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Adversarial attacks on discriminative algorithms are highly used in the field
of cybersecurity (e.g. on email-filtering or malware bypassing). As the automa-
tion of tasks is since now used more than ever, all current state-of the art attack
and defence methods are frequently exploited by some sort machine learning
action. This project aims to build a pipeline to bypass a discriminator (ResNet-
18) using a Probabilistic Generative Model (Restricted Boltzmann Machine)
by generating images as seemingly as possible to real hand-written numbers
(MNIST dataset) trained by two different methods; classical machine learning
and quantum-enhanced machine learning (classical machine learning with a
final boost of quantum annealing) using D-Wave´s quantum computers. Quan-
tum computing is proposed as an alternative to minimize more the free energy
of the model at the end of the training. Computation of the loss function is
proven to be easier with a quantum annealing machine rather than with fully
classical methods. A better accuracy is expected by the quantum-enhanced
model as well as a faster training. Quality of the images generated by each
technique is compared and possible applications in the field of cybersecurity
using PGMs are proposed besides of discussing physical requirements.

18th July 2022

1



Acknowledgements
Many thanks to the QUANTIC team
for their inconditional support and
helping me to see things from other
points of view in moments of uncertainty.

Also special thanks to my supervisor,
for opening me the door to the
exciting field of quantum computing
applied to cybersecurity.

Contents
1 Introduction and motivation 2

2 Restricted Boltzmann Machines 3
2.1 Minimization of free energy in a RBM . . . . . . . . . . . . . . . . . . . . . 4
2.2 Classical sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Parallel tempering (PT) . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Quantum sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Quantum annealing (QA) . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Embedding the RBM into the Quantum Processor Unit (QPU) . . . . . . . 8
2.5 Optimization of the RBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 ResNet-18 10
3.1 Architecture and theoretical background . . . . . . . . . . . . . . . . . . . . 11

4 Experimental setup 11
4.1 Input dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Processing time of D-Wave´s systems . . . . . . . . . . . . . . . . . . . . . . 12

5 Results 13

6 Conclusions 18

7 Outlook and possible applications 19

8 Bibliography 21

A Loss function derivation 23

B Gradient of the loss function derivation 23

1



1 Introduction and motivation
Computer science started to be part of society´s daily basis since the early 1960s. Its
great utility in applications such as information storage, automation of tasks, and lately
the creation of the internet to produce, share, and communicate content were the triggers
that strengthened a rapid merge between humanity and this new discipline. However, so-
ciety’s accelerated dependence on computer systems puts people’s safety at risk. Since
1970s-1980s they began to appear the first trojans and worms forcing cybersecurity to be
taken more seriously. As time goes by, cyber threats become more sophisticated and diffi-
cult to identify. With the rise of machine learning new counter measures were created and
slowed down the frenetic advance of cyber threats for a short period of time before attack-
ers started to learn ML techniques as well and mastered how to exploit current defense
models. These attackers realized that almost all defence techniques are based on Neural
Networks which are vulnerable to small local perturbations (1) . This project aims to
provide a probabilistic generative1 model (PGM) as a tool to bypass a classifier generating
hand-written digits and subsequently to use it for future defence models since they are
proven to be more robust against adversarial attacks on discriminative algorithms2 (1),
(7), (8). A Restricted Boltzmann Machine is trained classically and later compared with a
hybrid training that consists of a classical training complemented with quantum-enhanced
sampling using a quantum annealing (QA) machine by D-Wave. Each model is compared
to determine which has a better performance in replicating the introduced dataset. Sam-
pling methods such as Markov Chain Monte Carlo (MCMC) can have very long mixing
times and quantum sampling could provide an alternative to conventional techniques for
sampling to draw representative samples of a Boltzmann distribution (2). Finally, possi-
ble applications in the field of cybersecurity with this model are proposed and physical
requirements discussed to build such defences boosted by quantum computers.
The pipeline of this paper consists of a Restricted Boltzmann Machine for generative pur-
poses and a Residual Neural Network of 18 layers (ResNet-18) for the discriminative stage
of the project to evaluate the efficiency of both RBMs reproducing the MNIST dataset3.

Figure 1: Pipeline of the simulation.

1Generative models include the probability distribution of the data itself P (X, Y ). A generative model
can be used to generate random instances of an observation and target (x, y), or of an observation (x).

2Discriminative algorithms model a direct solution. For example, linear regressions create a decision
boundary and take decisions based on it. Some examples are Artificial Neural Networks or Decision Trees.

3Currently MNIST is the only commonly image dataset used that can easily be implemented to a current
quantum processing unit (QPU) (1). This is why the MNIST is used as input dataset for this project.
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2 Restricted Boltzmann Machines
The pipeline of this project starts with a Restricted Boltzmann Machine. Restricted Boltz-
mann Machines consist of stochastic binary variables arranged into a visible layer and a
hidden layer, where inter-layer connections are allowed but intra-layer connections are for-
bidden conforming an undirected bipartite graph (2).

Figure 2: General representation of a Restricted Boltzmann Machine.

This restricted configuration allows for more efficient training algorithms in RBMs such as
the gradient-based contrastive divergence (CD), persistent contrastive divergence (PCD),
or parallel tempering (PT) algorithms. RBMs belong to the family of generative stochas-
tic artificial neural networks that can learn a probability distribution over its set of inputs
and reproduce it. RBMs can be used in many fields such as classification, feature learn-
ing, dimensionality reduction, or even in many body quantum mechanics. They can also
be trained in either supervised or unsupervised ways. Its joint probability distribution is
defined by a Gibbs distribution

P (v, h) = 1
Z

e−E(v,h) (1)

With an energy functional

E(v, h) = −
n∑

i=1
bivi −

m∑
j=1

cjhj −
n∑

i=1

m∑
j=1

wijvihj vihj ∈ {0, 1} (2)

Where n (m) is the number of visible (hidden) nodes and v (h) represent the visible (hidden)
nodes of the RBM. The terms wij bi, cj represent the weights, visible and hidden biases
respectively that are represented by real values. The normalization constant of equation 1

Z =
∑
{vk}

∑
{hl}

exp
(∑

k

bkvk +
∑

l

clhl +
∑
kl

wklvkhl

)
(3)

is known as the partition function of the system. Because of the bipartite graph structure,
the forward and reverse conditional probability distributions for the RBM are both

