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von Neumann-Morgenstern solution and convex decompositions of TU games

Abstract

We study under which conditions the core of a game involved in a convex decomposition

of another game turns out to be a stable set of the decomposed game. Some applications

and numerical examples, including the remarkable Lucas’ five player game with a unique

stable set different from the core, are reckoning and analyzed.

Resum

En l’article s’estudia sota quines condicions el nucli d’un joc cooperatiu amb utilitat

transferible que forma part d’una descomposició convexa d’un altre joc és un conjunt es-

table, en el sentit de von Neumann i Morgenstern, del joc descomposat. També s’analitzen

alguns exemples numèrics i aplicacions.

Keywords: Cooperative games, convex games, stable sets

JEL: C71



1 Introduction

The first historical solution concept for cooperative games with transferable utility (games,

for short) was proposed and studied in the seminal book of von Neumann and Morgenstern

(1944). It is referred to as stable set or von Neumann-Morgenstern solution. There, a

stable set of a game is defined to be a set V of imputations satisfying internal stability (no

element in V is dominated by other element in V) and external stability (every element

outside V is dominated by some element in V).

Lucas (1968) provides an example that gives a negative answer to the general question

about the existence of stable sets for any game. Nevertheless, it is possible to find games

with a plethora of stable sets. It is well-known that any stable set contains the core,

which is always internally stable. When the core is also externally stable, then it is the

unique stable set. However, there are balanced games with a unique stable set different

from the core. This situation was showed by Lucas (1992) by means of the following

game:1 let (N, v) be the 5-person game where N = {1, 2, 3, 4, 5}, v(N) = 2, v({1, 2}) =

v({3, 4}) = v({1, 3, 5}) = v({2, 4, 5}) = 1, and v(S) = 0 for all other S ⊂ N . What is

specially interesting for our purposes is to see that the superadditive cover of the previous

game, (N, v̂), can be easily described by decomposing the game as the maximum of a

finite set of convex games: v̂ = max
{

u{1,2} + u{3,4}, u{1,3,5} + u{2,4,5}

}

, where uS, for all

∅ 6= S ⊆ N, denotes the unanimity game associated to coalition S. It is well-known

that the superadditive cover process (Gillies, 1959) preserves the imputations set, the

core and the stable sets whenever the original game satisfies v(N) ≥
∑

C∈P v(C), for any

partition P ⊆ 2N of N , which is the case in the above example. As shown by Lucas,

the superadditive cover (and so the game itself) of the above game has a unique stable

set which is described by V = {(x1, . . . , x5) ∈ R5
+ | x1 + x2 = 1, x3 + x4 = 1, x5 = 0},

being different from its core which is C(N, v) = {(α, 1 − α, 1 − α, α, 0) | 0 ≤ α ≤ 1}.

Notice that the unique stable set V coincides with the core of the first convex game

described in the max-convex decomposition of the game v̂; i.e. V = C
(

N, u{1,2} + u{3,4}

)

.

A similar situation can be described by using simple monotonic games. For instance,

1See Section 2 for formal definitions.
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consider the following 3-person simple majority game: N = {1, 2, 3}, v(N) = v({1, 2}) =

v({1, 3}) = v({2, 3}) = 1 and v({1}) = v({2}) = v({3}) = 0. This game can be rewritten

as v = max
{

u{1,2}, u{1,3}, u{2,3}

}

. It is well-known that C
(

N, u{1,2}

)

, C
(

N, u{1,3}

)

and

C
(

N, u{2,3}

)

are stable sets of this 3-person simple majority unbalanced game. But in

this second example there are many others stable sets, one of them being the discrete set
{(

1
2
, 1

2
, 0

)

,
(

0, 1
2
, 1

2

)

,
(

1
2
, 0, 1

2

)}

, which can not be reached as the core of any related game.

In a previous work, Llerena and Rafels (2006) show that any game can be expressed,

in many different ways, as the maximum of a finite collection of convex games. Moreover,

if the game is zero monotonic there exists at least a max-convex decomposition where

the games involved have the same imputation set. These general decomposition results,

together with the above line of argument, open a natural question: which are the rela-

tionships between the core of the games involved in a max-convex decomposition and the

stable sets of the decomposed game?

With these objectives in mind, the paper is organized as follows. Section 2 contains

notation and definitions. Section 3 analyzes the external stability of the intersection

between the Weber set and the imputation set of two games related by the usual order.

We complete this result stating sufficient conditions to guarantee when the core of a

convex game taking part in a max-decomposition happens to be a stable set of the initial

game. Section 4 contains examples and applications.

