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Abstract

We consider a family Fǫ of area-preserving maps (APMs) with a hyperbolic point Hǫ whose
invariant manifolds form a figure-eight and we study the abundance of elliptic periodic orbits
visiting homoclinic lobes (EPL), a domain typically dominated by chaotic behavior. To this
end, we use the Chirikov separatrix map (SM) as a model of the return to a fundamental
domain containing lobes. We obtain an explicit estimate, valid for families Fǫ with central
symmetry and close to an integrable limit, of the relative measure of the set of parameters ǫ
for which Fǫ has EPL trajectories. To get this estimate we look for EPL of the SM with the
lowest possible period. The analytical results are complemented with quantitative numerical
studies of the following families Fǫ of APMs:

• The SM family, and we compare our analytical results with the numerical estimates.

• The standard map (STM) family, and we show how the results referring to the SM
model apply to the EPL visiting the lobes that the invariant manifolds of the STM
hyperbolic fixed point form.

• The conservative Hénon map family, and we estimate the number of a particular type
of symmetrical EPL related to the separatrices of the 4-periodic resonant islands.

The results obtained can be seen as the quantitative analogous to those in [17], although
here we deal with the a priori stable situation instead.

1 Introduction and general background

Let Fǫ : U → R
2 be a one-parameter family, with 0 < ǫ << 1, of real analytic area-preserving

maps (APMs, for short) defined on an open domain U ⊂ R
2. Assume that the parameter ǫ

plays the role of a distance-to-integrable parameter (see [19]). Concretely, consider that for
ǫ = 0 the map F0 is integrable, and that the maps Fǫ become more chaotic as ǫ increases.
Concerning the geometry of Fǫ we assume that, for ǫ > 0, it has a hyperbolic fixed point Hǫ,
smoothly depending on ǫ, whose stable/unstable invariant manifolds W s/u(Hǫ) form a perturbed
(conservative) figure-eight, see Fig. 1. To fix ideas, the dynamics on the invariant manifolds of
the figure-eight is assumed to be clockwise oriented in all the sketches through the text.

The invariant manifolds of Hǫ for ǫ > 0 do not coincide and they bound an infinity number of
homoclinic lobes (Fǫ preserves area). Our interest in this work is to provide some quantitative
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Figure 1: Sketch of an integrable figure-eight (left) and a perturbed one (right). The dynamics
along the invariant manifolds is clockwise oriented.

information on the existence of elliptic periodic orbits visiting the homoclinic lobes (EPL, for
short) created by the invariant manifolds of Hǫ (see Fig. 1 right). Note that, as ǫ changes,
the invariant manifolds move. In particular, each time the manifolds approach to a homoclinic
tangency a pair of elliptic-hyperbolic periodic orbits are created. This heuristic argument justifies
the existence of EPL.

The EPL trajectories are a particular type of stable motions inside the chaotic region that
the homoclinic tangle creates in a generic non-integrable system. Several works deal with the
existence and abundance of stable periodic motions inside the chaotic zone. We consider relevant
to stress the differences with the present work. For example, the works [10, 14, 13, 11] consider
periodically-perturbed 1 + 1/2 d.o.f. Hamiltonian systems and slow-fast 2 d.o.f. Hamiltonian
systems and establish the existence of a set of initial conditions that give rise to stable periodic
orbits with passages through the separatrix of the “frozen” system (they deal with the so-
called adiabatic approximation of the dynamics). The main conclusion in these works is that
the measure of this set of initial conditions remains finite when the system approaches the
integrable 1 d.o.f. limit system. Nevertheless, these trajectories are never inside homoclinic
lobes. Indeed, in a suitable Poincaré section, these stable periodic trajectories are regular stable
periodic orbits that are created as a consequence of the breakdown of a resonant invariant
curve, hence being Birkhoff periodic orbits (i.e. well-ordered trajectories of a suitable twist
map modelling the dynamics in the region of interest) that appear at some distance from the
separatrices (the iterates of a Birkhoff trajectory should avoid the homoclinic lobes). Following
[4] we studied the abundance of Birkhoff stable periodic orbits inside the chaotic region in [19],
where we concluded that the number of Birkhoff islands of stability inside the chaotic region is
#{islands} ≈ 1.415 × b. For an a priori stable family of APMs Fǫ one has b = O(1/ǫr) with
r > 0 (see comments in Section 1.2), and hence #{islands} → ∞ as ǫ → 0.

In this work we look for EPL, i.e., stable motions inside the figure-eight homoclinic lobes.
These EPL trajectories, that exist for some arbitrary ǫ > 0, do not have their equivalent in the
integrable map (ǫ = 0) for which the manifolds coincide and there are not homoclinic lobes.
They are irregular stable motions [6], that is, these EPL trajectories are not of Birkhoff type
and do not appear as a consequence of the breakdown of a resonant invariant curve. While for
a Birkhoff periodic orbit the creation-destruction pattern is well-known, not so much is known
about the bifurcation (creation-destruction) pattern, the location or the size of the non-Birkhoff
EPL trajectories and related stability domains. EPL trajectories have been observed in many
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examples and their abundance for near-integrable maps was discussed in [17]. In that paper the
authors prove that as ǫ → 0 the measure of the set of ǫ-parameters for which the map has EPL
trajectories is bounded from below. The present work is based on the results in [17].

1.1 The size of the homoclinic lobes and the stability domains related to EPL

An EPL trajectory has all the iterates inside the homoclinic lobes that are generically created
by the splitting of separatrices for a non-integrable system. By Moser’s twist theorem there
exist (generically) rotational invariant curves (of FP

ǫ ) around each iterate of a P -periodic EPL
trajectory. These curves bound stability domains inside the homoclinic lobes. The relative size
(with respect to the size of the homoclinic lobes) of these stability domains is of the order of the
size of the homoclinic lobes (which changes with ǫ). However, for a fixed ǫ, their relative size
is expected to be very small [17]. For each family of APMs considered in this work, we show
a specific type of EPL trajectories, giving an idea of the relative size of the stability domain
surrounding them and how it evolves as ǫ changes.

The size of (and the dynamics inside) the homoclinic lobes for a concrete family Fǫ depends, in
particular, on the hyperbolicity properties of the integrable limit ǫ → 0 that the family Fǫ has.
Denote by λ(ǫ) the dominant eigenvalue of DFǫ(Hǫ). Following the ideas in [3], we distinguish
two different situations.

• In the a priori unstable situation the map F0 has a non-degenerate (i.e. λ(0) > 1 and
λ(ǫ) = λ(0) + O(ǫr), r > 0) hyperbolic fixed point H0 whose stable/unstable manifolds
W s/u(H0) form an (integrable) figure-eight (see Fig. 1 left).

• In the a priori stable situation, of interest for the purposes of this paper, the hyperbolic
fixed point Hǫ turns out to be degenerated (we encounter, for example, a degenerated
invariant curve of fixed points) for ǫ = 0 and, consequently, the map loses hyperbolicity
for ǫ → 0 (see remark below). This situation covers the case of hyperbolic points created
when perturbing a resonant curve of an integrable APM (generically, a pair of elliptic-
hyperbolic Birkhoff periodic orbits are created, the manifolds of the hyperbolic periodic
points surround the elliptic periodic ones forming a pendulum-like structure containing an
island of stability) 1. In particular, we assume that λ(ǫ) = 1 +O(ǫr), r > 0.

Remark. One can also consider an scenario in which the hyperbolic point Hǫ becomes weakly hyperbolic

for ǫ = 0 (i.e. with λ(0) = 1). As a concrete example, consider the family of APMs Fǫ(x, y) = (x̄, ȳ) =

(x+ (ȳ + νx)/4, y + (4x3 − 6x5 − ǫy)/4), where ν = ǫ/(4− ǫ). We are interested in values |ǫ| << 1. The

origin is a fixed point and Spec(DF (0, 0)) = {λ, λ−1}, with λ = 1 − ǫ/4. The points p±e = (±
√
2/3 ±√

3ǫ2/8
√
2 + O(ǫ3),∓

√
2ǫ/

√
3 + O(ǫ2) are elliptic points. For ǫ 6= 0 the origin is a (non-degenerated)

hyperbolic point whose invariant manifolds surround the points p±e creating a figure-eight. For ǫ = 0, the

origin becomes parabolic with stable/unstable invariant manifolds (locally y = g(x) = ±
√
2x2 ±O(x3))

which also form a (perturbed) degenerated figure-eight. We note that for ǫ = 0 the map is not integrable.

Instead, one can consider the stroboscopic map related to the vector field defined in terms of a Hamiltonian

function of the form H(x, y, t) = H0(x, y) + ǫH1(x, y, t/ǫ), with H1 2π-periodic in t/ǫ and, for example,

H0(x, y) = y2/2− x4 + x6 to have a degenerated non-perturbed figure-eight for ǫ = 0. We also note that

this situation might behave like the a priori stable case (for instance, some exponentially small phenomena

1The change of variables that allows to identify the manifolds forming a pendulum-like island with a figure-
eight was described in [19]. We briefly recall that, given an APM F in action-angle coordinates (I, ϕ) having a
stability island whose elliptic point is located at I ≈ I∗, ϕ = 0, then the identification to obtain the figure-eight
representation maps the elliptic point inside the island to infinity, while the points corresponding to I = −∞ and
I = +∞ are mapped to the elliptic points inside the loops of the figure-eight.
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might appear [1]) although some weak hiperbolicity remains for the limit map. For simplicity, we do not

consider this parabolic weakly-hyperbolic situation although the same techniques could be applied to

describe EPL in this setting. We are mainly interested in EPL visiting homoclinic lobes related to the

invariant manifolds of (Birkhoff) resonant islands of stability which are created at the breakdown of a

resonant rotational invariant curve, hence there is no hyperbolicity, neither of weakly type, for ǫ = 0.

The reader is referred to [19] for a detailed description of both cases. For our purposes, the
most relevant difference between the two situations above concerns the size (width) Aǫ of the
homoclinic lobes: generically, Aǫ = O(ǫr), r > 0, in the a priori unstable case, while it becomes
exponentially small with respect to (some power of) ǫ (i.e., Aǫ = O(exp(−c/ǫr)), with r, c > 0
constants) in the a priori stable one. Hence, in particular, the problem of finding EPL trajectories
becomes much more involved (and the numerical computations become more cumbersome) in
the last situation. We stress that:

• The dynamics inside the homoclinic lobes can look like chaotic but the existence of EPL
prevent from ergodicity.

• However, the related EPL “islands” of stability, might be very small (and, consequently,
hard to be observed in the phase space, see [17]). This explains why it is commonly
accepted that the dynamics inside lobes is ergodic, although formally speaking, it is not.
Indeed, the dynamics may seem to behave as ergodic, see [12].

• The evolution of the stability domain as ǫ varies follows the general pattern and, in par-
ticular, it suffers drastic changes in size when the resonant islands emanate from it (see
[16, 18, 20, 19] for a description of this mechanism).

• Islands of stability are sticky because the tiny gaps of the cantori surrounding them are
“difficult to cross”. In particular, chaotic trajectories stick around islands of stability for
relatively long times (see Section 4.1.1 for a numerical study of the stickiness effects).

1.2 General comments on the SM model

To analyze the existence of EPL for Fǫ we recall that, in a suitable neighborhood of size O(Aǫ)
containing the figure-eight separatrices, the dynamics of Fǫ can be approximated by the dynamics
of the separatrix map model [25, 4], from now on SM for short. The errors of this approximation
can be bounded explicitly [15]. The SM becomes in such a way a universal return model that
captures the whole dynamics of an APM family Fǫ in a suitable neighborhood of the figure-eight
separatrices. The following comments try to clarify why we can deal with a simple SM model
in our theoretical discussions.

• In a concrete problem the figure-eight loops may not necessary be totally symmetric [15, 17]
(by totally symmetric we mean that the figure-eight is symmetric with respect to the
vertical and horizontal axis, hence, both loops of the figure-eight are equal).

