0, at the origin, is of one of the following three types:

1. Non-resonant (Γ is a trivial group).
In this case {α1, α2, 1 } are rationally independent.

2. Simply resonant (Γ is a one-dimensional lattice).
In this case there are two possibilities:

a) α1 ∈ Q, α2 ∈ R \Q (or vice versa).
b) α1, α2 ∈ R \Q but {α1, α2, 1 } are rationally dependent.

3. Doubly resonant (Γ is a two-dimensional lattice).
In this case α1, α2 ∈ Q and we can write them in the form of irreducible
fractions

α1 =
p1
q1

and α2 =
p2
q2
, p1, p2, q1, q2 ∈ N .

It is well known that non-resonant and simply resonant normal forms are inte-
grable due to the existence of a continuous family of symmetries. In the case of
a double resonance the normal form is expected to be non-integrable and one
of our goals is to understand what kind of dynamics can be expected there.
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Figure 1: Resonant lines (of order ≤ 12) on the plane (α1, α2).

Obviously, both simply resonant and doubly resonant eigenvalues are dense
in the torus

T = { (λ1, λ2) ∈ C2 : |λ1| = |λ2| = 1 }.
We note that each resonant relation α1k1 + α2k2 = k3, where k1, k2, k3 ∈ Z,
defines a line on this torus. The Fig. 1 shows all the resonant lines up to the
order 12. The picture represents one quarter of the torus. The whole torus can
be obtained by reflecting with respect to the coordinate axes.

2.2. Takens Normal Form

Since the eigenvalues of the Jacobian matrix DF0(0) are simple, it can be
transformed into a linear map Λ0 which acts on a vector (x1, y1, x2, y2) by
rotating (xk, yk) by the angle αk respectively for k = 1, 2. Using a formal
symplectic substitution we can transform Fδ (as well as F0) into the Birkhoff
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normal form Nδ, which commutes with the linear map Λ0:

Nδ ◦ Λ0 = Λ0Nδ.

Since N ′
0(0) = Λ0, the family of maps Λ−1

0 Nδ is tangent to the identity at δ = 0
and therefore there is a formal Hamiltonian Hδ such that Λ−1

0 Nδ = Φ1
Hδ

or
equivalently

Nδ = Λ0Φ
1
Hδ

where Φ1
Hδ

is a time-one map of Hδ. This Takens normal form [19, 20] is more
convenient as it facilitates the analysis of the dynamics by providing an explicit
expression for an integral of motion (Hδ). Of course, it is generally believed that
the normal forms are formal, i.e., the series do not generically converge. In this
sense, we remark that, in a suitable compact around the origin, using suspension
and averaging techniques [32, 33], one can show that the difference between the
optimally truncated normal form and the original map is bounded by a quantity
which is exponentially small in the size of the domain. In particular, it follows
that a suitable iterate of Fδ can be approximately represented as a time-one map
of a Hamiltonian flow with the approximation error being exponentially small.
Moreover, this Hamiltonian has symmetries inherited from the symmetries of
the normal form.

The normal form Hamiltonian Hδ is Λ0-invariant:

Hδ = Hδ ◦ Λ0.

This property is important as it implies N j
δ
= Λj0Φ

j
Hδ

for all j ∈ N which allows
to study the flow of Hδ instead of iterations of Nδ.

It is useful to rewrite the normal forms in complex variables defined by

zk = xk + iyk and z̄k = xk − iyk.

Note that (xk, yk) are pairs of canonically conjugated variables for k = 1, 2. In
the z1, z2, z̄1, z̄2 coordinates Λ0 is given by:

DF0(0) = Λ0 = diag(λ1, λ2, λ̄1, λ̄2) .

In the Hamiltonian normal form theory a monomial zj1 z̄
k
1z
l
2z̄
m
2 is called res-

onant if it is Λ0-invariant or, equivalently, if (j − k, l−m) ∈ Γ defined in (2.1).
The normal form Hamiltonian is a formal sum of resonant monomials:

Hδ =
∑

(j−k,l−m)∈Γ
j,k,l,m≥0

hjklm(δ)zj1 z̄
k
1z
l
2z̄
m
2 . (2.3)

The Hamiltonian Hδ represents a Hamiltonian system with two degrees of free-
dom which may be non-integrable. One of the goals of this paper is to show
that this is generically true in the case of a double resonance.

In order to study the dynamics it is convenient to introduce symplectic polar
coordinates by

Ij =
|zj |2
2

, ϕj = arg zj .
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Substituting zj = (2Ij)
1/2eiϕj into the Hamiltonian (2.3) and combining pairs

of complex conjugate terms we rewrite the Hamiltonian in the form

Hδ =
∑

(k1,k2)∈Γ+

p,q≥0

ak1k2pq(δ)I
p+k1/2
1 I

q+|k2|/2
2 cos(k1ϕ1 + k2ϕ2 + bk1k2pq) , (2.4)

where Γ+ is the subset of Γ which consists of all vectors of the form (k1, k2)
with k1 > 0 and all vectors (0, k2) with k2 ≥ 0. The bk1k2pq are suitable phases
and we can assume b00pq = 0 for all p, q without loosing in generality. We note
that aklpq(δ) are formal series in δ and

a0001(0) = a0010(0) = 0,

which reflects the fact that the linear part of the map Nδ (and Fδ) is exactly
Λ0 when δ = 0. Therefore for δ = 0 the Hamiltonian (2.4) does not include
quadratic terms in zj .

2.3. Symmetry group of the normal forms

The Takens normal form has symmetries determined by Γ. For a fixed Γ, let
us consider the group G of all linear transformations which leave every resonant
monomial invariant. Since resonant monomials are Λ0 invariant, Λj0 with j ∈ Z

obviously belong to this group. It is relatively straightforward to check that all
elements of G have the form

(z1, z2, z̄1, z̄2) 7→ (µ1z1, µ2z2, µ̄1z̄1, µ̄2z̄2)

where (µ1, µ2) ∈ T . Therefore we can consider G as a (multiplicative) subgroup
of the torus T :

G = {(µ1, µ2) ∈ T : µk11 µ
k2
2 = 1 for all (k1, k2) ∈ Γ }.

Then for different types of resonances we have the following:

1. In the non-resonant case G = T .

2. In the case of a simple resonance, there are two sub-cases which follow the
sub-cases described in Section 2.1:

(a) G = { (λj1, µ) : 0 ≤ j < q, |µ| = 1 } is a union of q circles (assuming
α1 = p

q is an irreducible fraction).

(b) G is isomorphic to a circle.

3. In the case of a double resonance G is discrete and contains lcm(q1, q2)
elements:

G = { (λj1, λj2) : 0 ≤ j < lcm(q1, q2) } .
Noether’s theorem implies that the normal form is integrable in the cases 1

and 2. In the case of a double resonance the symmetry group is discrete and
therefore does not lead to integrability.

We also note that the Takens normal form is determined by its symme-
tries and different eigenvalues can lead to the same normal form. Indeed, if
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a pair of eigenvalues (λ̃1, λ̃2) defines the same symmetry group as (λ1, λ2),
the corresponding normal forms coincide. Since both (λ1, λ2) and (λ̃1, λ̃2) be-
long to G, the total number of different pairs of eigenvalues, which lead to the
same normal form is less than the number of elements in the symmetry group,
|G| = lcm(q1, q2). Moreover, there is a simple relation between these eigenval-
ues:

λ̃1 = λj1, λ̃2 = λj2 and λ1 = λ̃l1, λ2 = λ̃l2 ,

for some integer numbers j, l.

3. Arithmetic properties of the double resonances

3.1. Minimal generators

In this section we will prove a simple statement from group theory which
implies that the primary resonances (two independent resonances of the lowest
order) generate the whole resonance lattice.

For a point r = (k1, k2, . . . , kn) ∈ Zn we define its norm by |r| = |k1|+ |k2|+
· · ·+ |kn|. Note that for a resonance this norm coincides with its order.

Let Γ be a non-trivial subgroup of Zn isomorphic to Z2. Let r0 = (k1, . . . , kn)
be one of the smallest (maybe non-unique, see Section 3.4) non-trivial elements
of Γ and let r1 = (m1, . . . ,mn) be any of the smallest elements independent
from r0. We say that Γ is generated by the pair r0 and r1 if any element of Γ
can be represented as a linear combination of r0 and r1 with integer coefficients.
If r0, r1 generate Γ we call them minimal generators.

Lemma 3.1. Γ is generated by r0 and r1 except for the case when |r0| = |r1|
is even and kjmj = 0 for all j ∈ { 1, 2, . . . , n }.
Proof. Suppose that r0 and r1 do not generate Γ. Then there is an element in
Γ which cannot be represented as a linear combination of r0 and r1 with integer
coefficients. Subtracting integer multiples of r0 and r1 from this element, we
can find a non-trivial element r2 ∈ Γ such that

r2 = s0r0 + s1r1

with |s0|, |s1| ≤ 1
2 . Then we get

|r2| ≤ |s0| |r0|+ |s1| |r1| ≤
1

2
(|r0|+ |r1|) ≤ |r1| .

The last of the inequalities follows from |r1| ≥ |r0|. On the other hand |r2| ≥
|r1|. Therefore in the formula all non-strict inequalities should be exact equali-
ties and we conclude that

|r2| = |r0| = |r1| and |s0| = |s1| =
1

2
.

Consequently,

r±2 =
r0 ± r1

2
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belong to Γ and, by the arguments above, have the same norm as r0 and r1. In
particular we get |r0 + r1| = |r0|+ |r1| or equivalently

|k1 +m1|+ · · ·+ |kn +mn| = |k1|+ · · ·+ |kn|+ |m1|+ · · ·+ |mn| .

The equality is achieved if and only if kjmj ≥ 0 for all j. In a similar way
|r0−r1| = |r0|+|r1| implies kjmj ≤ 0 for all j. Combining these two inequalities
we see kjmj = 0 for all j. But this case is explicitly excluded by the assumptions
of the lemma. Therefore r0 and r1 generate Γ.

We note that, for a double resonance in a 4D symplectic map, the group of
resonances defined by (2.1) automatically satisfies the assumptions of Lemma 3.1
unless α1 = α2 = 1

2 . Indeed, the assumptions of the lemma are not satisfied
only if r0 = (k1, 0) and r1 = (0, k1) for some integer k1. Then

k1α1 = k3 and k1α2 = m3 for some k3,m3 ∈ Z .

Therefore

α1 =
k3
k1
, α2 =

m3

k1
.

Then r = (m3,−k3) is obviously resonant as m3α1 − k3α2 = 0. Taking into
account that |k3| + |m3| = |r| ≥ |r0| = |k1| and 0 ≤ α1, α2 ≤ 1

2 , we see that
|k3| = |m3| = 1

2 |k1| and therefore α1 = α2 = 1
2 .

The following example shows that in a higher dimension Γ is not necessarily
generated by two minimal independent elements.

Example: Let n = 3, α1 = 1√
17
, α2 = 1

4 , α3 = 1
2 − 1√

17
. There are three

resonances of order 4:

r0 = (0, 4, 0), r1 = (2, 0, 2), r2 = (1, 2, 1),

and it is easy to see that there are no resonances of order less than 4. So this is
a double resonance of order 4.

Moreover r0, r1 do not generate Γ since r2 = 1
2 (r0 + r1), which is obvi-

ously not a linear combination with integer coefficients. On the other hand,
Lemma 3.1 implies that r0, r2 are minimal generators (as well as r1, r2).

Note that this phenomenon can happen in symplectic maps of dimension
6 or higher only. On the other hand, it does not happen in nearly integrable
Hamiltonian flows in any dimension, since in that case the resonance condition
takes the form k1ω1 + · · ·+ knωn = 0 in the traditional sense and not mod 1.

3.2. Doubly strong resonances

In the study of the dynamics, the resonances of the lowest orders are of
special interest. Our assumptions on the eigenvalues λ1, λ2 exclude resonances
of orders one and two, and therefore we are left with resonances of order 3 or
higher. The next lemma provides the complete list of the cases where the normal
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Figure 2: Graphical representation of the resonant lines of the order 3 (continuous lines) and
order 4 (discontinuous lines).

form contains at least two independent resonant terms of orders 3 or 4. In these
cases we cannot consider, generically, the normal form to be a small perturbation
of an integrable system, and our preliminary numerical experiments suggest that
they are indeed chaotic.1

Note that listing the cases we assume that 0 < α1 < α2 <
1
2 which does not

restrict the generality.