P (hj = 1|v) = σ

(
cj +

∑
i

wijvi

)
(4)

P (vi = 1|h) = σ

(
bi +

∑
i

wijhj

)
(5)

Where σ stands for the sigmoid function and acts as an activation function which is used to
add non-linearity in the machine learning model. These mathematical statements represent
the building blocks of an RBM. The next step is to make the RBM learn so it can generate
results as similar as possible to the data introduced (i.e., MNIST dataset).
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2.1 Minimization of free energy in a RBM
The goal of the generative training is to determine the weights (wij) and biases (bi, cj)
that minimize the negative log-likelihood (a.k.a loss function) of the model. PGMs can
use different variants of gradient descent for training. These variants are used to compute
a specific term deeply treated in this document; the negative phase (thermal equilibration)
which is the reason why PGMs are robust against attacks enabled by local manipula-
tions, because it involves global, long-range connections of the data learned (1). The ideal
function to minimize is the Kullback-Leibler (KL) divergence which is a measurement of
similarity between the probability distribution that the model learns (pθ(x)) and the prob-
ability distribution of the observed data (p(x)) to know how much information is lost when
the model is being trained. The parameters that minimize the KL-divergence are the same
as the parameters that minimize negative log-likelihood. This means that the loss function
can be minimized and get the same parameters models (bi, cj , wij) that would have been
gotten by minimizing the KL-divergence (52). The loss function of the model is expressed
in the following form

Lθ(T ) = − 1
T

∑
x(i)∈T

log
(
pθ(x(i)

)
(6)

where θ are the corresponding variations of the visible (bi), hidden (cj) biases and weights
(wij) respectively and x corresponds to the input data distribution (MNIST dataset).
Coming back to equation 1, the probability distribution that the RBM learns is
pθ(x) = 1

Zθ

∑
h exp −Eθ(x, h), being the partition function Zθ =

∑
x,h exp −Eθ(x, h), and

the free energy of a configuration of visible units

e−Fθ(x) =
∑

h

e−Eθ(x,h) (7)

Where Fθ(x) is defined as the free energy of the system.
With equations 1, 2, 3 and 7, the loss function defined at the beginning becomes

Lθ(T ) = 1
|T |

∑
x

Fθ(x) + log

(∑
x

e−Fθ(x)
)

with its derivation demonstrated in appendix A. Thus, to minimize the loss function, it
is needed to minimize its free energy as well. This last expression is more convenient
to use to compute the gradient of the loss function. The first term is over the training
dataset which is easily computed. However, the second term is over all possible neuron
configurations and is intractable to compute classically. For N binary neurons the number
of possible configurations is 2N . Additionally, the gradient of the loss function can be
obtained performing the chain rule. The complete derivation is in appendix B

∂Lθ

∂θ
= 1

|T |
∑

x(i)∈T

∂F

∂θ
−
∑

x

pθ(x)∂Fθ(x)
∂θ

= (⟨xi⟩data − ⟨xi⟩model)

The first term ⟨xi⟩data is called the positive phase and can be efficiently computed from
a classical computer using equation 4 because comes from the evaluations on the training
set (2). Nonetheless, the second term ⟨xi⟩model (negative phase), is the term that becomes
intractable as the number of visible and hidden nodes increase because it requires knowledge
of the overall distribution pθ(x) (or analogously of the partition function Zθ) (1). Note that
the derivation of the gradient of the loss function has been done for a generic parameter θ
and it is dependent on three variables, bi, cj , wij . Therefore, the actual gradients are

∂L{bi,cj ,wij}

∂wij
= ⟨vihj⟩data − ⟨vihj⟩model (8)
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∂L{bi,cj ,wij}

∂bi
= ⟨vi⟩data − ⟨vi⟩model (9)

∂L{bi,cj ,wij}

∂cj
= ⟨hj⟩data − ⟨hj⟩model (10)

Being ⟨·⟩model the difficult term to treat (classically)

⟨vihj⟩model = 1
Z

∑
{vk}

∑
{hl}

vihj exp
(∑

k

bkvk +
∑

k

clhl +
∑
kl

wklvkhl

)
(11)

And respectively for ⟨vi⟩model and ⟨hj⟩model. As seen in Eq. 11, the exact value is in-
tractable to compute classically if desired. Therefore, a sampling of the overall distribution
is needed to make an approximation of the true value. There are two ways to solve this,
one is by means of classical heuristics, and the other is by quantum annealing sampling.

2.2 Classical sampling
To evaluate the gradient of the loss function correctly (Eqs. 8-10) an approximation as
good as possible of the negative phase is needed because computing ⟨·⟩model exactly is not
feasible. In this document, parallel tempering is explained as an alternative approach for
the approximation of ⟨vi⟩model. The ⟨hj⟩model is computed from Eq. 5 using the configura-
tion already minimized by parallel tempering (configuration with lower free energy), and
⟨vihj⟩model is obtained doing the outer product of these last two vectors ⟨vi⟩model×⟨hj⟩model,
where each row i (j) represents a determined node in the RBM, and computing its average.

2.2.1 Parallel tempering (PT)

When complex potential energy surfaces are encountered (i.e., with high energy barriers),
traditional metropolis MC can be inefficient blocking the model to compute a good value
of the gradient of the loss function. As a proposition, an algorithm which has inspiration
in the dynamics of physical processes is presented. It is called parallel tempering (PT).
Parallel tempering is a simulation method typically used in problems where sampling or
optimization processes are necessary. In this situation, it is going to be used as a sampling
tool. PT is used to find the lowest free energy state configuration of a system of many
interacting particles (the nodes of the RBM) at low temperature. PT solves this problem
by running several MC simulations (chains) in parallel at different temperatures (Ti), being
βi = 1/kBTi. The simulations at higher temperatures are able to explore the configuration
space more freely, crossing energy barriers and hopping among shallow energy minima. PT
takes advantage of this by exchanging these higher temperature configurations with lower
temperature ones if a certain condition is fulfilled, the metropolis criterion.