• Accordingly, the proper SM model must take into account the difference between the
figure-eight loops. This gives a model, named as double SM (DSM from now on) in [19],
defined in a fundamental domain which is the union of two annuli (each one captures the
dynamics in a neighborhood of one of the two loops). The Chirikov leading approximation
of the DSM (see comments below) is given by

DSM :




x
y
s


 7−→




x̄
ȳ
s̄


 =




x+ as,s̄ + b log |ȳ| (mod 1)
y + νs̄ sin 2πx

sign(y) s


 . (1)
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The parameters as,s̄ are related to the reinjections after the passage close to the hyperbolic
point H, the parameter νs̄ measures the ratio between the inner and outer splittings and
the parameter b is defined as for the SM, that is, b = 1/ log(λ), being λ the dominant
eigenvalue of H. The variable s is equal to 1 (resp. −1) in and around the upper (resp.
lower) lobes. See related comments on the parameters of the SM (2) below.

• Under generic assumptions, the figure-eight that form the invariant manifolds of a Birkhoff
hyperbolic point of a pendulum-like resonance is non-symmetric and, in particular, the
splitting angle of the separatrices in both loops is of different size (see [18]). However, the
lack of symmetry is not detected in the first order approximation of the dynamics within
the resonance, which is given by a (discrete) pendulum [4, 18].

• In particular, we assume that Fǫ commutes with the central symmetry Zǫ with respect to
Hǫ. This implies that the figure-eight is totally symmetric. One can then identify both
annuli where the DSM model is defined and get a much simpler SM model, given by (2)
below, defined on a single annulus instead. See [17] for comments on this reduced model.

• The central symmetry property does not hold for a generic family of APMs: it implies an
over-simplified dynamics for Fǫ. This can be specially relevant in non-generic situations.
For this reason, we include in Section 4 an analysis of the 1:4 resonant island of the Hénon
map as an example of a (completely!) non-symmetric a priori stable situation.

• Moreover, in this paper we deal with the so-called Chirikov SM which is a leading explicit
approximation to the general Zaslavsky SM. It is obtained assuming that, in the funda-

mental domain, the oscillation between W
u/s
loc (Hǫ) is sinusoidal (the higher harmonics are

ignored). The reasoning in [2] shows that the Chirikov SM is, generically, the suitable
model at least in close enough to integrable systems (that is, in an integrable limit sense).
Further details can be found in [19].

To sum up, we consider the Chirikov DSM but defined on a totally symmetric figure-eight. If
we identify both annuli where the double separatrix map is defined, for x ∈ R/Z and y ∈ R, the
reduced map is given by

SMa,b :

(
x
y

)
7→
(

x1
y1

)
=

(
x+ a+ b log |y1|
y + sin(2πx)

)
, (2)

for suitable parameters a and b (see comments below). To derive the model (2) the y-variable
has been rescaled by the size of the splitting, which is assumed to be the same in both loops
of the figure eight (recall that the splitting behaves as a power of ǫ or exponentially small in ǫ
according to the hyperbolic properties of the integrable limit of Fǫ, see Section 1.1). We stress
the fact that the SM model (2) provides not only qualitative but also quantitative information
concerning the dynamics of Fǫ in a tubular region containing the separatrices.

As observed in [15, 19], the SM (2) is useful to describe the dynamics of Fǫ in both a priori
stable/unstable situations. The dynamical differences between these situations are reflected in
the parameters a and b, a, b ∈ R, b 6= 0 (of course, a is taken modulus 1) of (2) and, more
concretely, on their dependence on the distance-to-integrable parameter ǫ.

The parameters a and b in (2) have a geometrical meaning. Assume that we want to study
the dynamics of an APM F around the separatrices emanating from a fixed/periodic hyperbolic
point H. Roughly speaking, the parameter a can be seen as a phase shift of the reinjection of
the dynamics to the fundamental domain of definition of the model (2). On the other hand,
b = 1/ log(λ) where λ is the dominant eigenvalue (i.e. λ > 1) of DF (H). Further details can be
found in [2, 15, 17].
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If, instead of a single map F , we consider a one parameter family Fǫ as above, then the parameters
a and b in (2) depend on the distance-to-integrable parameter ǫ. Concretely, see [19] and compare
with [15], we have the following relation in the a priori stable/unstable situations:

a priori unstable case: a = O(− log ǫ) , b = O(1),

a priori stable case: a = O(1/ǫ2r) , b = O(1/ǫr),
(3)

where r > 0 is such that λ = 1+O(ǫr). In any case, the value of a has to be taken modulus 1. In
particular, in the a priori unstable case the parameters a and b can be considered as independent
(their first order approximations are independent) while in the a priori stable case they depend
on each other.

We want to study the existence of EPL in an a priori stable family Fǫ for values of 0 < ǫ << 1,
that is, for maps Fǫ close to the integrable map F0. One has b(a) ≈ ǫra according to (3), hence
b′(a) ≈ ǫr → 0 as ǫ → 0 since r > 0. Consequently, in a integrable limit sense, both parameters
become independent also in the a priori stable case. In other words, the value of a changes
quickly for ǫ → 0: a small variation of ǫ produces a change of O(1) in the value of a.

Concretely, in Section 2, we consider an a priori stable family of APMs Fǫ and we discuss on
the limit integrable (that is, ǫ → 0) of the measure of the set of parameters (a, b) for which one
expects to have EPL. To this end, we take the following strategy: we consider b fixed (and large
enough because b = O(1/ǫr)) and we compute the set of a values for which one has EPL. A
transversality argument, see Section 2.3, rigorously justifies this approach. Naively, one might
think that we are considering an a priori stable situation like if it was an a priori unstable one
where a and b are independent each other.

Remark. For ǫ → 0 (equivalently b → ∞) the number of iterates to return to the fundamental domain

where the SM is defined tends to +∞. The size of the fundamental domain (before scaling to get x ∈ [0, 1]

and y = O(1) in (2), that is, in the original coordinates of Fǫ) tends to 0 because the dynamics along the

invariant manifolds becomes trivial and the distance between consecutive homoclinics tends to 0.

1.3 The type of EPLs under consideration

Consider a family Fǫ of APMs with a hyperbolic point Hǫ whose invariant manifolds form a
perturbed figure-eight, see Fig. 1 right. The splitting of the separatrices bounding each un-
perturbed loop of the figure-eight creates a family of homoclinic lobes. Hence, related to a
perturbed figure-eight there are two families of homoclinic lobes. An EPL trajectory can visit
only the homoclinic lobes of one family or both families of homoclinic lobes. See Fig. 2, left and
right respectively, for an illustration of each type of EPL.

In general, by “the period” of a given EPL trajectory {xk}k=1,...,P of Fǫ, and depending on the
context, we can refer to the period P of the EPL (i.e. FP

ǫ (x1) = x1), to the period p̂ in terms
of the DSM model (1), or to the period p in terms of the SM model (2).

Recall that, for the analytical results in this paper, we impose that the Fǫ commutes with Zǫ

(the central symmetry with respect to Hǫ) and, accordingly, we use model (2) to determine EPL
trajectories. In this case the simplest EPL have period p = 2. An example of an EPL trajectory
with period p = 2 visiting all the homoclinic lobes and commuting with Zǫ is represented in
Fig. 2 right. Note that, for such trajectories one has p̂ = 2 p, z3 = Zǫ(z1) and z4 = Zǫ(z2).
Period p = 2 EPL are expected to be dominant for families commuting with Zǫ, i.e., their
related islands of stability are expected to be larger.
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z0z1

z2 z3

Figure 2: We represent an EPL trajectory of an APM F by the iterates zi that fall into the
fundamental domain where the SM is defined. One has, zi = SM i(z0) (if points are expressed
in the suitable SM coordinates). Left: An EPL trajectory of lowest possible period (p̂ = 3)
visiting some homoclinic lobes. It does not visit the lobes of the bottom loop of the figure-
eight. This type of orbits where considered in [17]. Right: An EPL trajectory of lowest possible
period (p̂ = 4 or, equivalently, p = 2) visiting all the homoclinic lobes. They are dominant if Fǫ

commutes with Zǫ. This is the type of orbits we consider through this work.

In [17] the authors considered, for theoretical purposes, period p̂ = 3 orbits of the DSM. In
Fig. 2 left we give an illustration of an orbit of such type. Note that these EPL trajectories do
not visit all the homoclinic lobes and that do not respect the central symmetry Zǫ (the point
Zǫ(z2) is not a point of the EPL trajectory). Instead, below we consider period p̂ = 4 orbits
which is the lowest possible period for the DSM if the EPL trajectory visits all the lobes (Fig. 2
right).

Remark. In our numerical investigations we deal with symmetric and also non-symmetric families Fǫ.

Accordingly, different types of EPL are considered in each case. However, our analytical results concern

period p = 2 EPL.

1.4 Brief presentation of the analytical and numerical results of this work

Given a family of APMs Fǫ as before, denote by F ′ = d/dǫ|ǫ=0Fǫ, which is a Hamiltonian vector
field, and then Fǫ = F0+F ′ǫ+O(ǫ2). Denote by A the set of real analytic vector fields. Using a
rigorous derivation of the separatrix map [15], and in the a priori unstable context, the following
result was proved in [17].

Theorem 1.1 Let J(Fǫ) ⊂ (−ǫ0, ǫ0) be the set of values ǫ, with |ǫ| < ǫ0 for some fixed small
ǫ0, for which the map Fǫ has an EPL trajectory. There exists an open set S ⊂ A such that for
any F ′ ∈ S, the relative measure of J(Fǫ) on (−ǫ0, ǫ0) remains, when ǫ0 → 0, greater than a
constant K > 0 independent of ǫ.

As detailed in (3), one has b = O(1) as ǫ → 0 for an a priori unstable family of APMs. Hence,
Theorem 1.1 is a consequence of the fact that, for a fixed b, the separatrix map (2) or, more
generally, the DSM model if Fǫ does not commute with the central symmetry, has a set Eb of
values of a of positive Lebesgue measure mL for which the system has EPL.
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Note that to get mL(Eb) involves to consider all types of EPL of any period. A lower bound
of mL(Eb) can be obtained by considering a specific type of EPL of a concrete period. Let

E
{3}
b ⊂ Eb be the subset of a-parameters for which one has period p̂ = 3 EPL, like the one

shown in Fig. 2 left. To obtain Theorem 1.1, the authors proved the existence of a periodic
stable p̂ = 3 EPL (i.e. with residue 0 < R < 1) and use a suitable scaling of the SM (the
Rǫ-renormalization scaling, see below) to conclude the proof. Consequently, there is a positive

lower bound K
{3}
b of mL(E

{3}
b ) such that,

mL(Eb) ≥ mL(E
{3}
b ) ≥ K

{3}
b > 0. (4)

However, Theorem 1.1 does not give any estimate of the value of mL(E
{3}
b ). In contrast, in this

work we provide an analogous quantitative result. For analytical simplicity, we consider a family

Fǫ with central symmetry. Accordingly, it has no sense to consider EPL from E
{3}
b because the

EPL must be symmetric. Instead we consider the subset E
{4}
b ⊂ Eb of a-parameters for which

Fǫ has a symmetric EPL of period p̂ = 4 (p = 2), like the one in represented in Fig. 2 right.

In Section 2 we use the SM (2) to get an accurate estimate mL(E
{4}
b ) for an a priori stable

family of Fǫ close to the integrable limit. As pointed out in [17], one expects that a similar
result holds in the a priori stable case. Note, however, that in the a priori unstable case the
leading approximation of the SM (2) admits a linear scaling of ǫ, the so-called Rǫ-renormalization
[8, 9, 15], used to obtain Theorem 1.1 above. In such a case one has a = a0(1 + o(1)) with
a0 = − log(ǫr/ log λ)/ log λ (see [15, 19]) and then, if ǫ2 = ǫ1/λ

1/r, it follows a(ǫ2) ≈ a(ǫ1) (mod
1). This scaling does not hold in the a priori stable context as it was observed in [8] for a
concrete example and was discussed in [19] in the general setting.