Lemma 3.2. If the minimal generators of Γ have the orders n0, n1 ∈ { 3, 4 }
then the corresponding exponents (α1, α2) belong to the list shown in Table 1.

We have also checked the list by running a simple computer code to ensure
that no case has been missed.

Proof. The lemma is proved by solving (with respect to α1, α2) all possible pairs
of resonant relations of orders 3 and 4. All relevant resonant lines are shown on
Fig. 2.

1In the case n0 = 3,n1 = 4 the terms of order 3 do not confine the motion in a small
neighbourhood of the origin. Therefore the majority of trajectories leave a small neighbour-
hood of the origin and reach a region where higher order terms of the normal form have a
non-negligible contribution. In general, there is no reason to think that in this larger region
the truncated normal form provides an accurate description for the dynamics. On the other
hand, we note that the normal form truncated at order four may posses confined dynamics.
The fourth order resonant terms are expected to break down the integrability of the normal
form. In this sense this case should be treated as “immediately” non-integrable.
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num. α1 α2 n0 n1 3rd order resonances 4th order resonances

1 1
6

1
3 3 3 (2,−1) (0, 3) (2, 2)

2 1
5

2
5 3 3 (2,−1) (1, 2) (3, 1) (1,−3)

3 1
12

1
4 4 4 — (3,−1) (0, 4)

4 1
10

3
10 4 4 — (3,−1) (1, 3)

5 1
8

3
8 4 4 — (1,−3) (3,−1) (2, 2)

6 1
4

5
12 4 4 — (1,−3) (4, 0)

7 1
4

1
3 3 4 (0, 3) (4, 0)

8 1
9

1
3 3 4 (0, 3) (3,−1)

9 2
9

1
3 3 4 (0, 3) (3, 1)

10 1
3

4
9 3 4 (3, 0) (1,−3)

11 1
8

1
4 3 4 (2,−1) (0, 4)

12 1
4

3
8 3 4 (1, 2) (4, 0)

13 1
7

2
7 3 4 (2,−1) (1, 3)

14 1
7

3
7 3 4 (1, 2) (3,−1)

15 2
7

3
7 3 4 (2, 1) (1,−3)

Table 1: Doubly strong resonances with simple eigenvalues

In order to reduce the number of variants to consider, we note that if
(k1, k2) ∈ Γ then (−k1,−k2) ∈ Γ, so without loss in generality it can be as-
sumed that in a resonance relation k1 ≥ 0 (and k2 > 0 if k1 = 0). Then a
resonant term of order n must satisfy one of the conditions

(n− j)α1 = k3 ± jα2 for |k3| = {0, . . . , [n/2]}, j = 0, . . . , n.

Let us consider first the case n0 = n1 = 3. It is enough to consider 5 resonant
equations: (i) 2α1 = α2, (ii) 2α1 = 1− α2, (iii) α1 = 1− 2α2, (iv) 3α1 = 1 and
(v) 3α2 = 1. The (i)–(iii) pair gives (α1, α2) = (1/5, 2/5) and the (i)–(v) pair
gives (α1, α2) = (1/6, 1/3). Other pairs give no solution.

Consider the case n0 = n1 = 4. Similarly to the above case it is enough to
consider 7 resonant equations: (i) α1 = −1 + 3α2, (ii) 4α2 = 1, (iii) 3α1 = α2,
(iv) 4α1 = 1, (v) 3α1 = 1 − α2, (vi) 2α1 = 1 − 2α2 and (vii) α1 = 1 − 3α2.
Pairs (i)–(iii),(i)-(vi) and (iii)–(vi) give (α1, α2) = (1/8, 3/8), pair (i)–(iv) gives
(α1, α2) = (1/4, 5/12), pair (ii)–(iii) gives (α1, α2) = (1/12, 1/4) and pair (iii)–
(vii) gives (α1, α2) = (1/10, 3/10). Other pairs give no solution.

The case n0 = 3, n1 = 4 is discussed in a similar way.
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Remark 3.3. Table 1 lists 15 cases, but the number of essentially different nor-
mal forms is only 9. Some of the double strong resonances lead to normal forms
which differ by an elementary change of variables (e.g. (z1, z2) 7→ (z2, z1),
(z1, z2) 7→ (−z̄1, z2) or (z1, z2) 7→ (z1,−z̄2)). In particular, we can group
together rows 3 and 6; 8 and 9 and 10; 11 and 12; 13 and 14 and 15 as
they respectively correspond to similar normal forms. Note that the changes
(z1, z2) 7→ (−z̄1, z2) and (z1, z2) 7→ (z1,−z̄2) are not symplectic, which should
be taken into account in interpretations of this remark.

3.3. Resonant lattices

In this section we give a more detailed description of Γ in the case of a double
resonance. Let α1 = p1

q1
, α2 = p2

q2
. Without loss in generality we may assume

that gcd(p1, q1) = 1 and gcd(p2, q2) = 1, i.e., the greatest common factor is 1
or, in other words, α1, α2 are irreducible fractions.

Let gcd(q1, q2) = Q and define Q1 = q1/Q, Q2 = q2/Q.

Lemma 3.4. There is a matrix A ∈ SL(2,Z) such that all resonances can be
represented in the form

(

k1
k2

)

=

(

Q1 0
0 Q2

)

A

(

Q 0
0 1

)(

l1
l2

)

where (l1, l2) runs over Z2.

Proof. We recall that (k1, k2) ∈ Γ if it satisfies the equation

α1k1 + α2k2 = k3

for some k3 ∈ Z. Let gcd(p1, p2) = P and define p1 = PP1, p2 = PP2. Then
the resonant equation takes the form

P1P

Q1Q
k1 +

P2P

Q2Q
k2 = k3 .

Since gcd(P,Q) = gcd(P,Q1) = gcd(P,Q2) = 1, we have k3 = 0 (mod P ), i.e.,
there is l1 such that k3 = Pl1. Canceling P and multiplying by Q we get

P1

Q1
k1 +

P2

Q2
k2 = Ql1 .

Since gcd(P1, Q1) = gcd(P2, Q2) = gcd(Q1, Q2) = 1 we conclude k1 = 0
(mod Q1) and k2 = 0 (mod Q2). Then there are j1, j2 ∈ Z such that k1 = Q1j1
and k2 = Q2j2 and we obtain

P1j1 + P2j2 = Ql1 . (3.1)

Since gcd(P1, P2) = 1 the equation P1j
∗
1 + P2j

∗
2 = 1 has a Euclidean solution.

Then the general solution of equation (3.1) is a sum of its partial solution and
a general solution of the corresponding homogeneous equation:

(

j1
j2

)

=

(

j∗1
j∗2

)

Ql1 +

(

−P2

P1

)

l2 .
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Let

A :=

(

j∗1 −P2

j∗2 P1

)

.

The definition of j∗k implies detA = 1 and the lemma follows immediately.

Corollary 3.5. There are two basic resonances such that any other resonance is
a linear combination (with coefficients from Z) of these two. (Indeed, obviously
(l1, l2) = l1(1, 0) + l2(0, 1), then apply the lemma. We note that these two basic
resonances are not necessary of the lowest orders.)

Corollary 3.6. If (k1, k2) is resonant, then k1 = 0 (mod Q1) and k2 = 0
(mod Q2).

Corollary 3.7. The points (k1, k2) with k1 =0 (mod q1) and k2 =0 (mod q2)
are resonances. Moreover, inside the rectangle (0, q1)× (0, q2) there are exactly
Q − 1 resonances. Inside this rectangle for each k1 = 0 (mod Q1) there is
exactly one k2 = 0 (mod Q2) such that (k1, k2) is a resonance, and for each
such k2 exactly one such k1. (Indeed, detA = 1 and the statement follows by
comparison of the areas on (j1, j2) and (l1, l2) planes.)

Corollary 3.8. If q1 and q2 are mutually prime, the resonances form the rect-
angular lattice generated by the vectors (q1, 0) and (0, q2). (Indeed, in this case
Q = 1 and all resonances have the form (q1l1, q2l2) where l1, l2 ∈ Z.)

Lemma 3.4 implies that the area of a fundamental parallelogram of the lattice
Γ equals to QQ1Q2 = lcm(q1, q2). As a result we get a useful tool which allows
us to check if a given pair of resonances generates all the others:

Corollary 3.9. Two elements (k1, k2), (m1,m2) ∈ Γ generate Γ if and only if

det

∣

∣

∣

∣

k1 k2
m1 m2

∣

∣

∣

∣

= ± lcm(q1, q2) . (3.2)

3.4. Non-uniqueness of the minimal generators

The case 5 of Table 1 clearly shows that the minimal generators are not
necessarily unique. The non-uniqueness has a trivial and inevitable component
as (k1, k2) ∈ Γ obviously implies (−k1,−k2) ∈ Γ. On the other hand, the
corresponding terms in the complex version of a real normal form are complex
conjugates and therefore can be grouped together in a natural way. In order
to avoid discussing the non-uniqueness which arises from this trivial symmetry,
we assume that k1 ≥ 0 (and k2 > 0 if k1 = 0). These resonances form a subset
Γ+ ⊂ Γ. Under this assumption, the minimal generators are unique for the
majority of (but not for all) resonances.

Let us discuss briefly cases when the non-trivial non-uniqueness arises as in
these cases the normal form has special properties.

Let r0 and r1 be minimal generators of the group of resonances Γ and let
nk = |rk|, n0 ≤ n1. First let us discuss the case n1 = n0.
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Lemma 3.10. There are at most three pairwise independent r1, r2, r3 ∈ Γ+

such that |r1| = |r2| = |r3| = n0. Moreover, if there are exactly three such
vectors, then n0 is even, one of the resonances has the form (n0

2 ,±n0

2 ), and

α1 =
p1
q
, α2 =

p2
q

where q =
n2
0

2
. (3.3)

Proof. If there are more than two pairwise independent resonances with |r| = n0

then at least two of them are on the same side of the square S = { |r| = n0 }.
Without loosing in generality let us assume that r1,r2 are in the first quadrant.
Since there are no resonances of order less than n0, the set S

±
k = { r : |r± rk| <

n0 } does not contain any other resonance except for ±rk at its centre. It is not
hard to see that S \

(

S+
1 ∪ S+

2 ∪ S−
1 ∪ S−

2

)

consists of two points only, namely,
±(n0

2 ,−n0

2 ). If this point is resonant we get the third resonance r3 and, since
components of r3 are integer, n0 is necessarily even. Otherwise there are no
more resonances of order n0.

Now let r1, r2, r3 be resonant with r3 = (n0

2 ,−n0

2 ). Corollary 3.6 implies that
n0

2 = 0 (mod Q1) and
n0

2 = 0 (mod Q2). Since gcd(Q1, Q2) = 1 we get n0

2 = 0
(mod Q2Q1). Let r1 = (k1, k2). Since k1 = 0 (mod Q1), k2 = 0 (mod Q2) and
k1 + k2 = n0 we conclude k1 = k2 = 0 (mod Q2Q1). Lemma 3.1 implies that
r1 and r3 generate Γ. Consequently, any element r of Γ is a combination of the
minimal generators with integer coefficients, and therefore its coordinates are
both divisible by Q1Q2. Corollary 3.7 implies that the first component of r can
have any residue when divided by Q2 and the second component can have any
residue when divided by Q1, since those residues are always zero, we conclude
Q1 = Q2 = 1, i.e., q1 = q2.

Finally, Corollary 3.9 implies that

lcm(q1, q2) = det

∣

∣

∣

∣

n0

2 k1
−n0

2 k2

∣

∣

∣

∣

= det

∣

∣

∣

∣

n0

2 k1
−n0

2 n0 − k1

∣

∣

∣

∣

=
n2
0

2
.

Taking into account that q1 = q2 we get (3.3).

If the assumptions of Lemma 3.10 are satisfied, the minimal generators are
not unique since Lemma 3.1 implies that each of the pairs {r1, r2}, {r2, r3} or
{r1, r3} generates Γ (the number 5 of Table 1 is an example). We also note
that all frequencies of the form (3.3) with n0 ≤ 70 (a total number of 50155
resonances) either lead to the non-uniqueness of the minimal generators or are
not doubly resonant of order n0 (i.e. there is a resonance of a lower order). We
do not know if this is true for all n0.

