Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component of human α -ketoacid dehydrogenase complexes

(Agt11 expression library/protein evolution/mitochondrial import leader sequence)

Gabriel Pons*, Cindy Raefsky-Estrin, Donna J. Carothers, Ronald A. Pepin[†], Ali A. Javed[‡], Barry W. Jesse[§], Mahrukh K. Ganapathi, David Samols, and Mulchand S. Patel[¶]

Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106

Communicated by Frederick C. Robbins, November 2, 1987 (received for review September 9, 1987)

ABSTRACT cDNA clones comprising the entire coding region for human dihydrolipoamide dehydrogenase (dihydrolipoamide:NAD⁺ oxidoreductase, EC 1.8.1.4) have been isolated from a human liver cDNA library. The cDNA sequence of the largest clone consisted of 2082 base pairs and contained a 1527-base open reading frame that encodes a precursor dihydrolipoamide dehydrogenase of 509 amino acid residues. The first 35-amino acid residues of the open reading frame probably correspond to a typical mitochondrial import leader sequence. The predicted amino acid sequence of the mature protein, starting at the residue number 36 of the open reading frame, is almost identical (>98% homology) with the known partial amino acid sequence of the pig heart dihydrolipoamide dehydrogenase. The cDNA clone also contains a 3' untranslated region of 505 bases with an unusual polyadenylylation signal (TATAAA) and a short poly(A) track. By blothybridization analysis with the cDNA as probe, two mRNAs, 2.2 and 2.4 kilobases in size, have been detected in human tissues and fibroblasts, whereas only one mRNA (2.4 kilobases) was detected in rat tissues.

The α -ketoacid dehydrogenase complexes—the pyruvate dehydrogenase multienzyme complex, the α -ketoglutarate dehydrogenase multienzyme complex, and the branchedchain *a*-ketoacid dehydrogenase multienzyme complexcatalyze the oxidative decarboxylation of pyruvate, α ketoglutarate, and the branched-chain α -ketoacids, respectively (1-4). These three complexes occupy key positions in energy metabolism and are involved (i) in connecting glycolysis with the Krebs cycle, (ii) in the Krebs cycle itself, and (iii) in the regulation of the oxidation of branched-chain amino acids, respectively. Each complex consists of at least three catalytic components. The decarboxylase component, which has been designated E_1 , is specific for each complex, and it most likely represents the rate-limiting step in the overall reaction. The dihydrolipoamide acyltransferase component, designated E₂, also substrate specific, is involved in the transfer of the acyl group to CoA. The third component of each complex, dihydrolipoamide dehydrogenase (dihydrolipoamide:NAD⁺ oxidoreductase, EC 1.8.1.4), designated E_3 , is considered to be common to all three complexes. E_3 , a homodimer (subunit $M_r = 55,000$), contains a noncovalently bound molecule of FAD per subunit and catalyzes the reoxidation of the disulfhydryl form of the lipoyl residue bound to the E_2 molecules of the complexes:

$$E_2 - \text{Lip} - (\text{SH})_2 + \text{NAD}^+ \rightleftharpoons E_2 - \text{Lip}(\text{S})_2 + \text{NADH} + \text{H}^+.$$

Three lines of evidence indicate that the E_3 present in these three complexes is identical; they are reconstitution experiments (5), immunological cross-reactivity (6–9), and genetic disorders of E_3 , which cause simultaneous increases in the blood levels of pyruvate, α -ketoglutarate, and branched-chain ketoacids (10). The glycine cleavage system also contains a dihydrolipoamide dehydrogenase component known as L protein (11). However, this system has not been purified as an intact complex. We have recently suggested that this E_3 (i.e., L protein) is immunologically different from the E_3 common to the three α -ketoacid dehydrogenase complexes (12).

Approximately half of the amino acid sequence of pig heart E_3 has been previously determined by sequencing overlapping peptide fragments (13). The availability of a cDNA for mammalian E_3 would be valuable to complete the primary amino acid sequence of mammalian E_3 . It also would be useful for comparison with the primary structure of other related flavoproteins and allow the isolation of the E_3 gene to study its structure-function relationships. In this study we present the cDNA sequence^{II} of a 2.1-kilobase (kb) E_3 clone comprising a short 5' untranslated region, a region covering the complete predicted amino acid sequence of the precursor E_3 , and a 3' untranslated region of 505 bases. A preliminary report of this work has been presented (14).