P (Ci ↔ Cj) = min

(
1, exp

[(
1

kBTj
− 1

kBTi

)
[H(Cj) − H(Ci)]

])
(12)

Being H(Ci) and H(Cj) the energies for the chains with configurations Ci and Cj respec-
tively, allowing the low-temperature simulation to sample configurations more efficiently
than with local Metropolis only (43). After a swap move is applied, replica at βi assumes
configuration Cj with energy Ĥ(Cj) and the replica βj gets the configuration Ci with en-
ergy Ĥ(Ci) being able the replica with lowest energy to sample better the energy landscape.
This process is applied for 100 chains at the same time.
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2.3 Quantum sampling
RBMs are slow to train and time-consuming due to the slow mixing of Gibbs sampling
(2). Moreover, PT can stay at a local minima or not to sample the configuration with
lowest energy state (the swaps depend on probabilities, see Eq. 12). Quantum annealing
processes can serve as an aid to explore more efficiently the energy landscape thanks to
quantum superposition and tunneling training the RBM more effectively which can lead
to a better calculation of the gradients and thus to a better accuracy of the model.

2.3.1 Quantum annealing (QA)

Quantum annealing is an optimization process to find the global minimum of a given
objective function (the Hamiltonian) by using quantum fluctuations. It is used mainly
for problems where the search space is discrete with many local minima (55). Sampling
problems are related to these optimization problems by sampling from many low energy
states to try to characterize the shape of the energy landscape spectrum, i.e., the free en-
ergy of the RBM. This sampling is used to obtain the negative phases ⟨·⟩model of Eqs. 8-10.

The process of quantum annealing can be explained at its fundamental with 1 single qubit.
This qubit is in a superposition of states 0 and 1. After the process of annealing this qubit
collapses to either one of these 2 states. This process can be understood with the following
diagram seen in Fig 3

Figure 3: 1 qubit system collapsing to the ground state (55).

An energy barrier is raised in the middle to create a double well potential. The system
can be controlled by introducing a bias (i.e., an external magnetic field) such that the
probabilities of each state are not the same. This is done by minimizing more the energy
of one state increasing the probability to collapse to this lower state due to the principle of
minimum energy. For example, making more probable to collapse towards state |1⟩ rather
than |0⟩ as seen in Fig 3.

To create a quantum computer that works by quantum annealing it is needed a high
number of qubits and a way to make them work together. This is achieved by using an
additional element, couplers. Couplers can make 2 independent qubits end up having the
same final state or the opposite. The physical interpretation of couplers is the entangle-
ment allowing to link 2 qubits at the same time. When two qubits are entangled, they can
be thought of as a single object with four possible states (|0, 0⟩ , |1, 0⟩ , |0, 1⟩ , |1, 1⟩). The
relative energy of each state (E|q1,q2⟩) depends on the biases and couplings between qubits
q1 and q2. For example, there could be a configuration where the state |1, 1⟩ is the one
with lowest energy. The biases and couplings define the energy landscape, and the D-Wave
quantum computer finds the minimum energy of that landscape (i.e., E|1,1⟩). The system
gets more complex as qubits are added. For example, three qubits have eight possible
states over which to define an energy landscape; four qubits have sixteen, five qubits thirty
two and so on following the rule 2N being N the number of qubits.
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Therefore, as each qubit can have a bias applied and can interact with other qubit by
means of couplers, one can build a system that reproduces the final Hamiltonian (Ĥf ) by
linking several independent qubits together. Then, the quantum annealer solves the prob-
lem by finding the state with minimum energy moving the system from a fully quantum
state towards a completly classical system (the system collapses). All of this happens in
D-Wave´s chips around 20µs.

Figure 4: System collapsing after annealing process (55).

The Hamiltonian of the quantum annealing process is described by the following equation.

Hising = −A(s)
2

(∑
i

σ̂(i)
x

)
+ B(s)

2

∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,j σ̂(i)
z σ̂(j)

z

 (13)

Being σ̂
(i)
x,z the Pauli matrices that operate on a qubit qi/j and hi, Ji,j are the qubit biases

and coupling strengths respectively. The term s = t/tf is a factor that equals 1 when time
t reaches tf (total annealing time). The Hamiltonian can be decomposed in two terms; the
initial Hamiltonian (first term, Hi) and the final Hamiltonian (second term, Hf ). Final
Hamiltonian contains the qubits, biases and couplers that have correspondence with the
nodes, biases and weights of the RBM under study. The lowest energy state of the final
Hamiltonian is the answer to the problem under study.

In quantum annealing the system starts at t = 0, being A(0) ≫ B(0) and at the low-
est energy eigenstate of Hi. As it anneals, it introduces the Hf slowly enough to satisfy
the conditions of the adiabatic theorem and the initial Hamiltonian is slowly reduced un-
til the Hamiltonian contains only the B(s) term. Ideally, the ground state of the initial
Hamiltonian has been maintained through the annealing process such that at the end of
the task the system collapses at the ground state of the problem Hamiltonian. In reality,
the probability of staying in the ground state can sometimes be small due to perturbation
effects such as thermal fluctuations from external sources or accelerating too much the
annealing process. However, the low energy states returned still are useful. The most diffi-
cult problems to solve in terms of quantum annealing are those with the smallest minimum
gaps4 (29). The use of D-Wave´s annealer for the training of the RBM is as follows:

1. The RBM energy functional 2 is used as the final Hamiltonian Ĥf .

2. Quantum annealing is run N times and the sample averages are taken for each nega-
tive phase respectively (⟨vi⟩model),

(
⟨hj⟩model

)
and

(
⟨vihj⟩model

)
(2).

3. The negative phases ⟨·⟩model are introduced into the gradient of the loss function
(Eqs. 8-10) for each iteration during the training.

4Minimum gap is the minimum distance between the ground state and the first excited state of the
system as the annealing process is undertaken.
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2.4 Embedding the RBM into the Quantum Processor Unit (QPU)
To proceed to the sampling in the D-Wave computer, the concept of Q matrix is needed
first. If x is defined as the binary vector that concatenates the visible node vector and the
hidden node vector, the energy equation 2 can be expressed in the following form (2).

