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INTRODUCTION

Salt-floored extensional systems associated with 
salt diapirs and listric faults are common in present-day 
continental margins such as offshore Angola (e.g. Brun 
and Fort, 2004; Cramez and Jackson, 2000; Fernandez et 

al., 2020), Equatorial Guinea (e.g. Tari et al., 2003; Turner, 
1999), Brazil (e.g. Jackson et al., 2015; Mohriak et al., 
2012), the Gulf of Mexico (e.g. Hudec et al., 2013; Salazar 
et al., 2014) or the SW Iberian margin (e.g. Ramos et al., 
2017a, b, 2020). Owing to their economic importance to the 
oil industry, the structure of these salt-related extensional 
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systems has been extensively investigated through excellent 
2D and 3D high resolution seismic imagery, combined with 
borehole datasets (e.g. Fernandez et al., 2020; Mohriak 
et al., 2012). However, uncertainties related to seismic 
imaging of salt-related structures limit the understanding 
of their 3D geometry and kinematics. In this sense, field 
analogues allow investigating features that are usually out 
of range of seismic resolution, helping to expand the ideas 
and concepts derived from seismic interpretation.

The Llert syncline in the South-central Pyrenees (Fig. 
1) provides a unique opportunity to study in outcrop the 

relationships between two salt-related structures developed 
in the eastern part of the Bay of Biscay-Pyrenean Atlantic 
rift arm: the NW-SE trending Cotiella Basin and the N-S 
trending Turbón-Serrado fold system. The upper Coniacian-
lower Santonian Cotiella Basin is a salt-detached extensional 
system consisting of several salt withdrawal minibasins 
bounded by diapirs, salt rollers and listric faults, which were 
subsequently inverted during the late Santonian-Maastrichtian 
onset of the Pyrenean Orogeny (Lopez-Mir et al., 2016a). 
The syn-kinematic sedimentary infill is characterized by 
ramp carbonate sequences, which form sedimentary wedges 
thickening towards the SW, towards a presently inverted 
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basin-bounding extensional fault (McClay et al., 2004). This 
fault exhibits a spoon-shaped geometry, characterized by a 
NE-dipping listric fault across most of the Cotiella Basin. 
However, in the study area the master fault dips to the NW, as 
the fault tips out NE of the Llert syncline (Lopez-Mir et al., 
2016a). Eastward the Cotiella Basin, the Turbón-Serrado fold 
system involves post-rift carbonate sequences significantly 
thinner (~300m) than the equivalent syn-kinematic sediments 
in the Cotiella Basin (~6km) (Lopez-Mir et al., 2015). The 
Turbón-Serrado fold system is located in the footwall of the 
Cotiella extensional system, but also in the footwall of the 
Las Aras Lower Cretaceous syn-rift basin, located further 
east (Fig. 1) (García-Senz, 2002; García-Senz et al., 2019a). 
Accordingly, all the major structures located in the study 
area show different orientations, from ESE-WNW (Las Aras 
and Cotiella Basins) to N-S (Turbón and Serrado anticlines), 
or NE-SW (Llert syncline). The connection between these 
structures and their relationships with the syn-kinematic 
and syn-orogenic sediments resulted into a complex three-
dimensional (3D) framework, the understanding of which 
requires the use of 3D geological approaches.

This paper presents a 3D reconstruction of the Llert 
syncline. The 3D reconstruction was undertaken using 
existing 3D reconstruction methodologies developed in the 
Institut de Recerca Geomodels (Universitat de Barcelona) 
(e.g. Fernández et al., 2004; Mencos et al., 2015). These 
methodologies are designed to guide the extrapolation of 
surface or subsurface data to areas where data are scarce 
or missing, using geological constraints to minimize 
extrapolation uncertainties. Based on the availability and 
quality of field data, we applied different approaches, which 
enabled the use of geometrical models to constrain the 
subsurface structure. The main objective is to understand 
the connection between the Cotiella post-rift extensional 
basin and the highly oblique NS-trending Turbón-
Serrado fold system in the footwall of the Las Aras Lower 
Cretaceous syn-rift basin. Our results provide a new insight 
into the kinematic evolution of the Llert syncline during the 
tectonic inversion of this area of the Pyrenean rift system.

GEODYNAMIC SETTING 

The Pyrenees are a doubly verging Late Cretaceous to 
early Miocene orogenic system developed by the tectonic 
inversion of Mesozoic extensional basins in the southern 
branch of the Pyrenean rift system (Muñoz, 2002) (Fig. 1). 
Their geodynamic evolution is kinematically related to the 
opening of the Atlantic Ocean (Tavani et al., 2018; Vergés 
and García-Senz, 2001), as detailed below. 