MATERIALS AND METHODS

Production of Antisera. Two different E_3 preparations were used: (i) E_3 separated from highly purified bovine kidney pyruvate dehydrogenase complex (a gift from Lester J. Reed, University of Texas, Austin) and (ii) E_3 purified from porcine heart (Sigma) without first isolating any one of the complexes. The polyclonal antisera (12, 15) were shown to be specific for E_3 based on: (i) immunoprecipitation of E_3 from rat liver mitochondrial extracts (12) and (ii) identification of a single protein band (corresponding to purified E_3) in human fibroblast extracts by immunoblot analysis (16). The antibodies were affinity-purified by adsorption to a column of Sepharose 4B to which purified pig heart E_3 had been coupled by following the manufacturer's recommendations.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviation: E₃, dihydrolipoamide dehydrogenase.

^{*}Present address: Department of Biochemistry, University of Barcelona, Barcelona-36, Spain.

[†]Present address: Interferon Sciences, Inc., New Brunswick, NJ 08901.

[‡]Present address: Department of Cell Physiology, Boston Biomedical Research Institute, Boston, MA 02114.

[§]Present address: Department of Animal Sciences, Cook College, Rutgers University, New Brunswick, NJ 08873.

To whom reprint requests should be addressed.

^{II}This sequence is being deposited in the EMBL/GenBank data base (Bolt, Beranek, and Newman Laboratories, Cambridge, MA, and Eur. Mol. Biol. Lab., Heidelberg) (accession no. J03620).

The antibody was further passed through a second column to remove possible antibodies against *Escherichia coli* and coliphage proteins (17).

Isolation of E_3 cDNA Clones. A human liver cDNA library constructed in the expression vector $\lambda gt11$, consisting of 2×10^6 independent recombinant phage (provided by T. Chandra and S. L. C. Woo, Baylor College of Medicine, Houston) (18), was plated on *E. coli* Y1090. Approximately 300,000 recombinant plaques were immunologically screened with a 1:50 dilution of the affinity-purified E_3 antiserum raised against bovine kidney E_3 . Phage plaques corresponding to E_3 clones were detected by using a goat anti-rabbit IgG horseradish peroxidase-conjugated antibody and a horseradish peroxidase developing reagent, both from Bio-Rad. The cDNA inserts were isolated from the phage λ DNA by the plate lysate method (19) and, after digestion with *Eco*RI, were subcloned into the phage M13mp19 (20).

Nucleic Acid Methods and DNA Sequence Analysis. A 20-mer oligodeoxynucleotide mixture (128 possible combinations), corresponding to an amino acid sequence (Glu-Met-Ile-Asn-Glu-Ala-Ala) near the carboxyl terminus of pig heart E_3 (13), was synthesized by using an Applied Biosystems (Foster City, CA) automated synthesizer (model 380A). This sequence (with the change of valine for isoleucine) corresponds to the amino acid residues 427 to 433 in the human E_3 sequence presented in Fig. 2. Radiolabeling of the purified mixture was carried out in the presence of $[\gamma^{-32}P]ATP$ and T4 polynucleotide kinase (19).

RNA was isolated from human tissues and fibroblasts and from rat tissues by the guanidine thiocyanate method (21). Poly(A)-containing RNA was prepared by oligo(dT)cellulose chromatography (22). RNA blots were performed as described by Hod *et al.* (23) by using phage M13 primerextended single-stranded probes labeled according to Davis *et al.* (24). Southern blotting was performed using Gene-Screen membranes (New England Nuclear), and the blots were hybridized according to the manufacturer's recommendations.

The DNA sequence was analyzed by the M13 dideoxy sequencing method (25) with adenosine $5'-[\alpha-(^{35}S)$ thio]triphosphate and a M13 sequencing kit from Bethesda Research Laboratories. M13 clones for sequencing were generated by subcloning restriction enzyme digests into M13-mp18 or M13mp19. Restriction enzymes, T4 ligase, and DNA polymerase (Klenow fragment) were purchased from Boehringer Mannheim and used in accordance with the manufacturer's instructions.

RESULTS

Isolation of E₃ cDNA Clones. Screening of a human liver cDNA library with an antiserum against bovine kidney E₃ resulted in the isolation of two clones (λE_3 -1 and λE_3 -2) that appeared positive on rescreening. Moreover, these two clones reacted positively with a second antibody raised against a preparation of porcine heart E_3 and gave negative results when preimmune sera were used. The cDNA insert sizes of these two clones, obtained by EcoRI digestion, were approximately 1.1 and 2.1 kb and they cross-hybridized with each other (results not shown). λE_3 -2 showed an internal *Eco*RI site almost in the middle of the clone producing two fragments of about 1.1 and 1 kb in size. Only λE_3 -2 showed a strong hybridization with the oligodeoxynucleotide mixture (results not shown). The relationship between these two clones was established by DNA sequence analysis and is shown diagramatically in Fig. 1.

cDNA Sequences and Predicted Amino Acid Sequence of E₃. Restriction mapping and sequence analysis of clone λE_3 -1 were shown to be identical to the 5' portion of clone λE_3 -2. The DNA sequencing strategy and restriction endonuclease map of these cDNA clones are shown in Fig. 1, and the composite cDNA sequence obtained is presented in Fig. 2. The internal *Eco*RI site of clone λE_3 -2 was mapped at position 1057 and marks the end of clone λE_3 -1.

