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Abstract HIV-1 infected patients are e�ectively treated with highly active
anti-retroviral therapy (HAART). Whilst HAART is successful in keeping the
disease at bay with average levels of viral load well below the detection thresh-
old of standard clinical assays, it fails to completely eradicate the infection,
which persists due to the emergence of a latent reservoir with a half-life time
of years and is immune to HAART. This implies that life-long administration
of HAART is, at the moment, necessary for HIV-1-infected patients, which is
prone to drug resistance and cumulative side e�ects as well as imposing a con-
siderable �nancial burden on developing countries, those more a�icted by HIV,
and public health systems. The development of therapies which speci�cally aim
at the removal of this latent reservoir has become a focus of much research. A
proposal for such therapy consists of elevating the rate of activation of the la-
tently infected cells: by transferring cells from the latently infected reservoir to
the active infected compartment, more cells are exposed to the anti-retroviral
drugs thus increasing their e�ectiveness. In this paper, we present a stochas-
tic model of the dynamics of the HIV-1 infection and study the e�ect of the
rate of latently infected cell activation on the average extinction time of the
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infection. By analysing the model by means of an asymptotic approximation
using the semi-classical quasi steady state approximation (QSS), we ascertain
that this therapy reduces the average life-time of the infection by many orders
of magnitudes. We test the accuracy of our asymptotic results by means of
direct simulation of the stochastic process using a hybrid multi-scale Monte
Carlo scheme.

1 Introduction

Quantitative analysis of the temporal evolution of plasma viral load upon ad-
ministration of HAART indicates the existence of several phases in the decay
of the viral load [50, 42, 34, 52]. After an initial shoulder, due to delays as-
sociated to both the pharmacokinetics and the production of virus by newly
infected cells [49, 31], a �rst phase of fast exponential decline of the viral load
ensues whereby the viral load is reduced by up to two orders of magnitude
over a period of time of approximately two weeks. This fast response stage,
with half-life time of several days, re�ects short half-life time of plasma virus
and of productively infected CD4+ T lymphocytes [32, 60, 45]. Following this
initial phase, a second stage of slower decay starts with a half-life between
one and four weeks. This phase is associated to the contribution to virus load
of infected cells with longer half-life time, such as macrophages, and infected
CD4+ T cells that exhibit a lower rate of viral replication [48, 33, 61]. After
this second stage, plasma virus load has normally fallen below the detection
threshold of standard clinical assays (∼ 50 copies RNA/ml). However, fol-
lowing this second phase, HAART appears to fail to completely eradicate the
infection. Rather, a third stage ensues with much longer half-life time than the
previous ones (of the order of months or even years [42]) in which residual lev-
els of viral load (1-5 copies RNA/ml detectable only by supersensitive assays)
persist in plasma as well as in other bodily compartments, such as semen.

The issue of what is the source of this residual viral load has triggered
much debate that has crystalised in several working hypotheses. One of these
hypotheses invokes the possibility that HAART is not completely suppressive
thus allowing the infection to continue to replicate in anatomical HIV-1 reser-
voirs [50], in particular within the so-called �drug sanctuaries�, i.e. sites poorly
penetrated by the drug where the infection persists [39]. An alternative model
suggests that, although HAART could be fully suppressive, a cellular reservoir
exists that allows the infection to linger in latent form [50], the residual viral
load being the result of the activation of the latently infected cells [50]. Such a
latent reservoir is established within the population of infected CD4+ T mem-
ory cells [15, 14]. They therefore stay in their resting state in the presence of
HAART for prolonged periods of time. The latently infected cell population is
replenished by both active infected cell proliferation and also by slow, density-
dependent homeostatic proliferation of the memory CD4+ T memory cells
(and, therefore, of the latently infected cell compartment), which, according
to [13], drives persistence and determines the size of the latent reservoir. This
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cycle is able to maintain positive, although rather small levels of viral load for
very long time. Latently infected cells are thus able to escape the e�ect of the
drug and immune surveillance due to the fact that they undergo duplication
at very low rates and, consequently, exhibit very low levels of HIV-1 messenger
RNA [52]. However, since latently infected cells release virus when stimulated
with the proper antigen, viral rebound will eventually occur when HAART
is withdrawn leading to HIV-1 infection recurrence, consistent with a wider
scenario of quiescence-induced escape [2].

The presence of this latent infection has been recognised as a major bar-
rier for complete eradication of HIV-1 infection and the search for combination
therapies, i.e. HAART plus speci�c agents that tackle the latent reservoir, has
become a focus of research in HIV therapeutics [57, 54, 37, 38]. One of such po-
tential approaches consists of using agents that activate latently infected cells:
by activating the cells in the latent reservoir, they would be rendered sensitive
to the anti-retroviral drugs since activation implies onset of virus production.
This would, at least theoretically, clear the latent reservoir and, eventually, the
infection. Early studies regarding activation of the latent reservoir used inter-
leukins (IL-2, IL-3, and IL-7) in combination with speci�c antibodies (CD3).
These attempts failed because these interleukins were found to increase the
absolute count of T cells [57, 54]. More recent studies have focused on the
use of small molecules that reactivate latent virus production without induc-
ing global T cell activation, in particular several histone deacetylases (HDAC)
and other chromatin modi�ers [57]. The aim of this paper is to use a stochas-
tic model of the HIV-1 infection in an individual patient treated to assess the
feasibility and e�ciency of activation of latently infected cells in combination
of HAART. In particular, our aim is to analyse how the average extinction
time of the infected cell population (both active and latent) changes as the
activation rate of latently infected cells is increased. We also evaluate possible
side e�ects such as the increase in viral load following latently infected cell
activation.

Our analysis proceeds by means of a WKB asymptotic analysis of the
partial di�erential equation for the probability generating function associated
to the Master Equation which describes stochastic infection dynamics. This
method relies on the solution of a variational problem for the optimisation
of an action functional, which e�ectively reduces the problem to the analysis
of the associated Hamilton equations [43, 3, 21]. In order to progress further,
we take advantage of the multiplicity of time scales in the system to perform
a quasi-steady state approximation (QSSA) on the Hamilton equations, thus
reducing the dimensionality of the problem [1, 17]. We further use advanced
numerical techniques to analyse the multi-dimensional Hamiltonian system:
computation of invariant manifolds [56, 30] and the Taylor integration method
[35] together with automatic di�erentiation techniques [35], which are used to
obtain high accuracy with larger time steps. Our asymptotic and numerical
results are tested by means of multi-scale stochastic simulations [12].

The organisation of the paper is as follows. Section 2 is devoted to present-
ing our model of the HIV-1 dynamics under HAART in detail and discussing
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its underlying hypotheses. In Section 3, we present an asymptotic analysis of
our stochastic model, which transforms it into a classical mechanics problem
via the application of the semi-classical approximation to the PDE for the
generating function associated to the probability distribution. We perform a
time-scale analysis of the resulting Hamilton equations and carry out a quasi-
steady state approximation to reduce the dimensionality of the problem. In
Section 4, we present our results regarding e�ectiveness and feasibility of the
combination of HAART and latently infected cell activation therapy. In Sec-
tion 5, we summarise our results and present our conclusions. Additionally, 3
appendixes are included to give all the mathematical details of the di�erent
techniques used in the paper. In Appendix 3.1.1 we explain the semi-classical
approximation and derive the corresponding Hamiltonian. In Appendix A,
we perform a time-scale analysis of our system, and we use it to reduce our
Hamiltonian system to a simpler Hamiltonian problem with 1 or 2 degrees of
freedom. In Appendix B we introduce the di�erent techniques used compute
invariant manifolds and heteroclinic connections necessary to calculate the av-
erage extinction time of our stochastic problem. In Appendix C we present a
procedure to estimate numerically some parameters of the expression of the
average extinction time.