Following the Variscan orogeny, an initial stage of late 
Permian-Triassic rifting culminated with the deposition 
of an Upper Triassic salt level (i.e. the Keuper facies), 

which was overlain by Lower and Middle Jurassic post-rift 
carbonate platforms (Fig. 2) (García-Senz, 2002). The main 
rifting event started at Late Jurassic to Early Cretaceous 
(Fig. 2). Major crustal thinning occurred from late Albian 
to Cenomanian times and was related to the opening 
of the central and North Atlantic Ocean. This led to the 
formation of large extensional basins and the exhumation 
of subcontinental mantle lithosphere, which culminated 
with accretion of oceanic crust in the westernmost Bay 
of Biscay (Jammes et al., 2009; Roca et al., 2011; Tavani 
et al., 2018; Tugend et al., 2014). The overlying upper 
Cenomanian to early Santonian strata is represented by 
carbonates, recording a period of thermal subsidence (Fig. 
2). At this time, the development of post-rift carbonate 
platforms above thick Upper Triassic evaporites resulted 
into the development of passive-margin salt basins, such 
as the Cotiella Basin (Figs. 1; 2) (Lopez-Mir et al., 2014, 
2016a).

At the late Santonian, the onset of collision between the 
Iberian and Eurasian plates induced the inversion of the 
previous extensional basins (Fig. 2) and the development of 
Cotiella and Bóixols thrust sheets. Collision also led to the 
development of structural relief and adjacent foreland basins 
were characterized by strongly subsiding troughs in front 
of the inverted basins. These were filled by syn-orogenic 
deposits that grade forwards into carbonate platforms 
(García-Senz et al., 2019a). Subsequently, during the 
Early Eocene to Oligocene, the Cotiella and Bóixols thrust 
sheets were transported tens of km southwards above the 
Montsec–Peña Montañesa and Gavarnie–Serres Marginals 
thrust sheets (Garrido-Mejías, 1973; Muñoz, 1992; Muñoz 
et al., 2013, 2018; Séguret, 1972). In the study area, the 
tilting of these structural units towards the south (Fig. 1B) 
is related to the development of a later antiformal stack of 
basement-involved thrust sheets in the Axial Zone (Espurt 
et al., 2019; Martinez-Peña and Casas-Sainz, 2003). 

GENERAL STRUCTURE OF THE COTIELLA 
BASIN

The study area is located in the Cotiella-Bóixols thrust 
sheet, which is the upper structural unit of the South-
central Pyrenees and was emplaced during the earliest 
stages of the Pyrenean Orogeny by the tectonic inversion of 
previous extensional basins (Berástegui et al., 1990; Bond 
and McClay, 1995; García-Senz, 2002; Garrido-Mejías, 
1973; McClay et al., 2004; Muñoz et al., 2013, 2018). The 
Cotiella-Bóixols thrust sheet developed from the tectonic 
inversion of the Lower Cretaceous rift basins located 
along the southern Pyrenean rift system margin (García-
Senz, 2002; Saura et al., 2016). This rift system was 
compartmentalized into different grabens with a stepped 
geometry, separated in cases by oblique (N-S) transfer 
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faults. In particular, the Cotiella-Bóixols thrust sheet in the 
study area developed as a short-cut of the Lower Cretaceous 
Las Aras syn-rift basin, located farther east (Fig. 1). Here, 
the internal structure of the Cotiella-Bóixols thrust sheet 
consists of a transported detachment fold system, the most 
prominent elements of which are the NS-trending Turbón 
and Serrado anticlines, developed synchronously to the 
tectonic inversion of the Cotiella Basin. These folds are 
cored by the Upper Triassic evaporites and exhibit steep 
limbs, which delineate isoclinal profiles. The strong plunge 
towards the south (García-Senz, 2002) is related to the 
tilting by basement-involved underthrusting of the Axial 
Zone antiformal stack. Detachment folding was associated 
with the deposition of several km of slope sediments, with 
turbidites and resedimented carbonates onlapping the limbs 
of the growing anticlines (García-Senz, 2002) (Fig. 1). The 
anticlines are almost orthogonal to the NW-SE oriented 
trend of the Cotiella Basin (Fig. 1A).

The internal structure of the Cotiella-Bóixols thrust 
sheet consists of an upper Coniacian-lower Santonian 
salt-detached extensional system associated to prominent 
long-lived salt diapirs sourced from the Upper Triassic salt 
(Lopez-Mir, 2013, 2015, 2016a). In the hanging wall of 

the Cotiella thrust, the upper Coniacian-lower Santonian 
sediments reach up to 6km in their thickest interval. In 
the study area the hanging wall sediments are as much as 
3km thick as the Cotiella fault tips out towards the NE. In 
the footwall of the Cotiella thrust, corresponding to the 
Turbón-Serrado fold system in the study area, the equivalent 
stratigraphic section is only ~300m thick and indicative of 
shallower depositional environments than the equivalent 
syn-kinematic sediments in the Cotiella Basin (García-Senz, 
2002). Thus, the Turbón-Serrado fold system is located in 
the footwall of the Cotiella inverted extensional system, but 
also in the footwall of the Las Aras Lower Cretaceous syn-
rift basin, located farther east (Fig. 1) (García-Senz, 2002; 
García-Senz et al., 2019a). Positive tectonic inversion is 
recorded by the onlap of the syn-orogenic Campo Breccias 
Member and the related turbidites (García-Senz, 2002; 
McClay et al., 2004), as detailed below.