The non-uniqueness at the leading order n0 is a relatively rare phenomenon
as it requires the frequencies to be of the special form (3.3). Indeed, Lemma 3.10
implies that if n0 = n1 but αk do not satisfy (3.3), then there are only two (four
if you take into account the trivial symmetry) resonances of the minimal order
n0. Then the minimal generators are unique (modulo the trivial symmetry
r 7→ −r).
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If n0 < n1 there is exactly one resonance of order n0 and the non-uniqueness
of minimal generators can appear due to the presence of two or more pairwise
independent resonances of order n1. It is relatively easy to establish that in this
case necessarily n0 is even and gcd(q1, q2)

2 ≥ lcm(q1, q2) which is not satisfied
by the “majority” of the frequencies.

Example (n0 = 4, n1 = 5): α1 = 1
11 , α2 = 4

11 . The lowest order resonance
(1,−3) is of order 4. There are two resonances of order 5:

(4,−1) (3, 2) .

Example (n0 = 4, n1 = 5): α1 = 1
5 , α2 = 3

10 . The lowest order resonance
(2, 2) is of order 4. There are three resonances of order 5:

(5, 0) (3,−2) (1,−4) .

Example (n0 = 4, n1 = 7): α1 = 1
7 , α2 = 5

14 . The lowest order resonance
(2, 2) is of order 4. There are four resonances of order 7:

(7, 0) (5,−2) (3,−4) (1,−6) .

Example (n0 = 4, n1 = 11): α1 = 1
11 , α2 = 9

22 . The lowest order resonance
(2, 2) is of order 4, there is a resonance (4, 4) of order 8. There are six resonances
of order 11 of the form (11− 2j, 2j) with j ∈ { 0, 1, 2, 3, 4, 5 }.

We have no doubts that this series of examples can be continued and the
normal form may have any number of independent terms at the order n1 (of
course, for a large and suitably chosen n1).

3.5. Classification by primary resonances

Consider a family Fδ, δ = (δ1, δ2), of 4D symplectic maps such that Fδ(0) =
0 and SpecDFδ(0) = {λ1, λ2, λ̄1, λ̄2}, where λk = exp(2πiαk) with αk = pk/qk+
δk for k = 1, 2. By abuse of notation, λ1,2 denote here the eigenvalues for any
δ while in the previous sections denoted the eigenvalues at δ = 0. Hence, we
assume that for δ = 0 the origin is a doubly resonant fixed point. Let r0 and
r1 be minimal generators of the group of resonances Γ described in Section 3.1,
related to the double resonance at δ = 0.

It is convenient to classify the double resonances according to the order of
the primary resonances. Let nk = |rk|, k = 0, 1. We note that if n0 < n1,
the normal form truncated at the order n1 − 1 has the same symmetries as
in the case of a simple resonance. Therefore the truncated normal form is
integrable. In this case the normal form truncated at any higher order can
be treated as a small perturbation of an integrable system. In addition we
need to compare the contribution of these terms with the terms coming from
the unavoidable resonances (which contribute to the orders 4 and higher when
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δ = 0). If n0 ≥ 5 the fixed point is called weakly resonant and otherwise
it will be called strongly resonant. In the weakly resonant case the dynamics
generically can be considered as a small perturbation of a non-resonant normal
form.

Let us list the principal cases:

1. Weak double resonances:

(a) 5 ≤ n0 < n1: up to the order n0 − 1 the normal form looks like the
normal form of a non-resonant fixed point. The resonant terms of
order from n0 to n1 − 1 provide an integrable perturbation. Finally,
including the terms of order n1, one expects (in general) to get a non-
integrable system. In a non-degenerate case, Nekhoroshev theory
implies stability of the fixed point on exponentially long times [1, 2].

(b) 5 ≤ n0 = n1: up to the order n0 − 1 the normal form looks like the
normal form of a non-resonant fixed point. After adding the resonant
terms of order n0 we expect (in general) to get a non-integrable sys-
tem. In a non-degenerate case, the stability properties are the same
as above.

2. Simply strong double resonances: n0 ≤ 4 < n1: up to the order n1− 1 the
normal form looks like a family of strongly resonant integrable systems
(similar to the case of a two dimensional map). Then including the terms
of order n1 we expect in general to get a non-integrable system.

3. Doubly strong double resonances (Table 1 shows the complete list):

(a) n0 = n1 = 3: generically the leading order of the normal form is not
integrable and does not confine dynamics.2

(b) n0 = 3, n1 = 4: generically the leading order of the normal form is
integrable but it does not confine dynamics.

(c) n0 = n1 = 4: generically the leading order of the normal form is
not integrable. The dynamics may be confined (or not confined) in
a small neighbourhood of the fixed point depending on the values of
the coefficients in the normal form.

We note that if the leading order of the normal form does not confine the
dynamics, it is possible to take into account terms of higher order to get confined
dynamics. Unfortunately, this procedure will typically confine dynamics in a
region which is noticeably larger than the domain of validity of the normal
form theory and, consequently, the dynamics of the normal form on that large
invariant set may substantially differ from the dynamics of the original map.

2If n0 = n1 ≤ 4, the leading order is a homogeneous vector field for δ = 0, which implies
that the dynamics in all energy levels is essentially the same. Note that this paper does not
include any proof for non-integrability of the leading order of the normal form, although we
think this to be true.
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4. Non-integrability of a weak resonance

Let Fδ be a family of 4D symplectic maps having for δ = 0 the origin as a
doubly resonant fixed point. The normal form of Fδ near the double resonance
(i.e. for 0 < δ << 1 small, δ = ‖δ‖) is described by a Hamiltonian with two
degrees of freedom. In this section we establish non-integrability of a generic
truncated normal form which corresponds to the case 1(a) of Section 3.5. Instead
of studying the normal form in its full generality, we will perform the analysis of
a truncated model introduced in [11], the general case being a small perturbation
of this model. It is important to note that in our case the validity of the model
requires that n1 > n0 (meanwhile in [11] it was necessary to assume n1 ≫ n0).

Let (k1, k2) and (m1,m2) be minimal generators of Γ. Without loosing
in generality, we assume k1,m1 ≥ 0. In the following, we consider the minimal
generators to be unique in the sense of Section 3.4 since this is the most common
case. In the following we rescale (and truncate) the normal form to obtain a
suitable model describing the dynamics at the junction of two resonances. The
dependence of the truncated model, see equation (4.1), on the angles is given
explicitly by periodic (cosinus) functions. In the case of non-unique minimal
generators, a trigonometric polynomial replaces cos(ψ2).

It is convenient to define

ψ1 = k1ϕ1 + k2ϕ2, ψ2 = m1ϕ1 +m2ϕ2,
I1 = k1J1 +m1J2, I2 = k2J1 +m2J2 .

It is easy to check that this change of variables is symplectic.
On the other hand the Jacobian of the change (ϕ1, ϕ2) 7→ (ψ1, ψ2) is given

by (3.2). It is integer and larger than one. Its value depends on arithmetic
properties of α1, α2. The normal form Hamiltonian is 2π-periodic in ϕ1 and
ϕ2. We will see that in the new variables, the Hamiltonian function is also 2π-
periodic in ψ1 and ψ2. Since the Jacobian of the change is larger than one, the
Hamiltonian has a shorter lattice of periods on the standard torus in (ϕ1, ϕ2)
variables. This property reflects the symmetry of the normal form.

Since (k1, k2) and (m1,m2) generate Γ we can rewrite Hamiltonian (2.3) in
the form

Hδ =
∑

l1,l2≥0

I
|p1|/2
1 I

|p2|/2
2 Al1l2(J1, J2, δ) cos

(

l1ψ1 + l2ψ2 +Bl1l2(J1, J2, δ)
)

,

where pj = l1kj + l2mj for j = 1, 2, and the amplitudes Al1l2 and the phases
Bl1l2 are formal series in I1, I2 and δ.

Taking into account that (k1, k2) and (m1,m2) are minimal generators, the
lower order terms correspond to multiples of (k1, k2), so the Hamiltonian has
the following structure:

Hδ = H0(J1, J2, δ) +H1(J1, J2, ψ1, δ) +H2(J1, J2, ψ1, ψ2, δ) +On1+1(z),
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where z = (z1, z̄1, z2, z̄2) and

H0 = A00(J1, J2, δ) ,

H1 =

n1/n0
∑

l1=1

I
l1|k1|/2
1 I

l1|k2|/2
2 Al10(J1, J2, δ) cos

(

l1ψ1 +Bl10(J1, J2, δ)
)

,

H2 = I
|m1|/2
1 I

|m2|/2
2 A01(0, 0, δ) cos

(

ψ2 +B01(0, 0, δ)
)

.

Obviously, the Hamiltonian functions H0 and H0 + H1 are independent from
ψ2 and therefore they are both integrable with J2 as an integral of motion. On
the other hand, the addition of H2 can lead to non-integrability and chaotic
behaviour.

Let us consider this Hamiltonian in a
√
δ-neighbourhood (in z coordinates)

of the origin. Here 0 < δ << 1 stands for ‖δ‖ and we use below δj = cjδ,
j = 1, 2, with suitable constants cj ∈ R, c21 + c22 = 1. We note that in this
neighbourhood J1, J2 = O(δ). Then we can write down the lowest order terms
in H0:

H0 = c1δJ1 + c2δJ2 + a1J
2
1 + a2J1J2 + a3J

2
2 +O(δ3),

where cj and aj are some constants which can be expressed in terms of the
coefficients from (2.3). Moreover H1=O(δn0) and H2=O(δn1). Since n1>n0

≥ 5 we can consider Hδ as a small perturbation of H0. The phase space of H0

is foliated into invariant tori J1, J2=const bearing quasi-periodic motion with
the frequency vector ω = ∇H0. This vector vanishes at J1 = J2 = 0 for δ = 0.

If ∆ = a22−4a1a3 6= 0 the implicit function theorem implies that the equation
ω = 0 has a solution at a point of the form J1 = δr1, J2 = δr2, which defines
a torus of fixed points for the Hamiltonian system H0. One has r1 = (2a3c1 −
a2c2)/∆+O(δ), r2 = (2a1c2−a2c1)/∆+O(δ). When we interpret this conclusion
for the original system, two cases should be considered here as Ik are radial
components of polar coordinates and therefore are to be positive (otherwise
the found torus is not real). Therefore, the torus of fixed points is born in the
normal form of a generic one-parametric family if and only if the coefficients of
the normal form satisfy r̂1, r̂2> 0, where we assume that the torus with ω = 0
is given by I1 = r̂1δ, I2 = r̂2δ. We do not provide an explicit expression of
r̂1, r̂2 in terms of the normal form coefficients here, as getting this condition is
a matter of a routine computation.

We also note that in a generic two-parametric family this picture has an easy
geometrical interpretation as generically the map from the space of parameters
to the space of frequencies is a local diffeomorphism. On the plane of parameters
the double resonance is located at an intersection of two resonant lines (like
in Fig. 1). These lines define locally four sectors, the torus of fixed points
corresponds to one of the sectors where both actions I1, I2 are positive on the
torus.

In order to study dynamics near the torus of fixed points we shift the origin
to its position and scale the action variables and the Hamiltonian: Jk = δrk +
δn0/4J̃k and H = δn0/2H̃ (see details in [21]). We note that the translation is
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designed to eliminate the part linear in Jk of H0 at all orders up to O(δn1+1).
Skipping the tildes for the sake of notation simplicity, we get

H0(J1, J2, δ) = a1J
2
1 + a2J1J2 + a3J

2
2 +O(δn0/4) ,

H1(J1, J2, ψ1, δ) =

n1/n0
∑

l1=1

δ(l1−1)n0/2Ãl10(J1, J2, δ) cos
(

l1ψ1+B̃l10(J1, J2, δ)
)

,

H2(J1, J2, ψ1, ψ2, δ) = δ(n1−n0)/2a01 cos
(

ψ2 + b01
)

.

In particular, if additionally n1 < 2n0, only one harmonic (l1 = 1) in the leading
order is left and the form of the Hamiltonian can be further simplified by shifting
the angles to eliminate the phases:

H0(J1, J2, δ) = a1J
2
1 + a2J1J2 + a3J

2
2 + δn0/4Â00(J1, J2, δ) ,

H1(J1, J2, ψ1, δ) =
(

a10 + δn0/4−1Â10(J1, J2, δ)
)

cosψ1 , (4.1)

H2(J1, J2, ψ1, ψ2, δ) = δ(n1−n0)/2a01 cosψ2 .

We used that the substitutions produce series of Ãl10(J1, J2, δ) in powers of
δn0/4−1Jk and δ to clarify the structure of H1. We refer to [21] for details.