2 Formulation of the stochastic model

Our model is a stochastic generalisation of the model proposed by Rong &
Perelson [51] and the model presented by Conway & Coombs [16]. It takes into
account the stochastic evolution of four variables, (T, L, T ∗, V ), namely, the
number of CD4+ T-cells that are susceptible to HIV-1 infection, the number
of latently infected cells, the number of productively infected cells and the
viral load. Whilst only T ∗-cells can produce and release virus, L-cells can be
activated by their recall antigens and become actively infected cells.

Our stochastic model of viral dynamics is schematically shown in Fig. 1.
We assume that, upon infection of an uninfected T cell, two types of infected
cells can emerge, namely, latently infected cells, L, and active infected cells,
T ∗. Active infected cells are targeted by HAART whereas latently infected
cells are immune to its e�ects. Furthermore, latently infected cells can become
active, for example, by stimulation with appropriate antigens. Both latently
and active infected cells are assumed to die at a certain rate and blood-borne
virions are assumed to be cleared o� at a constant rate. Actively infected cells
synthesise and release virions which infect susceptible T cells at a rate which
depends on HAART e�ectiveness, ε. Although previous evidence, reported
in [55], according to which the latent reservoir is decaying, we incorporate
into our model that the latently infected cells are maintained by homeostatic
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Fig. 1: Schematic representation of the stochastic infection model whose dy-
namics is determined by the transition rates reported in Table 1: Virions (V ),
which are produced by active infected cells (T ∗), infect T cells (T ) thus pro-
ducing latently (L) and active infected cells. Latently infected cells can be ac-
tivated thus becoming active infected cells. Both types of infected populations
decay by cell death whilst viral load decays due to virion clearance. We fur-
ther assume that the latently infected population undergoes density-dependent
homeostatically regulated proliferation. See Section 2 for a full description of
the stochastic infection dynamics.

proliferation, as suggested by more recent experimental results [13]. This is
accomplished by means of a phenomenological model which includes branching
and binary annihilation of latently infected cells [51, 21]. We consider this
scenario, where an steady, positive latently infected population exists, as it
represents the least favourable scenario against which to test the e�ectiveness
and feasibility of the combined therapy we study in this paper.

Within the framework of this model, we focus on the analysis of the e�ect
on the system of latently infected cell stimulation therapy (LICST). To this
end, we study how the system's behaviour is altered as the key parameter aL,
i.e. the rate of activation of the latently infected cells, varies. In particular, we
analyse the dependence of the average extinction time of the HIV infection
under the combined action of HAART and LICST. In order to proceed with
this programme, we formulate our stochastic model in terms of the associated
master equation [58, 23]:
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Transition rate rj = (∆T,∆L,∆T ∗, ∆V ) Description

W1 = λΩ (1, 0, 0, 0) Recruitment of T cells: ∅ → T
W2 = dTT (−1, 0, 0, 0) Death of uninfected cells: T → ∅
W3 = η(1− ε)kV TΩ−1 (−1, 1, 0,−1) Infection: T + V → L
W4 = (1− η)(1− ε)kV TΩ−1 (−1, 0, 1,−1) Infection: T + V → T ∗

W5 = rL (0, 1, 0, 0) L-cell homeostatic proliferation: L→ 2L

W6 = r
Lmax

L∗(L−1)
2 Ω−1 (0,−2, 0, 0) L-cell homeostatic annihilation: L+ L→ ∅

W7 = d0L (0,−1, 0, 0) Death of latently infected cells: L→ ∅
W8 = aLL (0,−1, 1, 0) Activation of L-cells: L→ T ∗

W9 = δT ∗ (0, 0,−1, 0) Death of actively infected cells: T ∗ → ∅
W10 = cV (0, 0, 0,−1) Virus clearance: V → ∅
W11 = pvT

∗ (0, 0, 0, 1) Production of virus by actively infected cells:
T ∗ → T ∗ + V

W12 = εkV TΩ−1 (0, 0, 0,−1) Infection failed: T + V → T

Table 1: Transition rates corresponding to the stochastic model of HIV in-
fection dynamics. A description of the corresponding elementary population-
dynamical processes is given in Section 2.

∂P (X, t)

∂t
=
∑
j

(Wj(X − rj , t)P (X − rj , t))−Wj(X, t)P (X, t)) (1)

where X = (x1, x2, x3, x4) = (T, L, T ∗, V ) and P (X, t) is the probability of the
state vector to be equal to X at time t. For full speci�cation of our stochastic
model, we need to prescribe the transition rates, Wj(X, t), associated to the
probability per unit time of the elementary processes j to occur. We follow
the standard modelling strategy whereby these rates are modelled by means of
the law of mass action [25]. Moreover, the quantities rj are the change in the
state vector, X, when elementary process j occurs, i.e. X(t+∆t) = X(t) + rj
with probability Wj∆t = P (X(t+∆t) = X(t) + rj |X(t)).

The elementary processes involved in our model are (see Table 1):

� Recruitment of uninfected T cells with transition rate W1 (see Table 1).
Uninfected T cells can further undergo death with transition rate W2 (see
Table 1).

� Latently infected cells L can undergo:
1. Homeostatically-balanced proliferation. Following [51],where density-

dependent proliferation of L-cells was modelled in terms of a logistic
growth, we account for homeostatic control of proliferation of the la-
tently infected cell compartment by means of a combination of branch-
ing (L→ 2L) with binary annihilation (L+L→ ∅). It has been shown
(see e.g. [21]) that this combination is a stochastic counterpart of the
standard logistic growth. The associated transition rates are W5 for
branching and W6 for binary annihilation (see Table 1).
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Parameter Description Value

T0 CD4+T cells 599999 cells ml−1

at the metastable state
L0 Latently infected cells 0.934778 cells ml−1

at the metastable state
T ∗0 Productively infected cells 0.115067 cells ml−1

at the metastable state
V0 Viral load 10 copies ml−1

at the metastable state
T1 CD4+T cells 600000 cells ml−1

at the extinction
L1 Latently infected cells 0 cells ml−1

at the extinction
T ∗1 Productively infected cells 0 cells ml−1

at the extinction
V1 Viral load 0 copies ml−1

at the extinction
λ Recruitment rate of T cells 10000 ml−1 day−1

dT Death rate of T cells 0.0166 day−1

k infection rate 2.4 · 10−8 ml day−1
ε Drug e�cacy 0.85
η Fraction resulting in latency 0.001
d0 Death rate of latently infected cells 0.001 day−1

asL Standard rate of transition from latently to productively 0.1 day−1

a∗L Critical value of aL 0.199045 day−1

aL rate of transition from latently to productively varied
δ death rate of productively infected cells 1 day−1

c clearance rate of free virus in blood stream 23 day−1

pv Viral production rate 2000 day−1

r proliferation rate of activated cells 0.2 day−1

Lmax Carrying capacity density of latent cells 1.888 cells ml−1

Ω Dimensional system size 5000 ml
Vc typical volume of a human mammalian cell in culture 2000µm3

Nc Dimensionless system size Ω/Vc

Table 2: Parameter values used in our numerical simulations.

2. Death. We assume a simple linear decay with transition rate W7 as
shown in Table 1.

3. Activation. By means of this process, a latently infected cell can become
an active infected cell L→ T ∗. The corresponding transition rate isW8,
see Table 1.