E = βxT Qx (14)

Where Q is the (n + m) × (n + m) matrix:

Q = 1
βeff

(
B W
0 C

)
(15)

being n (m) the number of visible (hidden) nodes. B and C are diagonal matrices containing
the biases bi and cj respectively and W represents the n × m squared matrix with all the
elements corresponding to the weights between the visible and hidden nodes wij . The
scale factor βeff is set to 1.5 as a result of several studies performed in (2). Moreover, it is
more convinient to work with "spin" variables rather than "binary" variables in D-Wave
machines. Therefore, the transformation x → S = 2x − 1 is applied and the Boltzmann
distribution (Eq. 2) of the RBM becomes

E′ = −
r∑

i=1
HiSi −

r+m∑
j=r+1

HjSj −
n∑

i=1

r+m∑
j=r+1

JijSiSj (16)

Where the visible nodes of the RBM are represented in this equation by the first r spin
variables of the first term, the hidden nodes are represented by the next m spin variables
of the second term, and the weights connection between the hidden and visible nodes are
represented by the third term. Next, the RBM transformed to Ising model is embedded
onto the D-Wave chip by mapping each visible node to a chain of vertical qubits (red dots),
and each hidden node to a chain of horizontal qubits as seen in Figure 5.

Figure 5: Embedding of a RBM onto a D-Wave QPU chimera graph (2).

Once the RBM is embedded on the QPU and sampling is done by the quantum annealer,
the averages are computed and introduced into the gradients of the loss function.

• Visible negative phase ⟨v⟩model. Where ⟨vi⟩model = 1
N

∑N−1
n=0 vn

i being the dimension
of the vector 

⟨v0⟩model

⟨v1⟩model
...

⟨vr⟩model

 (17)
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• Hidden negative phase ⟨hj⟩model. Where ⟨hk⟩model = 1
N

∑N−1
n=0 hn

k being the dimen-
sion of the vector 

⟨hr+1⟩model

⟨hr+2⟩model
...

⟨hr+m⟩model

 (18)

• Weight negative phase ⟨vihj⟩model. Where ⟨vihj⟩model = 1
N

∑N−1
n=0 vn

i hn
j with i ∈ [0, r],

j ∈ [r + 1, r + m] and being the dimension of the matrix
⟨v0hr+1⟩model ⟨v1hr+1⟩model · · · ⟨vrhr+1⟩model

⟨v0hr+2⟩model ⟨v1hr+2⟩model · · · ⟨vrhr+2⟩model

⟨v0hr+3⟩model ⟨v1hr+3⟩model · · · ⟨vrhr+3⟩model
...

...
. . .

...
⟨v0hr+m⟩model ⟨v1hr+m⟩model · · · ⟨vrhr+m⟩model

 (19)

Once these negative phases are computed, the gradient of the loss function can be easily
obtained (Eqs. 8-10). The next step in the training is the optimization of the RBM to
compute the new bi, cj , and wij updates.

2.5 Optimization of the RBM
To successfully make the RBM learn (i.e., minimize its free energy) it is also necessary
to introduce an optimization algorithm that computes the new updates bi, cj , wij after
the previous estimation the gradient of the loss function to update the configuration of
the model. Adam optimizer (a.k.a. Adaptive moment estimation) algorithm which is an
extension of Stochastic Gradient Descent (SGD) is used for this task. Some benefits of
this model are that it requires little memory and it works very well for problems with large
terms of data (48). This method takes momentum5 and RMSprop6 and makes them to
work together. To implement Adam it is needed first to set at t = 0, Vdw = Vdb = Vdh = 0,
Sdw = Sdb = Sdh = 0, and then on iteration t compute these values again using dw, dv,
dh which are ∂L

∂wij
, ∂L

∂bi
, ∂L

∂hj
respectively (previously computed in Eqs. 8-10 with parallel

tempering or quantum annealing respectively) with the following formulas

Vdw = β1Vdw + (1 − β1)dw; Vdb = β1Vdb + (1 − β1)db; Vdh = β1Vdh + (1 − β1)dh

This set of three equations is the momentum-like update with hyper parameter β1 (mo-
mentum term). And the following three equations are

Sdw = β2Sdw + (1 − β2)dw2; Sdb = β2Sdb + (1 − β2)db2; Sdh = β2Sdh + (1 − β2)dh2

which represent the RMSprop-like update with hyper parameter β2 (RMSprop term).
Furthermore, in a typical implementation of Adam, bias corrections are needed. Therefore,
to compute the real (corrected) values, the following formulas are used

V corrected
dw = Vdw

(1 − βt
1

) ; V corrected
db = Vdb

(1 − βt
1) ; V corrected

dh = Vdh

(1 − βt
1)

5Momentum is an extension to the gradient descent optimization algorithm that allows the search of a
minima within an inertia in a determined direction (14)

6Root Mean Squared Propagation is an extension of gradient descent that uses a decaying average of
partial gradients (15)
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Scorrected
dw = Sdw

(1 − βt
2) ; Scorrected

db = Sdb

(1 − βt
2) ; Scorrected

dh = Sdh

(1 − βt
2)

Now, after these corrections are computed, Adam optimization returns the RBM updates
multiplied by the learning rate α and are added to the previous values wt−1, bt−1, ht−1

wt = wt−1−α
V corrected

dw√
Scorrected

dw + ϵ
; bt = bt−1−α

V corrected
db√

Scorrected
db + ϵ

; ht = ht−1−α
V corrected

dh√
Scorrected

dh + ϵ

being wt, bt, ht the actual updates at time t. The hyper-parameters used in this optimiza-
tion process are α = 1 · 10−3, β1 = 0.9, β2 = 0.999, ϵ = 1 · 10−8. At this point, one
optimization batch7 is finished. To complete 1 training epoch, sampling, computation of
gradients and updates must be repeated 1875 times. For a full understanding of the code
and the functionality of the RBM it can be viewed in the GitHub repository (59). The
implementation of the QA sampling process can be observed in the following Figure.

Figure 6: Pipeline of the generative training for a RBM with QA.

3 ResNet-18
The training of the generative model is finished. Now it is the moment to evaluate the
performance of the RBM and it is done with the ResNet-18. The term "ResNet-18" stands
for Residual Neural Network of 18 layers deep and it is mainly used for image recognition.
A brief introduction is given in this paper as the goal of this project is to understand
and focus on the RBM trained by two different methods and to benchmark its possible
applications in cybersecurity.
Typical ResNet models are implemented with double or triple layer skips that contain
ReLUs8 and batch normalization in between (45). When dealing with problems of image
recognition, researchers observed that after some depth in the network, the performance
degrades. This problem is known as the vanishing gradient problem and can easily be
explained by the chain rule. As the number of layers in the network increase, the number
of elements that multiply the gradient of the loss do as well being each element usually
less than unity. Hence, the gradient of the network diminishes stopping the NN learning.