The primary amino acid sequence of human precursor E_3 was deduced from the cDNA sequence. There is an open reading frame of 1527 bp located in the sequence between nucleotides 50 and 1577 (Fig. 2). This corresponds to a protein of 509 amino acids and a calculated molecular mass of 54,214 daltons. The first 35 amino acids of the open reading frame are absent from the amino terminus of pig heart E_3 and presumably represent the leader sequence of the protein. The calculated molecular mass of the mature polypeptide is 50,216 daltons. When the molecular mass of a FAD molecule (Da = 703) is added, the total molecular mass comes to 50,919 daltons. This value is close to those obtained by sodium dodecyl sulfate electrophoresis, giving a subunit molecular mass of about 55,000 daltons (6, 7, 26). The calculated molecular mass of the leader sequence (4069) is larger than those obtained for rat heart (3000; ref. 7) and ox heart (2000; ref. 26), although these data are based on differences between the precursor and the mature forms of E_3 . Only about 50% of the primary amino acid sequence of pig heart E_3 has been determined (13, 27). The comparison of the sequences of the first 88 residues at the amino terminus and the last 162 residues at the carboxyl terminus of the mature E₃ shows about 98% homology between human liver

FIG. 1. Relationship between the two E_3 cDNA clones and sequencing strategy. The λE_3 -1 clone corresponds to the fragment between the 5' end of the λE_3 -2 clone and the internal *Eco*RI site. The restriction endonuclease map of the λE_3 -2 clone and sequencing strategy are shown. For *Alu* I and *Hint*I, only the restriction sites used for sequencing are shown. The solid box represents the coding region, starting 51 nucleotides from the 5' end. The direction and extension of the sequence obtained from different restriction fragments used to compile the cDNA sequence are indicated by horizontal arrows. The double-stranded sequence was obtained for every region of the cDNA except a region of 94 bases between *Alu* I (at 950) and *Sau*3A (at 1044) and a region from *Hint*III to the end of the 3' noncoding region, which were sequenced at least four times. bp, Base pairs.