� Active infected cells, T ∗, are subjected to:
1. Death with transition rate W9 (see Table 1).
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2. Virion production. Contrary to latently infected cells, active infected
cells synthesise and release new virions. Transition rate W11 (Table 1)
corresponds to continuous production and release.

� Finally, virus, V , can:

1. Infect a healthy T cell producing a latently infected cell. In patients
under HAART, the infection process is hindered by the presence of an
anti-retroviral drugs. Following [51], the e�ciency of HAART is mea-
sured by a parameter, ε, which takes values between 0 and 1, the lat-
ter (former) corresponding to a maximally (in)e�cient drug. (1 − ε)
is interpreted as the proportion of virions capable of infection under
HAART treatment. We also assume that, upon infection, the cell can
become latently infected with probability η or active with probability
(1− η). Therefore the corresponding transition rate W3 is proportional
to η(1− ε) as shown in Table 1.

2. Infect a healthy T cell producing an active infected cell. In this case,
the corresponding transition rate W4 is proportional to (1 − η)(1 − ε)
(see Table 1).

3. Undergo clearance. Virions are removed from the blood, and we model
this process as a simple linear decay with transition rate W10 as shown
in Table 1.

4. Fail to infect and being eliminated by the drug with transition rateW12

(see Table 1).

Parameter values. The (default) parameter values used in our simulations are
summarised in Table 2. The parameter values corresponding to the model
of cellular dynamics of an HIV-1-infected T-cell population with latency are
based on estimates available in the literature on the subject. We will analyse
the behaviour of the system as the value of the activation rate of the latently
infected cells, aL, varies.

Mean-�eld dynamics. Although our aim is to analyse the e�ect of latently
infected cell stimulation therapy on the average time of stochastic extinction
of the HIV infection, it is often instructive to study the mean-�eld limit of the
infection dynamics which is given by the following set of ordinary di�erential
equations:

d

dt
T (t) = λ− dTT − (1− ε)kV T, (2)

d

dt
L(t) = η(1− ε)kV T + rL

(
1− L

Lmax

)
− d0L− aLL, (3)

d

dt
T ∗(t) = (1− η)(1− ε)kV T − δT ∗ + aLL, (4)

d

dt
V (t) = pvT

∗ − cV − kV T. (5)
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The mean �eld limit corresponds to that regime where �nite-size induced
noise can be ignored. In other words, the mean �eld limit is associated to
Ω → ∞. For this limit to be well de�ned, the reaction rates associated to
the Master Equation, Wi(X, t), must scale with system size in an appropriate
manner. According to Kubo et al. [43] and Gillespie [25], a su�cient condition
for this to be accomplished is that Wi(X, t) = Ωwi(x, t) where x = X/Ω.
The reaction rates and the associated rate constants are de�ned so that this
condition is ful�lled and the mean �eld limit is well de�ned.

The mean-�eld system Eqs. (2)-(5) have two �xed points. The point with
coordinates (T1, 0, 0, 0), i.e. the disease-free equilibrium associated to extinc-
tion of the infection, is a repeller. The other �xed point, i.e. the positive
equilibrium (y1, y2, y3, y4) ≡ (T0, L0, T

∗
0 , V0) with L0, T

∗
0 , V0 6= 0, is an stable

�xed point [51]. When noise is considered, the latter equilibrium becomes a
metastable state, whereas the former becomes an absorbing state [21]. In terms
of the aims of this paper, we must study the behaviour of the mean-�eld sys-
tem as the activation rate of the latently infected cells, aL, varies. From Eqs.
(2)-(5), one checks that the positive equilibrium exists and is stable as long as
aL < a∗L, where:

a∗L =
r − d0

1−
(

η(1−ε)kpvT1

δ(c+kT1)−(1−η)(1−ε)kpvT1)

) , (6)

which implies that if latently infected cell activation is driven beyond the
threshold set by a∗L, the positive equilibrium disappears and the system is
driven to extinction. Our analysis of the stochastic infection dynamics will
reveal that this picture is incomplete. The linear stability analysis of the mean-
�eld model predicts for values of the activation rate aL < a∗L a positive stable
equilibrium exists and the trivial equilibrium (associated to extinction of the
infection) is unstable. Therefore, within the mean-�eld scenario, extinction
cannot occur if aL < a∗L. When noise is taken into account, extinction of the
infection is possible even if aL < a∗L. Under these circumstances, the stable
positive equilibrium becomes a metastable state of the stochastic dynamics
and the trivial equilibrium, an absorbing state (which implies that eventual
extinction occurs with probability one). To obtain a full picture, we must
therefore analyse the dynamics of the stochastic dynamics of the infection. In
particular, we will be interested in the average extinction time as function of
aL.

3 Model analysis: Optimal �uctuation theory

In this section, we provide a description of the methods we use to analyse
the stochastic infection dynamics described by Eq. (1) and, in particular, the
asymptotic methods used to analyse the extinction dynamics. We follow the
methodology presented in [1, 17], i.e we analyse the system by means of a
semi-classical quasi-steady state approximation (SCQSSA). We further check
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the accuracy of the predictions of our asymptotic analysis by means of a multi-
scale stochastic simulation method, which takes advantage of the separation
of time scales to produce fast simulations [12].

3.1 Optimal �uctuation theory: Semi-classical approximation and average
extinction time

Our stochastic process is fully determined by P (x1, x2, x3, x4, t), the solution
of the Master Equation (1). This P (x, t) has an associated generating function
of the form

G(p1, p2, p3, p4, t) =
∑

(x1,x2,x3,x4)∈N4

px1
1 p

x2
2 p

x3
3 p

x4
4 P (x1, x2, x3, x4, t). (7)

In Appendix 3.1.1, we show that G(p, t) can be approximated by

G(p, t) ≈ exp (−NcS0(p, t)),

where Nc is de�ned as the dimensionless parameter Nc ≡
Ω

Vc
which represents

the system size. Vc is the average size of a T cell.
The quantity S0 de�ned in Eq. (12) is key to our approach, since following

the theory of optimal �uctuation (i.e. the semi-classical approximation), pro-
vided that S0 � 1, the average extinction time scales exponentially with S0

for the appropriate boundary conditions [18, 36, 40].
Since extinction is the only absorbing state of the stochastic dynamics,

and that state is reachable given any initial condition, extinction takes place
with probability one. If the metastable state is of the form qi � 0, which is
associated to a system with size Nc � 1, the extinction probability P0(t) =
G(0, t) can be estimated by:

G(0, t) ≈ 1− exp

(
− t

τE

)
, (8)

where τE is the average extinction time (see [6, 5] for details).