The Llert syncline forms the connecting structure 
between the NW-SE trending inverted Cotiella Basin and 
the N-S striking Turbón and Serrado anticlines (Figs. 3; 4) 
and displays near vertical NE-SW-striking limbs. In detail, 
the north-western limb of the Llert syncline involves upper 
Coniacian to lower Santonian strata in the hanging wall of 
the partially inverted extensional listric Cotiella fault (e.g. 
Lopez-Mir et al., 2015). In contrast, the south-eastern limb 
of the Llert syncline involves Jurassic to lower Santonian 
strata, in structural continuity with the western limb of 
the Turbón-Serrado anticlines (i.e., in the footwall of the 
Cotiella fault). The structural framework of these Jurassic 
to lower Santonian strata at the subsurface is largely 
unconstrained since they are partially covered by upper 
Santonian to Campanian syn-inversion deposits.

STRATIGRAPHY 

The stratigraphic succession exposed at the Llert 
syncline area has been simplified into pre-extensional, 
syn-extensional and syn-compressional sedimentary 
successions, depending to their timing of deposition 
with regards to the Cotiella fault activity. In the Turbón-
Serrado area, the pre-extensional succession comprises 
a 300m thick succession of Jurassic post-rift carbonates, 
which directly overlay the Upper Triassic salt level (Fig. 2); 
these are unconformably overlain by ~200m of siliciclastic 
sediments of the late Albian to Cenomanian succession 
(Fig. 2). The base of the Turbón Sandstone Formation is 
an angular unconformity that marks the end of the Early 
Cretaceous rift event (Fig. 2). However, lower Cretaceous 
synrift sediments are absent in the study area (García-Senz, 
2002). 

The upper Albian to Cenomanian siliciclastic materials 
are followed by an upper Cenomanian to Coniacian carbonate 
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succession, which has been sub-divided into 3 formations 
of platform carbonates: the Santa Fe, Pardina and Congost 
formations (Caus et al., 1993; Gómez-Garrido, 1987; Mey 
et al., 1968; Robador and Zamorano, 1999) (Fig. 2). In the 
Cotiella Basin, the Jurassic succession is absent, while 
the Turbón Sandstones and the Cenomanian to Coniacian 
post-rift carbonates directly overlie the Upper Triassic salt. 
At outcrop, the thickness of the Cenomanian to Coniacian 
post-rift carbonates range from more than 750m in the 
Cotiella Basin (north-western limb of the Llert syncline) 
(e.g. Lopez-Mir et al., 2015) to a maximum of 500m in 
the Turbón-Serrado fold system (south-eastern limb of 
the Llert syncline) (e.g. García-Senz and Ramírez, 1997). 
These thickness changes can be considered insignificant 
when compared to the overlying upper Coniacian to lower 
Santonian stratigraphic succession, and so the Cenomanian 
to Coniacian post-rift carbonates are considered pre-
extensional with regards to the Cotiella fault activity. 

The overlying stratigraphic succession consists of three 
main formations (Maciños del Cotiella, Aguas Salenz 
and Anserola, Fig. 2), which are referred here to as the 
syn-extensional succession. The Maciños del Cotiella 
Formation (Misch, 1934) consists of upper Coniacian 
calcarenites with quartz and gravelly sandstones interpreted 
as sand bars deposited near the platform margin; it reaches 
a maximum thickness of 500m in the Baciero mountain 
range, corresponding to the north-western limb of the 
Llert syncline (Fig. 4), and 140m in the Turbón-Serrado 
fold system (i.e. south-eastern limb of the Llert syncline). 
Above, the Aguas Salenz Formation (Garrido-Mejías, 
1973; Misch, 1934; Souquet, 1967) consists of a Coniacian 
to Santonian fine to medium-grained packstone with the 
foraminifera Lacazina, interpreted as slope and basin facies 
(Lopez-Mir, 2013). To the NW, in the Baciero mountain 
range (Fig. 4), the Aguas Salenz Formation reaches up to 
1,100m, whereas to the SE in the Turbón anticline it is 
only 400m thick. In the centre of the Cotiella Basin, the 
succession consists of 6km of the Maciños del Cotiella and 
Aguas Salenz formations (García-Senz, 2002), indicating 
a significant stratigraphic expansion westward within the 
Cotiella Basin (Lopez-Mir et al., 2014, 2015; McClay 
et al., 2004). The Egea Formation consists of biohermal 
limestones interpreted as shallow platform limestones 
(Papón, 1969); it is approximately 45m thick and is 
found in the Collado de La Plana and Serrado anticline 
(west and south of Turbón Mountain, respectively; Fig. 3) 
interbedded with the Aguas Salenz Formation limestones. 
The Anserola Formation (Mey et al., 1968) is composed of 
lower Santonian limestones, marly limestones and marls, 
deposited in an external platform to slope environment 
(Garrido-Mejías, 1973). The Anserola Formation reaches 
up to 480m in the north-western limb of the Llert syncline 
and 250m in the south-eastern limb, marking a decrease on 
extensional salt tectonic activity in the Cotiella Basin.