7Batches are the number of iterations to finish 1 epoch (1875 batches per epoch).
8Rectified Linear Unit. It is defined as the positive part of its argument, i.e., f(x) = x+ = max(0, x).
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3.1 Architecture and theoretical background
The solution to this problem comes with the invention of a "skip connection" between
layers. These connections skip some layer in the NN and uses the output of one layer to
feed the input of the next layer ahead (instead of the adjacent one). An image of the
fundamental building block of a ResNet can be observed in Fig. 7. By just using vector
addition of the identity function, the gradient of the loss is multiplied by one and its value
is maintained in the earlier layers. Thanks to this, the gradient in previous layers can be
preserved. The skip connection (a.k.a. residual block) can be represented mathematically
as follows taking into consideration Fig. 7

∂L

∂x
= ∂L

∂H

∂H

∂x
= ∂L

∂H
(∂F

∂x
+ 1) = ∂L

∂H

∂F

∂x
+ ∂L

∂H

It can be seen that the first term vanishes before than the second one. Concatenative skip
connections enable an alternative way to ensure feature reusability from the earlier layers
to stabilize the training and converge the model (37).

Figure 7: Canonical form of a ResNet (35).

4 Experimental setup
The main building blocks are ready, a RBM as a generative model and the ResNet-18 as a
discriminative classifier. The generative model is trained by two different methods, classical
training (CRBM) and hybrid training (HRBM), being the last method a classical training
with a final boost of QA. Then, the generated images are evaluated by the ResNet-18,
previously trained with MNIST as well. The natural datasize of MNIST is 28 × 28 pixels
per image. The images are described by tensors whose elements are floats between [0, 1].
1 means a white pixel and 0 a black pixel. The input datasize of the CRBM starts at
784 visible nodes (28 × 28 = 784) for the visible layer and 300 hidden nodes (as hyper-
parameter) for the hidden layer (see Fig. 2). The learning rate is the same as in section 2.5
and the number of epochs is still to be discussed in the results. Accuracies, performance
and image quality are compared based on the two training methods.

4.1 Input dataset
The dataset used by the RBM is of two different sizes. One training dataset of size 28 × 28
to understand how the RBM works with full information, and another of size 7×7 (reduced)
because the QPU of D-Wave´s quantum annealing machine cannot process images of bigger
size. To evaluate correctly the accuracy of the RBM generating hand-written numbers, the
ResNet has been previously trained with the MNIST dataset with sizes 28 × 28 and 7 × 7
returning an accuracy of 96.78% and 93.27% respectively. Therefore, errors that can be
found in the evaluation are assigned explicitly to the RBM. An example of the images used
to train the RBM and ResNet-18 can be observed in Fig. 8
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(a) Example 28 × 28. (b) Example 7 × 7.

Figure 8: MNIST image example of number 5.

4.2 Processing time of D-Wave´s systems
Before running all simulations, it is interesting to know how long does it take for the entire
QA sampling process receive, compute, and return back the information. Figures 9a and
9b make a clear description of how a Quantum Machine Instruction (QMI) evolves.

(a) D-Wave execution time for a single QMI. (b) QPU access time.

Figure 9: D-Wave processing time organization (31)

Fig. 9a describes how long does it take for a QMI to complete a single request. The first
and last steps of the process consist of the internet latency of the client (that depending on
the internet connection it is faster or slower). Next stage is the service time that consists of
several steps starting at the worker queue in which all D-Wave clients wait in order to get
their requests prepared for the QPU queue. The larger the queue, the larger the waiting
time. Next comes the preparation step in which the QMI is prepared for the QPU queue
to start the QPU access time. At this point, the process is better described in Fig. 9b.
In the simulations run, 500 samplings were requested. The annealing time (green layer of
Fig. 9b) takes around 20µs consuming a total of 0.01s for 1 single QMI request (without
taking into consideration all the other previous steps such as delay time, readout time,
programming time, internet lattency, queues...). Then, results from D-Wave are sent back
to the client and the negative phases are computed locally with these sampled results. The
negative phases are used to compute the gradients (Eqs. 8-10) and these are used to obtain
the new bias and weight updates in the Adam optimizer step (see Fig. 6).
To summarize it briefly, the whole quantum-enhanced process builds the Q matrix, calls the
sampler from D-Wave, sends the matrix to the sampler, obtains the free energy landscape
of the RBM and returns results back to determine the ⟨·⟩model. This process is repeated
iteratively and took an average of 9.87s. The complete process time range could be reduced
by improving external circumstances such as greater internet connection (internet latency),
a tinier worker queue size and with a better local computer speed.
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5 Results
Before analyzing results, it must be taken into account that D-Wave cloud-based service
provides only 1 minute of free service of total annealing simulations to anyone who wants
to try their quantum computers. If that threshold of 1 minute is reached a fee must be paid
in order to be able to continue with the simulation. To know how much time does a boost
consume an example simulation of a HRBM of 50 hnodes with 7 × 7 MNIST dataset and
5 training epochs has been run. The results showed that for a boosting training of 10.000
images the free trial consumed was of 68.11%. As 20 individual boosting simulations were
run to obtain some statistical results, the boost had to be reduced to 1.000 images rather
than 10.000 in order to be able to run them all. Results are provided in terms of plots (10,
11 and 12), tables (1 and 2) and images of handwritten numbers (13, 14 and 15).
To check if the RBM was working properly, plots of the gradient of the loss function (Fig.
10a) and of the bias and weight updates (Fig. 10b) were obtained for a CRBM. Both
figures show that the evolution of the gradient and updates works pretty good for a low
number of batches. These two plots are shown for just 5 training epochs because for 100
or 10 epochs the change of the gradient and updates would be almost imperceptible in an
image. With 5 training epochs it can be seen that the most drastic change in values is
accomplished after 2000 batch cicles (∼ 1 epoch).

(a) ∂L
∂bi

and ∂L
∂wij

of a CRBM with 5 epochs. (b) bi, cj and wij updates per batch in a CRBM of 5
epochs.

Figure 10: CRBM evaluated for 5 epochs in the MNIST dataset 7 × 7 with 50 hnodes.