3.1.1 Optimal �uctuation theory: Semi-classical approximation

We now present the methodology we use to calculate the average extinction
time, based on optimal �uctuation theory. This methodology, which we use to
analyse the extinction dynamics of the stochastic infection model belongs to
the wider class of WKB/large deviations methods [43, 22]. Similar approaches
have been used to study extinctions in di�erent contexts such as population
models in ecology [40, 7, 47, 27] and epidemiology [20, 53, 41]. For reader's
convenience we brie�y summarised the main ideas. The following notation will
be used: boldface v denotes a vector of R4 whose components are denoted by
vi, i = 1, ..., 4.
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Let P (x, t), x ∈ N4, the probability distribution function related to the
Markovian-process model considered. Denote by G(p, t) =

∑∞
x=0 p

xP (x, t)
the associated generating function. The previous sum runs over the possible
values of the variables xi (positive quantities, in our system they account for
the total number of each of the cells involved). Here p is an auxiliary variable,
below it will be interpreted as the momentum of an auxiliary Hamiltonian
system describing the �rst order stochastic dynamics. The master Eq. (1)
determines the evolution of G(p, t). In the particular case of our stochastic
infection model with the reaction rates shown in Table 1, the corresponding
partial di�erential equation for G(p, t)

∂G

∂t
= λ(p1 − 1) + dT (1− p1)

∂G

∂p1
+ (1− η)(1− ε)k(p3 − p1p4)

∂2G

∂p1∂p4

+η(1− ε)k(p2 − p1p4)
∂G

∂p1

∂G

∂p4
+ r(p22 − p2)

∂G

∂p2
+

r

2Lmax
(1− p22)

∂2G

∂p22

+dL(1− p2)
∂G

∂p2
+ aL(p3 − p2)

∂G

∂p2
+ pv(p3p4 − p3)

∂G

∂p3
+ δ(1− p3)

∂G

∂p3

+c(1− p4)
∂G

∂p4
+ εk(p1 − p1p4)

∂2G

∂p1∂p4
. (9)

The main idea to obtain an approximation of G(p, t) is to use the classical
Maupertuis principle of stationary abbreviated action. For Hamiltonian (time-
independent) systems, Maupertuis' principle is equivalent to the the Hamil-
ton's principle of stationary action since the abbreviated and Hamilton actions
are related by a Legendre transformation. Moreover, the classical Hamilton's
principle can be seen as the classical limit of the quantum stationary phase
condition for constructive interference. We exploit these relations below, see
[26, 44, 29, 28].

Eq. 9 can be interpreted as a Schrödinger-like equation ∂
∂tG = ĤG, in

terms of the (quantum) Hamiltonian operator Ĥ expressed in the p̂ (momen-
tum) representation. Then q̂i ≡ ∂

∂p̂i
, and the operators p̂i and q̂i satisfy the

commutation relation [q̂i, p̂j ] = δi,j . This relation motivates to express the
solution of (9) as a Feynman path-integral representation, see for example
[21]:

G(p, t) =

∫ t

0

exp (−S(p,q))Dq(s)Dp(s) + px
0, (10)

where S(p,q) is the Hamilton action

S(p,q) = −
∫ t

0

(
H(p,q) +

n∑
i=1

qi(s)ṗi(s)

)
ds. (11)

Here Dq(s)Dp(s) indicates integration over the space of all possible paths
joining q(0) = x0 with p(t) = pt �xed and px0 is the contribution of the
initial condition x0 to G(p, t). The dependence in t of G(p, t) is implicit,
encoded in the path (p(t),q(t)) of integration.
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The so-called semi-classical approximation (also called optimal �uctuation
approximation, see [20]) reduces the path integral Eq. (10) to its main contri-
bution

G(p, t) ≈ exp (−NcS0(p, t)), (12)

where S0(p, t) is the value of the action functional Eq. (11) integrated over an
optimal path. We consider Ω = NcVc where Vc is the typical volume of a T cell.
As an estimation for Vc, we take the typical volume of a human mammalian
cell in culture [10] Vc ' 2000µm3. Nc is now associated to the typical number
of cells in a volume of blood Ω. Using a WKB approximation, hence assuming
Nc � 1 [21, 8], one can see that the optimal path is just a classical trajectory.
Indeed substituting the WKB ansatz G(p, t) = exp (−NcS(p, t)) into Eq. (9)
one checks that the leading order of the expansion of S in powers of N−1c
satis�es the Hamilton-Jacobi equation

∂S(p, t)

∂t
= −H

(
p,
∂S(p, t)

∂p

)
, (13)

where H denotes the associated classical Hamiltonian

H(p,q) = λ(p1 − 1) + dT (1− p1)q1 + (1− η)(1− ε)k(p3 − p1p4)q1q4
+η(1− ε)k(p2 − p1p4)q1q4 + r(p22 − p2)q2 +

r

2Lmax
(1− p22)q22

+dL(1− p2)q2 + aL(p3 − p2)q2 + pv(p3p4 − p3)q3 + δ(1− p3)q3
+c(1− p4)q4 + εk(p1 − p1p4)q1q4. (14)

In other words, denote by (qi,pi) the generalised coordinates corresponding to
i−th cellular type. Note that the abbreviate action

S(p, t) =

∫
pdq

along the classical trajectory di�ers from the Hamilton action by a constant
(since the system is conservative and the time of integration is �xed). This
means that to approximate G(p, t) one can proceed to evaluate the abbrevi-
ate action along the solution of the boundary value problem de�ned by the
Hamilton equations

dpi
dt

= −∂H
∂qi

,
dqi
dt

=
∂H

∂pi
, (15)

with boundary conditions qi(0) = xi(0) and pi(t) = pi, where pi is the mo-
mentum corresponding to species i, see [21] for further details. Details on the
concrete computations are give in appendix B. Note that by taking pi(t) = 1
for all i in Eqs. (17), the mean-�eld equations (2)-(5) are recovered. Further-
more, since H(q,p=1) = 0 (see Eq. (14)), S(p=1, t) = 0 holds and therefore
the normalisation condition G(p=1, t) = 1 is satis�ed.

Eq. (10) shows that rare events, which, for the purpose of this paper, are
those whose frequency decays exponentially with system size, of which extinc-
tions are a particular case, are described by classical trajectories accumulating
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around the optimal one [19]. For this reason, the associated path integral can
be computed by means of a saddle point method near the optimal trajectory
which maximises the action functional Eq. (11), which is found by solving the
associated Hamilton equations with the appropriate boundary conditions. To
analyse extinction events, these boundary conditions are (qi(−∞), pi(−∞)) =
(yi, 1), where yi are the coordinates of the positive stable equilibrium of the
mean-�eld dynamics (see Sec. 2), and (qi(∞), pi(∞)) = (0, p∗i ) (see Fig. 5). Us-
ing several versions of the WKB method and the optimal �uctuation approach,
it has been shown that the average waiting time for rare events, including ex-
tinction, is given by [19, 21, 36, 20, 7, 8]:

τE = ANB
c exp(NcC), (16)

where C is such that S0 = NcC, where S0 is the action calculated over the hete-
roclinic trajectory connecting two �xed points of the Hamilton equations (17):
the mean-�eld positive equilibrium �xed point, (qi(−∞), pi(−∞)) = (yi, 1),
which is also a �xed point of the Hamiltonian system Eqs. (17), and the ex-
tinction �xed point (qi(∞), pi(∞)) = (0, p∗i ). As time goes to in�nity, the tra-
jectories approach the H(p, q) = 0 energy level. The action functional vanishes
on pi = 1 and on q2 = q3 = q4 = 0. However, it is positive on the heteroclinic
connection between the metastable state and the stochastic extinction state,
which is of the form q2 = q3 = q4 = 0, 0 < pi < 1. For higher-dimensional
systems, the numerical computation of this heteroclinic connection usually re-
quires the use of numerical methods. This numerical methodology is aided by
the fact that, by exploiting the multiplicity of time scales present in our sys-
tem, i.e. by using a quasi-steady state approximation (QSSA), we can reduce
the dimensionality of the system Eq. (15). The quasi-steady state reduction
of the equations of motion is explained in detail in Appendix A, where we
show that a hierarchy of time scales is present in our system (see Eqs. (23),
Appendix A) that allows to reduce the Hamiltonian system from 4 degrees of
freedom to 1 (strong QSSA) or 2 (weak QSSA). Such reduction renders the
problem of computing numerically heteroclinic connections more tractable.