We study the limit b → +∞ assuming independence between the parameters a and b in (2), as
explained in Section 1.2. Then, for a fixed b, Theorem 1.1 ensures the existence of a positive

lower bound for mL(Eb). To get a more quantitative result we analytically estimate mL(E
{4}
b ) .

One obtains an infinity number of a-intervals which correspond to different periods P of EPL for

a generic Fǫ. Adding them, one obtains an estimate of mL(E
{4}
b ). However, different EPL might

coexist for some range of parameters a, that is, some a-intervals related to different EPL might
overlap. We can remove the effect of the overlapping between the a-intervals corresponding

to consecutive periods P , hence obtaining a much precise estimate of mL(E
{4}
b ). But it might

happen that EPL of very different periods P give a-intervals that overlap. This effect, although
expected to be almost negligible, is not considered in the theoretical results in Section 2.

Section 2.2 relates the result obtained for a fixed b with the a priori stable situation in which
we are interested in. For an a priori stable family Fǫ, with the considered properties, we denote

by E
{4}
ǫ the set of parameters ǫ for which the corresponding model SM (2), with a = a(ǫ) and

b = b(ǫ) according to (3), has a period p = 2 EPL trajectory. The union of the a-intervals of
stability for different b values generates a collection of strips, below referred as EPL strips, in
the (a, b)-plane (see Fig. 3 for an sketch of the situation and compare with Fig. 8 in Section 2.2
and Fig. 14 right in Section 3). We prove that the slope of the EPL strips is ≈ 1/ log(2) for large
values of b (see Section 2.2) and, consequently, the curve (a(ǫ), b(ǫ)) (denoted by C in Fig. 3)
corresponding to an a priori stable family intersects transversally these EPL strips, at least for
values of ǫ ≈ 0 (i.e. for b large enough). This justifies our approach to get the estimate of

mL(E
{4}
b ).

Most of the explanations in this paper are exemplified by numerical explorations. Some numeri-

cal estimates of the values of mL(E
{4}
b ) for values −4 ≤ − log b ≤ 4 were also given in [17]. These
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b
0

0 1 a

b

C

Figure 3: Sketch of the EPL strips for a range of b values large enough. Each EPL strip is related
to different periodic P trajectory of Fǫ which gives rise to a period p = 2 EPL. For a fixed b = b0,
the intersection of the EPL strips with the horizontal (dashed) line provides a collection of a-
intervals of stability. An a priori stable family Fǫ defines a curve C which intersects transversally
these EPL strips. Inside the circle two EPL strips intersect and the corresponding a-intervals
for these b values overlap.

computations were performed using double precision arithmetics, hence the intervals of stability
of the tiny islands were not considered. On the other hand, these computations concerned the
SM model (2), and no attempt was done in [17] to check the theoretical results using a family
Fǫ and relating it to the SM model. Through this work, we compare our analytical results with
accurate numerical computations for a priori stable families Fǫ of APMs.

In Section 2 we include a comparison between the theoretical estimates ofmL(E
{4}
b ), for b → +∞,

and the measure obtained by the direct computation of the EPL a-intervals from the SM model
(2). In Section 3 we consider the standard map (from now on STM, for short)

STMǫ :

(
x
y

)
7→
(

x̄
ȳ

)
=

(
x+ ǫȳ

y + ǫ sin(x)

)
, (5)

as an example of a priori stable family of APMs. The parameter ǫ of the STM can be seen
as a distance-to-integrable parameter. Note that it has central symmetry, hence it fits within
the theoretical framework of our analytical results. Numerically, we compute the period p = 2
EPL inside the lobes that, for ǫ > 0, the manifolds of the hyperbolic fixed point of STM create.
Using a continuation procedure, we obtain an estimate of the set of ǫ parameters having EPL
and compare it with the predicted theoretical results in terms of the a, b parameters of the SM
model. Moreover, we describe the bifurcation pattern of these EPL.

Section 4 is devoted to illustrate EPL trajectories in an example where the related figure-eight
geometry does not respect the required symmetries. We show that, although the quantitative
results should be adapted, the existence of EPL and the qualitative pattern of the bifurcation
curves is similar. Nevertheless, the absence of central symmetry allows for period-doubling
bifurcations of EPL trajectories contrary to what happens for the SM trajectories (if consid-
ered on the figure-eight, see Lemma 3.1). Note that the proper model in this situation is a
non-symmetric DSM (1). Several comments try to elucidate why we have some quantitative
differences. Concretely, in Section 4 we (numerically) look for EPL inside the homoclinic lobes
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of the 4-periodic islands of stability of the Hénon map family

Hc :

(
x
y

)
7→
(

c(1− x2) + 2x+ y
−x

)
. (6)

The non-genericity of the 1 : 4 resonance of the family (6) is reflected in the non-symmetric
figure-eight that the manifolds form. In particular, for the values of interest, that is, close to
the integrable limit, one of the loops is bounded by separatrices with relatively large splitting
while the splitting related to the separatrices of the other loop is almost negligible (see [18] for
details on these splittings). Accordingly, we look for EPL trajectories which do not visit all the
homoclinic lobes but only the ones that creates the large splitting of separatrices. These EPL
trajectories are of the type considered in [17], see Fig. 2 left and compare with Fig. 16 right.
Despite the non-generic properties of the 1 : 4 resonance for the family (6), the phenomenon
we look for (existence/abundance of EPL) as well as the mechanisms of creation/destruction of
EPL are expected to be generic.

This example reflects the main difficulties that appear in this type of quantitative numerical
studies (some of them also appear in the STM analysis (Section 5)). We note that,

• The role of ǫ in a family Fǫ as considered above is played in (6) by the parameter c. For
c = c∗ = 1 the 1 :4 resonant bifurcation takes place. For c > 1 the period-4 islands of (6)
have a pendulum-like geometry and the splitting of the inner/outer separatrices have an
exponentially small upper bound with respect to (some power of) c − 1. Further details
on the behavior of these splittings and several comments on the non-genericity of the 1:4
resonance for the Hénon map can be found in [18].

• The periodic orbits inside the homoclinic lobes in a pendulum-like island, like the 1 : 4
island considered for (6), must have large period T . These higher period orbits are usually
stable for values of the parameter ranging on rather short intervals.

• Denote by E(c) the set of c-values for which (6) has EPL visiting the homoclinic lobes
related to the 1 : 4 resonance. We are interested in estimates of mL(E(c)) for a given c
value greater than, but close to, c∗. This is equivalent to consider b large (ǫ ≈ 0) in the
corresponding DSM model but, then, one should also take into account that changes in
c cause changes in the values of both a and b in a way that depends on the distance-to-
integrable parameter ǫ, see comments in Section 1.2.

• From a practical point of view it is obviously impossible to deal with all types of EPL
orbits. Hence, lower bounds of mL(E(c)) depend on the geometry of the EPL we look for.

To confront these difficulties and compute a lower bound ofmL(E(c)) in this example we proceed
as follows: instead of fixing P and count the number of elliptic P -periodic orbits by scanning
a homoclinic lobe, we look for EPL with some geometrical properties for “all” periods (that is,
we look for elliptic P -periodic orbits with P < Pmax for a suitable maximum period Pmax).

In Section 4 we restrict ourselves to a special type of EPL, which can be seen as a period p̂ = 3
orbits with a particular symmetry. As before, period p̂ refers to a period related to a DSM
model, hence counting an iterate each time the real dynamics of the map returns to each of
the annuli that form the fundamental domain: in fact, one needs hundreds of iterates of (6) to
return to the domain. As a consequence, the computations must be done using multiprecision
arithmetics. On the other hand, the inherent hyperbolicity within the homoclinic lobes makes
necessary to combine high precision with the use of symmetries to look for periodic orbits. This
is the reason why we restrict to some specific type of EPL trajectories. In any case, a large
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amount of periodic orbits is detected but the measure of the set of parameters c for which the
map has stability islands related to these periodic orbits turns out to be not too large. On the
other hand, we have also identified the bifurcations taking place from the creation of the stability
domain until it is destroyed, for the particular orbits considered. A numerical experiment to
show the stickiness properties (see [23, 24]) of the detected type of islands concludes Section 4.

Finally, Section 5 summarizes the results in this paper and opens new lines for future works.

To end this introduction we note that the numerical algorithms used through the paper are
standard ones for the computation of fixed/periodic orbits and continuation with respect to
parameters. Any standard book on numerical analysis can help the unfamiliarized reader. Our
multi-precision algorithms, when necessary, have been coded using the Pari/GP package [21].

2 On the abundance of stability islands inside the homoclinic

lobes

The dynamics within a homoclinic lobe seems to be completely chaotic and it is commonly
accepted ergodicity as a reasonable assumption to describe it. However, in Section 2.1 and
following [17], we show the existence of a positive measure set of parameters ǫ, below we refer
them as EPL parameters, for which any close enough to integrable analytic APM Fǫ has EPL
trajectories. Concretely, we study the presence of period p = 2 EPL. These EPL trajectories of
Fǫ exist only for values of ǫ in an EPL strip of stability, see Fig. 3. The geometry of the EPL
strips is analyzed in Section 2.2. On the other hand, in Section 2.3 we study the location of
the islands related to period p = 2 EPL which, because the simplicity of these EPL trajectories,
are expected to generate the largest stability islands in families Fǫ with central symmetry. This
might provide a preliminary insight into the density distribution law of the iterates of a map
inside a homoclinic lobe, a task which is far beyond the goal of the present work.

2.1 Positive measure set of EPL parameters close to the integrable limit

Consider the two-parameter family SMa,b given by (2). The change x̂ = 1/2−x, ŷ = y, reverses
the sign of b and hence we consider from now on b > 0. Recall that, although we consider
the parameters a and b as independent parameters, we want to use the SM (2) to describe the
dynamics of an a priori stable family of APMs Fǫ. Then ǫ ∼ b−1/r meaning that one has to
consider (2) for large values of b.

Remark. Under some reversibility conditions on the figure-eight geometry, the separatrix map SMa,b (2)

has a kind of “universal” character. In particular, the EPL pattern that we describe below might help to

understand the general pattern expected for any APM for the EPL visiting homoclinic lobes created by

the invariant manifolds of the hyperbolic (Birkhoff type) periodic orbits (pendulum-like resonant islands).

For a fixed b we look for the measure of the set of maps (depending on a) having EPL of period
p = 2. This gives a collection of a-intervals for which the map SMa,b has these trajectories.
Some of the a-intervals overlap. The overlapping effect changes the estimate of mL(E

4
b ) by a

relatively small amount (see Theorem 2.2 and the numerical computations below).
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Figure 4: A sketch of the relative position of the invariant manifolds of Hǫ in the fundamental
domain x ∈ [0, 1) where the SMa,b (2) is defined.

Theorem 2.1 Consider the parameter a ranging in [0, 1). For a fixed b, let
∑

∆a denote the
sum of the lengths of the intervals ∆a = (a−, a+) such that for a ∈ ∆a the separatrix map SMa,b,
given by (2), has an elliptic 2-periodic orbit inside the homoclinic lobe. Then,

lim
b→+∞

∑
∆a =

1

2π2
.

Proof. For simplicity, along the proof we denote by T the map SMa,b, skipping the dependence
on the parameters.

The invariant manifolds of Hǫ bound two homoclinic lobes within the domain of definition of T ,
see Fig. 4. We consider a point (x0, y0) inside the right homoclinic lobe. In particular, x0 > 1/2
and y0 > 0. Define (xk, yk) = T k(x0, y0) the trajectory of (x0, y0). Then, (x1, y1) must be inside
the left homoclinic lobe to have a 2-periodic EPL and, in particular, x1 < 1/2 and y1 < 0.
Hence, the condition of existence of period p = 2 EPL is x−1 = x1 (mod 1), y−1 = y1 < 0,
which gives the conditions

2a+ b log(−y0y1) = 0 (mod 1), (7)

sin(2πx0) + sin(2πx1) = 0. (8)

From (8) one obtain two possibilities: either x1 = x0 − 1/2 (case (i)) or x1 = 1 − x0, x0 6= 3/4
(case (ii)).