(a) ∂L
∂bi

and ∂L
∂wij

of a HRBM with 5 epochs. (b) bi, cj and wij updates per batch in a HRBM of 5
epochs.

Figure 11: HRBM evaluated for 5 epochs in the MNIST dataset 7 × 7 with 50 hnodes.
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Regarding Figures 11a and 11b it can be observed that the QA sampling boost makes a
big step in the gradients and updates when it is started. This big step evidences that the
annealer found a better minima in the energy spectrum of the RBM and hence changed
the gradients and updates drastically. Therefore, the parallel tempering algorithm stuck
in a local minima meaning that the energy spectrum of the model must have high barries
which are more difficult to explore by parallel tempering than by QA. It can be noticed in
both figures that once the annealing starts, a convergence towards zero is observed being
in Figure 11b more noticeable than in 11a. Moreover, the complete annealing towards
this aimed equilibrium is not possible to do because these last two plots correspond to
the HRBM with the final boost of 10000 images consuming a 68.11% of the free trial. To
observe a complete convergence in both Figures at least 5 minutes of annealing would be
needed. Nonetheless, this abrupt change is of extreme interest because from both images
it can be inferred that a considerably better configuration can be reached with a few
samplings of the annealer. Hence with a few annealing samplings (1000 images) it can be
enough to reach a better performance in the RBM (thus, lower free energy). Consequently,
the following simulations are done with a final boost of 1000 images9 rather than 10000.

(a) HRBM vs several CRBMs gap loss per epoch. (b) HRBM vs several CRBMs accuracy.

Figure 12: Comparison of HRBM (blue) in terms of free energy difference and accuracy against CRBMs.

A good measure of well fitting is the free energy difference between some known (data) and
unknown (validation data of the RBM) instances, i.e., ∆F (x) = F (x) − Fθ(x). For that
reason plots of Fig. 12a were created where many interesting things can be appreciated.
Firstly, that in any case, gap between the known and unknown distributions is of order of a
decimal in the worst case scenario (which is pretty good). Secondly, that the CRBM with
300 nodes (red) sometimes outperforms both models (green and blue) in free energy gap
evaluation (manifesting the importance of a high hnodes). Thirdly, observe that there is a
correspondence in the gap loss value and the accuracy of the model in 7 × 7 datasets being
the ones with lowest gap the ones with better accuracy. Fourthly (and most important), it
can be observed clearly that at the end of the plot 12a the one with the lowest gap is the
HRBM of 50 hidden nodes (blue). Hence, it is a very good indicator that with only 1000
annealing samplings in the final step of the training, the gap value reaches almost 0.
On the other hand, on Fig. 12b are shown the accuracies with its respective uncertainties.
These values are obtained from Tables 1 and 2 in which several simulations were run in

91000 images for several reasons. Firstly, because otherwise there would not be enough time to run all the
simulations (10000 images consume 40.87 seconds of the available time). Secondly, because several attempts
were done to obtain results with more than 6000 images and the kernel frequently crashed for problems
related to memory or error connections with D-Wave servers interrupting the flux of the simulations.
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order to obtain statistical and reliable results. The most important aspect to note in this
Figure is that in equal circumstances the HRBM (blue) outperforms the CRBM 50 hnodes

(green), and also outperforms the CRBM 300 hnodes (red). Moreover, as expected the one
with highest accuracy is the CRBM with 28 × 28 MNIST because is the one that receives
the biggest ammount of information to learn (yellow). Nonetheless, it can be inferred from
these results that when the embedding of the MNIST 28 × 28 into the QPU of D-Wave
will be available, the results of HRBM will be considerably better than the yellow CRBM.
Following the previous plots, tables with the accuracy computed for each simulation can
be observed in 1 and 2 and images generated can be observed as well in Figures 13, 14
and 15 respectively. In these two tables the first column corresponds to the size of the
MNIST dataset which in the classical RBM it is analyzed for both 784 and 49 input pixels
respectively and in the hybrid RBM only 49 input pixels because of hardware constraints
previously mentioned. The number of hidden nodes is also decreased (from 300 to 50)
to see if as expected the accuracy would diminish. The next parameter analyzed is the
number of epochs that ranged from 1 to 100 in 4 steps (1, 10, 50, 100) and run 5 times each.
Then, average of each model was computed with its respective uncertainty (last column).

CRBM hnodes Epochs T1 T2 T3 T4 T5 ⟨Accuracy⟩
28 × 28 300 1 96% 100% 100% 100% 100% (99.20 ± 0.80) %

10 100% 96% 100% 96% 100% (98.40 ± 0.91) %
50 1 0% 4% 4% 0% 0% (1.60 ± 0.98) %

10 36% 44% 12% 16% 16% (24.80 ± 6.37) %
50 68% 68% 60% 68% 64% (65.60 ± 1.60) %
100 68% 64% 76% 60% 64% (66.40 ± 2.71) %

7 × 7 50 1 0% 0% 0% 0% 0% (0.0 ± 0.0) %
10 8% 4% 12% 12% 12% (9.60 ± 1.6) %
50 8% 16% 16% 12% 8% (12.00 ± 1.79) %
100 20% 12% 12% 24% 16% (16.80 ± 2.33) %

300 1 0% 0% 0% 0% 0% (0.0 ± 0.0) %
10 4% 8% 8% 8% 8% (7.20 ± 0.80) %
50 12% 20% 20% 20% 20% (18.4 ± 1.60) %
100 20% 32% 36% 28% 16% (26.40 ± 3.71) %

Table 1: Fully classical RBM trained with different datasets, hidden nodes and epochs.

HRBM hnodes Epochs T1 T2 T3 T4 T5 ⟨Accuracy⟩
7 × 7 50 1 0% 0% 0% 0% 0% (0.0 ± 0.0) %

10 8% 12% 12% 12% 8% (10.40 ± 0.98) %
50 16% 32% 20% 32% 32% (26.40 ± 3.49) %
100 40% 36% 32% 36% 52% (39.20 ± 3.44) %

Table 2: Hybrid RBM trained with the reduced dataset, and 50 hidden nodes through different epochs.

Experiments with QA proved to be better than classical methods under same circum-
stances, improving up to a 22.4% in the best case scenario. It can be observed that
reduction of vnodes means less input information and more difficulty learning heavily re-
ducing its accuracy. Also, as the number of hnodes shrinks, the accuracy does as well. A
higher number of hnodes allows to distribute more and better the information of each image.
Regarding epochs, it is clear that as its value increases, accuracy improves as well mani-
festing that the RBM is actually learning. Some RBM images generated are presented in

15



Figures 13, 14 and 15.