The heteroclinic connection is crucial to estimate C in Eq.(16). The compu-
tation of the heteroclinic connection in a Hamiltonian with 1 degree of freedom
is trivial, however with 2 d.o.f. is not trivial at all. In Appendix B we explain
the di�erent techniques we use to compute the heteroclinic connection for the
2-dof case.

To fully determine τE we need to get A and B. In order to obtain these
parameters in the expression (16), we perform a numerical �t of A and B using
numerical results obtained by means of multi-scale stochastic simulations [12],
in which τE is computed for di�erent values of Ω. These simulation results,
together with Eq. (16) and the corresponding value of C, are used to �t the
values of A and B. The technical details regarding this procedure are included
in Appendix C.
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4 Results

In this section, we analyse the feasibility of the combination HAART-LICST in
terms of the study of how the average extinction time of the infection changes
as the activation rate of the latently infected cells varies, and some possible
side e�ects of such combination therapy. The accuracy of our asymptotic and
numerical results, obtained by means of the methodology explained in Section
3, are checked by comparing to simulation results obtained by using a hybrid
multi-scale Monte-Carlo simulation algorithm [12].

4.1 E�ect of LICST on the average extinction time

We consider the extinction dynamics of the infection in the subcritical regime,
i.e. aL < a∗L (see Eq. 6). Our aim is to analyse the e�ect of combined HAART-
LICST on the average extinction time. Our basic assumption is that LICST
upregulates the latently infected cell activation rate. Therefore we study how
the infection average extinction time, given by Eq. (16), varies as the value of
aL is changed.

In order to proceed further, we �rst need to assess the accuracy of our
asymptotic approximations (see Section 3). Numerical computation of the av-
erage extinction time for our stochastic infection model in terms of the regular
stochastic simulation algorithm [25] requires a huge amount of computational
time, particularly for values of aL close to their physiological estimates [51]. In
order to reduce the computation time, we use a multi-scale hybrid stochastic
simulation method proposed by Cao et al. [12], which takes advantage of the
separation of time scales in our system to improve the numerical e�ciency of
the method. The Gillespie simulations suggest that the reactions correspond-
ing to production and degradation of the virus (T ∗ → T ∗ + V and V → ∅)
are 500 times more common than the reactions that change the number of
latently or productively infected cells, therefore, we are in the perfect sce-
nario to use this method. In Fig 2, we compare the average extinction time
obtained by three di�erent methods: Gillespie SSA, multiscale hybrid SSA,
and our semi-classical approximation using the strong QSSA (see Appendix
A). We carry out this comparison in a restricted range of values of aL where
the Gillespie algorithm runs in a reasonable computational time. We observe
rather good agreement between all three methods, which gives us con�dence of
the suitability of both the multi-scale simulation method and our asymptotic
approximation, and justi�es the use of these methods to reach a wider range
of values of aL. Discrepancies between the semi-classical QSSA approximation
and the numerical results are observed for larger values of aL as aL → a∗L, i.e.
the critical value of aL above which the mean-�eld positive equilibrium ceases
to exist. In spite of this discrepancy, our semi-classical QSSA approximation
appears to be rather accurate, in particular for smaller values of aL, close
to its physiological estimate, which is precisely the range of values of aL for
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which the average waiting time is larger, and, therefore, where we expect both
stochastic simulation algorithms to perform poorly.

Apart from checking the accuracy of our semi-classical approximation, Fig.
2 (b) shows an interesting result: the average extinction time, τE , decreases
as the value of aL increases, thus suggesting that the LICST therapy could
be e�ective in reducing the time to eradication of the HIV infection. These
results are con�rmed when S0 is computed over a wider range of values of
aL. Fig. 3 (a) shows how, as the value of aL increases, S0 decreases in such a
way as to induce a very dramatic decrease in τE of many orders of magnitude
(recall that S0 ∼ log(τE)). In fact, looking at the results of Fig. 2 (b), we
conclude that the average extinction time of the infection could be reduced
to τE ≈ 1000 days, provided that the drugs used are e�cient enough to drive
the value of aL close to its critical value. Incidentally, Fig. 3(a) shows the
results for the optimal value of the action functional computed by integration
over the heteroclinic connection between the mean-�eld positive equilibrium
and the stochastic extinction �xed point, S0, for both the strong QSSA and
the weak QSSA (see Appendix A). These results show excellent agreement
between both approximations, thus suggesting that the Strong QSSA, i.e. the
least numerically demanding, can be used without a signi�cant loss of accuracy.
Fig. 3(b) shows results for the average extinction time, τE , calculated using
the Strong QSSA over an interval of values of the activation rate, aL, ranging
from its physiological value aL = asL = 0.1 (see Table 2) to values close to its
critical value aL → a∗L (see Table 2). We observe that τE decreases over many
orders of magnitude when aL varies within this interval.

4.2 Side e�ects of LICST: viral blips

The analysis of the mean-�eld dynamics shows that an increment of aL reduces
the viral load associated to the metastable state (i.e. the mean-�eld positive
equilibrium). However, in order to assess the viability of LICST, we must check
the transient e�ects of LICST, as the upregulation of the activation of the
latently infected cell compartment leads to a transient increase in the viral load
[51]. In this section, we study this transient behaviour to assess whether the
viral load increases to threatening levels upon stimulation of latently infected
cell activation, or if, on the contrary, it remains within tolerable levels.

To study this issue, we have performed stochastic simulations of the stochas-
tic infection model which we have set up as follows. We �x an initial condition
(y1, y2, y3, y4) ≡ (T0, L0, T

∗
0 , V0), where T0, L0, T ∗0 and V0 are the mean-�eld

steady state values of the number of uninfected T cells, latently and active
infected cells, and viral load, respectively. We consider the steady state asso-
ciated to the physiological estimate of aL = aSL = 0.1. We then increase aL to
a value aL > aSL and let the system to evolve.

Fig. 4(a) (left) shows our simulation results for di�erent values of aL > aSL.
Our results, in agreement with previous studies of similar situations [51], we
observe that upon application of LICST (i.e. after increasing the value of aL),
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Fig. 2: Series of plots showing the average extinction time of the HIV-1 in-
fection as a function of the activation rate of the latently infected cells, aL.
(a) Comparison between the results obtained using the standard Gillespie SSA
[25] and the multi-scale hybrid SSA [12]. (Left) Average of extinction time over
1000 simulations in both cases for di�erent values of aL. (Right) Boxplot of
SSA and multi-scale SSA for aL = 0.193 computed with 1000 simulations in
both cases. (b) (Left) Comparison between the asymptotic results obtained us-
ing the Strong QSSA (see Appendix A) and numerical simulations obtained by
means multi-scale hybrid SSA [12]. In the latter case, average has been taken
over 1000 simulations. The discrepancy observed between the semi-classical
QSSA approximation and the numerical results for larger values of aL arises
because we are approaching a∗L, i.e. the critical value of aL above which the
mean-�eld positive equilibrium ceases to exist. (Right) Comparison of the value
of τE obtained using the semiclassical approximation and multi-scale SSA as
a function of the system size, Ω, for a �xed value of aL = 0.193, as it was ex-
pected, the approximation works better for a larger values of Ω. All remaining
parameter values are as shown in Table 2.