2 Notation and terminology

We denote by N = {1, . . . , n} a finite set of players. A transferable utility cooperative game

(a game) is a pair (N, v) where N = {1, . . . , n} is the set of players and v : 2N −→ R is

the characteristic function with v(∅) = 0 and 2N denotes the set of all subsets (coalitions)

of N . For any coalition S ⊆ N , N\S = {i ∈ N | i 6∈ S}. We use S ⊂ T to indicate strict

inclusion, that is S ⊆ T but S 6= T . By |S| we denote the cardinality of the coalition

S ⊆ N . Given a game (N, v) and a non-empty coalition S ⊆ N , we define the subgame

(S, v|S) as v|S(Q) := v(Q), for any Q ⊆ S. Given two games (N, v1), (N, v2), v1 ≤ v2
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means that v1(S) ≤ v2(S), for all S ⊆ N. The maximum game (N, v) generated by the

set {(N, vt}t=1,...,k is defined as v(S) := max{v1(S), . . . , vk(S)}, for all S ⊆ N. A partition

of any set S is a collection of non-empty subsets {T1, . . . , Tk} such that T1 ∪ . . .∪ Tk = S

and, for all i, j ∈ {1, . . . , k}, i 6= j, Ti ∩ Tj = ∅. Let P(S) denote the set of all partitions

of S. Then, the superadditive cover of (N, v) is the game (N, v̂) defined as v̂(S) :=

max
{

∑k

j=1 v(Tj) | {T1, . . . , Tk} ∈ P(S)
}

, for all S ⊆ N. Given a coalition T ⊆ N, T 6= ∅,

the unanimity game (N, uT ) is defined as

uT (S) :=











1 if T ⊆ S,

0 otherwise.

(1)

The set of unanimity games {(N, uT ) | ∅ 6= T ⊆ N} forms a basis of the linear space of

the set of N -person games, and the coordinates of a game in this basis are the unanimity

coordinates (or Harsanyi dividends) of the game. For any (N, v), v =
∑

∅6=T⊆N λT · uT ,

where λT =
∑

S⊆T (−1)|T |−|S| v(S), for all ∅ 6= T ⊆ N.

Let RN stand for the space of real-valued vectors x = (xi)i∈N and for all S ⊆ N ,

x(S) =
∑

i∈S xi, with the convention x(∅) = 0. For each x ∈ RN and T ⊆ N, x|T denotes

the restriction of x to T : x|T := (xi)i∈T ∈ RT . Given two vectors x, y ∈ RN , we denote by

[x, y] the closed line segment joining x and y. Formally, [x, y] := {λ · x + (1 − λ) · y | 0 ≤

λ ≤ 1}.

For each game (N, v), the set of feasible payoff vectors is defined by X∗ := {x ∈

RN | x(N) ≤ v(N)}. A solution on the set of all games is a mapping σ which as-

sociates with each game (N, v) a subset σ(N, v) of X∗(N, v). The pre-imputation set

of a game (N, v) is defined by X(N, v) := {x ∈ RN |x(N) = v(N)}, and the set of

imputations by I(N, v) := {x ∈ RN |x(N) = v(N) and xi ≥ v({i}) for all i ∈ N}.

A game with a non-empty set of imputations is called essential. The core of (N, v)

is the set of those imputations where each coalition gets at least its worth, that is

C(N, v) = {x ∈ I(N, v) |x(S) ≥ v(S) for all S ⊆ N}. A game with non-empty

core is called balanced. A game (N, v) is convex (Shapley, 1971) if, for all S, T ⊆ N ,

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). Each unanimity game (N, uT ) is convex. A game
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(N, v) is monotonic if v(S) ≤ v(T ), for all S ⊂ T ⊆ N , and zero monotonic if its zero

normalization (N, v0), where v0(S) = v(S) −
∑

i∈S v({i}), for all S ⊆ N , is a monotonic

game or, equivalently, v(S ∪ {i}) − v(S) ≥ v({i}), for all i ∈ N and all S ⊆ N \ {i}. A

game (N, v) is N -monotonic if for all S ⊆ N , v(S) +
∑

i∈N\S v({i}) ≤ v(N).

A permutation θ ∈ ΘT over a non-empty coalition T ⊆ N is a bijection from {1, . . . , |T |}

to T . We denote by ΘT the set of all permutations over T . For any ∅ 6= T ⊂ N , any

θ ∈ ΘT and any θ
′
∈ ΘN\T , we define the appending permutation θ∗ = (θ, θ

′
) ∈ ΘN as

follow:

θ∗(i) :=











θ(i) if 1 ≤ i ≤ t,

θ
′
(i − t) if t + 1 ≤ i ≤ n.