The syn-compressional strata record the onset of 
Pyrenean shortening during late Santonian to Maastrichtian 
times (Fig. 2) as recorded by a prominent EW-trending 
turbidite trough developed at the foreland of the evolving 
orogenic belt. Syn-compressional strata are bound by a basal 
unconformity, here referred to as the Campo unconformity 
(Fig. 5). In the study area, the syn-compressional succession 
is subdivided into the Campo Breccias and the Mascarell 
Turbidites members (Ardèvol et al., 2000; García-Senz, 
2002; García-Senz et al., 2019b; Garrido-Mejías, 1973; 
Robador and Zamorano, 1999; Souquet, 1967; van Hoorn, 
1970). The Campo Breccias Member consists of limestone 
breccias alternating with thinly-bedded sandy turbidites, 
which onlap the Campo unconformity (Fig. 5) (Robador 
and Zamorano, 1999). According to van Hoorn (1970), the 
breccias contain boulders of limestones with Coniacian-
Santonian foraminifera, and limestones belonging to the 
Pardina and Aguas Salenz formations, indicating a source 
area located in the emerging Cotiella Basin. Additional 
boulders of limestones with orbitolinids of the Aulet 
Formation (Souquet, 1967), and diabase and Permian-
Triassic green and red clays indicate a contribution from 
another source area located in the Pyrenean rift basins or 
beyond (García-Senz, 2002; McClay et al., 2004; Robador 
and Zamorano, 1999). At outcrop scale, the Campo Breccias 
Member reaches a maximum thickness of 180m in north-
western limb and 110m in the south-eastern limb of the 
Llert syncline. The overlying Mascarell Member (part of 
the Vallcarga Formation) consists of an upper Santonian-
Campanian turbidites and marls (Lagier, 1985; Nagtegaal, 
1972; Souquet, 1967), which record some incipient 
tectonic activity in the area. García-Senz and Ramírez 
(1997) documented a maximum thickness of 650m for this 
member in the Las Vilas syncline, located immediately 
east of the Turbón anticline. Compositional analyses of the 
Vallcarga turbidites by van Hoorn (1970) show that they 
are largely built up of intrabasinal calcareous material, 
including rock fragments derived from an intrabasinal 
erosion of Mesozoic formations found at the base of the 
formation. Based on the dimensions of the Vallcarga basin, 
too small to permit a great flow distance, van Hoorn (1970) 
interprets that all the turbidites were deposited rather 
proximal to the source area.

DATASETS AND METHODOLOGY

In this work, we have followed a method based on the 
implementation of geological limitations to interpolate 
between data and extrapolate beyond them. An effective 
way to reconstruct 3D surfaces by implementing structural 
geology criteria is through contour mapping. Structural 
contours are isolines, representing horizontal lines separated 
by the same value of z (depth or altitude); therefore, contour 
maps are topographic maps of surfaces (Groshong, 2006). 
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FIGURE 3. Geological map at 1:5,000 scale of the study area, indicating the location of the cross-sections (in red) and the structural data used for the 
3D tructural reconstruction. The location of the 6 cross-sections built for 3D model construction are represented by straight red lines (the continuous 
ones are shown in detail in Fig. 8). This map compiles all of our data and includes the information from previous (García-Senz and Ramírez, 1997; 
Lopez-Mir, 2013; Robador and Zamorano, 1999). 
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The workflow consists of four main steps: data acquisition, 
3D digitalization, structural analysis and 3D reconstruction 
(Fig. 6).

The 3D model presented in this paper was largely 
built from structural and stratigraphic data collected in 
the field, including a 1:5,000 geological map of the study 
area and more than 200 dip measurements. Two geological 
maps at 1:50,000 of Pont de Suert and Campo (García-
Senz and Ramírez, 1997; Robador and Zamorano, 1999, 
respectively) and a 1:25,000 geological map of the Cotiella 
thrust sheet (Lopez-Mir et al., 2016b), were also used 
for the 3D reconstructions. The surface data-based 3D 
geological model of the Cotiella thrust sheet by Lopez-Mir 
et al. (2016a) and an unpublished seismic data-based 3D 
geological model of the Tremp-Graus basin (Fernández, 

2004; Muñoz et al., 2000), were used to constrain the 
subsurface structure.