Stochastic modelling of the HIV infection 17

(a)

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.1  0.11  0.12  0.13  0.14  0.15  0.16  0.17  0.18  0.19  0.2

lo
g

1
0
(τ

E
)

aL

semiclassical Strong QSSA

Fig. 3: (a) Plot showing how the value of the action integrated along the
heteroclinic connection, S0, varies as aL changes. We have computed S0 with
both the Strong QSSA (red line) and the Weak QSSA (green line). The inset
shows the di�erence between the Strong QSSA estimate and the Weak QSSA
estimate. (b) Plot showing the change of the average extinction time, τE ,
according to the Strong QSSA, as aL varies. All remaining parameter values
are taken from Table 2.
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there is a transient increase of the viral load, which, depending on the value
of aL, can be elevated beyond the detection threshold of standard assays (50
mRNA/ml). As time progresses, the viral load peaks at a maximum value and
starts decreasing. We observe that the peak value reached by the viral load
grows as aL increases. However, it saturates for large values of aL. By contrast,
the duration of the blip is a decreasing function of aL. This behaviour is well
captured by the mean-�eld limit (see Fig. 4(b)).

5 Conclusions

We have presented and analysed a stochastic model of HIV-1 dynamics under
the combined action of highly active anti-retroviral therapy and latently in-
fected cell stimulation therapy with the aim of analysing the e�ectiveness and
feasibility of this combination therapy. In order to carry out our quantitative
evaluation, we study how the average extinction time is a�ected as the rate of
activation of latently infected cells is varied. To this end, we have employed
asymptotic techniques in combination with advanced numerical methods. The
accuracy of the asymptotic results has been evaluated by comparing with
Monte Carlo stochastic simulations algorithms.

Our asymptotic analysis, based on the formulation of an optimal �uctua-
tion theory based on a semi-classical approximation [7, 43, 21] for the PDE of
the probability generating function, G(p, t), has revealed that our system ex-
hibits a hierarchical multi-scale nature, whereby each variable has a di�erent
time scale. This property has been exploited to reduce the dimensionality of
the problem: we have adapted the technique developed in [1, 17] to perform a
time-scale analysis of the Hamilton equations associated to the optimal �uctua-
tion path to formulate two di�erent QSS approximations. Similarly, separation
of time-scales have also been used to justify the use of a multi-scale hybrid
stochastic algorithm [12] in order to validate our asymptotic results.

Using this methodology, we have analysed how the average extinction time
varies under a form of therapy which involves the change (increase) of the rate
of activation of the latently infected. We have determined that the administra-
tion of such therapy reduces the average extinction time, τE , by many orders
of magnitude when aL is increased with respect to its physiological estimate,
aSL, shown in Table 2. We have shown that, provided the drugs are powerful
enough to drive the value of aL close to its critical value, a∗L (see Section 2),
τE can be reduce to τE ≈ 1000 days.

We have also analysed the side e�ects of this therapy, by looking at the
response of the viral load upon change of the value of the activation rate, aL.
We have shown that, although a transient increase in viral load, the peak value
reached by viral load is bounded (of the order of 250 copies/ml) and well below
the life-threatening levels observed in an untreated (no HAART) patient (of
the order of 105 copies/ml [51]).

In view of this results, we conclude that this therapy appears to be both
e�ective (in terms of the reduction of the average extinction time from longer
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Fig. 4: Series of plots showing the response of the viral load as aL is increased
to aL > aSL = 0.1. Plot (a) shows stochastic simulations of the viral dynamics
for di�erent values of aL. For reference, we also show simulation results where
aL is kept constant at aL = aSL. Plot (b) shows the comparison between a
stochastic simulations and the mean-�eld behaviour of the viral dynamics for
aL = 100. Note that we have used unphysiologically large values of aL to
illustrate that the peak reached by the viral load upon LICST. All remaining
parameter values are taken from Table 2.
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than the patient life expectancy to 2-3 years) and feasible (in terms of the
bounded peak reached by the viral load upon its administration). However,
a few caveats are in order. First, following [13, 51], we have considered that
the size of the latent compartment is under homeostatic control by means of a
size-dependent birth rate of the latently infected cells (see Section 2). From the
point of view of our model, this implies that the mean-�eld positive equilibrium
is more stable than it would be if we did not consider such homeostatic control.
In quantitative terms this means that the average extinction time (both with
and without LICST) would be considerably smaller than the ones reported
here. Although assuming no homeostatic control [55] of the latently infected
population would not alter our qualitative results (i.e. increasing aL would still
lead to a decrease in τE), the analysis should be repeated to obtain accurate
quantitative estimates. In any case, our current quantitative results would still
be upper bounds. Furthermore, our LICST model is not properly calibrated
in the sense that we do not have quantitative information available about how
much of an increase in aL current latent cell-stimulating drugs can induce.
More accurate models and experimental information regarding the e�ect of
current drugs on latently infected cells is needed before such calibrated model
is possible. We left for future work the study of the e�ect of the therapy
modeled as a non-stationary impulse, i.e. either with a periodic function, or
a more accurate model including how the levels of histone deacetylases and
other chromatic modi�ers change the activation of the latently infected cells
[57].

From the theoretical point of view, we have not been able to fully de-
termine the value of τE form our asymptotic method: the semi-classical ap-
proximation, Eq. (16), provides the exponential scaling but it does not gives
any information regarding the prefactor, i.e. the parameters A and B, which
need to be �tted to numerical simulations. A more accurate asymptotic theory
able to provide the prefactor should be developed based on WKB methods [8]
or matching-asymptotic expansions [59], or on a better understanding of the
associated Stokes phenomenon. All these issues are beyond the scope of the
current work and left for future research. Despite these issues, we expect that
the methodological aspects developed in this paper are useful to and �nd their
way into the study of the stochastic aspects of other similar systems involving
infection dynamics and the evaluation of the e�ectiveness of newly developed
treatments.
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A Time-scale analysis: weak & strong quasi-steady state

approximations

In this appendix, we proceed to formulate a quasi-steady approximation, that allows us to
simplify the equations of motion of the Hamiltonian 14, which are of the form

dp1

dt
= dT (p1 − 1) + (1− η)(1− ε)k(p1p4 − p3)q4 + η(1− ε)k(p1p4 − p2)q4 + εk(p1p4 − p1)q4,

dp2

dt
= r(p2 − p22) +

r

Lmax
(p22 − 1)q2 + dL(p2 − 1) + aL(p2 − p3),

dp3

dt
= pv(p3 − p3p4) + δ(p3 − 1),

dp4

dt
= (1− η)(1− ε)k(p1p4 − p3)q1 + η(1− ε)k(p1p4 − p2)q1 + c(p4 − 1) + εk(p1p4 − p1)q1,

dq1

dt
= λ− dT q1 − (1− ε)kp4q1q4 + εk(1− p4)q1q4,

dq2

dt
= η(1− ε)kq1q4 + r(2p2 − 1)q2 −

r

Lmax
p2q

2
2 − dLq2 − aLq2,

dq3

dt
= (1− η)(1− ε)kq1q4 + aLq2 + pv(p4 − 1)q3 − δq3,

dq4

dt
=−kp1q1q4 + pvp3q3 − cq4. (17)

We proceed by re-scaling our variables in such a way to make explicit the separation
of time scales and simplify the model according to the quasi-steady state approximation.
For clarity, we perform this analysis in two steps. We start by de�ning the following set of
re-scaled (dimensionless) quantities:

q̄1 =
q1

T0
, q̄2 =

q2

L0
,

q̄3 =
q3

T ∗0
q̄4 =

q4

V0
,

s = kV0t. (18)

The momenta pi are not re-scaled. In this re-scaled variables, the re-scaled Hamiltonian,
Hκ(p, q̄), is de�ned by [1, 17]:

H(p,q) = kT0V0Hκ(p, q̄), (19)

where Hκ(p,q) is given by:

Hκ(p,q) = κ1(p1 − 1) + κ2(1− p1)q1 + (1− η)(1− ε)(p3 − p1p4)q1q4

+η(1− ε)(p2 − p1p4)q1q4 + κ3(p22 − p2)q2 + κ3
L0

2Lmax
(1− p22)q22

+κ4(1− p2)q2 + κ5(p3 − p2)q2 + κ6(p3p4 − p3)q3 + κ7(1− p3)q3

+κ8(1− p4)q4 + ε(p1 − p1p4)q1q4. (20)

For simplicity of the notation, we have dropped the bars of the re-scaled variables q̄i. The
parameters κi are de�ned in Table 3.