Given a game (N, v) and a permutation θ ∈ ΘN , the marginal worth vector associated to θ,

denoted by mv
θ ∈ RN , is defined as mv

θ(k) = v({θ(1), . . . , θ(k)}) − v({θ(1), . . . , θ(k − 1)}),

for all k ∈ {2, . . . , n}, and mv
θ(1) = v({θ(1)}). The convex hull of the marginal worth

vectors is called the Weber set, W (N, v) := convex {mv
θ}θ∈ΘN

. A game (N, v) is convex

if and only if W (N, v) = C(N, v) (Shapley, 1971; Ichiishi, 1981).

Given two pre-imputations x, y ∈ X(N, v), we say that x dominates y, in short

x domv y, if there exists a non-empty coalition S ⊂ N such that xi > yi, for all i ∈ S,

and x(S) ≤ v(S). For X ⊆ I(N, v) we denote by DomvX the set of all imputations

dominated by some imputation of the set X. Formally, DomvX = {y ∈ I(N, v) | ∃ x ∈

X, x domv y}. Let (N, v) be an essential game. A set of imputations ∅ 6= V ⊆ I(N, v) is

a stable set for the game (N, v) if it satisfies the next two conditions:

1. V is v-internally stable: no imputation in V dominates another imputation in V .

Formally, V ∩ Domv V = ∅.

2. V is v-externally stable: any imputation outside the set V is dominated by some

imputation in V . Formally, V ∪ Domv V = I(N, v).
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3 Stable sets and convex decompositions of games

In this section we study under which conditions the core of the games involved in a max-

convex decomposition turn out to be stable sets of the decomposed game. We begin

stating a general result about the external stability of the intersection between the Weber

set and the imputation set of two ordered games with the same efficiency level.

Theorem 1 Let (N, v1), (N, v2) be two games such that v1 ≤ v2, v1(N) = v2(N), and

v1(S) +
∑

i∈N\S

v2({i}) ≤ v2(N), for all S ⊆ N. (1)

Then,

1. (C(N, v1) ∩ I(N, v2)) ∪ Domv2 (W (N, v1) ∩ I(N, v2)) = I(N, v2).

2. W (N, v1) ∩ I(N, v2) is a non-empty set and it is v2-externally stable.

3. If W (N, v1)∩ I(N, v2) is a stable set for (N, v2), then C(N, v1)∩ I(N, v2) is a stable

set for (N, v2) and both coincide.

Proof:

1. Note that we only have to see that

I(N, v2)\(C(N, v1) ∩ I(N, v2)) ⊆ Domv2 (W (N, v1) ∩ I(N, v2)).

Let (N, v3) be defined as

v3(S) := max
R⊆S







v1(R) +
∑

i∈S\R

v2({i})







, for all S ⊆ N. (2)

Clearly, v1 ≤ v3, and from the hypothesis of the theorem it follows v1(N) = v2(N) =

v3(N). On the other hand, v3({i}) = v2({i}) for all i ∈ N, and thus I(N, v3) =

I(N, v2). It can be easily checked that C(N, v1) ∩ I(N, v2) = C(N, v3). Moreover,

(N, v3) is zero monotonic. Indeed, let i ∈ N, S ⊆ N \ {i} and R∗ ⊆ S such

that v3(S) = v1(R
∗) +

∑

j∈S\R∗ v2({j}). Then, v3(S ∪ {i}) − v3(S) ≥ v1(R
∗) +

∑

j∈S∪{i}\R∗ v2({j}) − v1(R
∗) −

∑

j∈S\R∗ v2({j}) = v2({i}) = v3({i}).
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Let x ∈ I(N, v2)\(C(N, v1) ∩ I(N, v2)) and T be a minimal coalition (w.r.t. in-

clusion) such that x(T ) < v3(T ). Let R ⊂ T. Then, v3(T ) > x(T ) = x(R) +

x(T \ R) ≥ v3(R) +
∑

i∈T\R v2({i}) ≥ v1(R) +
∑

i∈T\R v2({i}). Now, from the def-

inition of (N, v3) we get v3(T ) = v1(T ). Let us define the games (N\T,wk), where

k ∈ {1, 3}, as follow: wk(S) := vk(S ∪ T ) − vk(T ), for all S ⊆ N \ T. Note that

w1(S) ≤ w3(S) for all S ⊂ N \ T and w1(N \ T ) = w3(N \ T ), and consequently

W (N \ T,w1) ∩ W (N \ T,w3) 6= ∅ (Mart́ınez-de-Albéniz and Rafels, 2004). Let

z ∈ W (N \ T,w1) ∩ W (N \ T,w3) and y ∈ RN be defined as follows:

yi :=











xi + α if i ∈ T, where α = v1(T )−x(T )
|T |

zi if i ∈ N\T.