4.1. Analysis of a truncated model

A good initial idea about the dynamics near an intersection of two weak
resonances of different orders can be obtained from the Hamiltonian system
given by the Hamiltonian function

H(ψ1, ψ2, J1, J2) =
J2
1

2
+ a2J1J2 + a3

J2
2

2
+ cos(ψ1) + ǫ cos(ψ2), (4.2)

where a2, a3 and ǫ are real parameters. The corresponding symplectic form is
Ω = dψ1∧dJ1+dψ2∧dJ2. This Hamiltonian can be considered as an example of
the normal form described in the previous section. Indeed it coincides with (4.1)
ignoring O(δn0/4−1), hence describing the dynamics in a junction of resonances
of different (n0 6= n1) but similar order (n1 < 2n0). The analysis of the general
normal form can be performed using the methods described below and we expect
similar conclusions to be reached.

The (symplectic) change of coordinates ψ̃1 = ψ1, ψ̃2 = ψ2 − a2ψ1, J̃1 =
J1 + a2J2, J̃2 = J2, reduces (4.2) to

H(ψ1, ψ2, J1, J2) =
J2
1

2
+ d

J2
2

2
+ cos(ψ1) + ǫ cos(ψ2 + a2ψ1), (4.3)

where, for simplicity, we have skipped tildes and let d = a3−a22. From now on we
will assume d 6= 0. Note that (4.3) is generically not periodic but quasi-periodic
in ψ1. The new equations of motion are given by

ψ̇1 = J1, J̇1 = sin(ψ1) + a2 ǫ sin(ψ2 + a2ψ1),

ψ̇2 = dJ2, J̇2 = ǫ sin(ψ2 + a2ψ1).
(4.4)
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From now on we shall consider a2 /∈ Z. The equations (4.4) have 4 fixed
points: p1 = (0, 0, 0, 0), p2 = (0, π, 0, 0), p3 = (π,−a2π, 0, 0) and p4 = (π, (1 −
a2)π, 0, 0). The character of these points depends on ν = ǫd. Without loosing
generality we consider ν > 0. If ν < 0 then ψ2 → ψ2 − π and ǫ → −ǫ reduces
the system to a Hamiltonian system defined by (4.3) with ν > 0. Considering
|ǫ| small enough one has, for ν > 0, that the point p1 is hyperbolic-hyperbolic,
p2 is hyperbolic-elliptic, p3 is elliptic-hyperbolic and p4 is elliptic-elliptic.

The system (4.3) is reversible, the involutions

R0(ψ1, ψ2, J1, J2) = (2π − ψ1,−2πa2 − ψ2, J1, J2),

R1(ψ1, ψ2, J1, J2) = (2π − ψ1, 2π(1− a2)− ψ2, J1, J2),

reverse the direction of the vector field. The fixed points of the involution Rk
form a plane Pk, where

P0 = {ψ1 = π, ψ2 = −πa2 },
P1 = {ψ1 = π, ψ2 = π(1 − a2) }.

We will use the reversibility to obtain stable manifolds from unstable ones. The
intersection of an unstable manifold with Pk, k = 0, 1, consists of homoclinic
points. Later in this section we establish existence of homoclinic points and
study their transversality properties which are responsible for the creation of
chaotic dynamics.

For ǫ = 0 the variable ψ2 is cyclic and J2 is a first integral of motion in-
dependent of the Hamiltonian (4.3). For each value of J2 the dynamics in the
variables ψ1, J1 is governed by the classical pendulum Hamiltonian

H0
1 =

J2
1

2
+ cos(ψ1) , (4.5)

which is 2π-periodic in ψ1. We note that the cylinder Π0
0 = {ψ1 = 0, J1 = 0}

is a normally hyperbolic invariant manifold (NHIM) and the dynamics on this
manifold is given by

ψ̇2 = dJ2, J̇2 = 0. (4.6)

So the cylinder Π0
0 is foliated by periodic orbits C0

h which lie at the intersection of
the 2D cylinder Π0

0 and a 3D energy level H = h, where H refers to Hamiltonian
(4.3) with ǫ = 0.

The cylinder Π0
0 has stable and unstable invariant manifolds. The unstable

manifold is given explicitly as a graph

J1 = 2 sin
ψ1

2
.

For a small |ǫ| > 0, the normal hyperbolicity theory [22, 23, 24] implies the exis-
tence of a 3-dimensional NHIM close to Wu(Π0

0), which is an unstable manifold
Wu(Π0

ǫ ) of an invariant cylinder Π0
ǫ located near Π0

0. Note that the classical the-
ory of normal hyperbolicity is applicable to compact manifolds only. In order to
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satisfy this requirement we implicitly assume all consideration to be conducted
in a compact invariant subset |H |≤const. See [25, 17] for a suitable formulation
of the persistence theorems adapted to this particular case.

Since Wu(Π0
ǫ ) depends smoothly on ǫ and the unperturbed manifold in-

tersects the symmetry planes Pk transversely along the line {ψ1 = π, ψ2 =
π(k − a2), J1 = 2}, the implicit function theorem implies that Wu(Π0

ǫ ) ∩ Pk
contains a line close to the unperturbed one. This line consists of homoclinic
points of the system (4.4). Note that, for a given value of J2, these points be-
long to different levels of the energy, and they come from different orbits in the
NHIM. In order to analyse transversality of the homoclinic points, we can look
for Wu(Π0

ǫ ) in the form of a graph:

J1 = 2 sin
ψ1

2
+ ǫf(ψ1, ψ2, J2; ǫ) . (4.7)

Since this graph is invariant, the normal vector

n = (cos ψ1

2 + ǫ∂ψ1
f, ǫ∂ψ2

f, −1, ǫ∂J2
f)

should be orthogonal to the vector field (4.4). Expanding the orthogonality
condition in powers of ǫ we conclude that f0 = f(ψ1, ψ2, J2; 0) must satisfy the
following first order linear partial differential equation:

2 sin ψ1

2 ∂ψ1
f0 + cos ψ1

2 f0 + dJ2∂ψ2
f0 − a2 sin(ψ2 + a2ψ1) = 0 .

Using the method of the characteristics we obtain the unique solution of this
equation which is regular at ψ1 = 0

f0 =
1

2 sin ψ1

2

∫ ψ1

0

g(s, ψ2 + dJ2 log[tan(
s
4 )/ tan(

ψ1

4 )]) ds, (4.8)

where g(ψ1, ψ2) = a2 sin(ψ2 + a2ψ1). The graph representation (4.7)–(4.8) of
Wu(Π0

ǫ ) also includes the invariant cylinder

Π0
ǫ =

{

ψ1 = ǫg1(ψ2, J2), J1 = ǫg2(ψ2, J2)
}

,

which is located O(ǫ)-close to Π0
0. A direct computation gives

g1(ψ2, J2) =
−a2 sin(ψ2)

1 + d2J2
2

+O(ǫ), g2(ψ2, J2) =
−dJ2a2 cos(ψ2)

1 + d2J2
2

+O(ǫ).

We note that the system (4.3) also has an invariant cylinder Π2π
ǫ close to Π2π

0 =
{ψ1 = 2π, J1 = 0}, which can be obtained by application of the reversible
symmetry:

Π2π
ǫ = Rk(Π

0
ǫ ) .

The same cylinder is obtained for k = 0 and k = 1. We note that the Hamilto-
nian (4.3) is not periodic in ψ1, but it is obtained from the system (4.2), which
is indeed periodic in both angles ψ1 and ψ2. In the original coordinates the
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cylinders Π0
ǫ and Π2π

ǫ coincide modulus 2π in angle variables. For that rea-
son we will use the word “homoclinic” (and not “heteroclinic”) for points in
Wu(Π0

ǫ ) ∩W s(Π2π
ǫ ).

For ǫ = 0, one has Wu(Π0
0) = W s(Π2π

0 ). In order to study the splitting
of the separatrices for |ǫ| > 0 we consider the intersection of Wu(Π0

ǫ ) with the
section ψ1 = π. The implicit function theorem implies that this intersection
is diffeomorphic to a cylinder. Moreover, (4.7) implies that the intersection is
given by

J1 = 2 + ǫf0(π, ψ2, J2) +O(ǫ2) . (4.9)

Using (4.8) and the reversibility with respect to R0 (or R1) we write the differ-
ence between the stable and unstable separatrices on the section in the form

Js1 − Ju1 = ǫ
(

f0(π,−2πa2 − ψ2, J2)− f0(π, ψ2, J2)
)

+O(ǫ2)

= ǫA(J2) sin(ψ2 + πa2) +O(ǫ2),

where

A(J2) = a2

∫ π

0

cos
(

a2(s− π) + dJ2 log[tan(
s
4 )]
)

ds . (4.10)

The reversible symmetry implies that the difference vanishes precisely for ψ2 =
−πa2 (mod π), therefore the separatrices intersect along the lines

ℓ0 = { (ψ1, ψ2, J1, J2) : J1 = 2 + ǫf(ψ1, ψ2, J2; ǫ), ψ1 = π, ψ2 = −πa2 }
ℓ1 = { (ψ1, ψ2, J1, J2) : J1 = 2 + ǫf(ψ1, ψ2, J2; ǫ), ψ1 = π, ψ2 = π(1− a2) } .

A straightforward computation shows that the intersections are transversal pro-
vided A(J2) 6= 0 and |ǫ| > 0 is sufficiently small.

For J2 = 0 we can compute the integral explicitly obtaining A(0) = sin(πa2),
and consequently the intersections are transversal in a neighbourhood of J2 = 0
provided a2 /∈ Z. For values of J2 > 0, we can numerically evaluate the integral
A(J2) (the change t = log(tan(s/4)) is advisable). For these purposes, we
introduce J̃2 = dJ2 and we can write

A(J2) = 4a2

∫ 0

−∞
cos
(

a2(4 arctan(exp(t)) − π) + J̃2t
) 1

exp(t) + exp(−t) dt .

The Fig. 3 shows the lines that the zeros of A(J2) describe in the (a2, J̃2)-
plane. Note that for any weak double resonance we get some concrete values
a2 and d. Then, from the computations shown in Fig. 3 we conclude that
the manifolds W s(Π0

ǫ) and W s(Π2π
ǫ ) intersect transversally except for some

concrete values of J2. Moreover, the numerical computations show that the
lines in Fig. 3 accumulate to the set of half-integer values as J̃2 → +∞. Hence,
one has evidence that, for a fixed value of a2, the number of zeros of A(J2) is
finite. In particular for a2 ≤ 1/2 the function A(J̃2) has no zeros.

To compare the result of the computation of A(J2) with direct numerical
results we have computed some periodic orbits on the circulation domain of
the NHIM and then the corresponding manifolds and splitting. Certainly these
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Figure 3: Set of lines for which the integral A(J2), given by (4.10), vanishes. The rescaled
coordinate J̃2 = dJ2 ranges in the horizontal axis while a2 ranges in the vertical one. See the
text for details.

periodic orbits have not a constant value of J2, but the variations are only
O(ǫ) for finite values of J2 (either positive of negative). For a test case, we
set d = 1 and a2 = 2.75. The plots in Fig. 4 show the value of A(J2)/(4a2)
(solid lines) and the angle between the stable and unstable manifolds at the
homoclinic point ψ2 = −πa2 divided by 4a2ǫ for ǫ = 0.001 (discontinuous lines)
and ǫ = 0.01 (dotted lines). Note that the value for ǫ = 0.001 coincides so well
with the theoretical prediction that the discontinuous lines are almost coincident
with the continuous ones.
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Figure 4: The theoretical splitting Js
1 − Ju

2 for a = 2.75, d = 1 and different ranges of J2 and
the numerically computed values for ǫ = 0.001 and ǫ = 0.01. See the text for details about
the scaling factors and the line codes used in the plots.

The following considerations imply that in what concerns to the homoclinic
orbits the majority of the detected ones are bi-asymptotic to a periodic orbit
on the cylinder, but the ones at the corresponding concrete energy value of the
hyperbolic equilibrium p1 (at the origin) are bi-asymptotic to p1. In particular,
we note that for ǫ = 0 the system (4.3) has homoclinic trajectories to the
point p2 = (0, π, 0, 0) (related to the separatrices of the pendulum (4.5)). This
point becomes hyperbolic-elliptic for small |ǫ| > 0 and, consequently, has one
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dimensional stable and unstable manifolds which are close to the unperturbed
homoclinic orbit. Nevertheless, we will see that the perturbed system does
not have a homoclinic orbit close to the unperturbed ones, i.e., the homoclinic
connections are destroyed by the perturbation.