The Hamilton equations for the re-scaled variables read as follows:
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Parameter Order of magnitude

κ1 = λ
kT0V0

O(105)

κ2 = dT
kV0

O(105)

κ3 = rL0

kV0T0
O(100)

κ4 = dLL0

kV0T0
O(10−2)

κ5 = aLL0

kV0T0
O(100)

κ6 =
pvT

∗
0

kV0T0
O(103)

κ7 = δT0

kV0T0
O(100)

κ8 = c
kT0

O(103)

Table 3: Re-scaled parameters associated to the re-scaling of variables Eq. (18)
and to the re-scaled Hamiltonian Eq. (20)

dq1

ds
=
∂Hκ

∂p1
,

dp1

ds
= −

∂Hκ

∂q1
,

L0

T0

dq2

ds
=
∂Hκ

∂p2
,

L0

T0

dp2

ds
= −

∂Hκ

∂q2
,

T ∗0
T0

dq3

ds
=
∂Hκ

∂p3
,

T ∗0
T0

dp3

ds
= −

∂Hκ

∂q3
,

V0

T0

dq4

ds
=
∂Hκ

∂p4
,

V0

T0

dp4

ds
= −

∂Hκ

∂q4
.

(21)

In order to proceed further with our time-scale analysis, we note that the re-scaled
equations associated to q1 and q4 are dominated by the terms in κ1 and κ2, which, according
to Table 3, are O(105), and κ6 and κ8, which are O(103), respectively. On the contrary, the
dominant terms in the equations for q2 and q3 are O(1). In view of this, we re-scale the
dimensionless time s as:

T = κ1s. (22)

From Hamiltonian (20) already in rescaled variables (18), we derive two approximations
of the system of equations using the slow-fast time-scales variables. In the new time T and
denoting ′ = d/dT , the equations of motions are

q′1 =
1

κ1

∂Hκ

∂p1
, p′1 =

1

κ1

∂Hκ

∂q1
,

ε1q′2 =
∂Hκ

∂p2
, ε1p′2 =

∂Hκ

∂q2
,

ε2q′3 =
∂Hκ

∂p3
, ε2p′3 =

∂Hκ

∂q3
,

ε3q′4 =
1

κ6

∂Hκ

∂p4
, ε3p′4 =

1

κ6

∂Hκ

∂q4
,

(23)

where ε1 = κ1
L0
T0

= O(10−1), ε2 = κ1
T∗
0
T0

= O(10−2), and ε3 = κ1
κ6

L0
T0

= O(10−3), according

to the values in Table 3. The right hand side of the previous system of equations is O(1).
First we assume that the pair (q1, p1), associated to the uninfected T cells, is such that

(q1, p1) ≈ (T0, 1). This is somehow justi�ed due to the rather huge number of uninfected
T cells. A similar approximation has been used in prior stochastic models of the HIV-1
infection [16]. Accordingly, we assume q′1 ≈ 0 and p′1 ≈ 0, and the system becomes a 3-dof
Hamiltonian system.
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Fig. 5: Phase diagram of the reduced system of equations of motion associated
to the Strong QSS approximation, Eqs. (24), in the supercritical case (left)
and the subcritical case (right). The subcritical case corresponds to the case
where the mean-�eld dynamics exhibits an stable positive equilibrium. In this
case, there exists a non-trivial, zero-energy heteroclinic trajectory connecting
the mean-�eld positive equilibrium and the stochastic extinction �xed point.

We refer as the strong QSSA to the 1-dof Hamiltonian system obtained assuming ε2q′3 =
ε2p′3 ' 0 and ε3q′4 = ε3p′4 ' 0 (i.e. we apply QSS conditions to the pairs (p3, q3) and (p4, q4)).
The corresponding equations are

p′2 =
1

ε1

(
−κ3(p22 − p2)− κ3

L0

Lmax
(1− p22)q2 − κ4(1− p2)− κ5(p3 − p2)

)
,

q′2 =
1

ε1

(
ηε̃q1q4 + κ3q2(2p22 − 1)− κ3

L0

Lmax
p2q

2
2 − κ4q2 − κ5q2

)
, (24)

where ε̃ = 1− ε, η̃ = 1− η, p1 = q1 = 1,

p3 =
∆±

√
∆2 − 4κ7κ6A

2κ6A
, q3 =

−κ5q2
η̃ε̃q1Dp3 + κ6(Ap3 +Bp2 + C)− κ7q3

,

p4 =
−η̃ε̃q1p3 − ηε̃p2q1 − κ8 − εp1q1

Γ
, q4 =

κ6p3q3

p1q1 + κ8
, (25)

and

A =
−(1− η)(1− ε)q1

Γ
, B =

−η(1− ε)p2q1
Γ

, C =
−κ8 − εp1q1

Γ
, D =

κ6

p1q1 + κ8
,

∆ = κ6 − κ7 − Cκ6 −Bκ6p2, Γ = −(1− η)(1− ε)q1p1 − η(1− ε)p1q1 − κ8 − εp1q1.

We can discard the positive branch of p3 by continuity. A phase portrait of the strong QSSA
is shown in Figure 5.

We refer as the weak QSSA to the 2-dof approximation obtained by just assuming
ε3q′4 = ε3p′4 ' 0 (i.e. applying QSS conditions to the pair (q4, p4)). The di�erential equations
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are

p′2 =
1

ε1

(
−κ3(p22 − p2)− κ3

L0

Lmax
(1− p22)q2 − κ4(1− p2)− κ5(p3 − p2)

)
,

q′2 =
1

ε1

(
ηε̃q1q4 + κ3q2(2p22 − 1)− κ3

L0

Lmax
p2q

2
2 − κ4q2 − κ5q2

)
,

p′3 =
1

ε2
(−κ6(p3p4 − p3)− κ7(1− p3)) ,

q′3 =
1

ε2
(η̃ε̃q1q4 + κ5q2 + κ6(p4 − 1)q3 − κ7q3) , (26)

where, as before, ε̃ = 1− ε, η̃ = 1− η, p1 = q1 = 1 and p3 and p4 are given by (25).

B Computation of the heteroclinic trajectory in the weak QSSA

In Appendix 3.1.1, we have discussed how the average extinction time is estimated within
the semi-classical approximation (or the optimal �uctuation theory) by computing the value
of the action functional by integration over the optimal path, S0, which corresponds to the
heteroclinic connection between the mean-�eld positive equilibrium and the stochastic ex-
tinction �xed point. The corresponding estimates of S0 are obtained after performing either
a one-step (weak) or a two-step (strong) quasi-stationary approximation of the classical
equations of motion, see Appendix A, and computing the integral of the classical action S
along the only non-trivial path connecting the metastable state and the stochastic extinction
of the system. Looking at the phase space of the mean �eld system, one realizes that this
non-trivial path is given by the heteroclinic trajectory γ(t) from the hyperbolic �xed point
p1 (with pi = 1 and xi > 0) and the �xed point x0 located on xi = 0 with 0 < pi < 1 (here
i = 2 for the strong QSS approximation and i = 1, 2 for the weak QSS case).