	GCTCCCAGCGGAGGTGAAAGTATTGGCGGAAAGGAAAATACAGCGGAAA														AAA	50				
ATG Met -35	CAG Gln	AGC Ser	TGG Trp	AGT Ser	CGT Arg	GTG Val	TAC Tyr	TGC Cys	TCC Ser	TTG Leu	GCC Ala	AAG Lys	AGA Arg	GGC Gly	CAT His	TTC Phe	AAT Asn	CGA Arg	ATA Ile	110 -16
TCT	CAT	GGC	CTA	CAG	GGA	CTT	TCT	GCA	GTG	CCT	CTG	AGA	ACT	TAC	GCA	GAT	CAG	CCG	ATT	170
Ser	His	Gly	Leu	Gln	Gly	Leu	Ser	Ala	Val	Pro	Leu	Arg	Thr	Tyr	Ala	Asp	Gln	Pro	Ile	5
GAT	GCT	GAT	GTA	ACA	GTT	ATA	GGT	TCT	GGT	CCT	GGA	GGA	TAT	GTT	GCT	GCT	ATT	AAA	GCT	230
Asp	Ala	Asp	Val	Thr	Val	Ile	Gly	Ser	Gly	Pro	Gly	Gly	Tyr	Val	Ala	Ala	Ile	Lys	Ala	25
GCC	CAG	TTA	GGC	TTC	AAG	ACA	GTC	TGC	ATT	GAG	AAA	AAT	GAA	ACA	CTT	GGT	GGA	ACA	TGC	290
Ala	Gln	Leu	Gly	Phe	Lys	Thr	Val	Cys	Ile	Glu	Lys	Asn	Glu	Thr	Leu	Gly	Gly	Thr	Cys	45
TTG	AAT	GTT	GGT	TGT	ATT	CCT	TCT	AAG	GCT	TTA	TTG	AAC	AAC	TCT	CAT	TAT	TAC	CAT	ATG	350
Leu	Asn	Val	Gly	Cys	Ile	Pro	Ser	Lys	Ala	Leu	Leu	Asn	Asn	Ser	His	Tyr	Tyr	His	Met	65
GCC	CAT	GGA	λΑΑ	GAT	TTT	GCA	TCT	AGA	GGA	ATT	GAA	ATG	TCC	GAA	GTT	CGC	TTG	AAT	TTA	410
Ala	His	Gly	Lys	Asp	Phe	Ala	Ser	Arg	Gly	Ile	Glu	Met	Ser	Glu	Val	Arg	Leu	Asn	Leu	85
GAC	AAG	ATG	ATG	GAG	CAG	AAG	AGT	ACT	GCA	GTA	AAA	GCT	TTA	ACA	GGT	GGA	ATT	GCC	CAC	470
Asp	Lys	Met	Met	Glu	Gln	Lys	Ser	Thr	Ala	Val	Lys	Ala	Leu	Thr	Gly	Gly	Ile	Ala	His	105
TTA	TTC	ÀAA	CAG	AAT	AAG	GTT	GTT	CAT	GTC	AAT	GGA	TAT	AGA	AAG	ATA	ACT	GGC	AAA	AAT	530
Leu	Phe	Lys	Gln	Asn	Lys	Val	Val	His	Val	Asn	Gly	Tyr	Arg	Lys	Ile	Thr	Gly	Lys	Asn	125
CAA	GTC	ACT	GCT	ACG	AAA	GCT	GAT	GGC	GGC	ACT	CAG	GTT	ATT	GAT	ACA	AAG	AAC	ATT	CTT	590
Gln	Val	Thr	Ala	Thr	Lys	Ala	Asp	Gly	Gly	Thr	Gln	Val	Ile	Asp	Thr	Lys	Asn	Ile	Leu	1 4 5
ATA	GCC	ACG	GGT	TCA	GAA	GTT	ACT	CCT	TTT	CCT	GGA	ATC	ACG	ATA	GAT	GAA	GAT	ACA	ATA	650
Ile	Ala	Thr	Gly	Ser	Glu	Val	Thr	Pro	Phe	Pro	Gly	Ile	Thr	Ile	Asp	Glu	Asp	Thr	Ile	165
GTG	TCA	TCT	ACA	GGT	GCT	TTA	TCT	TTA	AAA	AAA	GTT	CCA	GAA	AAG	ATG	GTT	GTT	ATT	GGT	710
Val	Ser	Ser	Thr	Gly	Ala	Leu	Ser	Leu	Lys	Lys	Val	Pro	Glu	Lys	Met	Val	Val	Ile	Gly	185
GCA	GGA	GTA	ATA	GGT	GTA	GAA	TTG	GGT	TCA	GTT	TGG	CAA	AGA	CTT	GGT	GCA	GAT	GTG	ACA	770
Ala	Gly	Val	Ile	Gly	Val	Glu	Leu	Gly	Ser	Val	Trp	Gln	Arg	Leu	Gly	Ala	Asp	Val	Thr	205
GCA	GTT	GAA	TTT	TTA	GGT	CAT	GTA	GGT	GGA	GTT	GGA	ATT	GAT	ATG	GAG	ATA	TCT	AAA	AAC	830
Ala	Val	Glu	Phe	Leu	Gly	His	Val	Gly	Gly	Val	Gly	Ile	Asp	Met	Glu	Ile	Ser	Lys	Asn	225
TTT	CAA	CGC	ATC	CTT	CAA	AAA	CAG	GGG	TTT	AAA	TTT	AAA	TTG	AAT	ACA	AAG	GTT	ACT	GGT	890
Phe	Gln	Arg	Ile	Leu	Gln	Lys	Gln	Gly	Phe	Lys	Phe	Lys	Leu	Asn	Thr	Lys	Val	Thr	Gly	245
GCT	ACC	AAG	AAG	TCA	GAT	GGA	AAA	ATT	GAT	GTT	TCT	ATT	GAA	GCT	GCT	TCT	GGT	GGT	AAA	950