On the other hand, the Hamiltonian dynamics preserves energy and it is
therefore important to see if the transversality of the invariant manifoldsWu(Π0

ǫ)
andW s(Π2π

ǫ ) implies existence of transversal homoclinic orbits in various energy
levels.

We note that Π0
ǫ is a two-dimensional invariant symplectic manifold and

hence the restriction of the system on this manifold is a Hamiltonian system with
one degree of freedom. Such systems are integrable and therefore a complete de-
scription of the restricted dynamics is possible: the cylinder consists of domains
filled with periodic orbits separated by separatrices. Indeed, ψ1, J1 = O(ǫ) on
the cylinder and the equation (4.3) implies that the restriction of H on Π0

ǫ is
given by

H0
2,ǫ(ψ2, J2) = d

J2
2

2
+ ǫ cos(ψ2) + 1 +O(ǫ2), (4.11)

where (ψ2, J2) are used as coordinates on the cylinder. Therefore, for ǫ = 0
the cylinder Π0

0 is foliated by invariant lines J2 = const, all lines are periodic
orbits except for the line J2 = 0 which consists of equilibria. The perturbed
system has on Π0

ǫ a O(
√
ǫ)-small pendulum-like separatrix loop and periodic

orbits inside this loop (see Fig. 5).
The cylinder Π0

ǫ also contains the two equilibria p1 = (0, 0, 0, 0) and p2 =
(0, π, 0, 0) of the system. Let h1 = H(p1) = 1+ǫ be the energy of the hyperbolic
equilibrium and h2 = H(p2) = 1− ǫ be the energy of the hyperbolic-elliptic one.
Note that h2 is the minimal value of H on Π0

ǫ , but this value is larger than the
global minimum of H which equals to the energy h4 = H(p4) = −1 − ǫ at the
totally elliptic fixed point p4 = (π, (1 − a2)π, 0, 0).

The separatrix loop has the energy h1. Let C
ǫ
h denote a periodic orbit in Π0

ǫ

with energy h. If h > h1 there are two periodic orbits with the same energy, one
has J2 > 0 and the other J2 < 0. If h ∈ (h2, h1), there is exactly one periodic
orbit Cǫh which crosses the axis J2 = 0 twice. See Fig. 5 for a representation.

-1

-0.5

 0

 0.5

 1

 0  pi  2pi

p1 p2

Π0
ǫ

ψ2

J2

Figure 5: Sketch of the pendulum structure born at Π0
ǫ for |ǫ| > 0. For h > h1 there are two

rotational curves Cǫ
h
, at h = h1 there is the separatrix related to p1 and for h2 < h < h1

there is a librational curve Cǫ
h
.
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Any point p ∈ ℓk with k = 0 or 1 is homoclinic to the cylinder Π0
ǫ , and, since

the energy is preserved, it is homoclinic to Cǫh with h = H(p). More precisely,
it belongs to Wu(Cǫh)∩W s(Rk(C

ǫ
h)). Suppose, W

u(Π0
ǫ ) and W

s(Π2π
ǫ ) intersect

transversely at p. Does it imply that the separatrices of the periodic orbit Cǫh
intersect transversally inside the energy level {H = h }?

In order to answer this question we note that the intersection of the tangent
spaces TpW

u(Π0
ǫ )
⋂

TpW
s(Π2π

ǫ ) is two-dimensional and can be spanned by two
vectors: one is the Hamiltonian vector field XH(p) and the other one is a vector
vp ∈ Tpℓk, tangent to the line of homoclinic points ℓk. On the other hand

p ∈Wu(Cǫh) ∩W s(Rk(C
ǫ
h)).

This intersection is transversal inside the energy level iff the intersection

TpW
u(Cǫh) ∩ TpW s(Rk(C

ǫ
h))

is one dimensional. Equivalently, it is spanned by XH(p) as this vector is
obviously tangent to any invariant manifold. Since

TpW
u(Cǫh) ∩ TpW s(Rk(C

ǫ
h)) = Tp{H = h } ,

the transversality condition is satisfied iff Tpℓk /∈ Tp{H = h }.
We note that Tpℓk ∈ Tp{H = h } iff p is a critical point of the Hamiltonian

H restricted onto ℓk. Substituting (4.9) with ψ2 = π(k − a2) into (4.3) we get
an approximation

H = d
J2
2

2
+ 2ǫf0(π, π(k − a2), J2) + 1 + (−1)kǫ+O(ǫ2) .

Consequently, the only critical point for d > 0 (resp. d < 0) is the minimum
(resp. maximum) at J2 = O(ǫ). The corresponding critical values are H = Ek
with

Ek = 1 + ǫ(−1)k cosπa2 +O(ǫ2).

Therefore if H(p) = Ek, the transversal homoclinic orbit (considered as an
intersection of the stable and unstable manifolds of the normally hyperbolic
cylinder) is not transversal as an intersection inside the fixed energy level. More-
over, as Ek is the minimum (resp. maximum) of H on ℓk, it is obvious that
ℓk ∩Wu(Cǫh) = ∅ for h < Ek (resp. h > Ek). Note that h2 < Ek < h1 provided
that a2 /∈ Z and |ǫ| is small enough.

Remark 4.1. For the rotational invariant curves on Π0
ǫ one has |h| > h1

and the condition A(J2) 6= 0 immediately implies that the intersection between
Wu(Π0

ǫ ) and W
s(Π2Π

ǫ ) is transversal inside the energy level. For fixed values of
a2 and d, and according to the computations shown in Fig. 3, the intersection
is transversal for negative large enough values of J̃2. Transversality also holds
for positive large enough values of J̃2 provided a2 6= k/2, k ∈ Z. Note also
that (4.10) is a one-frequency oscillatory integral then, for values of |J2| large
enough, one has |A(J2)| ≤ c1 exp(−c2J2).
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In particular, let us consider h = h1 = H(p1) = 1 + ǫ. Note that this is
the degenerated case: C0

h is a curve of fixed points and Cǫh corresponds to the
separatrices of the pendulum (4.11). Then we have seen that for ǫ small enough
the manifoldsWu(Π0

ǫ ) andW
s(Π2π

ǫ ) intersect transversally. On the other hand,
one has Ek < h1 and hence the intersection ofWu,s(Cǫh) andW

s,u(Rk(C
ǫ
h=1+ǫ))

is also transversal within the energy level H = h1. For ǫ = 0.1, a2 = 0.25 and
d = 0.5 we represent the invariant manifolds associated with Cǫh in Fig. 6.
We clearly observe a transverse intersection between the related manifolds. By
means of a Melnikov perturbative techniques [26, 25] but dealing with series
in the natural parameter µ =

√
ǫ, one obtains that the angle between these

manifolds is indeed O(µ), see [17] for the details.
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Figure 6: We consider ǫ = 0.1, a2 = 0.25, d = 0.5 and h = 1 + ǫ. In the left plot, we show
Wu(Cǫ

h
) and W s(Rk(C

ǫ
h=1+ǫ

)). In the right plot, we show W s(Cǫ
h
) and Wu(Rk(C

ǫ
h=1+ǫ

)).

The grey scale colour in both plots indicates the value of the (omitted in the plots) action J1.

When we follow the family of periodic orbits Cǫh as the energy h decreases we
see the following bifurcation when h decreases crossing Ek: initially ℓk∩Wu(Cǫh)
consists of two homoclinic points which collide when h = Ek and disappear. In
particular, for a2 /∈ Z, Ek > h2 and there are no primary homoclinic orbits to the
hyperbolic elliptic fixed point p2 = (0, π, 0, 0) which is close to the unperturbed
pendulum separatrix.

Remark 4.2. Note, however, that we cannot exclude the existence of multi-
bump homoclinic orbits to p2 for some values of the parameters. These type of
homoclinic trajectories perform several passages close to the NHIM before tend
to it asymptotically, see Fig. 13 for a simple example of a 2-bump orbit for a
4D map. We refer to [27, 11, 10] and [28] for different types of multibump
homoclinic trajectories.

4.2. Numerical evidence of non-analyticity of the invariant cylinder

We have seen that model (4.3) and, consequently, the original system de-
scribed by (4.2) possesses an invariant cylinder Π0

ǫ which is normally hyperbolic.
At ǫ = 0 this cylinder is analytic. As a rule, it is not an easy task to determine
the lack of analyticity and the degree of smoothness of an invariant manifold.
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This is due to the fact that analyticity is indeed a global property. Our goal
in this section is to show how to proceed in order to detect the lack of ana-
lyticity of Π0

ǫ from a simple numerical experiment. Certainly there are other
(more sophisticated) ways to detect non-analyticity. For example, in [29] the
non-analyticity of a normally hyperbolic invariant curve was studied in terms
of the decay properties of Fourier coefficients. Here, however, our criterion re-
lies simply on a numerical integration of a concrete trajectory. Moreover, an a
posteriori check shows that, as it is generically expected, Π0

ǫ is a Cr-manifold
with r = λ̃1/λ̃2 the quotient of the normal and tangent maximal Lyapunov
exponents.

First we need to explain the information we are going to use detecting the
non-analyticity of the invariant cylinder. We denote by XH the vector field

ψ̇1 = J1 + a2J2, ψ̇2 = a2J1 + a3J2
J̇1 = sin(ψ1), J̇2 = ǫ sin(ψ2),

(4.12)

generated by the Hamiltonian (4.2). In the original coordinates of (4.2), the
unperturbed invariant cylinder Π0

0 is given by ψ1 = 0, J1 + a2J2 = 0. As
stated before, Fenichel’s normal hyperbolicity theory assures the persistence of
a smooth (compact) cylinder Π0

ǫ for 0 < |ǫ| < ǫ0 which is generically expected
to be non-analytic.

Let us state the basic theoretical facts on which our numerical experiments
rely on. The equation (4.12) has an equilibrium at the point p1 ∈ Π0

ǫ . Recall
that p1 = (0, 0, 0, 0). The spectrum of the differential of XH at p1 is given
by SpecDXH(p1) = {λ̃1, λ̃2,−λ̃1,−λ̃2}, where λ̃1 = 1 + a22ǫ/2 + O(ǫ2) and
λ̃2 =

√
ǫd+O(ǫ3/2). Denote by Λ̃ = (λ̃1, λ̃2).

The 2D unstable invariant manifold Wu(p1) of the hyperbolic point p1 in-
tersects the NHIM Π0

ǫ transversally and defines an invariant 1D submanifold

which, from now on, will be denoted by W
u,Π0

ǫ

slow (p1) to stress that it lies on Π0
ǫ .

This 1D submanifold, for |ǫ| > 0, corresponds to the separatrices of the slow
pendulum (4.11) within Π0

ǫ .
We say that an 1D invariant submanifold Wu

slow(p1) ⊂Wu(p1) is a slow un-
stable invariant manifold if it is tangent at p1 to an eigenvector related to the
slow eigenvalue λ̃2. It is easy to see that there are infinitely many slow unsta-

ble invariant manifolds. In particular, W
u,Π0

ǫ

slow (p1) is a slow unstable invariant
manifold.

The following two basic observations are essential for our numerical experi-
ments.

1. If Π0
ǫ is an analytic manifold then W

u,Π0
ǫ

slow
(p1) is analytic.

If Π0
ǫ is an analytic invariant manifold, the restriction of (4.12) onto Π0

ǫ

defines an analytic (Hamiltonian) planar vector field. This planar vector
field has a non-degenerated saddle point with eigenvalues ±λ̃2 and the
corresponding stable and unstable invariant manifolds are one-dimensional
and analytic. We note that this unstable manifold must coincide with

W
u,Π0

ǫ

slow (p1) because both lye on Π0
ǫ and are invariant.
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2. If Λ̃ is non-resonant, then there is a unique analytic slow unstable invari-
ant submanifold Wu

slow
(p1) which will be denoted by Wu,ω

slow
(p1). On the

other hand, if Λ̃ is resonant then generically all slow unstable submani-
folds are non-analytic.
The restriction of (4.12) to the 2D unstable manifold Wu(p1) defines a
planar analytic vector field with (0, 0) as a repulsive fixed point.
Assume that the eigenvalues λ̃1 > λ̃2 > 0 of this fixed point are non-
resonant, i.e. λ̃1/λ̃2 ∈ R \ N. Then the vector field is analytically conju-
gated to the linear vector field ṡ1 = λ̃1s1, ṡ2 = λ̃2s2. The solutions of this
linear vector field describe curves which can be parametrized in the form

s1 = Cs
λ̃1/λ̃2

2 (or s2 = Ĉs
λ̃2/λ̃1

1 ), with C ∈ R (Ĉ ∈ R) a constant, which
are non-analytic with the particular exceptions of the solutions s1 = 0
(i.e., C = 0) and s2 = 0 (i.e., Ĉ = 0). By the analytic conjugation, the
solution with s1 = 0 corresponds to an analytic Wu

slow(p1). The idea be-
hind our numerics below is to show that this solution is not contained in
Π0
ǫ , meaning that the analyticWu

slow(p1) does not coincide withW
u,Π0

ǫ

slow (p1)

and, furthermore, that W
u,Π0

ǫ

slow (p1) is not analytic.