(a) 7x7 MNIST 1 epochs.
CRBM accuracy 0%

(b) 7x7 MNIST 10 epochs.
CRBM accuracy 4%

(c) 7x7 MNIST 50 epochs.
CRBM accuracy 12%

(d) 7x7 MNIST 100 epochs.
CRBM accuracy 16%

Figure 13: Numbers generated by the CRBM 7 × 7 50hnodes depending upon epochs.

(a) 7x7 MNIST 1 epoch.
HRBM accuracy 0%

(b) 7x7 MNIST 10 epochs.
HRBM accuracy 12%

(c) 7x7 MNIST 50 epochs.
HRBM accuracy 16%

(d) 7x7 MNIST 100 epochs.
HRBM accuracy 36%

Figure 14: Numbers generated by the HRBM 7 × 7 50hnodes depending upon number of epochs.
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(a) 7x7 MNIST 100 epochs.
CRBM accuracy 36%.

(b) 28x28 MNIST 10 epochs.
CRBM accuracy 100%.

Figure 15: Numbers generated by the CRBM 300 hnodes depending upon the datasize, and epochs.

Some interesting outcomes can be obtained after checking results qualitatively and
quantitatively. Firstly, observing the images generated by RBMs 7 × 7, a considerable de-
crease in quality and accuracy can be appreciated. Compare all figures of 13 and 14 with
Fig. 15b (28 × 28 → 7 × 7), dataset is reduced in size and the RBM looses a lot of input
information. There is a decrease in the number of nodes of about 93.75% in the visible
layer and of 83.33% in the hidden layer. This reduction makes it very difficult for the RBM
to learn patterns accurately and to generate more complex numbers correctly. It is also
noticeable that after reducing the vnodes, if hnodes are decreased as well, the images and
accuracies worsen (compare Fig. 15a with 13 and 14, 300 hnodes → 50 hnodes). Secondly, it
can be appreciated that for an HRBM of 100 training epochs (Fig. 14d), the most common
number generated is 1 followed by 7 and 4 (compare with the CRBM under the same cir-
cumstances, Fig. 13d which has a wider spectrum of numbers). This is the reason why the
accuracy of the HRBM is considerably higher, 1 is the easiest number to categorize for the
ResNet, hence assigns a better performance to the HRBM. It is important to note that the
numbers generated by the RBM are random, not requested, and from 5 simulation runs in
model 14d, no 5 nor 8 were found for example. The most predominant numbers in 14d are
1, 7 and 4. Furthermore, this effect of non diversity can also be appreciated in the CRBM
with full information as well (Fig. 15b), in which the most common number is 1 again.

Images generated by HRBM 100 epochs may be thought not to be as well as generated
by the CRBM with 100 epochs (compare 14d with 13d). However, numerical results in
the ResNet showed an improvement discriminating numbers when using 14d rather than
13d enhancing the probability of the most probable ones and lowering the probability of
the complementaries. This discrepancy between quality of images and accuracy assigned
to each RBM can be explained by the distribution of pixels intensity in the images. Pixel
distribution is better spread by the HRBM (besides of generating more 1s) than by the
CRBM allowing the ResNet to evaluate each image with higher confidence, giving the
HRBM better accuracy, meanwhile even though the CRBM shows a diversified class of
numbers for all epochs, it draws them foggier, making the ResNet not to be 100% sure
about its decision thus lowering the accuracy of the CRBM. Note that the ResNet thresh-
old confidence is set to ≥ 95% otherwise the number generated by the RBM will not be
considered as a good number and the accuracy of such RBM will decrease. The ResNet-18
assigns to each number generated by the RBM a probability p(j) ∈ [0, 1] where j ∈ [0, 9].
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6 Conclusions
Several conclusions could be inferred from previous section. First of all, more analysis
needs to be done with the HRBM mainly. CRBM works as expected (see Figures 10a and
10b), nonetheless, the HRBM shows a not fully convergent behaviour in 11a after 10000
annealing run images. The behaviour of the HRBM has been determined as convergent
because the updates (Fig. 11b) were convergent, not the gradient of the loss (at first sight).
Fig. 11a shows a scarce weak convergence at the very end of the plot. Nonetheless, it can-
not be verified with full determination as there was no more available time from D-Wave´s
side. Moreover, the variety of numbers generated needs to be studied more. Once the
epochs are increased to 100 and QA boosting is implemented in the HRBM the diversity
reduces considerably (compare Fig. 13d and 14d). Simulations were extended (out of the
scope of this document) up to 10 runs in some cases and a clear predominance of the num-
ber 1 was observed. Theory and computations were repeated and examined deeply with
no final incongruencies found in the implementation of the annealing or during trainings.

Additionally, it would be of high interest to have the possibility to afford for more time in
D-Wave cloud service because with 1 minute only a boost of up to 17% of a single epoch
can be performed (it is not possible to run 1 full epoch of QA). As a clarification, train-
ings were done up to 100 epochs (∼ 5 hours per simulation) because for larger trainings
the performance of the images generated was not better (they were basically the same in
quality and accuracy compared with the ones of 100 epochs). The aim to use a D-Wave
quantum computer was not only to increase the performance of the RBM but to accelerate
the training time, theoretically achieved taking into consideration only the annealing times
(20µs per annealing) but not accomplished in reality because various impediments were
encountered during training such as the internet latency and the information processing
time of the problem sent to the servers (see Fig. 9a). It is true that the sampling is very
quick but the transmission of information was what took the most putting into manifest
the need of developing quantum communication protocols to send data faster or to develop
quantum computers locally where all the software can be run in place instead of sending
and receiving packets. Also, accuracy values are very low (see Tables 1 and 2) because
the threshold settled in the ResNet-18 is too high (≥ 95%). There were results where
many generated examples such as 2 (or 6) correctly identifiable for the human eye had
a probability of being correct of 49% (57%) being the other labels (complementary to 2
and 6) almost 0%. These correct numbers with < 95% probability have been discarded
because of this threshold. This limit must be treated carefully because the RBM accuracy
depends heavily on this parameter. If a limit of 75% was applied instead, results would
be much better numerically in tables and accuracy plots (but not graphically generating
hand-written numbers).