Ala	Thr	Lys	Lys	Ser	Asp	Gly	Lys	Ile	Asp	Val	Ser	Ile	Glu	Ala	Ala	Ser	Gly	Gly	Lys	265
GCT	GAA	GTT	ATC	ACT	TGT	GAT	GTA	CTC	TTG	GTT	TGC	ATT	GGC	CGA	CGA	CCC	TTT	ACT	AAG	1010
Ala	Glu	Val	Ile	Thr	Cys	Asp	Val	Leu	Leu	Val	Cys	Ile	Gly	Arg	Arg	Pro	Phe	Thr	Lys	285
AAT	TTG	GGA	CTA	GAA	GAG	CTG	GGA	ATT	GAA	CTA	GAT	CCC	AGA	GGT	AGA	ATT	CCA	GTC	AAT	1070
Asn	Leu	Gly	Leu	Glu	Glu	Leu	Gly	Ile	Glu	Leu	Asp	Pro	Arg	Gly	Arg	Ile	Pro	Val	Asn	305
ACC	AGA	TTT	CAA	ACT	AAA	ATT	CCA	AAT	ATC	TAT	GCC	ATT	GGT	GAT	GTA	GTT	GCT	GGT	CCA	1130
Thr	Arg	Phe	Gln	Thr	Lys	Ile	Pro	Asn	Ile	Tyr	Ala	Ile	Gly	Asp	Val	Val	Ala	Gly	Pro	325
ATG	CTG	GCT	CAC	AAA	GCA	GAG	GAT	GAA	GGC	ATT	ATC	TGT	GTT	GAA	GGA	ATG	GCT	GGT	GGT	1190
Met	Leu	Ala	His	Lys	Ala	Glu	Asp	Glu	Gly	Ile	Ile	Cys	Val	Glu	Gly	Met	Ala	Gly	Gly	345
GCT	GTG	CAC	ATT	GAC	TAC	AAT	TGT	GTG	CCA	TCA	GTG	ATT	TAC	ACA	CAC	CCT	GAA	GTT	GCT	1250
Ala	Val	His	Ile	Asp	Tyr	Asn	Cys	Val	Pro	Ser	Val	Ile	Tyr	Thr	His	Pro	Glu	Val	Ala	365
TGG	GTT	GGC	AAA	TCA	GAA	GAG	CAG	TTG	AAA	GAA	GAG	GGT	ATT	GAG	TAC	AAA	GTT	GGG	AAA	1310
Trp	Val	Gly	Lys	Ser	Glu	Glu	Gln	Leu	Lys	Glu	Glu	Gly	Ile	Glu	Tyr	Lys	Val	Gly	Lys	385
TTC	CCA	TTT	GCT	GCT	AAC	AGC	AGA	GCT	AAG	ACA	AAT	GCT	GAC	ACA	GAT	GGC	ATG	GTG	AAG	1370
Phe	Pro	Phe	Ala	Ala	Asn	Ser	Arg	Ala	Lys	Thr	Asn	Ala	Asp	Thr	Asp	Gly	Met	Val	Lys	405
ATC	CTT	GGG	CAG	AAA	TCG	ACA	GAC	AGA	GTA	CTG	GGA	GCA	CAT	ATT	CTT	GGA	CCA	GGT	GCT	1430
Ile	Leu	Gly	Gln	Lys	Ser	Thr	Asp	Arg	Val	Leu	Gly	Ala	His	Ile	Leu	Gly	Pro	Gly	Ala	425
GGA	GAA	ATG	GTA	AAT	GAA	GCT	GCT	CTT	GCT	TTG	GAA	TAT	GGA	GCA	TCC	TGT	GAA	GAT	ATA	1490
Gly	Glu	Met	Val	Asn	Glu	Ala	Ala	Leu	Ala	Leu	Glu	Tyr	Gly	Ala	Ser	Cys	Glu	Asp	Ile	445
GCT	AGA	GTC	TGT	CAT	GCA	CAT	CCG	ACC	TTA	TCA	GAA	GCT	TTT	AGA	GAA	GCA	AAT	CTT	GCT	1550
Ala	Arg	Val	Cys	His	Ala	His	Pro	Thr	Leu	Ser	Glu	Ala	Phe	Arg	Glu	Ala	Asn	Leu	Ala	465
GCG Ala	TCA Ser	TTT Phe	GGC Gly	AAA Lys	TCA Ser	ATC Ile	AAC Asn	TTT Phe	TGA	АТТИ	AGAA	GATT	ATAT	ATTT	TTTT'	FTCT	GAAA	FTTC	CTGG	1619 474
GAG	CTTT	TGTA	GAAG'	FCAC	ATTC	TGA	ACAG	GATA	TTCT	CACAG	GCTC	CAAG	AATT	TCTA	GGAC	rgaa'	TTAT	GAAA	CTTT	1698
TGG	AAGG	TATT	ТААТ	AGGT	TTGG	ACAA	AATG	GAAT	ACTC	ТТАТ	АТСТ	атат	TTTA	САТА	AATT	TAGT	ATTT	TTGT	TTCA	1777
GTG	CACT	ААТА	TGTA	AGAC	AAAA	AGCT	ACTT	ATTG	TAGC.	ATCC	TGGA	АТАТ	стсс	GTCA	ACTC.	АТАТ	TTTC.	ATGC	TGTT	1856
САТ	GAAA	GATT	СААТ	GCCC	CTGA	ATTT.	AAAT	AGCT	TTTT	TCTC	TGAT	ACAG	аааа	GTTG	ААТТ	TTAC	ATGG	CTGG.	AGCT	1935
AGA	ATTT	GATA	TGTG	AACA	GTTG	TGTT	TGAA	GCAC.	AGTG.	ATCA	AGTT	ATTT	TTAA	TTTG	GTTT	TCAC	ATTG	GAAA	CAAG	2014
TCA	GTCA	TTCA	GATA	TGAT	TCAA	ATGT	CTAT	AAAC	CGAA	CTGA	TGTA	AGTA	алаа	аааа	аааа	АААА	А			2082