The main goal of the 3D digitalization step is transferring 
and analysing the data into a 3D environment, in order to 
optimize the available geological data. For instance, there 
are numerous in-house computer tools to extract additional 
geological information such as the punctual dip of 3D 
map traces (Fernández, 2004) or the stratigraphic distance 
between horizons (Groshong, 2006). To this end, the 
construction of an accurate Digital Terrain Model (DTM) 
is essential (Fig. 7A). This includes the construction of a 
Triangulated Irregular Network (TIN) and a regular mesh 
(LATTICE) using vector topographic maps, which are then 
draped by orthophotographs (Fig. 7A; see Mencos, 2011). 
In this study, 3D digital mapping was carried out taking 
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FIGURE 4. View of the NW limb of the Llert syncline from La Plana del Turbón. The core of the syncline exposes upper Santonian-Campanian syn-
compressional sediments, which unconformably overlay upper Coniacian-lower Santonian sediments of the Cotiella Basin.
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into account georeferenced orthophotographs of the study 
area with a 0.5x0.5m pixel size (made available by the 
Sistema de Información Territorial de Aragón – SITAR; 
https://boletinagrario.com/f296,sitar-sistema-informacion-
territorial-aragon.html) and 3D topographic maps at scale 
1:5,000 (also provided by SITAR). The error of this process 
is about +/- 5m regarding the original information due to 
the resolution of the DTM mesh.

The following structural analysis and the 3D 
reconstruction steps are interrelated, since the 3D 
reconstruction methodology will mainly depend on the 
type of structural analysis performed. The main goal 
is to integrate the available data into a 3D geometrical 
representation of each geological surface. Depending 
on the type and amount of available data, three main 
methodologies were used: i) contour mapping following 
a dip-domain approach; ii) contour mapping aided by 
surface traces and iii) interpolation between cross-sections 
(Carrera et al., 2009; Fernández et al., 2004; Lopez-Mir et 
al., 2016a; Mencos et al., 2015; Snidero et al., 2011). 

Geological surfaces with a continuous trace and plenty of 
direct dip measurements were reconstructed through contour 
mapping following a dip-domain approach (Fernández et 
al., 2004). The constructed geological surfaces represent 
the syn-orogenic strata, including the Campo unconformity 
(base of the Campo Breccias Member) and the base of the 
Mascarell Turbidites Member. The dip-domain method 
assumes that geological structures can be sub-divided into 
a finite number of planar dip-domains bounded by axial 
surfaces, faults or stratigraphic discontinuities (Fernández 
et al., 2004; Groshong, 2006). However, when beds are not 
parallel the axial surfaces between dip-domains are not 

bisectors. To avoid mistakes derived from the angularities 
between beds, the tolerances and the boundary conditions 
for the 3D reconstruction of growth strata were very 
carefully fixed (i.e. 10º for the azimuth and the dip) and 
the geological surfaces were constructed one by one, rather 
than using a reference surface (i.e. a chosen horizon that 
accumulates as much data as possible, from which the rest 
of the surfaces will be reconstructed by means of applying 
stratigraphic thicknesses). The structural analysis of data 

NE - SW

0 10m

Aguas Salenz Fm. limestones
(late Coniacian - early Santonian)

Campo Breccia Mbr.
(late Santonian - Campanian)

Campo unconformity

Bedding

FIGURE 5. Detail of the Campo unconformity and the onlap of the Campo Breccias on the Aguas Salenz Formation in the Sierra del Cervín. View is 
from the north-west. Modified from García-Senz (2002).
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FIGURE 6. Workflow for the 3D reconstruction of the Llert syncline, 
showing the data and software used. TIN: Triangulated Irregular 
Network.
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from the syncline core also allowed the determination of 
up to four cylindrical domains (Fig. 7B); the corresponding 
plunge lines (defined as the stereonet major circle of each 
cylindrical domain) were used as additional constraints for 
contour mapping (Fig. 7C).

In areas where dip-data was scarce it was not possible 
to define dip-domains, and then two different 3D 
reconstruction approaches were used. Geological surfaces 
with little dip-data but a continuous trace were reconstructed 
through contour mapping aided by the position of surface 
traces (Fig. 7C). These surfaces consist of faults that were 
reconstructed individually, applying additional geological 
constraints when required (e.g. fault-bend-fold models). 

In contrast, geological surfaces with a discontinuous 
trace outcrop and few direct dip measurements were 
reconstructed following a 2D ½ construction approach, 
based on interpolation between cross-sections. These 

surfaces correspond to the ones located underneath the 
Campo unconformity (i.e. Anserola, Aguas Salenz and 
Maciños del Cotiella stratigraphic units) and accordingly 
buried by the syn-orogenic deposits. To this end, six cross-
sections were built taking into account field data and the 
geological maps (Figs. 8; 9). The cross-section construction 
and interpolation methodologies are outlined below, since 
these were used as main constraints to reconstruct the sub-
surface structure.