The computation of the trace of the differential matrix of T 2 at (x0, y0) gives

Tr = Trace(DT 2(x0, y0)) = 2 + (β0 + β1)(α0 + α1) + β0β1α0α1,

where αi = 2π cos(2πxi) and βi = b/yi for i = 0, 1. We look for elliptic-hyperbolic (E-H)
bifurcations, which appear when Tr = 2 or Tr = −2. First we consider Tr = 2.

If we consider case (i), that is x1 = x0 + 1/2, Tr = 2 − α2
0b

2/y0y1. Then, in order to have an
(E-H) bifurcation one should have α0 = 0 which implies

x0 = 3/4, x1 = 1/4.

The condition x1 = T1(x0, y0) (where T1 refers to the first component of T ), gives a+b log(−y1) =
1/2, which together with condition (7) provides (recall that log λ = b−1)

y0 = λk/(1 + λk), for some k ∈ Z.

12



Denote by y0,k the corresponding value of y0 for a given k. Then, taking into account that
y1,k = y0,k − 1, one obtains

a
(i)
tr=2,k =

1

2
− b log(−y1) =

1

2
+ b log(1 + λk) (mod 1).

Otherwise, if we consider case (ii), the condition Tr = 2 is given by

2y0 + sin(2πx0) + πb cos(2πx0) = 0. (9)

Condition (7) gives atr=2 = −b log(−y0y1)/2. Moreover, conditions x1 = −x0 (mod 1) and
x1 = T1(x0, y0) give atr=2 = −2x0 − b log(−y1)(mod 1). Relating both expressions of a and
using condition (9) one gets the equation

4x0 − b log(− sin(2πx0)− πb cos(2πx0)) + b log(− sin(2πx0) + πb cos(2πx0)) = n, n ∈ Z, (10)

from which it can be determined x0 = x0,n for each n, as we shall see. Then,

y0,n = −1

2
(sin(2πx0,n) + πb cos(2πx0,n)),

and

a
(ii)
tr=2,n = −2x0,n − b log

(
1

2
(πb cos(2πx0,n)− sin(2πx0,n))

)
(mod 1).

To get an explicit (not depending on x0) expression of a
(ii)
tr=2,n let us consider x0 = 3/4 − ξ and

look for x0 ∈ (1/2 + arctan(πb)/2π, 1− arctan(πb)/2π) (for other values of x0 ∈ (1/2, 1) some
argument of log in (10) would be negative). Expression (10) reads as

4ξ + b log

(−πb cos(2πx0)− sin(2πx0)

πb cos(2πx0)− sin(2πx0)

)
= k, k = 3− n,

or, equivalently,
1 + πbt

1− πbt
= λk−4ξ,

where t = tan(2πξ) = cos(2πx0)/ sin(2πx0) and, hence, t ∈ (−1/πb, 1/πb) \ {0}. It is clear that
for each k ∈ Z this equation has a unique solution: the left hand side increases from 0 to ∞
and the right hand side is positive and decreasing. Last equation can also be written as a fixed
point equation

ξ =
1

2π
arctan

(
λk−4ξ − 1

πb(λk−4ξ + 1)

)
. (11)

Note that the replacement of k by −k changes the solution from ξ to −ξ. Furthermore, equation
(11) defines a contraction if b > 1/π.

Then, for a given k one determines ξ = ξk and, by substituting in the expression of a
(ii)
tr=2,n, it is

found

a
(ii)
tr=2,k =

1

2
− 2ξk − b log ck + b log(1 + λ4ξk−k), (mod 1), k ∈ Z,

where we have introduced the notation ck = cos(2πξk).

We consider now Tr = −2. We recall that in case (i) one has Tr = 2 − (α2
0b

2/y0y1) ≥ 2. On
the other hand, if we look for (E-H) bifurcations that appear when Tr = −2 (case (ii)) the
analogous of equation (9) reads

y20 + (sin(2πx0) + 2πb cos(2πx0))y0 + πb cos(2πx0)(sin(2πx0) + πb cos(2πx0)) = 0
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which gives either y0 = −πb cos(2πx0) (we refer below by (ii.1) to this case) or y0 = − sin(2πx0)−
πb cos(2πx0) (below referred by (ii.2)). The conditions y0 > 0, y1 < 0 restrict the validity of the
solution (ii.1) to the range 1/2 + arctan(πb)/2π < x0 < 3/4, and the validity of (ii.2) to the
range 3/4 < x0 < 1− arctan(πb)/2π. Then, if we consider (ii.1) the analogous of equation (10)
reads

4x0 − b log(−πb cos(2πx0)) + b log(πb cos(2πx0)− sin(2πx0)) = n, n ∈ Z, (12)

while, considering (ii.2), one obtains

4x0 + b log(πb cos(2πx0))− b log(−πb cos(2πx0)− sin(2πx0)) = n, n ∈ Z. (13)

For each n, after determining x0 = x0,n from (12), one has y0,n = −πb cos(2πx0,n) and

a
(ii.1)
tr=−2,n = −2x0,n − b log(πb cos(2πx0,n)− sin(2πx0,n)) (mod 1).

Analogously, after determining x0,n from (13), then y0,n = − sin(2πx0,n)− πb cos(2πx0,n) and

a
(ii.2)
tr=−2,n = −2x0,n − b log(πb cos(2πx0,n)) (mod 1).

As before, by considering x0 = 3/4 − η, t = tan(2πη), from equation (12) one obtains the
equation

πbt

1− πbt
= λk−4η

or, in the form of fixed point equation

η =
1

2π
arctan

(
λk−4η

πb(λk−4η + 1)

)
, k ∈ Z, (14)

while, from equation (13), one obtains

−1 + πbt

πbt
= λk−4η

or, in the form of fixed point equation

η =
1

2π
arctan

( −1

πb(λk−4η + 1)

)
, k ∈ Z. (15)

One easily checks that these equations have a unique solution for any k ∈ Z and that replacing
k by −k changes the solution from η to −η. Equations (14) and (15) define contractions for
b > 1/(

√
2π).

In both cases, for a given k one obtains η = ηk and it turns out that a
(ii.1)
tr=−2,k = a

(ii.2)
tr=−2,k and,

hence, it will be denoted below as a
(ii)
tr=−2,k. Let ck = cos(2πηk), then

a
(ii)
tr=−2,k =

1

2
+ 2η − b log ck + b log(1 + λk−4η) (mod 1).

The Fig. 5 shows the behavior of x0 for different values of n considered as a continuous parameter
(recall that k = 3 − n) according to the different cases explained above. The figure has been
computed for b = 1 to make easy to understand the plot. For larger b, the three curved lines
represented are closer to the vertical line making not so easy to differentiate the regions. For
smaller b the range of x0 is wider, but the curves have smaller slope at n = 3 and tend quickly
to the limit when n increases or decreases. However, the qualitative picture remains invariant
for all b values.

The following facts can be easily checked from the above expressions (compare with Fig. 5).
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Figure 5: Behavior of the solutions x0 of equations (10) and (12) corresponding to case (ii)
(curved lines) and to the case (i) (vertical line through x0 = 0.75). In the vertical axis we
represent the value of n and the values of the solutions x0 range the horizontal axis. The line
n = 3 is shown to emphasize the symmetries of the figure (see text for details).

1. x0 is a solution of the equation (10) for a fixed n if, and only if, x̂ = 3/2− x0 is a solution
of (10) with n̂ = 6− n.

2. x0 is a solution of equation (12) for a fixed n if, and only if, x̂ = 3/2 − x0 is a solution of
equation (13) with n̂ = 6− n.

3. a
(i)
tr=2,k = a

(i)
tr=2,−k, a

(ii)
tr=2,k = a

(ii)
tr=2,−k, and a

(ii)
tr=−2,k = a

(ii)
tr=−2,−k, where all the values of a

considered should be taken modulus 1.

In particular, we add below the lengths of the a-intervals with 2-periodic EPL such that x0 < 3/4
(the others with x0 > 3/4 give the same a-intervals and, therefore, are not considered in the sum
of the lengths). Hence, in the Table 1 we sum up, according to the value of k, the end points of
the a-intervals of 2-periodic EPL with x0 < 3/4 (hence with ξ, η > 0) that we should consider.

atr=2 atr=−2

k > 0 1/2 − 2ξk − b log ck + b log(1 + λ4ξk−k) 1/2 − 2ηk − b log ck + b log(1 + λ4ηk−k)

k < 0 1/2 + b log(1 + λk) 1/2 + 2ηk − b log ck + b log(1 + λk−4ηk)

Table 1: Different values of a corresponding to extremes of intervals for which there is a 2-
periodic EPL with x0 < 3/4. In the first column ck denotes cos(2πξk), while in the second one
denotes cos(2πηk). The value of ξk is obtained as solution to the equation (11) while the values
ηk are solutions of (14).

We are interested on the length ∆a of the intervals having endpoints atr=2 and atr=−2. Further-
more we recall that we want to see the behavior for large b and that just b > 1/π is enough to
ensure that the fixed point equations for ξ, η are contractions. To see how the widths behave
for different values of k we introduce α = k/b. Then exp(α) = λk, and we distinguish the cases
α ≤ 0 and α > 0. For simplicity, we do not write the dependence on k in what follows, despite
it should be kept in mind.

For α ≤ 0, as equation (14) defines a contraction for b large enough, the following fixed point is
obtained by iteration

η =
eα

2π2b(1 + eα)
+O(b−2),
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which allows to compute

a
(i)
tr=−2 =

1

2
+ b log(1 + λk) +

1

π2b

(
m

1 +m
− 3

2

(
m

1 +m

)2
)

+O(b−2),

where m denotes eα and hence

∆a =
1

π2b

(
m

1 +m
− 3

2

m2

(1 +m)2

)
+O(b−2), α ≤ 0. (16)

For α > 0 we proceed in a similar way solving by iteration equations (11) and (14). It is
convenient to write the solutions as

ξ =
1

2π2b

1− e−α

1 + e−α
+O(b−2), η =

1

2π2b

1

1 + e−α
+O(b−2),

which allows to compute

a
(ii)
tr=2 =

1

2
+ b log(1 + λk)− 1

π2b

1−m

1 +m
+

1

2π2b

(1−m)2

(1 +m)2
+

2

π2b

m(1−m)

(1 +m)2
+O(b−2),

a
(ii)
tr=−2 =

1

2
+ b log(1 + λk)− 1

π2b

1

1 +m
+

1

2π2b

1

(1 +m)2
+

2

π2b

m

(1 +m)2
+O(b−2),

where now m denotes e−α and hence

∆a =
1

2π2b

m2

(1 +m)2
+O(b−2), α > 0. (17)

In particular, one gets for the total sum of the lengths of the a-intervals for α ≤ 0 and α ≥ 0 by
approximating the sums by integrals. Putting both contributions together we have

∑
∆a =

∫ 1

0

1

π2

(
m

1+m
− 3

2

m2

(1+m)2
+

1

2

m2

(1+m)2

)
dm

m
+O

(
1

b

)
=

1

π2

∫ 1

0

1

(1+m)2
dm+O

(
1

b

)
=

1

2π2
+O

(
1

b

)
. �

Remark. From expression (16) one obtains that the maximum width of the intervals with α ≤ 0 is

obtained for m = 1/2+O(1/b), that is, for α = − log(2)+O(1/b). In contrast, from expression (17), one

easily checks that ∆a is a monotonically decreasing function with respect to α for α > 0.