If a resonant relation λ̃1 = kλ̃2, with k ∈ N, holds, then Λ̃ belongs to
the so-called Poincaré domain [30]. Such a resonant relation implies, at
most, the presence of one resonant term in the normal form of the vector
field. Concretely, the restriction of (4.12) to Wu(p1) can be analytically
conjugated (Poincaré’s theorem) to

ṡ1 = λ̃1s1 + νsk2 ,

ṡ2 = λ̃2s2.

Assuming ν 6= 0, the solutions s1 = νsk2(log(s2) + C)/λ̃2 describe non-
analytic curves, with the only exception of the solution s2 = 0. In partic-
ular, any Wu

slow(p1) is non-analytic, meaning that Π0
ǫ is also non-analytic.

Otherwise, if ν = 0 (degenerate resonant case) all the solutions define
analytic curves in the (s1, s2)-plane and we expect the manifold Π0

ǫ to be
analytic.

From the previous considerations it follows that:

• If Λ̃ is resonant then Π0
ǫ is generically non-analytic.

• If Λ̃ is non-resonant then the analyticity of Π0
ǫ implies W

u,Π0
ǫ

slow (p1) =
Wu,ω

slow(p1) by uniqueness of the analytic invariant unstable manifold.

As a conclusion, we observe that it is enough to consider the generic non-
resonant case and to numerically check that the analytic Wu,ω

slow(p1) leaves the

cylinder Π0
ǫ . Then it follows that W

u,Π0
ǫ

slow (p1) 6= Wu,ω
slow(p1) and, consequently,

that Π0
ǫ is non-analytic. We remark that the tangency order between the ana-

lytic solution s1 = 0 and the other solutions of the linear vector field ṡ1 = λ̃1s1,
ṡ2 = λ̃2s2 is r∗ = λ̃1/λ̃2. Hence, in order to detect the difference between
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Figure 7: Left: Natural logarithm of the coefficients ψ
(1)
k
, ψ

(2)
k
, J
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k

for 1 ≤ k ≤ 1000 (k
ranges in the x-axis). Right: Detail of the left plot for 1 ≤ k ≤ 41.

the solutions it is necessary to compute an approximation of Wu,ω
slow(p1) of order

k > r∗. Numerical errors, due to the use of double precision for example, might
imply that a higher order is necessary.

Let us proceed with our numerical experiments. We have considered a2 =
0.25 and a3 = 0.5625 (hence d = 0.5). To fix ideas, below we illustrate the lack
of analyticity of the NHIM Π0

ǫ for ǫ = 0.1. For these values of the parameters
one has λ̃1 ≈ 1.003282954 and λ̃2 ≈ 0.222875109. Then r∗ ≈ 4.501547788 and
Λ̃ is clearly non-resonant. The slow direction at p1 is defined by the normalized
eigenvector v2 ≈ (−0.0238567, 0.9068679, −0.1070409, 0.4068951). We com-
pute the parametric representation g(s) = (ψ1(s), ψ2(s), J1(s), J2(s)), s ∈ R, of
Wu

slow(p1). The parameter s ∈ R denotes here a local parameter alongWu
slow(p1)

and we look for a series representation of the form ψi(s) =
∑

k≥1 ψ
(i)
k sk, Ji(s) =

∑

k≥1 J
(i)
k sk, i = 1, 2 which (formally) verifies the invariance condition. Unique-

ness of the series is obtained by requiring ‖g′(s)‖2 = 1, hence the first order
coefficients coincide with the components of v2.

It is a routine task to compute the coefficients ψ
(i)
k , J

(i)
k . The behaviour of

the coefficients up to k = 1000 is shown in Fig. 7. The symmetries of the vector

field (4.12) imply that all the coefficients ψ
(i)
k , J

(i)
k vanish for even values of k.

Using double precision arithmetic it is enough to consider the coefficients up
to k = 120. Then one checks that the obtained series give a representation of
Wu

slow(p1) with an error below 10−15 for |s| < s∗ ≈ 0.3635. We use values up to
s∗ = 0.36 and we represent for s < s∗ the manifold Wu

slow(p1) by the sum of the
series. Finally, we propagate the manifold by integrating the vector field, using
a Taylor method, taking as initial condition the sum of the series for s = s∗.
The trajectory obtained is shown in Fig. 8. The most relevant fact is that the
trajectory leaves the neighbourhood of the invariant cylinder, meaning that the

computed Wu
slow(p1) does not coincide with W

u,Π0
ǫ

slow (p1). This can be checked
even from the series representation of the trajectory inside the domain where
the representation is accurate, that is, for values of s < s∗. In the figure we also
represent the homoclinic trajectory lying on Π0

ǫ . Note that both trajectories are
tangent at p1 as it was expected.

As next step, we look for the parametric representation of the form g(s1, s2) =
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Figure 8: Left: The thick (red) line starting at p1 corresponds to the analytic Wu
slow(p1)

computed as the sum of the series while the thin (red) line emanating from it correspond to
the numerical propagation of the analytic Wu

slow(p1). The thin line (blue) which stays close to

ψ1 = 0 corresponds to W
u,Π0

ǫ
slow (p1), and hence to a non-analytic Wu

slow(p1). Right: Projection
onto the (ψ1, ψ2)-plane of the left figure.

(ψ1(s1, s2), ψ2(s1, s2), J1(s1, s2), J2(s1, s2)) of the 2D unstable invariant mani-
fold Wu(p1). That is, we compute the coefficients of the series ψi(s1, s2) =
∑

k,l≥1 ψ
(i)
k,ls

k
1s
l
2, Ji(s1, s2) =

∑

k,l≥1 J
(i)
k,ls

k
1s
l
2, i = 1, 2, by (formally) impos-

ing the invariance condition (we normalise the first order coefficients to have
‖(∂g/∂s1)(s1, s2)‖2 = ‖(∂g/∂s2)(s1, s2)‖2 = 1). It turns out that the truncated
series up to order 20 are enough to have a good representation (i.e. with an
error below 10−15) of Wu(p1) for s = (s1, s2) in the ball of radius s∗ ≈ 0.282
around p1, for the values of ǫ, a2 and d used in this computation.

The direction s1 = 0 corresponds to the analytic slow unstable manifold

Wu,ω
slow(p1). Next, we compute W

u,Π0
ǫ

slow (p1), that is, we look for the non-analytic
1D submanifold of Wu(p1) within Π0

ǫ . The homoclinic point which lies on
Π0
ǫ should have ψ1 = 0, ψ2 = π due to the reversibility of the vector field

(4.12). Hence, we take initial conditions s = (0, s2), with 0 < s2 < 0.8 s∗ and
we integrate the corresponding point on Wu(p1), using a Taylor method with
double precision arithmetics, until we reach the Poincaré section ψ2 = π, and
then we refine s1 to get ψ1 = 0. The values of s1, s2 obtained are shown in
Fig. 9, where we also show that s1 = sr∗2 , with r∗ = λ̃1/λ̃2. In particular, we

clearly see that W
u,Π0

ǫ

slow (p1) does not coincide with s1 = 0 hence it cannot be
analytic.

To sum up, the numerical experiments above provide a strong numerical
evidence supporting the following conjecture: for ǫ = 0.1, a2 = 0.25 and a3 =
0.5625, the system (4.12) has a C4 NHIM Π0

ǫ which is not of class C5.
In a similar way, taking a suitable value of ǫ and under generic conditions,

we could provide explicit examples of normally hyperbolic invariant manifolds
Π0
ǫ of (4.12) which are Cr but not Cr+1.
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Figure 9: Left: We represent the values of (s1, s2) corresponding to the homoclinic trajectory
on Π0

ǫ (s1 ranges in the horizontal axis, see text for details). Centre: The points represent
log(s1), ranging in the vertical axis, as a function of log(s2). The thin line represents the
function f(x) = 4.501547787937669 x− 5.55007880852. Right: Error | log(s1)− f(log(s2))| as
a function of log(s2).

5. Beyond Normal Form theory: a 4D standard-like map

In this section we will describe some numerical results related to a map
describing the dynamics at a weak double resonance. Starting from the Hamil-
tonian function H(ψ1, ψ2, J1, J2) in (4.2) we consider the generating function

S(ψ1, ψ2, J1, J2) = ψ1J̄1 + ψ2J̄2 + δH(ψ1, ψ2, J1, J2).

The relations Ji = ∂S/∂ψi, ψ̄i = ∂S/∂J̄i, i = 1, 2, define the family of maps

Tδ :









ψ1

ψ2

J1
J2









→









ψ̄1

ψ̄2

J̄1
J̄2









=









ψ1 + δ(J̄1 + a2J̄2)
ψ2 + δ(a2J̄1 + a3J̄2)

J1 + δ sin(ψ1)
J2 + δǫ sin(ψ2)









(5.1)

which can be seen as a 4D generalisation of the Chirikov standard map family,
see [31].

The map (5.1) has a generic weak double resonance and the dynamics around
such a resonance is then approximately described by the Hamiltonian flow XH

in (4.12). Note, however, that the map breaks down the symmetries imposed by
the normal form. The following geometrical property is a consequence of this
fact. Normal hyperbolicity theory implies that the NHIM Π0

ǫ , which persists for
0 < |ǫ| < ǫ0 in the phase space of XH , also persists into a NHIM Π0

ǫ,δ within the

phase space of the map (5.1) for 0 < |δ| < δ0. While the separatricesW
u,Π0

ǫ

slow (p1)

and W
s,Π0

ǫ

slow (p1) for the vector field coincide, it turns out that the separatrices

W
u,Π0

ǫ,δ

slow (p1) and W
s,Π0

ǫ,δ

slow (p1) of the hyperbolic-hyperbolic point p1 = (0, 0, 0, 0)
corresponding to the slow pendulum within Π0

ǫ,δ split. We remark that these
invariant manifolds (the separatrices) are expected to be non-analytic (see dis-
cussion in Section 4.2 concerning the non-analyticity of the related invariant
manifolds for the flow).

Note, on the other hand, that this splitting of separatrices has important
dynamical consequences because, in particular, it is related to the existence
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of Arnold diffusion for the map: trajectories can cross through the different
Hamiltonian energy surfaces defined by (4.2). Nevertheless, we believe that
the role that this splitting plays in the Arnold diffusion is not completely clear
nowadays. For example, for a2 = 0 the corresponding manifolds also split
but there is not diffusion because the system is uncoupled. In any case, in
the following subsection we analyse this splitting of (generically expected non-
analytic!) invariant manifolds and we show that asymptotically, for δ → 0, this
splitting has an exponentially small behaviour.

Let us briefly comment on some properties of the map (5.1) that will be
used later. The map (5.1) has four fixed points p1 = (0, 0, 0, 0), p2 = (π, 0, 0, 0),
p3 = (0, π, 0, 0) and p4 = (π, π, 0, 0). We shall consider ν = ǫd > 0, d = a3 − a22
(consider ǫ 7→ −ǫ and ψ2 7→ ψ2 − π otherwise). For ν > 0, |ǫ| << 1 and δ . 2,
p1 is a hyperbolic-hyperbolic point, p2 is elliptic-hyperbolic, p3 is hyperbolic-
elliptic and p4 is a totally elliptic fixed point.

Moreover, the map (5.1) is reversible with respect to the planes ΣR1
=

{ψ1 = 0, ψ2 = π}, ΣR2
= {ψ1 = π, ψ2 = π}, and ΣR3

= {ψ1 = π, ψ2 = 0}.
The corresponding reversibilities Ri, i = 1, . . . , 3 (we recall that F admits the
reversibilityR if R◦F ◦R−1 = F−1) are given by R1(ψ1, ψ2, J1, J2) = (−ψ1, 2π−
ψ2, J̄1, J̄2), R2(ψ1, ψ2, J1, J2) = (2π−ψ1, 2π−ψ2, J̄1, J̄2) and R3(ψ1, ψ2, J1, J2) =
(2π − ψ1,−ψ2, J̄1, J̄2), respectively. The invariant manifolds of the hyperbolic-
hyperbolic point Wu/s(p1) generically intersect ΣRi in a homoclinic point (a
fixed point of the reversibility).