and pig heart E₃. The region corresponding to the active cysteines (amino acids 45-57; Fig. 2) is identical in pig and human E_3 . The seven amino acid changes in human E_3 compared to the partial sequence of pig E_3 are: human Asp-86 \rightarrow Glu (pig), human Lys-285 \rightarrow Gln (pig), human Asp-297 \rightarrow Arg (pig), human Tyr-316 \rightarrow Ala (pig), human Leu-421 \rightarrow Ile (pig), human Val-429 \rightarrow Ile (pig), and human

Ser-471 \rightarrow Ala (pig), and in several cases these changes are conservative.

also underlined.

FIG. 2. The nucleotide se-

quence of λE_3 -2 clone and predicted amino acid sequence of hu-

man liver E_3 . Nucleotides are numbered 5' to 3' beginning with

the first base sequenced from the clone λE_3 -2. Amino acids are

numbered with positive numbers

beginning with the first residue

[alanine (GCA)] that matches the amino terminus of pig heart E₃

(13). Amino acid residues of the

leader peptide (underlined) are indicated by negative numbers. The

presumed polyadenylylation sig-

nal near the 3' end of the clone is

Characterization of Human E₃ mRNA. To examine the abundance and tissue distribution of E₃ mRNA, blothybridization analysis was performed on RNA extracted from human liver, kidney, brain, and heart. The results of such analysis using M13 single-stranded DNA probes from Biochemistry: Pons et al.

FIG. 3. Blot-hybridization analysis of RNA from human tissues and fibroblasts. Total RNA was extracted from human tissues obtained within 2–4 hr after death and kept frozen. (A) Twenty micrograms of total RNA from kidney, brain, and heart and 40 μ g from liver were fractionated by electrophoresis on a formaldehydeagarose gel, transferred to a GeneScreen membrane, and probed with a phage M13 single-stranded DNA probe made from clone λE_3 -2. (B) Ten micrograms (lane a) and 15 μ g (lane b) of poly(A)containing RNA from human fibroblasts were fractionated by electrophoresis and transferred in the same conditions as described above. The size of the RNA was determined by comparing its electrophoretic mobility with those of ribosomal RNAs.

clone λE_3 -2 are shown in Fig. 3A. In all human tissues, two major RNA hybridizing bands approximately 2.2 and 2.4 kb in length appeared, but the abundance varied considerably. Heart was the tissue with the highest content of E_3 mRNA. This pattern of E_3 mRNA abundance was constant in several blots using M13 probes either corresponding to the 5' or the 3' end of the λE_3 -2 clone (data not shown). To rule out a possible artifact caused by the use of total RNA and RNA from tissues obtained at post-mortem, poly(A)-containing RNA from human skin fibroblasts was subjected to RNA blot analysis, which also confirmed the presence of two mRNA species (Fig. 3B). To find out whether this RNA pattern of E_3 was present in a different species, we performed a blot-hybridization analysis with poly(A)-containing RNA isolated from rat tissues. The results indicate the

FIG. 4. Blot-hybridization analysis of RNA from rat tissues. Five micrograms of poly(A)-containing RNA was analyzed as described in Fig. 3.

presence of a single band of about 2.4 kb in liver, kidney, and brain (Fig. 4).

DISCUSSION

The data presented here unequivocally establish the identity of the cDNA clones λE_3 -1 and λE_3 -2 as corresponding to the mRNA of the human E_3 . This conclusion is based on the following observations: (i) polypeptides produced by these two $\lambda g111$ human liver cDNA clones were recognized by antibodies raised against highly purified E_3 , (ii) the oligodeoxynucleotide mixture corresponding to an amino acid sequence near the carboxyl terminus of pig heart E_3 hybridized with clone λE_3 -2, and (iii) the predicted amino acid sequence obtained from the nucleotide sequence of λE_3 -2 clone (Fig. 2) is virtually identical with the partial known amino acid sequence of pig heart E_3 (13, 27).