The cross-sections integrate the few available dip 
data, as well as stratigraphic thicknesses documented by 
Martín-Chivelet et al. (2019), after García-Senz (2002) 
and Lopez-Mir (2013). To interpret the structure at 
the subsurface, the top of the Anserola Formation was 
constructed using the Campo unconformity as reference 
horizon (Fig. 10). Since strata are not parallel, an 
angular relationship between the Anserola and Campo 
Breccias was calculated from the geological map in 
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Figure 3. Each calculation was based on the length of 
the map traces (measured from the point where they 
onlap the unconformity to a certain point of the same 
trace), and on the stratigraphic thickness between the 
unconformity and the trace (measured at the same point 
of the trace) (Fig. 10). Then, the calculated angle was 
used to construct the base of the Anserola Formation 
at an angle to the Campo Breccias Member surface. 
The stratigraphic surfaces below (i.e. the bases of the 
Aguas Salenz and Maciños del Cotiella stratigraphic 
units) were constructed assuming that: i) the Aguas 
Salenz and Maciños del Cotiella in the hanging wall of 
the Cotiella fault expand towards the fault and ii) the 
thickness of the Aguas Salenz and Maciños del Cotiella 
in the footwall of the Cotiella fault experiences much 
less variations than the hanging wall (Fig. 8). These 
assumptions are geologically reasonable based on the 
regional geology and the common understanding of salt-
detached growth faults (e.g. Brun and Mauduit, 2008). 
In such way, the Aguas Salenz and Maciños del Cotiella 
stratigraphic units were constructed using the base of the 
Anserola Formation as the reference horizon, using the 
angular relationships observed in the map as geological 
constraints for the Cotiella fault hanging wall, and 
considering parallel beds in the footwall (Fig. 8). 

The pre-extensional formations (i.e. Turbón 
Sandstone, Santa Fe, Pardina, Congost), were 
reconstructed using the base of the Maciños Formation 
as a reference horizon, assuming that the underlying 
layers were parallel to one another both in the footwall 
and the hanging wall of the Cotiella fault (Fig. 6). The 
truncation of the Jurassic successions at the eastern limb 
of syncline by the angular unconformity at the base of 
the Turbón Sandstone Formation (Fig. 6) is based on the 
field observations and interpretations by García-Senz 
(2002). The pre-extensional stratigraphic units are only 
depicted in the cross-sections since there was not enough 
data to constrain their 3D geometry. The geometry of 
the Cotiella fault at the subsurface is interpreted by 
Lopez-Mir (2013) and Lopez-Mir et al. (2016a). The 
interpretation of the Bóixols Thrust position under the 
Llert syncline is supported by previous works in the 
study area (Fernández, 2004; García-Senz, 2002; López-
Mir, 2013) (Fig. 6). In summary, 3D reconstructions 
of the following geological surfaces are presented: the 
Cotiella fault and the bases of the Mascarell Turbidites, 
Campo Breccias, Anserola, Aguas Salenz and Maciños 
del Cotiella stratigraphic units.

3D GEOMETRY OF THE LLERT SYNCLINE

In map-view, the Llert syncline consists of two limbs, 
which are roughly 5km long and are oriented SW-NE (Figs. 

3; 4). Both limbs are near-vertical (García-Senz, 2002) 
and the north-western limb is locally overturned (Figs. 3; 
8). These limbs meet at the NE and the SW ends of the 
syncline and, as a result, the syncline exhibits a bowl-like 
basin geometry, characterised by a doubly-plunging fold 
axis (Figs. 3; 4; 8). The core of the syncline consists of 
the syn-compressional upper Santonian to Campanian 
stratigraphic succession, the base of which forms the 
Campo unconformity. 

Above the Campo unconformity, the upper Santonian 
to Campanian strata of the Campo Breccias Member 
thicken towards the centre of the Llert syncline, reaching a 
maximum thickness of 275m (Fig. 8A). The breccias onlap 
the Campo unconformity at both limbs of the syncline (see 
Fig. 5 for onlap geometries of Campo Breccias Member 
over the Aguas Salenz Formation to the Cotiella Basin). 
This suggests that both the Turbón anticline and the 
inversion of the Cotiella Basin were synchronous to the 
deposition of the syn-compressional sediments. Moreover, 
the paleocurrents in the Campo Breccias Member and the 
Mascarell Turbidites Member have a NE-SW direction 
(van Hoorn, 1970; García-Senz, 2002). These are parallel 
to the syncline axis, which suggests a certain degree of 
confinement of the syn-compressional sediments currents 
during the deposition. Towards the S and SE, the Mascarell 
Turbidites Member directly onlap the Campo unconformity 
(García-Senz, 2002), suggesting a syntectonic behaviour 
during the development of the Llert syncline.

The sediments above the Campo unconformity (i.e. 
Campo Breccia and Mascarell Turbidites) cover both the 
Cotiella fault and the pre-compressional strata at the centre 
of the syncline (Figs. 3; 4; 8; 11; 12). As a result, the 
Cotiella fault is only exposed to the NE and SW of the Llert 
syncline, where the fold axial trace intersects the Campo 
unconformity (Figs. 3; 4). Where exposed, the Cotiella 
fault dips about 50º to the NW and is broadly parallel to the 
syncline axial trace (Fig. 3). Such orientation is interpreted 
to continue underneath the Campo unconformity, separating 
the pre-compressional strata of the north-western limb 
from the south-eastern limb (Fig. 8), as detailed below. 