Note that to get the value of Theorem 2.1 we add the length of all the a-intervals. How-
ever, some of them overlap, a fact which in the result above is not considered. Some com-
ments might help to clarify this point. For a fixed b, let us consider, for positive k, the val-

ues of a
(i)
tr=2,−k, a

(i)
tr=−2,−k, a

(ii)
tr=2,k, a

(ii)
tr=−2,k that we denote, for shortness, a1, a2, a3, a4, respec-

tively. From the expressions given above it is immediate to check that, for k small, one has
a3 < a1 < a4 < a2 and, hence, there is an overlap whose length amounts to a4 − a1. This
happens until k ≈ b log(2), while for larger values of k one has a3 < a4 < a1 < a2 and no overlap
occurs. The size of the overlap for a given k is 1

2π2b
2m−1
(1+m)2 and the sum of the overlaps from

k = 1 to k = b log(2) is

overlap =
1

2π2

∫ 1

1/2

2m− 1

(1 +m)2
dm

m
=

1

2π2
(1/2 − log(3/2)).

Summarizing we have proved
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Theorem 2.2 The sum of the lengths of the intervals in a for which the separatrix map SMa,b,
given by (2), has an elliptic 2-periodic orbit inside the homoclinic lobe, skipping the elementary
overlaps which occur for ±k ∈ (0, b log(2)) tends, when b → ∞ to

1

2π2
(1/2 + log(3/2)). �

Note that the value given by Theorem 2.1 is ≈ 0.0506605918, while the value given by Theo-
rem 2.2 is ≈ 0.0458713982. However, one observes also overlapping between a-intervals obtained
for values of k < −b log(2) (resp. k > b log(2)) in the α < 0 (resp. α > 0) case. See comments
in Section 2.2 and Fig. 8 center. This phenomenon is not taken into account in Theorem 2.2,
but we believe that its effect on the total measure of the EPL parameters, at least for b large
enough, is not very relevant. As an example we have computed for b = 5000 and k ranging
from -66667 to 33333 the sum of the lengths of the a intervals with EPL orbits. The result is∑

∆a = 0.0506603862, quite close to the value given in Theorem 2.1. Then we have skipped
all the lengths corresponding to overlaps. The number of non-overlapped intervals reduces from
100001 to 92265, and the sum of its lengths is 0.0448529310, quite close to the value obtained
in Theorem 2.2. Note that the number of overlapped intervals discarded in Theorem 2.2 is
5000 × log(2) ≈ 3465. Hence the number of additional overlaps discarded is 4271, but they are
extremely small.

Numerically it is possible to scan the intervals above for many values of b (by means of a
continuation method we look for values of a with Tr = 2 and Tr = −2). Let µ such that
λ = exp(exp(µ)). Then b = 1/ log(λ) = exp(−µ) and, hence, the integrable limit is obtained
for µ → −∞. The Fig. 6 left shows the value of the sum of the intervals as a function of µ.
According to Theorem 2.1 it converges to the value 1/(2π2) ≈ 0.0506605918. The right plot
shows the behavior of the sum of the lengths of the intervals removing the overlapping. Note
that, after removing the overlapping, the sum of the lengths converges to some positive constant
K ≈ 0.0444, obtaining an analogous result to the one in [17] but in a more quantitative way.

The numerical value of K obtained, K ≈ 0.0444 according to Fig. 6 right, is slightly below the
predicted above in Theorem 2.2. As said, last result does not take into account the overlapping
between a-intervals obtained for different k values. On the other hand, there is the natural
limitation of the numerical scanning process to detect EPL inside the homoclinic lobe: EPL
with very small size of stability domain surrounded them (below some threshold related to the
tolerance of the scanning process and the step in a considered for a fixed b) are not detected
and the (also small) a-intervals are not considered.

Remark. Different islands of stability related to p = 2 EPL trajectories were illustrated in [17], see also

Fig. 10 below.

As an additional information, we proceed in the same numerical way as before but performing
the continuation to get period p = 3 EPL instead. These EPL trajectories have p̂ = 6 on
the figure-eight representation and they visit both families of homoclinic lobes, see Fig.7. The
results are summarized in Table 2. One checks that the contribution of the orbits with p = 3 is
small compared to the one of the orbits with p = 2.

2.2 Evolution of the a-intervals with respect to b

As detailed in Section 1.2, for an a priori stable family of APMs both parameters a and b of
the SM model (2) change as the distance-to-integrable parameter ǫ evolves. The concrete one

17



 0.0502

 0.0503

 0.0504

 0.0505

 0.0506

 0.0507

-8 -6 -4 -2  0

 0.036

 0.04

 0.044

 0.048

 0.052

-8 -6 -4 -2  0

Figure 6: On the left it is shown the sum of the lengths of the intervals as a function of
µ = − log b. The right part shows the same but taking into account that some intervals overlap.
In both cases the measure converges to a positive constant.

µ # intervals (1) Sum of the lengths (2)

-1 14382 0.80968857E-02

-2 188626 0.28463994E-02

-3 339292 0.98175729E-03

Table 2: Compendium of results numerically obtained for 3-periodic orbits.
(1) Some of the stability intervals correspond to the same p = 3 EPL.
(2) The length has been computed removing overlapping of the intervals.

parameter family Fǫ under consideration defines, as ǫ varies, a curve C in the (a, b)-parameter
space, see Fig. 3 (also Fig. 14 right). In this section, we want to describe how evolves, as a
function of b, the location of the a-intervals of EPL parameters.

In Fig. 8 we represent the a-intervals (as described in Theorem 2.1) for 100 < b < 101 and
|k| < 100. We observe a complicate structure of “main” curves, going from b = 100 to b = 101,
all of them with a similar slope. Each “main” curve corresponds to a different k value. In the
center plot we show the corresponding “main” curves for k = 75 and k = 88.

Each “main” curve observed in the left (and center) plots actually correspond to four curves
(see Fig. 8 right). These four curves are obtained by joining the extrema of the a-intervals for
different b values and, hence, define two EPL strips of stability: parameters inside these EPL
strips correspond to period p = 2 EPL parameters. We note that some of these strips intersect
other strips for a range of b values. For these b values, the corresponding a-intervals overlap.

From the expressions a = a(b) in Table 1 it is immediate to check that the slope of the strips
of stability in Fig. 8 is db(a)/da = 1/ log(2) + O(1/b). On the other hand, we concluded in
Section 1.2 that the slope of the curve C that describes an a priori stable family of APMs is
such that limǫ→0 db(ǫ)/da(ǫ) = 0. In particular, since ǫ → 0 corresponds to b → ∞, the strips of
stability must be transversal at least for values of ǫ small enough. In other words, the curve C
crosses all the strips of stability obtained for all values of k. This simple transversality argument
justifies our approach in Section 2.1 to study the set of (a, b) parameters with EPL. To illustrate
this transversality property in Section 3 we approximate the curve C for the STM family (Fig. 14
right).
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Figure 7: Top left: Schematic representation of a p = 3 EPL trajectory on the figure-
eight. One has zi+3 = Zǫ(zi), i = 1, 2, 3. Top right: Iterates of two p = 3 EPL for

µ = −1. The trajectory {z(1)0 , z
(1)
1 , z

(1)
2 } corresponds to a = 0.266212, while the trajectory

{z(2)0 , z
(2)
1 , z

(2)
2 } corresponds to a = 0.86798217164664582. Bottom left: Island of stability

around z
(1)
1 ≈ (0.50000098,−0.82479289). Bottom right: Island of stability around the iter-

ate z
(2)
2 ≈ (0.45786551,−0.17242661). In the bottom plots we use translated coordinates to

have the islands centered at the origin and better observe their size.

2.3 On the location of the 2-periodic EPL inside a homoclinic lobe

Let us comment on the position of the EPL discussed in Theorem (2.1) inside the homoclinic
lobe. In Fig. 9 (left and center plots) we sketch the relative position, in the phase space, inside
the right homoclinic lobe of Fig. 4, of the points (x0,k, y0,k) corresponding either to a Tr = 2 or
Tr = −2. We have chosen b = 10 for the illustration because for larger values of b the lines are
closer to the vertical line x = 3/4 and it is more difficult to appreciate the details. We observe
that the 2-periodic EPL of Theorem (2.1) are located close to x = 3/4. The center plot of
Fig. 9 is a magnification of the left one. The EPL islands of stability are created (by means of a
saddle-center bifurcation except for k = 0 where a degenerated saddle-center bifurcation occurs,
see below), for the suitable a value, at the points on the lines labelled by tr = 2. These two lines
cross in the corresponding solution obtained for k = 0 (n = 3). Increasing a they move (almost)
horizontally towards the closest line labelled with tr = −2 where the EPL are destroyed (by
means of a period-doubling bifurcation).

As k increases (or n = 3−k decreases) the points (x0,k, y0,k) in Fig. 9 (center) move towards the
sinusoidal curve that delimits the homoclinic lobe. For n = 3, both EPL trajectories are born
at (x0,0, y0,0) = (3/4, 1/2), for the same value of a. Let us analyze the phase space structure
obtained for the degenerate case n = 3 (see simulations of the separatrix map shown in [17] for
a > atr=2, b = exp(−4) and n = 3). The Fig. 9 right shows a sketch of the phase space at the
bifurcation taking place for n = 3. The main feature of this configuration is the existence of 4
fixed points (2 elliptic and 2 hyperbolic points) bifurcating at the same time.

The degenerated saddle-center bifurcation shown in Fig. 9 right takes place, for the separatrix
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Figure 8: Parameter space (a, b) of the SMa,b (2). Left: we represent the a-intervals for |k| < 100
and 100 < b < 101. Different “main” curves, from b = 100 to b = 101, are observed. Center:
Detail of intersection between the k = 75 and the k = 88 “main” curves. Right: We magnify the
two “main” curves of the center plot for b = 100.54. Each “main” curve is formed by four lines.
For each group of four lines (which correspond to the same k) the a values, from left to right,
correspond to tr = −2, tr = 2, tr = −2 and tr = 2, respectively. These lines define, hence, two
strips of stability where period p = 2 EPL exist.
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Figure 9: Left: Location, inside the homoclinic lobe, of the points where takes place either a
period doubling or a saddle-center bifurcation for some a value (b = 10). Center: Magnification
of the left plot where the corresponding curves are observed. Period p = 2 EPL trajectories, if
exist, are located, roughly, inside the two triangular regions delimited by these curves. Right:
Sketch of the degenerate structure of the saddle-node bifurcation which occurs for n = 3.

map, for all b values. To check the last assertion, since the bifurcation takes place at the
point (x, y) = (3/4, 1/2) at value a = atr=2, we introduce new coordinates (xnew, ynew) =
(x−3/4, y−1/2) to translate it to the origin and a new parameter ǫ = 2a−2b log(2)+1. In the
following we denote again by (x, y) the new coordinates (xnew, ynew), and we denote by T the
SM (2) expressed in the new coordinates. A direct computation gives T 2(x, y) = (x̄, ȳ) being

(
x̄

ȳ

)
=

(
x+ ǫ+ 2b log 2− 1 + b log |y + sin(2πx̂) + 1/2| + b log |ȳ + 1/2| (mod 1)

y + sin (2πx̂) + sin [2π (x̂+ ǫ/2 + b log 2− 1/2 + log |y + sin (2πx̂+ 1/2)|)]

)
,

where x̂ = x+3/4. Expanding last expression in powers of x, y and ǫ, and looking for solutions
x = y = O(

√
ǫ), one obtains

x̄ = x+ ǫ− 4bπ2x2 − 4by2 − 16b3π2y2 + 16bπ2xy +O(ǫ
√
ǫ) (mod 1)

ȳ = y − 8π2b2y2 + 8π2bxy +O(ǫ
√
ǫ).