Although there is no apparent homology between the leader sequences of different mitochondrial proteins (28), the analysis of the putative E_3 leader sequence (negatively numbered amino acid residues in Fig. 2) shows a number of features shared by other mitochondrial matrix signal sequences (29, 30). It contains no acidic amino acids and also lacks long stretches of uncharged amino acids. Instead, it has punctuated basic amino acid residues alternating with hydrophobic ones. These structural features, as previously suggested (30, 31), might allow the presequence to fold as an amphiphilic α -helix, independent of the rest of the mature protein, and hence able to interact with the mitochondrial membrane. Secondary structure analysis predictions and hydrophobic calculations based on the first 13 amino acid residues of the E_3 putative leader sequence (data not shown) support the formation of the amphiphilic α -helix structure.

The nucleotide sequence of λE_3 -2 clone includes 50 bp of 5' untranslated region. The sequence in this region contains a stop codon (TGA) in the same reading frame as the E_3 coding region. This is an opal stop codon that cannot be suppressed by the amber suppressor F contained in the host *E. coli* strain Y 1090. It is probable that the *E. coli* translation system reinitiates the translation at the ATG initiation codon of the E_3 coding region rather than producing a β -galactosidase fusion product. The nucleotide sequence upstream of this ATG codon is rich in purine bases and bears some resemblance to the Shine-Dalgarno consensus sequence.

The λE_3 -2 cDNA contains 505 bp at the 3' untranslated region and an unusual polyadenylylation signal (TATAAA) located 16 nucleotides upstream from a short stretch of poly(A) present in the clone. The polyadenylylation signal TATAAA, although described for some mRNAs (32), is not found very often. The difference between the size of the λE_3 -2 clone (2.1 kb) and the hybridizing bands in the RNA blots (2.2 and 2.4 kb) suggests that the 3' end of the λE_3 -2 clone represents the 3' end of the smaller mRNA (2.2 kb) seen on the RNA blots because it is unusual to find a stretch of 18 adenosine residues in the 3' end preceded by a putative polyadenylylation signal that is not simply a long poly(A) track. The presence of two mRNA species hybridizing with the cDNA clone, detected by blot-hybridization analysis, could be explained by the presence of a second polyadenylylation signal located downstream of the 3' end of the λE_3 -2 clone. Other explanations are possible, and a clear answer will require further investigations.

 E_3 belongs to the enzyme family called pyridine nucleotide disulfide oxidoreductases. These enzymes catalyze the electron transfer between pyridine nucleotides and disulfide compounds. Members of this family, in addition to E_3 , are glutathione reductase (EC 1.6.4.2), mercury(II) reductase (EC 1.16.1.1), and thioredoxin reductase (EC 1.6.4.5). All of them contain a sequence with two active cysteines involved in the active center. E₃, glutathione reductase, and mercury(II) reductase show a strong homology in this region, which is not apparent for thioredoxin reductase (13, 27, 33-35). A comparison of the amino acid sequence of human E₃ with the sequence of E. coli E₃ shows \approx 44% homology and another $\approx 15\%$ of the sequence shows conservative amino acid changes (data not shown). This strong homology is extended throughout the polypeptide, although the middle portion of the sequence seems to show the weakest homology. This portion of E_3 could be involved in the interaction with the other component(s) of the α -ketoacid dehydrogenase complexes that are different in structure and symmetry between E. coli and mammals. Glutathione reductase, in accordance with previous comparisons (26), also shows a significant homology with E. coli E₃ (28% homology) (35), pig heart E₃ (partial) (40% homology) (27), and human liver E_3 (33% homology) (present study). It is interesting to note that most of the homologies between glutathione reductase and both E. coli and human E_3 are coincident with the ones between both E₃ sequences. These homologies offer strong evidence for an evolutionary relationship between E_3 and glutathione reductase.

We thank Dr. Lester J. Reed (University of Texas, Austin) for the E_3 component of bovine kidney pyruvate dehydrogenase complex; Drs. T. Chandra and S. L. C. Woo (Baylor College of Medicine, Houston) for the λ gt11 human liver cDNA library; Dr. Douglas Kerr for providing RNA from human tissues; and Dr. Richard W. Hanson for fruitful discussions and for critical reading of this manuscript. This work was supported by Public Health Service Grant AM 20478, Metabolism Training Grant AM 07319 (to B.W.J.), National Research Award NS 07376 (to M.K.G.), and a Fulbright-Ministerio de Educacion y Ciencia Fellowship Award (to G.P.).