The north-western limb of the Llert syncline 
underneath the Campo unconformity exposes up to 4.8km 
of upper Coniacian to lower Santonian strata (Fig. 8), 
which are in structural continuity with the Cotiella Basin. 
At the syncline centre, these strata are buried by syn-
compressional sediments (Figs. 3; 8). Upper Coniacian 
to lower Santonian sedimentary wedges expanding 
towards the Cotiella fault. The equivalent stratigraphic 
units in the Cotiella Basin have been interpreted to be 
indicative of syn-sedimentary salt tectonic activity and 
gravity-driven extension (Lopez-Mir et al., 2014, 2015) 
(Figs. 11; 12). 



G e o l o g i c a  A c t a ,  1 8 . 2 0 ,  1 - 1 9  ( 2 0 2 0 )
D O I :  1 0 . 1 3 4 4 / G e o l o g i c a A c t a 2 0 2 0 . 1 8 . 2 0

A .  R a m o s  e t  a l . 3D reconstruction of the Llert syncline

11

0 1000m

Bedding
-1500

-1000

-500

0

500

1000

1500

2000

2500

2500

2000

1500

1000

500

0

-500

-1000

-1500

2500

2000

1500

1000

500

0

-500

-1000

-1500

-1500

-1000

-500

0

500

1000

1500

2000

2500

NW - SE

-2000 -2000

(m) (m)

0 1000m

Mascarell Turbidites Mbr.

Campo Breccia Mbr.

Anserola Fm.

Aguas Salenz Fm.

Maciños del Cotiella Fm.

Congost Fm.

Pardina Fm.

Santa Fe Fm.

Aulet Fm.

Turbón Fm.

Jurassic limestones and dolomites

Upper Triassic evaporitic facies

Syn-compressional
succession
(late Santonian)

Syn-extensional
succession
(late Coniacian -
early Santonian)

(late Cenomanian-
middle Coniacian)

Pre-extensional
succession

(late Albian-
early Cenomanian)

Cotiella fault

Cotiella-Bóixols thrust

Cotiella-Bóixols thrust

Cotiella fault

Stratigraphic contact
Transitional contact
Unconformity

Llert syncline

Llert syncline

West limb of the
Turbón anticline

A

B

Baciero
peak

NE - SWENE - WSW

section b

section a

FIGURE 8. Two cross sections A) across strike and B) along the Llert syncline. These cross-sections are the most well-constrained and representative 
of the Llert syncline structure. See Figures 3 and 9 for location. 



A .  R a m o s  e t  a l .

G e o l o g i c a  A c t a ,  1 8 . 2 0 ,  1 - 1 9  ( 2 0 2 0 )
D O I :  1 0 . 1 3 4 4 / G e o l o g i c a A c t a 2 0 2 0 . 1 8 . 2 0

3D reconstruction of the Llert syncline

12

For simplicity, our 3D reconstruction assumes that 
the thickness of the Coniacian to lower Santonian 
succession at the syncline centre remains constant. It 
directly overlies the Upper Triassic salt, while Jurassic 
to lower Cretaceous sediments are largely absent 
(García-Senz, 2002; Lopez-Mir et al., 2014; McClay 
et al., 2004). This succession is significantly thinner in 
the south-eastern limb than the equivalent succession in 
the north-western limb. The only noticeable thickness 
variation occurs in the Aguas Salenz Formation, which 
expands towards the Cotiella Basin, and in the Jurassic 
strata, which are truncated by the angular unconformity 
at the base of the Turbón Sandstone Formation 
(Figs. 8; 11; 12). This unconformity responds to the 
unconformably overlying sediments on top of a faulted 
and tilted margin, postdating rifting (García-Senz, 
2002).

Farther to the east, the transition between the south-
eastern limb of the Llert syncline and the Turbón-
Serrado fold system occurs along a number of second-
order NE- to N-trending folds (Figs. 3; 4). In general, 
these are contractional folds developed as hanging wall 
salt-cored anticlines above second-order thrusts and are 
made up of near-vertical to overturned limbs (Fig. 3). 
The most prominent of these structures is the Collado 
de La Plana anticline, located in the hanging wall of a 
W- to SW-directed thrust (García-Senz, 2002). Second-
order thrusts revealing contractional deformation are 
also exposed at the north-eastern tip of the Cotiella 
fault. They affect pre- and syn-extensional strata at the 
footwall of the Cotiella Basin, corresponding to the 
north-western limb of the Turbón anticline (Fig. 3), and 
were likely developed during the Cotiella Basin tectonic 
inversion.