From last expression one can relate the map T 2 with a Hamiltonian flow ϕH, that is, T 2(x, y) ≈
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ϕH
t=1(x, y) with

H(x, y) = 4bπ2x2y +
4

3
by3 +

16

3
b3π2y3 − 8b2π2xy2 − ǫy +O(ǫ2)

The vector field ẋ = −∂H/∂y, ẏ = ∂H/∂x has 4 fixed points. Ignoring the effect of the O(ǫ
√
ǫ)

terms (which can be taken into account at the end by using the implicit function theorem), two
of the fixed points are located on y = 0 and x = ±√

ǫ/(2π
√
b), while the other two fixed points

are located on y = x/b and have x =
√
ǫb/(2

√
1 + b2π2). The two pairs of fixed points collide

for ǫ = 0 (i.e. for a = atr=2 = b log 2+1/2 (mod 1)). Moreover, one easily checks that the points
on y = 0 are hyperbolic while the points on y = x/b are elliptic. The hyperbolic fixed points
have energy H = 0, while the elliptic points have the energy values H = ∓ǫ

√
ǫ/(3b(1 + b2π2)),

respectively.

In Fig. 10 we illustrate the corresponding phase space of T 2, for b = 1, ǫ > 0. As can be
observed, the 4 fixed points of T 2 are approximately located on y = 0 and on the line y = x.
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-0.01 -0.005  0  0.005  0.01

Figure 10: The degenerated saddle-center bifurcation taking place for n = 3. The iterates
correspond to the map T 2 with b = 1 and ǫ = 10−3.

Remark. The dynamics on the separatrix y = 0 of Hamiltonian flow related to H is given by ẋ =

ǫ − 4bπ2x2. The dominant singularity is located at t = i/
√
16bǫ and the positive eigenvalue of the

hyperbolic point is ν = 4π
√
bǫ. Hence the splitting σ of the separatrices that separate the two islands

of stability is expected to behave exponentially small with respect to ǫ, that is, σ ∼ exp(−C/ǫ), A,B

arbitrary constants and C = −π/(8b). This implies, see [15, 19], that for larger values of b the size of the

islands of stability, as a function of ǫ, decreases faster (i.e. the related a-interval of stability is shorter).

Also the splitting of the other two separatrices plays a role in the destruction of the rotational curves

forming the tiny islands of stability. They role can be examined applying the techniques in [19] to the

above Hamiltonian H in order to measure the size of the chaotic zone surrounding the separatrices.

3 Period p = 2 EPL for the standard map

As a first example we consider the well-known standard map STMǫ given by (5). We look for
ǫ-intervals for which the map (5) has EPL. Concretely, we scan for period p̂ = 4 EPL inside
the homoclinic lobe with label 1 in Fig. 11. After a suitable number of iterates of STMǫ, the
trajectory visits the lobe 2. Then, after some more iterates, it moves to the lobe 3 and after to
the lobe 4. Finally, it comes back to the initial point in lobe 1. Equivalently, this trajectory has
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period p = 2: the SM trajectory jumps from 1 to 4 (Zǫ identifies a point in 2 with a point in 4)
and comes back to 1. These are orbits like the ones considered in the previous section.
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Figure 11: We represent the separatrices related to the hyperbolic point (0, 0) of the map (5)
for ǫ = 1.2. A period p = 2 EPL starting inside the homoclinic lobe labelled with 1. follows a
trajectory such that, after a suitable number of iterates of STM ǫ, moves to the lobe 2. Then,
performing more iterates of the map, the trajectory moves to 3. and after to 4. Finally, it comes
back to the initial point in 1.

The STM admits the central involution S : (x, y) 7→ (−x,−y) (that is, F−n(x, y) = (S ◦
Fn ◦ S)(x, y)). This implies central symmetry on the figure-eight, hence STMǫ fits within our
analytical framework of Section 2. On the other hand, the presence of this symmetry simplifies
our numerical computations: if we denote by (xi, yi) the point of the EPL trajectory inside the
lobe i according to Fig. 11, then it is enough to require that (x3, y3) = −(x1, y1) to have a period
p = 2 EPL. If, moreover, (x3, y3) = F k(x1, y1) then the EPL has period P = 2k.

To look for such a type of EPL we perform an scanning process. Typically, for a fixed ǫ, one
finds several periodic orbits (x1, y1) of different even periods P = 2k but most of them are
hyperbolic. To get EPL trajectories, we continue these (hyperbolic) periodic orbits with respect
to the parameter ǫ until we get an elliptic orbit, that is, if A denotes the differential of STMǫ at
the point (x1, y1) we require |Tr(A)| < 2.

We illustrate in Fig. 12 the pattern observed for the curves in the (ǫ − Tr)-plane obtained
by continuation of periodic orbits (below p.o. for short) of the type considered. The most
observed pattern is similar to the one shown in Fig. 12 left, hence defining two ǫ-intervals of
stability. The p.o. goes through a saddle-center bifurcation for ǫ ≈ 0.741541270175 while for
ǫ ≈ 0.7412179615259, ǫ ≈ 0.741097371094 and ǫ ≈ 0.741202305095 it goes through a pitchfork
bifurcation (either supercritical or subcritical). We observe also that the curve touches twice the
horizontal line Tr = −2. However, there is not a bifurcation taking place at the corresponding
values of ǫ. This pattern has been observed for most of the p = 2 EPL (naturally, the bifurcations
take place for different values of ǫ).

For some p.o., a few of them, we observe a pattern like the one shown in Fig. 12 right. The
bifurcations taking place are the same as in the left figure. The p.o. undergoes a pitchfork
bifurcation (either supercritical or subcritical) for ǫ ≈ 0.816134986710, ǫ ≈ 0.816094714110 and
ǫ ≈ 0.81575456061 while it goes through a saddle-center bifurcation for ǫ ≈ 0.815753455388.
The two small figures are magnifications of the large right one to show concrete details of the
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ǫ − Tr curve. Note that this curve provides only one ǫ-interval of stability for which exists an
EPL.
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Figure 12: Two different patterns observed in the continuation of a p.o. of the type considered:
in the x-axis we represent ǫ while in the y-axis the trace of the differential matrix of the STM
(5) at the p.o. In the left situation we obtain two ǫ-intervals of EPL parameters, while in the
right one only one. The two small plots are magnifications of the right curve.

We want to explain why the patterns shown in Fig. 12 are the expected ones according to our
theoretical considerations on the SM model (2). In Section 2.1, we related a pair of a-intervals
of stability to a given p = 2 EPL. It can happen that the EPL trajectory becomes hyperbolic
because it crosses the value a = atr=2 and it undergoes a pitchfork bifurcation, or because it
crosses the value a = atr=−2 and the trajectory suffers a period-doubling bifurcation. On the
other hand, an STM trajectory has its equivalent trajectory on a figure-eight (see Section 1.3).
In order to explain why the EPL trajectories for the STM do not suffer a period-doubling
bifurcation (i.e. the curves in Fig. 12 never cross the line Tr = −2) let us relate the SM
trajectories with the corresponding trajectories on the figure-eight.

Assume that a p = 2 EPL trajectory has suffered either a pitchfork or a period-doubling bifur-
cation. Then, generically, the invariant manifolds of the p = 2 p.o. (which after the bifurcation
is hyperbolic) form a figure-eight inside the homoclinic lobe. We schematically represent the
geometrical situation in Fig. 3. The iterates of the p = 2 EPL visit the lobes 1, 2, 3 and 4
successively. We denote an iterate of a trajectory on the figure-eight by the number of the lobe
where it is located and the subindex l (resp. r) if it is located inside the left loop (resp. the

right loop) of the smaller figure-eight inside the lobe, according to Fig. 3. Let ŜM denote the
symmetric DSM map defined on the figure-eight.

32

1 4

H

Figure 13: Sketch of the geometry after either a period-doubling or a pitchfork bifurcation of a
p = 2 EPL.
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Lemma 3.1 Assume that the map ŜM commutes with the central symmetry Z with respect to the
hyperbolic point H. Then, a period p̂ = 4 EPL on a figure-eight cannot suffer a period-doubling
bifurcation.

Proof. Consider the figure-eight inside the homoclinic lobe 1 and assume that the EPL trajectory
inside the left loop of this figure-eight corresponds to a p̂ = 8 EPL. We denote the corresponding
point by 1l and we study the trajectory of this point. Note that Z(kr) = jl, where j = k + 2

(mod 1), k = 1, 2, 3, 4. There are two possibilities: either (i) ŜM(4l) = 1l or (ii) ŜM(4r) = 1l. We

consider case (i), the other case being similar. Since ŜM commutes with Z one has ŜM(2r) = 3r,

ŜM(2l) = 3l and ŜM(4r) = 1r. There are two subcases: either (a) ŜM(1l) = 2l or (b) ŜM(1l) =

2r. For the case (a), using again the fact that ŜM commutes with Z, one obtains ŜM(3r) = 4r
and ŜM(3l) = 4l. This implies that the trajectory is given by the iterates {1l, 2l, 3l, 4l, 1l, ...}
and has period p̂ = 4. Similarly, for the case (b) one obtains ŜM(3r) = 4l and ŜM(3l) = 4r. The
corresponding trajectory is {1l, 2r, 3r, 4l, 1l, ...} which also has p̂ = 4. �

On the other hand, the identification in terms of the central symmetry Z implies that p̂ = 4
EPL trajectories on the figure-eight such that ŜM(1l) = 3l are also p = 4 trajectories, hence the
SM trajectory have suffered a period-doubling bifurcation.

Summarizing, at the boundaries of the a-intervals of stability (generically) one observes that

• for atr=2 the SM trajectory undergoes a pitchfork bifurcation as it does the corresponding
figure-eight DSM trajectory.

• for atr=−2 the SM trajectory undergoes a period-doubling bifurcation but there is a pitch-
fork bifurcation for the corresponding figure-eight DSM trajectory.

Finally, we note that the left pattern in Fig. 12 corresponds to values of k such that the two
a-intervals do not overlap. See the comments after the proof of Theorem 2.1. The right pattern
corresponds to the cases where there is overlap between the related a-intervals. The overlap
is mainly expected for values of |k| ≤ b log(2), this explains why for most of the continuations
performed we observe the left pattern and not the right one.

Next, we comment on the abundance of p = 2 EPL for the STM and the related intervals of
stability. For ǫ ∈ (0.7259590489256, 1.183026069380) we found a total amount of 223 different
ǫ-intervals of EPL parameters. Each of the ǫ-intervals obtained by continuation corresponds to
an a-interval in terms of the SM (2). The formal derivation of the SM for an a priori stable
family Fǫ (see [15, 19]) gives

a = a(ǫ) =
logA(ǫ)

log λ(ǫ)
+O

(
1

log λ(ǫ)

)
, (18)

where A(ǫ) denotes the width of the homoclinic lobes of the separatrices of the hyperbolic
point Hǫ with dominant eigenvalue 1 < λ(ǫ) = O(ǫr), r > 0. For the STM (5) one has
λ(ǫ) = 1 + ǫ+O(ǫ2) (i.e. r = 1), then a(ǫ) = O(1/ǫ2) and the remainder in (18) is O(1/ǫ).

For simplicity, we assume in the following that a(ǫ) = logA(ǫ)/ log λ(ǫ), i.e. we ignore the
remainder in (18) above (the effect of these ignored terms will be discussed later, see comments
at the end of this section). Then, it is numerically easy to estimate A(ǫ) and λ(ǫ) for a given ǫ,
and to approximate a = a(ǫ). In Fig. 14 left we represent, for each ǫ-interval of EPL parameters
of the form (ǫ1, ǫ2), the value of the parameter a = a(ǫ2). In the figure seven clouds of points with
a similar form are distinguished (for values of a ≤ 7.3 aprox.). Each cloud of points represents a
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fundamental domain in terms of the a-parameter. From the SM theory one expects periodicity
in the figure: changing a by a + 1 the pattern of EPL must be repeated (this corresponds to
crossing a fundamental domain). However, from the figure one observes that the pattern repeats
for a increasing an amount ∼ 0.8 instead of 1.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1  2  3  4  5  6  7  8  9
 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.2  0.4  0.6  0.8  1

Figure 14: Left: Relation between the a of SM (2) and ǫ in STM (5). For each ǫ-interval (ǫ1, ǫ2)
of EPL parameters we plot the point (a(ǫ2), ǫ2). The parameter ǫ ∈ [0.7, 1.2] ranges in the
vertical axis. The parameter a ranges on the x axis (it is not considered mod 1). Observe the
periodicity in the figure: for each change of a by roughly 0.8 the distribution of the intervals
is approximately repeated. Right: The (approximated) curve C that describe for the STM the
parameters (a(ǫ), b(ǫ)) as ǫ ∈ [0.6, 1.6] varies. Here a(ǫ) is considered mod 1 and ranges in the
horizontal axis, while b(ǫ) ranges on the vertical one. Compare with Fig. 3.