In the following sections we are interested in primary homoclinic trajecto-
ries to p1, that is, trajectories which under iteration are asymptotic to p1 for
n → ±∞ and without extra passages close to p1. The points on ΣRi can have
any values of J1 and J2 while ψ1, ψ2 mod (2π) is one of the following pairs:
(ψ1, ψ2) = {(0, π), (π, 0), (π, π)}. There are two primary homoclinic trajectories
with a homoclinic point in ΣRi , i = 1, 2, 3, one for each pair of branches of the
2D manifoldsWu/s(p1). Therefore, there are 6 primary homoclinic trajectories.
We show the three basic types of homoclinic trajectories for the values of the
parameters δ = ǫ = 0.1 and a2 = 0.25, a3 = 0.5625 in the Figs. 10, 11 and 12.

We remark that the trajectory with a homoclinic point in ΣR1
corresponds

to the separatrices of the slow pendulum in Π0
ǫ,δ. However, we do not require

that the NHIM persists for the values of ǫ considered.
On the other hand, there are infinitely many non-primary homoclinic tra-

jectories with homoclinic points in ΣR2
and ΣR3

. A simple example is shown in
Fig. 13.

5.1. Empirical formula for the volume at a homoclinic point on ΣR1

Let us consider primary homoclinic trajectories having a homoclinic point in
ΣR1

, i.e., with (ψ1, ψ2) = (0, π). See Fig. 10 for an illustration of a homoclinic
trajectory like the ones we are considering here.

Denote by {λ̃1, 1/λ̃1, λ̃2, 1/λ̃2}, assuming 1 < λ̃2 < λ̃1, the spectrum of

the differential matrix of Tδ at p1. The related eigenvectors vλ̃1 , vλ̃2 , generate
Wu(p1). The homoclinic trajectory we look for is tangent to the linear subspace
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Figure 10: From left to right, we show the projections onto the planes (ψ1, ψ2), (ψ1, J1) and
(ψ2, J2) of the primary homoclinic trajectory which has an homoclinic point in ΣR1
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Figure 11: From left to right, we show the projections onto the planes (ψ1, ψ2), (ψ1, J1) and
(ψ2, J2) of a primary homoclinic trajectory which has an homoclinic point in ΣR2

, i.e. with
(ψ1, ψ2) = (π, π).

<vλ̃2>. The behaviour of λ̃i, i = 1, 2, with respect to δ is given by

λ̃1(δ) = 1 +

√

(η +
√

−4dǫ+ η2)/2 δ +O(δ2),

λ̃2(δ) = 1 +
√

(η −
√

−4dǫ+ η2)/2 δ +O(δ2),

(5.2)

where η = 1 + a3ǫ (recall that d = a3 − a22).
Let (ψ1, ψ2, J1, J2) = (G1(s1, s2), G2(s1, s2), G3(s1, s2), G4(s1, s2)), s1, s2 ∈

R, be the parametrisation of the local unstable 2D invariant manifold Wu(p1).
Let ph be the homoclinic point and consider (sh1 , s

h
2 ) such that the point with

coordinates (G1(s
h
1 , s

h
2 ), G2(s

h
1 , s

h
2 ), G3(s

h
1 , s

h
2), G4(s

h
1 , s

h
2 )) belongs to the homo-

clinic trajectory defined by ph. To measure the splitting of the manifolds at ph
we compute below the volume V defined by the unitary tangent vectors vj =
ṽj/‖ṽj‖ where ṽ1(s

h
1 , s

h
2 ) = (∂Gi/∂s1)(s

h
1 , s

h
2), ṽ2(s

h
1 , s

h
2 ) = (∂Gi/∂s2)(s

h
1 , s

h
2 ),

ṽ3(s
h
1 , s

h
2 ) = R1(ṽ1(s

h
1 , s

h
2)) and ṽ4(s

h
1 , s

h
2 ) = R1(ṽ2(s

h
1 , s

h
2 )).

The volume V is a well-defined quantity, invariant along the homoclinic
trajectory, to compute the distance between the 2D invariant manifolds. We
note that, for a fixed ǫ, the angle θ between the vectors v1 and v2 is bounded
from below as δ → 0. Indeed, the map (5.1) tends, as δ → 0, to the time-1 map
associated to the vector field (4.2). Let R > 0 be the radius of convergence of
the normal form of the vector field on Wu(p1) around p1 (see related comments
in Section 4.2). Then, taking as initial condition the one corresponding to
sh = (sh1 , s

h
2 ) with ‖sh‖ = R/2, the time th to get the homoclinic point ph

34



-0.4

-0.2

 0

 0.2

 0.4

 0 pi/2 pi 3pi/2 2pi

ψ2

ψ1

 0

 0.5

 1

 1.5

 2

 0 pi/2 pi 3pi/2 2pi

J1

ψ1

-0.3

-0.2

-0.1

 0

-0.4 -0.2  0  0.2  0.4

J2

ψ2

Figure 12: From left to right, we show the projections onto the planes (ψ1, ψ2), (ψ1, J1)
and (ψ2, J2) of a primary homoclinic trajectory which has an homoclinic point in ΣR3

with
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Figure 13: From left to right, we show the projections onto the planes (ψ1, ψ2), (ψ1, J1) and
(ψ2, J2) of a non-primary homoclinic trajectory which has an homoclinic point in ΣR3

with
(ψ1, ψ2) = (π, 2π). Note that it passes twice close to Π0

ǫ,δ
before it tends asymptotically to

p1.

is finite. Hence, the time-th map defines a diffeomorphism meaning that θ is
bounded from below by a quantity depending on ǫ but independent of δ for
δ → 0. For example, for ǫ = 0.1, the behaviour of θ as δ approaches to zero is
shown in Fig. 14.
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Figure 14: The angle θ (y-axis) as a function of δ (x-axis)for ǫ = 0.1.

For the numerical computations we use through this section the same pa-
rameter values used before

a2 = 0.25 and a3 = 0.5625 (d = 0.5), (5.3)

and we study the evolution of the volume V with respect to δ for different values
of ǫ. This is shown, for ǫ = 0.1, 0.2, . . . , 0.5, in Fig. 15.
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Figure 15: Behaviour of the volume V as a function of δ. In the vertical axis we display the
natural logarithm of the volume while δ ranges in the horizontal one. Taking as a reference the
line log V = −500, from left to right the lines correspond to ǫ = 0.1, 0.2, . . . , 0.5 respectively.

Note that, as the map (5.1) is a near-the-identity map, one can construct
a non-autonomous vector field periodic with respect to the time, analytic with
respect to ψ1, ψ2, J1, J2, such that the time-one map coincides with the diffeo-
morphism. This vector field is a slow vector field and, after a suitable scaling and
several averaging steps with respect to the time variable, it can be written as an
analytic autonomous vector field plus an exponentially small non-autonomous
term (see [32, 33]). Moreover, the changes can be made symplectic in order to
preserve the symplectic structure (see [34]). In particular, the splitting of the
slow stable/unstable separatrices of p1 should be exponentially small in δ, as it
is observed in Fig. 15.

On the other hand, in Section 4.2 we provided a strong evidence of the non-
analyticity of the slow manifold Π0

ǫ of the limit Hamiltonian (4.2), where the
slow stable/unstable separatrices of this limit Hamiltonian are contained. A
similar reasoning can be applied to the map (5.1), for which a NHIM Π0

ǫ,δ close

to Π0
ǫ persists for small values of δ. This NHIM is not expected to be analytic

neither, hence the restriction T̂δ of the family Tδ (5.1) to Π0
ǫ,δ define a non-

analytic family of area-preserving maps. We remark that the classical results
on exponentially small upper bounds of the splitting, see [35], require the family
of maps to be real-analytic and rely on the width of the analyticity strip of the
separatrices of the limit Hamiltonian. Consequently, these results cannot be
applied directly to the situation described. Moreover, we do not require the
NHIM Π0

ǫ,δ to exist, in particular we do not know if it persists for the values of
ǫ and δ considered below.

Our goal in this section is, however, to give a numerical evidence supporting
the fact that the splitting behaves as predicted by the exponentially small upper
bounds for the analytic case. In other words, we want to numerically check that
the behaviour of the volume V as a function of δ is asymptotically described by
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an expression of the form

V (δ) ∼ Aµk2e
−2πImτ̂2/µ2 cos(2πRe τ̂2/µ2) (5.4)

where µ2 = log λ̃2 (recall that λ̃2 denotes the slow unstable eigenvalue of
DTδ(p1) and it is of the form 1 + O(δ)) and τ̂2 is related to the closest sin-
gularity τ2 to the real axis of the corresponding limit homoclinic trajectory of
the limit Hamiltonian (4.2). The symmetries imposed by the Hamiltonian (4.2)
imply that the singularity should be on the imaginary axis of complex time,
hence Re τ̂2 = 0 and the volume is not expected to oscillate.

We note that Tδ ≈ ϕHt=δ, where ϕ denotes the flow of the Hamiltonian system
defined by (4.2). Consider some fixed values ǫ and δ and assume, for the moment
being, that Π0

ǫ,δ persists for these values. If we denote by Ĥ the reduction of

the Hamiltonian function H to Π0
ǫ then T̂δ ≈ ϕĤt=δ. The dominant eigenvalue of

T̂δ is given by λ̃2(δ) in (5.2). In order to apply the result in [35] it is necessary
to compute the singularity τ̂2 of the limit flow given by

ẋ =
1

ρ

(

∂Ĥ

∂y

)

, ẏ =
1

ρ

(

−∂Ĥ
∂x

)

,

being ρ =
√

(η −
√

−4dǫ+ η2)/2, η = 1 + a3ǫ, according to (5.2). We remark

that, if we consider the vector field generated by the Hamiltonian (4.2) and we
denote by τ2 the singularity of the separatrix solution of the limit homoclinic
trajectory which is located closer to the real time axis, then one has τ̂2 = ρτ2
according to the previous scaling.

The singularity τ2 can be easily estimated as follows. On the NHIM Π0
ǫ one

has

ψ1 = −a2 sin
2 ψ2

1 + d2J2
2

ǫ+O(ǫ2), J1 = −a2J2 −
dJ2a2 sinψ2 cosψ2

1 + d2J2
2

ǫ+O(ǫ2).

The restriction of the Hamiltonian (4.2) to Π0
ǫ is given by Ĥ(ψ2, J2) = dJ2

2 /2+
ǫ cos(ψ2) +O(ǫ2) (see (4.11)), from which it follows

τ2 = i
π

2
√
dǫ

(1 +O(
√
ǫ)). (5.5)

We observe that ρ =
√
dǫ (1 +O(ǫ)) and then τ̂2 = iπ/2 +O(

√
ǫ).

On the other hand, we have numerically computed the position of the singu-
larity τ2 of the vector field generated by Hamiltonian (4.2) by a direct integration
(using double precision) along the imaginary direction in time. The results are
shown in Fig. 16. This way to proceed is independent of the persistence of the
NHIM Π0

ǫ .
To illustrate that the volume V behaves as predicted by (5.4) let us con-

sider ǫ = 0.1. Then, according to (5.2), one has λ̃1 ≈ 1 + 1.003283 δ + O(δ2)
and λ̃2 ≈ 1 + 0.222875 δ + O(δ2). We compute, from the limit homoclinic
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Figure 16: The left plot shows the position of the singularity τ2 of the limit separatrix related
to the slow pendulum of the Hamiltonian (4.2). As before, a2 = 0.25 and a3 = 0.5625. The
parameter ǫ ranges on the horizontal axis while Im τ2 is displayed in the vertical one. In the
centre plot we represent τ̂2 = ρτ2. In the right plot we observe that Im τ̂2 ∼ π/2 + α

√
ǫ + βǫ

with α ≈ −0.088462 and β ≈ −0.00970047.
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Figure 17: Behaviour of the volume V for a2 = 0.25 and a3 = 0.5625 and ǫ = 0.1. Left plot:
we represent log V as a function of δ (as in Fig. 15). Right plot: we represent µ2 log V (y-axis)
as a function of µ2 (x-axis), µ2 = log λ̃2.

trajectory of the vector field, the homoclinic point in ΣR1
, which has coordi-

nates (ψ1, ψ2, J1, J2) ≈ (0, π,−0.214258673, 0.89432999). Also numerically, one
obtains that the singularity is given by Im τ2 ≈ 6.917823, hence −2π Im τ̂2 ≈
−9.6874814. For ǫ = 0.1 the behaviour of the volume V (δ) is shown in Fig. 17
left.