- 1. Pettit, F. H. & Reed, L. J. (1982) Methods Enzymol. 89, 376-386.
- 2. Koike, M. & Koike, K. (1976) Adv. Biophys. 9, 187-227.
- Pettit, F. H., Yeaman, S. J. & Reed, L. J. (1978) Proc. Natl. Acad. Sci. USA 75, 4881–4885.
- Cook, K. G., Bradford, A. P. & Yeaman, S. J. (1985) Biochem. J. 225, 731-735.
- Sakurai, Y., Fukuyoshi, Y., Hamada, M., Hayakawa, T. & Koike, M. (1970) J. Biol. Chem. 245, 4453-4462.
- 6. Matuda, S. & Aaheki, T. (1982) J. Biochem. (Tokyo) 91, 553-561.
- 7. Matuda, S., Shirahama, T., Saheki, T., Miura, S. & Mori, M. (1983) Biochim. Biophys. Acta 741, 86–93.
- Heffelfinger, S. C., Sewell, E. T. & Danner, D. J. (1983) Biochem. J. 213, 339-344.
- DeMarcucci, O. L., Hunter, A. & Lindsay, J. G. (1985) Biochem. J. 226, 509-517.
- 10. Blass, J. P. (1983) in The Metabolic Basis of Inherited Disease,

eds. Stanbury, J. B., Wyngaarden, J. B., Fredrickson, D. S., Goldstein, J. L. & Brown, M. S. (McGraw-Hill, New York), pp. 193-203.

- 11. Kikuchi, G., Hiraga, K. & Yoshida, T. (1980) Biochem. Soc. Trans. 8, 504-506.
- 12. Carothers, D. J., Raefsky-Estrin, C., Pons, G. & Patel, M. S. (1987) Arch. Biochem. Biophys. 256, 597-605.
- Arscott, L. D., Berman, M. & Williams, Ch. H., Jr. (1984) in Proceedings of the Eighth International Symposium on Flavins and Flavoproteins, eds. Bray, R. C., Engel, P. C. & Mayhew, S. G. (de Gruyter, Berlin), pp. 153-156.
- Pons, G., Raefsky, C., Carothers, D. J., Pepin, R. A., Javed, A. A., Jesse, B. W., Ganapathi, M. K., Samols, D. & Patel, M. S. (1987) Fed. Proc. Fed. Am. Soc. Exp. Biol. 46, 2214 (abstr.).
- 15. Vaitukaits, J. L. (1981) Methods Enzymol. 73, 46-52.
- Ho, L., Hu, C. W. C., Packman, S. & Patel, M. S. (1986) J. Clin. Invest. 78, 844–847.
- Kemp, D. J. & Cowman, A. F. (1981) Proc. Natl. Acad. Sci. USA 78, 4520-4525.
- Kwok, S. C. M., Ledley, F. D., Dilella, A. G., Robson, K. J. H. & Woo, S. L. C. (1985) Biochemistry 24, 556-561.
- 19. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY).
- 20. Messing, J. (1983) Methods Enzymol. 101, 20-78.
- Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. (1979) *Biochemistry* 18, 5294–5299.
- 22. Aviv, H. & Leder, P. (1972) Proc. Natl. Acad. Sci. USA 69, 1408-1412.
- 23. Hod, Y., Morris, S. M. & Hanson, R. W. (1984) J. Biol. Chem. 259, 15603-15608.
- 24. Davis, L. G., Dibner, M. D. & Battey, J. F. (1986) in *Basic* Methods in Molecular Biology (Elsevier, New York), pp. 276-284.
- 25. Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- 26. DeMarcucci, O. G. L., Hunter, A. & Lindsay, J. G. (1986) Biochem. Soc. Trans. 14, 870.
- Williams, Ch. H., Jr., Arscott, D. L. & Schulz, G. E. (1982) Proc. Natl. Acad. Sci. USA 79, 2199–2201.
- 28. Colman, A. & Robinson, C. (1986) Cell 46, 321-322.
- 29. Hurt, E. C. & Van Loon, A. P. G. M. (1986) Trends Biochem. Sci. 11, 204-207.
- 30. Heijne, G. (1986) EMBO J. 5, 1335–1342.
- 31. Hurt, E. C. & Schatz, G. (1987) Nature (London) 325, 499-503.
- 32. Birnstiel, M. L., Busslinger, M. & Strub, K. (1985) Cell 41, 349-359.
- Packman, L. C. & Perham, R. N. (1982) FEBS Lett. 139, 155-158.
- Stephens, P. E., Lewis, H. M., Darlison, M. G. & Guest, J. R. (1983) Eur. J. Biochem. 135, 519-527.
- 35. Rice, D. W., Schulz, G. E. & Guest, J. R. (1984) J. Mol. Biol. 174, 483-496.