In Fig. 14 right we represent the curve C that describe (a(ǫ), b(ǫ)) as ǫ in the STM (5) varies.
We have consider ǫ ∈ [0.6, 1.6] and a(ǫ) is considered mod 1. The curve has been obtained by
a direct computation of the parameters a(ǫ) = logA(ǫ)/ log λ(ǫ) and b(ǫ) = − log λ(ǫ) from the
STM. Compare with Fig 3. Also note that the curve C becomes more transversal to the EPL
strips of stability for values of ǫ → 0, see Fig. 8 left.

For the fundamental domains in Fig. 14 left, measured in terms of a, we computed the lengths of
the related a-intervals, and removed the overlapping between them. That is, we computed the
measure of the set Eb of a-EPL parameters of the related SM model (according to the notation
in Section 1.4). We note that the parameter b is considered as fixed but depending on ǫ (formally
speaking we estimate mL(Eb(ǫ))). The corresponding results, obtained directly from the STM
computations, are summarized in Table 3. We observe that the values behave quite regularly
even for the range of ǫ considered, which still quite far from the limit ǫ = 0 (Fig. 6 right shows
a similar behavior).

a-interval mL(Eb(ǫ))

[2.5, 3.3] 0.06619105
[3.3, 4.1] 0.07210729
[4.1, 4.9] 0.06797864
[4.9, 5.7] 0.07159551
[5.7, 6.5] 0.08013797
[6.5, 7.3] 0.07146606

Table 3: Measure of the set of a-EPL parameters for the STM (5).
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From Theorem 2.2 one expects mL(Eb) ≈ 0.045. However, the values in Table 3 exceed the
predicted value by a factor (roughly) between 1.5 and 1.8. Note that our theoretical result
concerns the limit ǫ → 0 while ǫ ∈ [0.7, 1.2] in our numerical investigations. The following
(ignored) effects could explain why it is observed such a difference between the theoretically
expected values and the direct computations.

• The SM (2) only considers the first harmonic of the oscillation between W
u/s
loc (Hǫ) (see

comments in Section 1.3) which is the dominant one for values of ǫ → 0. However, we
have considered quite large values of ǫ in the previous example and we can not guarantee
that the effect of the ignored harmonics is small enough. A higher order SM model could
be useful in this context.

• Both parameters a and b depend on ǫ. As ǫ changes they describe a curve C in the (a, b)-
plane (b(a) ≈ ǫra, for suitable r > 0, see Fig. 3). On the other hand, the slope of the strips
of stability tends to 1/ log(2) as ǫ → 0 (see Fig. 8). Accordingly, one expects a periodicity
in a with period ≈ 1 + O(ǫr) instead of 1. Taking this effect into account, however, the
values in Table 3 differ even more from the theoretically expected ones.

• The relation between ǫ and a is given by (18) and we have ignored terms O(1/ǫ). The
dominant term of the ignored ones can be computed using the natural parameterization
of the unperturbed separatrices (given by the pendulum and depending on ǫ > 0), see
[15, 22]. This dominant ignored term of O(1/ǫ) produces a relative error in a of order
O(ǫ). For the range of ǫ values considered, this effect can be large. Moreover, the higher
order ignored terms can also play a role. Again, an analysis of a higher order SM model
could predict values closer to the observed ones.

To sum up, the theoretical approach of Section 2 has allowed us to give a complete qualitative
description of the set of p = 2 EPL parameters for the STM (5), predicting the bifurcations,
the periodicity and even the overlapping of the a-intervals of stability. On the other hand, we
have shown the limits of the SM model (2) to get quantitative results for “realistic” ǫ values
relatively far from the limit ǫ → 0.

4 Stability islands visiting homoclinic lobes for the 1 : 4 reso-

nance of the Hénon map

Section 2 was devoted to study the abundance of EPL using the SM model (2). We concluded
that for a one-parameter family of close-to-integrable maps we expect to have islands visiting
homoclinic lobes for, approximately, the 5% of the parameter values. The results in Section 3
are in (relatively) good agreement with such a prediction for the STM family (5).

At this point, one can ask whether the separatrix model applies in a “real” situation, that is, for
a given map inside the homoclinic lobes of a given resonance. From a theoretical point of view
this is far beyond our capabilities: as observed in [19] it can be very hard to effectively determine
which is the validity domain of the separatrix model when applied to a concrete system. From
a practical point of view note that, to relate the map with the model, the parameters of the
last one should be determined, at least numerically, according to the real dynamics. This turns
out to be not a simple task, see comments in Section 3 on the STM, which certainly requires
more attention due to the interest in many applications. Moreover, the proper model will be
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the DSM (1) instead (that is without central symmetry, see [19]) but this is a minor difficulty
once it is known how to proceed.

The previous considerations on EPL trajectories for the SM and the STM also reveal us their
bifurcation pattern. A simple question concerns the genericity of this pattern and the possibility
to observe it in a given generic (without central symmetry) family of APMs. To this end, we
consider the Hénon map (6). Concretely, we focus on the fourth order resonant islands arising
for c > 1 (see Fig. 15 left). We recall from [18] that the inner splitting for this resonant chain
of islands is almost negligible. Hence, we look for periodic orbits (p.o.) visiting the outer
homoclinic lobes (see Fig. 15 right).

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

-0.64

-0.66

-0.68

-0.7

-0.72
 0.184 0.18 0.176 0.172 0.168

Ph

L+

L-

Figure 15: Map (6), c = 1.015. The left plot shows the period-4 islands that have been detached
from the central component of the stability domain around the fixed point, and many satellite
islands. The right plot shows the invariant manifolds related to the 4-periodic hyperbolic orbit.
They form the homoclinic lobes L+ and L−. It corresponds to a magnification of the segments
of the separatrices surrounding one of the islands (the left one) whose elliptic point is on the
parabola c(x2 − 1)/2 − x.

One is tempted to look directly for p.o. by scanning systematically points inside a homoclinic
lobe but this is a fruitless way to proceed with many numerical inconveniences, due to the
tiny size of the islands. A better option is to take advantage of the symmetries of the Hénon
map to perform more accurate computations. The Hénon map (6) is reversible with respect
to R : y = −x and with respect to the parabola Q1 : y = gQ1(x) = c(x2 − 1)/2 − x. The
corresponding reversors are SR : (x, y) 7→ (−y,−x) and SQ1 : (x, y) 7→ (x, c(x2 − 1) − 2x − y)
respectively. In what follows Q2 will denote the parabola Q2 = Hc(Q1) = SR(Q1).

Instead of looking for all possible p.o. we restrict ourselves to p.o. of the following type. Consider
the 1:4 resonant island I1 having the elliptic point on Q1 for x < 1 (see Fig. 16). Note that there
is an outer homoclinic point ph, related to a transversal intersection of the invariant manifolds
bounding this island, located on Q1, as can be also seen in Fig. 15, right. The manifolds come
from the hyperbolic periodic orbit whose points are h1, h2, h3, h4. Denote by L+ and L− the two
lobes adjacent to ph, formed by the outer separatrices of this island, which are located above
and below Q1 respectively (see Fig. 15 right and Fig. 16). Then we look for p.o. that, under
iteration by the current map, H4

c , describe the following path (the notation in the following
description refers to Fig. 16, which is an example of the type of orbits we consider):

Starting with an initial point q ∈ I1 on Q1 close to the inner separatrices this point is mapped,
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after passing close to h1 under some iterates, to the lobe L−. Then, it “goes outside the island
I1”, that is, under iteration it passes close to the 4-periodic point h2 and then “surrounds” the
island I2. When coming close to h3, it turns to the left, that is, the iterates go towards the
parabola Q2. Finally, after a suitable number of iterates we require the point to be on Q2.

The required condition is transcribed as H4m
c (q) ∈ Q2 for some m ∈ N. It is equivalent to

H4m−1
c (q) ∈ Q1. The total period of the orbit is then 8m − 2. Note that it implies that a

suitable H4
c -iterate of q has to fall into the lobe H−1

c (L+) in I2 (otherwise the iterates will not
go towards Q2 when passing close to h3). The symmetries of the Hénon map imply that the
lobe H4

c (H
−1
c (L+)) is located on the right side of Q2 in the lower outer part of the island I2.

That is, the outer homoclinic point on Q2 related to the manifolds bounding I2 does not belong
to the orbit of the homoclinic point ph.
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Figure 16: Left: Example of the type of symmetric periodic orbits considered. The black dots
correspond to iterates by H4

c , with c = 1.02, of the initial point on the parabola Q1 with
x ≈ 0.78481059138432541. After m = 93 iterates of H4

c , exactly the ones depicted in the figure,
the orbit is on Q2 ∩ I2. Equivalently, under H371

c the orbit is on Q1 ∩ I3. The periodic orbit
has period P = 742. Moreover, Trace(DH742

c (x, y)) ≈ 6.9657 × 106, where y = gQ1(x). Right:
a schematic representation of the kind of orbits (see text).

To numerically illustrate the existence and the pattern of the stable p.o. we choose c = 1.02
in (6). This value is chosen because there are not r.i.c. outside the 1 : 4 resonant chain, a fact
that helps in numerical computations since points are able to escape to infinity (see comments
in Section 4.1.1). On the other hand, the 1 :4 resonance is created at c = 1, hence for values of
c closer to 1 the computations require an increase in the number of digits in the high precision
arithmetic.

Scanning for p.o. of the type explained taking c = 1.02 we found a set PO of 274896 p.o. with
total period P less than 1200. All of them are highly hyperbolic, the traces of the differential
matrix on them having an order of magnitude ranging from 104 to 1018 (we have used double
precision arithmetic in this rough scanning process). We consider the subset PO<108 of p.o. of
PO such that the trace of the differential matrix at the p.o. is less than 108. It turns out that
#PO<108 = 2367.

The mechanism of creation of these orbits when the parameter evolves can be explained geo-
metrically in terms of the dynamics of the homoclinic lobes created by the invariant manifolds
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bounding the resonant 4-islands (see details in the paragraph below). In particular, the orbits
in PO are born, as usual, in a saddle-center (SC) bifurcation at some value csc depending on
the orbit. For c = csc the trace of differential at the bifurcating point is equal to 2. After the
saddle-center bifurcation the elliptic orbit may suffer a period-doubling (PD) bifurcation and
becomes reflexive hyperbolic or a pitchfork (PF) and becomes hyperbolic. This will happen if
the rotation number at the elliptic point changes in a continuous quick way when moving the
parameter. Note that this is the reason why all the orbits found are highly hyperbolic. Then,
by continuation of all the p.o. in PO<108 , we find the intervals of the parameter c for which
there are EPL. These intervals will be referred as c-intervals of stability.