N

Fig. 8A
Fig. 8B

La Plana
anticline

Cotiella
fault

W limb of the
Turbón anticline

FIGURE 9. North-looking 3D view of six cross-sections along and across-strike of the Llert syncline. These sections were the framework for the 3D 
model presented throughout this paper.
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EVOLUTION OF THE LLERT SYNCLINE

Our interpretation suggests that the kinematic 
evolution of the Llert syncline was controlled by two 
main evolutionary stages (Fig. 13): i) development of the 
salt-detached Cotiella fault during the Coniacian to early 
Santonian; ii) development of the Turbón anticline and the 
Llert syncline during the late Santonian–Maastrichtian 
shortening.

In the first evolutionary stage, the Cotiella fault is 
considered to develop along an uplifted, eroded and 
faulted rift margin. The erosion of the Jurassic sequences 
at the rift shoulder, possibly also related to salt inflation, 
resulted in the deposition of the late Coniacian to the 
early-Santonian Cotiella strata directly above the Upper 
Triassic salt level (Fig. 12A) (McClay et al., 2004). 
In the Cotiella fault hanging wall, the expansion of 
strata towards the Cotiella fault is reasonable with the 
tectonic model presented by Lopez-Mir et al. (2015, 
2016a), in which salt evacuation would have been 
coeval to post-rift gravity-driven extension, creating 
additional accommodation space for the deposition of 
thick sequences of syn-extensional growth strata (e.g. 
Cotiella Basin in Fig. 13A). East of the Cotiella fault 
(i.e. the fault footwall), the much thinner equivalent syn-
extensional growth strata show little thickness variations 
so that they were not affected by salt tectonics (Fig. 

13A). The absence of Jurassic sediments in the eastern 
limb of the Turbón anticline (Fig. 3) is interpreted to 
be controlled by a N-S trending extensional fault (Fig. 
13), which coincides with the location of the anticline 
axial plane and is in turn related to a relay ramp of the 
Pyrenean rift system. 

In the second evolutionary stage (Fig. 13), the 
growth of the Turbón-Serrado detachment anticlines 
during late Santonian-Maastrichtian shortening was 
determined by the pre-compressional salt tectonic 
framework and, in particular, by the occurrence of 
relay ramps of the Pyrenean rift system (e.g. García-
Senz, 2002). This relay ramp system would connect 
the western tip of the Las Aras syn-rift extensional 
fault with another basin-bounding extensional fault 
located to the northwest. To the west, late Santonian-
Maastrichtian shortening uplifted and inverted 
the salt-related depocenters of the Cotiella Basin. 
These two processes generated two structural highs, 
separated by a synformal trough (i.e. Llert syncline), 
which was filled by material partially sourced from the 
surrounding uplifted areas (Fig. 13B). This is recorded 
by the onlap relationships and the occurrence of 
immature clasts sourced from the Coniacian to middle 
Santonian successions within the Campo Breccia. The 
orientation of the Campo Breccia and the Mascarell 
stratigraphic units in the north-western limb of the 
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syncline coincides with that of the tilted EW-trending 
Cotiella Basin; whilst the orientation of the eastern 
limb of the syncline coincides with that of the western 
limb of the NS-trending Turbón anticline (Figs. 3; 
8A). The syncline developed synchronously to the 
onset of the southerly-directed Cotiella and Bóixols 
thrust (Fig. 13B). Accordingly, we interpret that the 
development of the Llert syncline is intimately related 
to the growth of structural relief in two areas with 
strongly oblique structural trends during the onset of 
Pyrenean shortening.

CONCLUSIONS

The Llert syncline exhibits a tight geometry 
characterized by near-vertical limbs. The north-
west limb is in structural continuity with the inverted 
Cotiella Basin, while the south-east limb is in structural 
continuity with the Turbón-Serrado fold system. The 
syncline shows a bowl-like basin geometry, with a 
doubly-plunging fold axis. The Cotiella fault shows 

a listric geometry dipping towards the northwest and 
is parallel to the Llert syncline axial trace. The fault 
is buried beneath the syn-compressional sediments, 
separating the pre-compressional succession of the 
north-western limb from the south-eastern limb. This 
is supported by a new 3D reconstruction of the Llert 
syncline, which demonstrates the continuity of the 
surrounding structures in the sub-surface.

The most relevant conclusions regarding the evolution 
and the tectonic style of the Llert syncline are summarized 
below:

i) The Llert syncline developed during the late 
Santonian to Maastrichtian times as a result of the 
tectonic inversion of the Cotiella salt basin to the west 
synchronously to the growth of the Turbón-Serrado 
detachment anticlines to the east. 

ii) The tectonic inversion event was largely recorded 
by the deposition of the syn-compressional sediments 
in the core of the syncline, which were sourced 
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from the surrounding uplifted areas. Changes on the 
sedimentary architecture of the post-rift succession 
and on the distribution of the Upper Triassic salt level, 
likely related to the configuration of the previous 
Pyrenean rift System, allowed the development of 
the Turbón salt-cored detachment anticline during 
shortening.
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