Finally, as a brief summary to sum up all these conclusions into one single paragraph,
several pros and cons can be addressed to enclose this section. As positive results, a good
gap loss of the free energy was obtained for several RBM models. The accuracies were
pretty high for such ResNet threshold barrier. The RBM could be successfully embedded
into the QPU and the gradients of the loss function could be computed easier without
need of classical approximation. Moreover, the annealing boost of D-Wave found a better
configuration of the RBM reaching a lower minimum state energy. On the other hand,
more study needs to be done to determine why the RBM does not generate with the same
probability a 2 or a 7 even in the most ideal case scenario (Fig. 15b) in which almost all
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numbers are 1 and there are only two 3 and one 7. Also, why the quality of the images is
not as good as expected in some scenarios even if the accuracy increased considerably and
the need of more D-Wave sampling time to demonstrate that 11a truly converges as time
increases.

7 Outlook and possible applications
Two paths can be followed from this point. One is the track of more research understanding
how the RBM evolves as parameters change and finding ways to improve its efficiency and
quality, and the other is to use RBMs for several applications.

On one hand, simulations could be repeated with a different topology (Pegasus instead
of Chimera) to see if quality of images generated improves, or even easier, repeat the pro-
cess but with a higher number of samplings per annealing (1000 instead of 500) to look
for differences in performance. Also, as stated in previous section, more analysis should
be done in order to determine why 1 is more likely to be generated than 2 for example
because numbers are equally distributed and appear with same frequency in the datasets.

On the other hand, generative models open the door to many possible applications. One
possible use case is to apply this model as a defence mechanism for classifying emails, e.g.,
as a DBN10 (See Fig. 16). DBNs are stochastic binary models and can be used to check if
a determined word appears in a text (node i gets value 1) or not (node i gets value 0). For
example, to know if a word appears in a text it can be easily checked by splitting the email
into words and storing them into a list. If (for example) word "urgent" appears, node i
gets value 1, if not, it gets value 0. Once the DBN is trained with a boost of D-Wave, it
can be tested with another DBN trained classically (e.g., parallel tempering again) and
compare which model has a better performance. For a DBN that recognizes 30 words it
would be necessary 30 vnodes plus 20 hnodes (as hyper parameter) and 3 (to categorize)
in the output layer being needed a total of 53 nodes (53 logical qubits). This model is
affordable for current quantum hardware and could be proposed as a future exercise or
continuation of this project. Nonetheless, this model would be too weak against current
state-of-the-art email filtering models. If comparable performance is aimed, a minimum of
200 words per label (legitimate, spam, phishing) must be used. Repeating the process it
would be necessary a minimum of 600 vnodes, 300 hnodes and 3 output nodes, summing up a
total of 903 nodes (logical qubits) for the DBN. Unnafordable for current D-Wave systems
because it would be necessary a minimum of 7224 qubits (see architecture of Fig. 5). Even
though the second model is not feasible to implement currently, it would be interesting to
see if the performance of the quantum enhanced model (HDBN) would be better than the
classical one (CDBN) for only 30 words (53 logical qubits) before waiting for improvements
in quantum hardware to run the experiment with 903 logical qubits.

10A Deep Belief Network is a generative graphical model that consists of stacking several RBMs together
creating a network of various hidden layers plus an output classification layer.
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Figure 16: DBN evaluation model.

Many applications can be created from PGMs in the field of cybersecurity, RBMs and
DBNs could also be used in networks for DDoS mitigation (22), malware classification (23)
or to generate QR (Quick Response) codes for 2-Factor Authentication steps. A QR code
needs a minimum of 76 × 76 pixels (49). Repeating the same procedure, the number of
vnodes needed would be 762 = 5776 and taking into account the hidden layer would be
approximately a total of 11500 nodes (logical qubits) which is not feasible either.

To summarize, PGMs are a very powerful tool which should be taken into account for
current IT defence systems. As time goes on attack models improve in performance and
speed. The merge of ML with quantum computing should be observed and treated care-
fully since now more than ever because in the wrong hands it can cause a great damage
not only to companies but to governments as well if resilience counter measurements are
not already prepared for the moment of the incidence. There is also much work to do in
the foundational research area. For example, further investigation is needed to look for
developments in quantum hardware (that may be enhanced by the use of photonic circuits)
to not to reduce datasets and to start treating bigger images, texts and audios.
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A Loss function derivation
The loss function of the model can be expressed in the following form

Lθ(T ) = − 1
T

∑
x(i)∈T

log
(
pθ(x(i)

)
Nonetheless, there is an easier way to represent it in order to compute the gradients of
the loss function and minimize its free energy. Using equations 1, 2, 3 and 7 for the RBM
model
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=
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)

A new loss function equation is obtained. It can be separated into two terms labeled as
the data term (easy to compute, that depends on variable |T |), and the model term that
depends on all the possible neuron configurations (2N , not easy to compute).

B Gradient of the loss function derivation
The derivation of the gradient of the loss function is a little more elaborate process. Using
the chain rule from the last equation of appendix A

∂Lθ

∂θ
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+
∑
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− 1
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=
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1
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+ 1
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=

= 1
|T |

∑
x(i)∈T

∂F

∂θ
−
∑

x

pθ(x)∂Fθ(x)
∂θ

= (⟨xi⟩data − ⟨xi⟩model)

Where the terms of the last equality correspond to the positive and negative phases respec-
tively. As can be seen, in the second term it is needed pθ(x) (or equivalently the partition
function Zθ) with all the possible neuron configurations which as stated in section 2.1 is not
possible to calculate classically. For that reason classical approximations are used instead
and quantum annealing sampling is proposed as a solution in this document.

23


	Introduction and motivation
	Restricted Boltzmann Machines
	Minimization of free energy in a RBM
	Classical sampling
	Parallel tempering (PT)

	Quantum sampling
	Quantum annealing (QA)

	Embedding the RBM into the Quantum Processor Unit (QPU)
	Optimization of the RBM

	ResNet-18
	Architecture and theoretical background

	Experimental setup
	Input dataset
	Processing time of D-Wave´s systems

	Results
	Conclusions
	Outlook and possible applications
	Bibliography
	Loss function derivation
	Gradient of the loss function derivation