To look for these c-intervals of stability we restrict the continuation to values of c in the interval
Icont = [cm, cM ] = [1.0198, 1.02]. This is enough because it is, in some sense, a fundamental
interval in what concerns the parameter: for smaller values, the pattern is repeated as we
comment at the end of this paragraph. As said, this can be explained in terms of lobe dynamics,
as a consequence of the well-known λ-lemma. We recall that in order to have a p.o. of the type
we look for, it is required that some H4

c -iterate of the initial point on Q1 belongs to the lobe
H−1

c (L+) and then “it has to go inside” I2 at the corresponding passage close to h3. Denote
by lk the k-th iterate of the lobe H−1

c (L+) under H4
c . For a p.o. of the considered type there

must exist k0 = k0(c) such that for k ≥ k0 the lobe lk intersects the parabola Q2 close to the
inner separatrices bounding I2. When decreasing c along the interval Icont the lobe lk0 moves.
Consequently, there exists c0 ∈ Icont such that for c < c0 one has k0(c) = k0(cM ) + 1. For
decreasing c, when c = c0 the p.o. of lower possible period are destroyed in a saddle-center
bifurcation. For c < c0 the geometrical situation repeats again for the lobe lk0+1 and the
subsequent lobes. It is in this sense that the interval considered is a fundamental interval.

The continuation shows that for a given p.o. in PO<108 there are at most two c-intervals of
stability (for c ∈ Icont). In other words, for values of c in those intervals the p.o. considered is
elliptic (we remark that there is no general reason to expect at most two c-intervals of stability,
despite they can be found in some normal forms if we accept that they are valid even far away
from the sc bifurcation). Define ĉ = 1.02 − c. The Fig. 17 shows the behavior of the trace
with respect to the ĉ parameter. We observe that, following the lower part of the curve, the
elliptic point becomes reflexive hyperbolic, then elliptic again and finally hyperbolic. This is
the pattern observed for all the computed orbits in PO<108 . Note that the absence of central
symmetry allows for period-doubling bifurcation of the EPL trajectory (compare with the STM
case in Section 3). In particular, the set of p.o. obtained for c = 1.02 are organized by pairs,
according to the saddle-center bifurcation where they are created, having c-intervals of stability
with the same pattern.

Performing the continuation for all the p.o. of PO<108 we obtain 1989 different c-intervals of
stability. The sum of the lengths gives ≈ 7.216 × 10−8. However, there is one pair of intervals
overlapping each other, the length of the overlapping c-interval being ≈ 7.82 × 10−12. All the
c-intervals observed are contained in the interval Ic = [1.0198002517482521, 1.02], of total length
1.99748251747955 × 10−4. Hence, the fraction of parameter values c ∈ Ic for which EPL exist is
≈ 3.61 × 10−4. Moreover, the largest c-interval of stability observed has length ≈ 0.82 × 10−9,
while the length of the computed smallest one is ≈ 2.1 × 10−20. The largest gap in Ic without
detected stability intervals has length ≈ 0.2549167177 × 10−5.

We should note that the result obtained does not quantitatively agree with the previously
obtained for the SM in Theorem 2.1, but the reader should take into account the following
specific considerations.

• The type of EPL trajectories considered for the Hénon map is not of the type considered
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Figure 17: The stability c-intervals obtained by continuation (restricted to c ∈ Icont) of the
p.o. shown in Fig. 16. In the horizontal (resp. vertical) axis we display ĉ = 1.02 − c (resp.
Trace(DH742

c (x, y)), where y = gQ1(x), for the corresponding c value). The continuation pro-
vides two c-intervals of stability. The left one, ĉ ≈ (6.83146655146675×10−6)± (−5.95×10−18),
contains the saddle-center bifurcation and it is the smallest of the two. The other interval, the
largest one, is ĉ ≈ (6.155133825 × 10−6)± (−2.835 × 10−12).

for the SM results (see Fig. 16). If on Fig. 16 left we identify the four loops around the
period-4 islands and, hence, all the points hj , j = 1, 4 according to the topology of the
figure-eight representation (see [19]) it turns out that the orbits considered can be seen
as the period p̂ = 3 EPL studied in [17], as illustrated in Fig. 16 right. The initial point
A is mapped to B, then to C and then back to A. The point A can be identified to the
initial point q for the Hénon map, and then points B,C as points on the lobes L−, L+,
respectively. Moreover, the central symmetry does not hold for the situation studied.

• The symmetries of the Hénon map also play a role since they should be respected by the
p.o. On the other hand, we have only considered a specific type of p.o. and the total
number of EPL is expected to be much larger. Note, for example, that the two elliptic
p.o. created in the PD bifurcation (2) or in the PF bifurcation (4) in Fig. 18 are not of
the type considered since they are not on the parabola Q1 (see details below). Moreover,
the SM results of Section 2 concern the limit when approaching to integrable (i.e. b → ∞)
which would be equivalent to c → 1 and we have chosen values of c far still relatively from
this limit (c ≈ 1.02).

• A final consideration which could explain the difference of the results obtained from the
separatrix map and the 1 : 4 resonance of the Hénon map refers to the fact that a proper
model to describe the dynamics within the lobes of the 1 : 4 resonant islands is not the
separatrix map SM (2) but the double separatrix map DSM (1). The parameters of the
DSM model, as,s̄, νs̄ and b, change as the parameter c in (6) changes. Similarly to the
separatrix map case studied in the last section, one expects the total number of periodic
orbits inside the lobes of the 1 : 4 resonant island to depend on the concrete way the
parameters of the model DSM change as c evolves. A priori we do not know if this
dependence is like the shown in Fig. 3 for p = 2 EPL trajectories of the SM.
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Figure 18: Schematic representation (left, only qualitative) of the trace vs. the parameter c in
an orbit of the type considered. The numbers 1 to 4 refer to the ones shown in the left lower
corner of the right plots. The codes SC, PD and PF mean saddle-center, period-doubling and
pitchfork. The right plots correspond to the period P = 742 EPL trajectory of the previous
figures. The elliptic (E) and hyperbolic (H) points are shown. In parenthesis, (1) or (2), it is
shown the period of the point under H742

c . The values of ĉ used in the right plots are taken
slightly greater than, but very close to, the values of c at the bifurcations.

4.1 Some comments on the relevance of EPL in the phase space

Our next goal is to illustrate the islands of stability we have been discussing about. As explained
before, the continuation of the p.o. considered determines two c-intervals of stability. The
smallest one is the one which ends up at the saddle-center bifurcation. The different bifurcations
suffered when leaving the c-intervals of stability are shown in Fig. 18, where the plotted islands
correspond to the previously considered P = 742 EPL. Similar patterns are found for all the
orbits computed. Note that the c values are taken very close to the bifurcations.

At the center of the c-intervals of stability the islands are not so small as the ones shown in
Fig. 18. To show a larger island (of smaller period, as it can be expected) take, for instance,
ĉ = 3.6491792 × 10−6 := ĉ∗. For this value of the parameter there is an elliptic p.o. of the type
considered, located at x ≈ 0.7932840705714759 with period P = 678. This orbit is created at
the SC bifurcation which happens for ĉ = ĉbif ≈ 3.64917922 × 10−6 as shown in Fig. 19 left.

In Fig. 19 right we show a relatively large stability island which corresponds to one of the orbits
on the left plot in the small stability range. In that case this c-interval of stability has length
7× 10−13 approximately. As always found in the present example, there is a larger c-interval of
stability of length ≈ 7.346 × 10−10. In Fig. 20 we show the evolution of the island of stability
in this larger interval of c. We observe the typical evolution pattern of an island when changing
the rotation number at the elliptic point. Note that the island of stability subsists for a while,
as it should be, when the elliptic central point has suffered a pitchfork bifurcation.
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Figure 19: Left: In the horizontal axis c − cbif , with cbif = 1.01999635082078 is shown. In
the vertical one, we represent the value of the x-coordinate of the periodic orbit located on the
parabola Q1 in the left part of the 1 : 4 resonance for the map (6) for period 678. Right: The
corresponding island of stability for c− cbif = 2× 10−14. The periodic point has been moved to
the origin and the Q1 curve has been taken as horizontal axis.

Figure 20: Islands of stability within the large interval of stability obtained by continuation of
the orbit shown in 19 right. The values of ĉ are of the form ĉ = η × 10−6 and, from left to
right, η = 3.51015, 3.51, 3.50985, 3.5097, 3.50955 and 3.50945. We show the island of stability
on Q1. The coordinates are adapted to put the origin at the elliptic 678-periodic point and the
parabola Q1 as the horizontal axis. The width of all the windows shown is 3 × 10−10 and the
height 3× 10−6. They give an idea of the size of the islands.

4.1.1 Some statistics of the escaping orbits

Finally, to end this section, we perform the following numerical experiment. For the value ĉ = ĉ∗

we have on Q1 the island shown in Fig. 19 right. As detailed in [19] there are many chains of
islands surrounding the period 4 island of Hc (the situation is similar to the one in Fig. 15 left).
We take an arc in the line Q1 between the end of these islands and the separatrix going from h1
to h2 and scan it with respect to x (see Fig. 16). All points escape except a couple of hundreds
which sit in tiny islands. The idea is to study how these points escape under iterations of Hc

(we note that there is no r.i.c. surrounding the 1 : 4 resonant islands for this value of c). An
escape is easy to identify: the iterates approaching to the hyperbolic fixed point on (−1, 1) close
to the left branch of W u go to infinity. The number of iterates to escape depends strongly on
the initial point and on the value of c. Similar computations have been done for different c
values. The Fig. 21 shows a sample of results. The values of c in the plot, from left to right,
are c1 = 1.06, c2 = 1.04, c3 = 1.0199964903, which corresponds to the value of c for which
we have one of the largest island in the largest c-interval of stability (4th plot in Fig. 20) and
c4 = 1.02 − ĉ∗. The step in x is always 10−9. The number of scanned points is roughly (in
millions of initial points) 435, 294, 53.4 and 98.5 for ci, i = 1, . . . , 4. A maximal number of 108

iterations has been used for each initial point. The average number of iterations under Hc to
escape takes the approximate values 92, 414, 38000 and 46000 for the four values of c.
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The Fig. 21 shows the number of points r(m) which remain before escape as a function of the
number of iterates m, using log10 to display both variables. The few points which do not escape
(of the order of 106 of the total) are not counted in the plot. The orbits look, in some sense,
like a random walk before escaping. In a pure diffusive regime, assuming existence of absorbing
barriers, even with different diffusion coefficients bounded from above and below, we expect an
exponential decay r(m) = exp(−αm), with α a positive constant [7]. Due to the stickiness of
the chains of islands and to the existence of Aubry-Mather sets with “narrow gaps”, diffusion
is slowed down, as if the diffusion coefficient approaches zero. The increasing average number
of iterates and the plot reflect this effect. Furthermore the plot shows ranges of m where the
dominant character is an exponential decrease, with other with an inverse power behavior. These
questions will be studied in forthcoming works, like [20]. As far as the authors know there are few
works studying systematically the ratio of diffusion across chaotic zones of APM, the celebrated
papers [4, 5] being the most relevant exceptions.

 2

 4

 6

 8

 2  4  6  8

Figure 21: Number of points that escape under m iterates of Hc, depending on the value of
c. In the horizontal variable we display log10(m). In the vertical axis it is shown log10(r(m)),
being r(m) the number of points that do not escape in m iterates. See text for details and for
the concrete values of c used.

5 Conclusions and future work

We have shown the abundance of p = 2 EPL for the SM lobes and for the lobes related to the
hyperbolic point of the STM. Also we have studied the abundance of an specific type of EPL
visiting the lobes related to the 1 : 4 resonant island of the Hénon map. In all cases a relative
amount of EPL have been found, in agreement with the results in [17].

To conclude with, we list some open questions that this work suggests:

• We have estimated a lower bound mL(Eb) for the SM in terms of the subset of EPL from

E
{4}
b , but the real value of this measure remains unknown. We believe that EPL with

higher period p will not change the final value significantly.

• For general families Fǫ, like the Hénon map or the STM, the parameters a and b are related
as described (3). This gives a curve C in the (a, b)-plane. How this curve behaves for EPL
visiting the lobes of a generic (p : q) resonance of a family of APMs? On the other hand,
we have approximated this curve for the STM but the proper curve depends on a higher
order SM model.
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• Concerning the bifurcations of the EPL visiting the lobes of the 1:4 islands of the Hénon
map (Fig. 18) the corresponding cascades of bifurcations should be investigated. Different
patterns seem to be possible.
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