Consider µ2 = log λ̃2 and assume that the volume V behaves as V ∼
AµB2 e

C/µ2 , for suitable real constants A,B and C. From the theoretical con-
siderations one expects C = −2π Im τ̂2 ≈ −9.6874814. Then, µ2 logV ∼
Ãµ2 +Bµ2 logµ2 +C, with Ã = logA. The behaviour of µ2 logV as a function
of µ2 is shown in Fig. 17 right. A fit of µ2 logV , for values of µ2 ≤ 0.03, by a
function of the form Ãµ2 + Bµ2 logµ2 + C gives Ã ≈ 3.51303, B ≈ −2.96391
and C ≈ −9.68705. Moreover, if we fix B = −3 and fit the data by a function
of the form Ãµ2 +Dµ2

2 +Bµ2 logµ2 +C we obtain Ã ≈ 3.37029, D ≈ 0.917065
and C ≈ −9.68739, even in better agreement with the theoretical value of C.

Next, we keep fixed a2 and a3, given by (5.3), but we consider ǫ = 0.2.
One has Im τ2 ≈ 4.867549, ρ ≈ 0.3140576 and −2π Im τ̂2 ≈ −9.60504785. We
look, as before, for an optimal fit µ2 logV , for µ2 ≤ 0.03, by a function of the
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ǫ Im τ2 ρ −2π Im τ̂2 Ã B C
0.1 6.917823 0.2228751 -9.687481 3.51303 -2.96391 -9.68705
0.2 4.867549 0.3140576 -9.605047 2.77816 -3.01843 -9.60527
0.3 3.961189 0.3831117 -9.535223 4.61706 -2.98378 -9.53498
0.4 3.421892 0.4404353 -9.469527 5.95829 -2.99494 -9.46945
0.5 3.054466 0.4900253 -9.404456 6.44125 -2.99815 -9.40443

Table 2: The table contains the numerically computed singularity τ2, the scaling ρ, the
predicted theoretical value −2π Im τ̂2 and the values Ã, B and C of the fit µ2 log V ∼ Ãµ2 +
Bµ2 log µ2 + C . See the text for details.

form Ãµ2 + Bµ2 logµ2 + C and we obtain Ã ≈ 2.77816, B = −3.01843 and
C = −9.60527. Again, we observe that B ≈ −3.

Similar checks have been performed for other ǫ values, all of them supporting
the fact that the splitting behaves as predicted by (5.4) and that B ≈ −3. Some
of the results, for values of ǫ = 0.1, 0.2, . . . , 0.5, are summarised in the table 2.

We conclude that, for a2 = 0.25 and a3 = 0.5625 the behaviour of the volume
V agrees with (5.4). Moreover, we conjecture that, for those values of a2 and
a3, the splitting (in terms of the volume V ) of the slow manifolds on the NHIM
Π0
ǫ behaves as

V ∼ A

µ3
2

e−2π Im τ̂2/µ2 (5.6)

for all the values of ǫ, being µ2 = log λ̃2 and A ∈ R a suitable constant. We
recall that Im τ̂2 = π/2 +O(

√
ǫ).

It will be of interest to consider different parameters a2, a3 and obtain pre-
cise asymptotic formulae of this splitting depending on them. For a2 = 0 the
dynamics of the (ψ2, J2) variables is uncoupled. After introducing new coor-
dinates ϕ = ψ2, I = βJ2, with β = δa3 we get the classical Chirikov stan-
dard map (ϕ, I) 7→ (ϕ̄, Ī) = (ϕ + Ī , I + k sinϕ), being k = a3δ

2ǫ. The split-
ting σ for the standard map has been proved to asymptotically behave like
σ ∼ Ah−2 exp(−π2/h), where h = O(

√
k) (see [36, 37]). For fixed ǫ and a3

values, one has h = O(δ). Going back to the original coordinates (ψ2, J2) the
splitting behaves like AµB2 exp(−C/µ2) with B = −3. We believe that the
prefactor A/µ3

2 in the formula (5.6) holds for all values of a2 and a3. Some
preliminary numerical checks supporting this fact have been carried out.

5.2. Numerical computation of the volume at a homoclinic point in ΣR2
or in

ΣR3

Let us consider first a primary homoclinic trajectory with a homoclinic point
in ΣR2

. The same considerations apply also to an homoclinic trajectory with
a homoclinic point in ΣR3

that will be considered later on. See Fig. 11 for an
example of a homoclinic trajectory with a homoclinic point in ΣR2

, that is,
of the type we are considering here. As far as the authors are aware there is
no theoretical framework describing the behaviour of this splitting of the 2D
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Figure 18: Behaviour of the volume V for a2 = 0.25 and a3 = 0.5625 and ǫ = 0.1, 0.2, . . . , 0.5
at the homoclinic point with (ψ1, ψ2) = (π, π), see Fig. 11. We represent logV as a function
of δ, we note that the behaviour is very similar for different values of ǫ. The right plot is
a magnification of the left one where the five computed volumes can be distinguished. For
ǫ = 0.1 we represent µ1 log V (y-axis) as a function of µ1 (x-axis), where µ1 = log λ̃1.

manifolds. Hence, in the following we just describe what is observed in the
numerical computations concerning the behaviour of the volume V .

We remark again that, as the map is near-the-identity, it has a formal inte-
gral of motion which, at first order, is given by the Hamiltonian (4.2). Then,
the volume V (δ) computed at an homoclinic point such that (ψ1, ψ2) = (π, π)
behaves as an exponentially small function in δ.

The volume V is computed exactly in the same way that was explained in
Section 5.1 but, obviously, considering R2 instead of R1. The results, for the
values (5.3) of a2, a3 and for ǫ = 0.1, are shown in Fig. 18. As it is clearly
observed, the volume V behaves as exponentially small with respect to δ.

Our next goal is to provide a numerical evidence supporting the fact that
V (δ) behaves indeed as

V (δ) ∼ Aµk1e
−2πImτ̂1/µ1 (5.7)

with µ1 = log(λ̃1) and where τ̂1 is related (by a factor ρ) to the closest singularity
τ1 of the homoclinic trajectory of the Hamiltonian flow which has a homoclinic
point on the plane (ψ1, ψ2) = (π, π).

For ǫ=0.1, the homoclinic point of the limit trajectory of the Hamiltonian
vector field generated by (4.2) is (ψ1, ψ2, J1, J2)≈ (π, π, 1.8290461, 0.7794627).
Integrating in complex time along the imaginary direction we find the singularity

τ1 ≈ 1.559370. According to (5.2), ρ =
√

(η +
√

−4dǫ+ η2)/2 ≈ 1.003282954,

with η = 1 + a3ǫ, hence τ̂1 ≈ ρτ1. In Fig. 19 left we show the behaviour
of µ1 logV as a function of µ1. A fit of µ1 log(V ) by a function of the form
Ãµ1 + Bµ1 logµ1 + C in the interval (0, 0.1) gives Ã ≈ 6.27663, B ≈ −3.01628
and C ≈ −9.83073. Again we observe that B is close to −3. Hence, we fix B =
−3 and perform the fit again to obtain Ã ≈ 6.30276 and C ≈ −9.82955. One
checks that the value of C obtained is close to the predicted value −2π Im τ̂1 ≈
−9.8299764.
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Figure 19: For ǫ = 0.1, a2 = 0.25 and a3 = 0.5625. Behaviour of µ1 log V (y-axis) as a
function of µ1 (x-axis), where µ1 = log λ̃1. The volume V is measured at the homoclinic
point on ΣR2

(left) and on ΣR3
(right).

ǫ Im τ1 ρ −2π Im τ̂1 Ã B C
0.1 1.559370 1.0032829 -9.829976 6.27663 -3.01628 -9.83073
0.2 1.546355 1.0069100 -9.783173 5.64423 -3.02580 -9.78387
0.3 1.533003 1.0109280 -9.737402 6.59303 -3.01488 -9.73790
0.4 1.519569 1.0153899 -9.694673 6.83096 -3.01273 -9.69492
0.5 1.506144 1.0203554 -9.656013 6.85795 -3.01908 -9.65661

Table 3: The table contains the numerically computed singularity τ1, the scaling ρ, the
predicted theoretical value −2π Im τ̂1 and the values Ã, B and C of the fit µ1 log V ∼ Ãµ1 +
Bµ1 log µ1 + C . See text for details.

The table 3 displays the values obtained for values of ǫ = 0.1, 0.2, . . . , 0.5.
We conclude that the exponent B = −3 does not depend on ǫ, and we believe
that it does not depend on a2 and a3 neither.

Having into account that all the computations concerning the position of the
singularity have been performed using double precision arithmetics and that the
volume V has been computed for values of δ not too close to 0, we think that
the fit is precise enough to conclude that the volume V (δ) behaves as predicted
by (5.7) and, more concretely, as

V ≈ A

µ3
1

e−2π Im τ̂1/µ1 (5.8)

for a suitable constant A ∈ R and where µ1 = log λ̃1.
Concerning the volume V (δ) computed at a homoclinic point in ΣR3

, we
have checked that, for a2, a3 from (5.3), it also behaves like (5.8) for a different
constant A ∈ R. For example, for ǫ = 0.1 the homoclinic point of the limit
Hamiltonian is located at (ψ1, ψ2, J1, J2) ≈ (π, 0, 2.05923456,−2.74779685) and
the singularity τ ≈ 1.57363. Then, −2πτ̂ ≈ −9.91987. Using the same fit as
before for δ < 0.08 one gets Ã ≈ 7.76753, B ≈ −3.00716 and C ≈ −9.93131.
The behaviour of µ1 log(V ) as a function of µ1 is shown in Fig. 19 right. Similar
results are obtained for other values of ǫ.
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Further investigations are needed to theoretically understand the behaviour
of these splittings, the role of the coupling parameter, and the effect they have
on the diffusion properties. Also the model (5.1) requires much efforts to clarify,
for example, the behaviour of the invariant manifolds Wu/s(p1) at the singular
limit ǫ → 0 or at the uncoupled limit a2 → 0. Moreover, for suitable values
of the parameters ǫ, a2 and a3 the elliptic-elliptic point p4 suffers a complex-
saddle bifurcation (for a fixed parameters a2 and a3 such that d = a3 − a22 < 0
this bifurcation takes place for ǫ = (−γ ±

√

γ2 − 4a23 )/2a
2
3 < 0, γ = 2a3 − 4d,

independently of δ). The dynamical role of the associated invariant manifolds
within a double resonance should be investigated. Some of these items will be
addressed in future works.

6. Conclusions and outlook

In the paper we have studied double resonances near a totally elliptic fixed
point in symplectic 4D maps, providing a clasification and arithmetic properties.
In the case of weak resonances of different order it is proved that, generically,
the normal form is non-integrable by analysing a truncated model. A NHIM
is proved to exist and evidences of the non-analyticity of that manifold, as one
can expect, are given. Later on a 4D symplectic family of models, which in the
limit tend to behave as the flow normal form is introduced. Several measures
of splitting illustrate the main differences with the normal form.

As future work the authors consider relevant to study, first, the case of weak
resonances of same order, so that the parameter ǫ in 4.2 and in 5.1 cannot be
considered as small. Also the parameter δ in 5.1 can be not very small. The
relative positions of the invariant manifolds of the elliptic-hyperbolic points
should play then a key role. Other questions worth to consider are the possible
bifurcations of the totally elliptic fixed point under changes in ǫ, δ, a2 and a3, as
well as the role of the definite or non-definite character of the normal form at
the totally elliptic fixed point.
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[35] Fontich, E; Simó, C.; The splitting of separatrices for analytic diffeo-
morphisms. Ergod. Th. & Dynam. Sys., 10 (1990), 295–318.

[36] Gelfreich, V.G.; A proof of the exponentially small transversality of the
separatrices for the standard map. Comm. Math. Phys., 201(1) (1999),
155–216.

[37] Lazutkin, V.F.; Splitting of separatrices for the Chirikov’s
standard map. Preprint, http://www.ma.utexas.edu/mp arc/index-
98.html (1998).

45