It is a simple exercise to obtain an expression of the heteroclinic connection in the strong
QSS approximation, since, under this approximation, the system is reduced to one degree
of freedom, and, therefore, the heteroclinic trajectory is simply determined by conservation
of energy. However, the computation of γ(t) requires numerical techniques for the weak
QSSA case since one has to deal with a 2 degrees of freedom (2-dof) Hamiltonian system.
Moreover, the weak QSSA reduction exhibits a slow-fast structure, hence one has to deal
with two quite di�erent time-scalings when performing the numerics. We should note that all
the computations have been performed using multiprecision arithmetics (around 100 digits
where enough for most of the aL values considered) and the codes have been implemented
in PARI/GP [9].

Let us consider, from now on, the 2-dof Hamiltonian case whose related equations of mo-
tion, given by (26), are expressed in the coordinates x2, x3, p2, p3. The hyperbolic-hyperbolic
�xed point p1 has a 2-dimensional stable and a 2-dimensional unstable invariant manifold,
to be denoted W s(p1) and Wu(p1) respectively. Similarly, W s/u(x0) will denote the 2-
dimensional stable/unstable manifold associated to the �xed hyperbolic-hyperbolic point
x0. The heteroclinic connection γ(t) corresponds to the intersection Wu(p1) ∩W s(x0).

To compute Wu(p1) (and also W s(x0)) we use the so-called parametrization method
[11]. Basically the idea is the following. We represent the local invariant manifold around p1

as a vector series K(s1, s2), being K : R2 → R4. That is, a point X = (x2, x3, p2, p3) ∈ R4

will be considered to be on Wu(p1) if X = K(s1, s2) =
∑
i,j≥0 ai,js

i
1s
j
2. The coe�cients

ai,j ∈ R can be order by order computed by imposing the so-called invariance condition. This
condition requires that the dynamics within the invariant manifold, expressed in the s1, s2
coordinates, must be conjugated to the linear dynamics around the hyperbolic-hyperbolic
point. Denote by λ1, λ2 > 0 (resp. < 0) the real eigenvalues associated to p1 (resp. to x0,
below we denote by Kp1 and Kx0 the corresponding parametrizations). Then, the linear
dynamics is ṡ1 = λ1s1, ṡ2 = λ2s2. If Ẋ = f(X) refers to the di�erential equations (26),
then the invariance condition requires

∂K

∂sν
(s1, s2)λνsν = f(K(s1, s2)), ν = 1, . . . , 2.
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Fig. 6: (a) Projection on the (p2, q2)−plane of the heteroclinic connection be-
tween the metastable state and the stochastic extinction, computed with the
strong QSSA and the weak QSSA. aL = asL. (b) 3D plot of the stable invari-
ant manifold of the stochastic extinction (red), unstable invariant manifold
of the metastable state (green) and the heteroclinic connection between these
two points (blue), given by the intersection between both invariant manifolds,
computed with the weak QSSA. aL = asL.

By imposing this equality order by order, being k = i + j ≥ 1 the total order, one gets
a sequence of linear systems for the coe�cients ai,j , k > 1 (for k = 0 one gets the �xed
point condition, and for k = 1 the eigenvectors system). See [56] for further details on this
procedure.

In practice, we truncate the series representation to suitable order N and we require
that the invariance condition holds up to a tolerance tol. Then, the invariance condition
will hold for X in a domain of radius rp1 around the �xed point p1 (similarly, for x0 we
obtain rx0 ). Typical values used in the computations are N = 150 and tol = 10−40. The
local domain size depends on the parameter aL in the system. As an example, for aL = 0.15
one obtains rp1 = 265 and rx0 = 1470.

Once the local representations Kp1 and Kx0 , of Wu(p1) and W s(x0) respectively, are
obtained we extend the Wu(p1) up to Σ = {p2 = Kx0

3 (rx0 , 0)}, where Kx0
3 denotes the 3rd

component of Kx0 (the one corresponding to the p2-variable). This is done by integrating
the equations (26) using a Taylor method, which turns out to be an appropriate time-
stepper for the high precision computations required. Assume that Kp1 (z1, z2) ∈ R4 is a

point such that the transported one K̂p1 (z1, z2) ∈ Σ is close to a zero of F (s1, s2, z1, z2) =

Kx0 (s1, s2) − K̂p1 (z1, z2), F : R4 → R4. Then we re�ne this initial condition, using a
Newton method and we obtain a point of the heteroclinic orbit as a zero of F . Note that
this requires to integrate the �rst variational equations. See [56] for further details.

Similar computations for a 2-dof system as well as for a 4D map were carried out in
[24], where further technical details on the parametrization method and the computation of
homo/heteroclinic trajectories can be found. For a recent overview of the parametrization
method for computation of invariant manifolds in di�erent contexts see [30].

In Figure 6 (a) we show the heteroclinic connection, projected on the (p2, q2) plane,
computed with the strong QSSA and the weak QSSA, using the numerical methods explained
in this section. We �nd that there is an excellent agreement between both approximations.
In particular, this justi�es the usage of the strong QSSA for the computations. In Figure 6
(b) we show a 3D representation of Wu(p1) and W s(x0) for the Weak QSSA.
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C Numerical �t of A and B

It is clear that as Nc →∞(Ω →∞) the solution of the semi-classical approximation tends
to the exact solution of Eq. (1), and we can use this fact in our advantage to determine A
and B. We also have to notice that we can determine analytically C, as it is the integral of
the action along the heteroclinic connection. A direct �t of a function of the form

f(Nc) = ANB
c exp (CNc)

can be very unstable. We rather analyse

g(x) =
1

Nc
log f(Nc) = Âx+ B̂x log (x) + Ĉ,

with x =
1

Nc
, which is more favourable, since �rst we are interested in C, therefore we want

to have C alone with small terms suppressed by Nc. Our procedure is as follows,

1 Given a aL we select an initial Nc and we compute τ using stochastic simulations
(the multi-scale stochastic simulation employed to perform this simulations is explained
later).

2 Save εNc =
1

Nc
and δNc = ε log

(
1

τ

)
. Increase Nc and go to 1 until we have some

values of (εNc , δNc ).
3 Using an implementation of the non-linear least-squares (NLLS) Levenberg-Marquardt

algorithm [46] �t g(x) = Âx + B̂x log(x) + Ĉ via Â, B̂, Ĉ where x = log(δNc ) and the
right-hand term is εδNc with some of the higher values of Nc we have.

4 If |Ĉ − C| > tol, where C is the one obtained analytically, increase Nc and go to 1.

5 If |Ĉ − C| < tol we choose Ĉ = C and we �t again via Â and B̂.
6 As we can expect B of the form B = ±n

2
with n ∈ N, we choose B as the closest number

of this form to B.
7 Finally we �t again just via A to check robustness of the previous �t and get a better
approximation of A.

8 As we are interested in Ω = 5000ml, the mean extinction time, obtained with the

semi-classical approximation is, τs = −
(
g
(
Vc

5000

)
5000
Vc

)
.

Note that we expect B to take this form, since this system exhibits the so-called Stokes
phenomenon [4]. Therefore it is natural to expect that there is a singularity in the complex
space which is a pole. For instance, for the Branching-Binary Annihilation-decay process, it
has been proven that B = 1

2
[5, 6, 7]. Numerically we have observed that B approaches 1

2
(independently of aL). To obtain analytic expressions for A and B requires a careful analysis
of the related Stokes phenomenon [7]. This is postponed for future work.
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