Next we show that y ∈ W (N, v1) ∩ I(N, v2) and y domv x. From the minimality

of T , for all S ⊂ T we have y(S) = x(S) + α · |S| > x(S) ≥ v3(S) ≥ v1(S).

The above condition, together with the equality y(T ) = v3(T ) = v1(T ), implies

y|T ∈ C(T, v1|T ) = C(T, v1|T ) ∩ C(T, v3|T ) ⊆ W (T, v1|T ) ∩ W (T, v3|T ). Thus, y|T =
∑

θ∈ΘT
λθ · m

v1|T

θ . Moreover, since y|N\T = z ∈ W (N \ T,w1), we have y|N\T =
∑

θ
′∈ΘN\T

µθ
′ · mw1

θ
′ , where λθ ≥ 0, µθ

′ ≥ 0,
∑

θ∈ΘT
λθ = 1 and

∑

θ
′∈ΘN\T

µθ
′ = 1.

Now, from the definition of the game (N\T,w1) we have y =
∑

θ∗=(θ,θ
′
)∈ΘN

(λθ ·µθ
′ ) ·

mv1

θ∗ , where θ ∈ ΘT and θ′ ∈ ΘN\T , or equivalently, y ∈ W (N, v1). In a similar

way we can see that y ∈ W (N, v3). From the zero monotonicity of (N, v3) and the

equality I(N, v3) = I(N, v2), we have y ∈ I(N, v2). Finally, since for all i ∈ T ,

yi > xi and y(T ) = v1(T ) ≤ v2(T ), we conclude that y domv2 x via T .

2. From statement 1, I(N, v2) = (C(N, v1)∩I(N, v2))∪ Domv2 (W (N, v1)∩I(N, v2)) ⊆

(W (N, v1)∩ I(N, v2))∪ Domv2 (W (N, v1)∩ I(N, v2)) ⊆ I(N, v2), and consequently

(W (N, v1) ∩ I(N, v2)) ∪ Domv2 (W (N, v1) ∩ I(N, v2)) = I(N, v2). By condition (1)

we have I(N, v2) 6= ∅, which implies the non-emptiness of W (N, v1) ∩ I(N, v2) and

the v2-external stability.

3. By hypothesis, W (N, v1) ∩ I(N, v2) is a stable set for (N, v2), and thus (C(N, v1) ∩

I(N, v2)) ∩ Domv2 (W (N, v1)∩I(N, v2)) ⊆ (W (N, v1)∩I(N, v2))∩ Domv2 (W (N, v1)∩

8



I(N, v2)) = ∅. This fact, together with statement 1, implies (C(N, v1)∩ I(N, v2)) =

I(N, v2)\ Domv2 (W (N, v1)∩I(N, v2)) = W (N, v1)∩I(N, v2), and the desired result

is reached.

The next example shows that condition (1) is needed to guarantee non-emptiness of

the intersection between the Weber set and the imputation set.

Example: Let v1 = 3 · u{1,3} and v2 = max
{

u{2}, 2 · u{1,2}, 3 · u{1,3}, u{2,3}

}

. It can be

easily checked that W (N, v1) = [(3, 0, 0), (0, 0, 3)] and W (N, v1) ∩ I(N, v2) = ∅, but

v1({1, 3}) + v2({2}) = 4 > v2(N) = 3.

Notice that the hypothesis of Theorem 1 holds for two ordered games (N, v1), (N, v2),

with v1 ≤ v2, such that either (a) v1(N) = v2(N) and (N, v2) is N-monotonic, or (b)

C(N, v1)∩I(N, v2) 6= ∅. In case (a), condition (1) comes directly from the N-monotonicity

of (N, v2) and the fact that v1(N) = v2(N). In case (b), taking x ∈ C(N, v1) ∩ I(N, v2)

and S ⊂ N, we get v1(S)+
∑

i∈N\S v2({i}) ≤ x(S)+x(N \S) = v2(N). As a consequence,

we obtain the next corollary.

Corollary 1 Let (N, v1), (N, v2) be two games such that v1 ≤ v2. If either

1. (N, v2) is N-monotonic and v1(N) = v2(N), or

2. C(N, v1) ∩ I(N, v2) 6= ∅,

then W (N, v1) ∩ I(N, v2) is a non-empty set and it is v2−externally stable.

A direct and useful consequence for our purposes is the following.

Corollary 2 Let (N, v1), (N, v2) be two games such that v1 ≤ v2, v1(N) = v2(N), and

condition (1) holds. If (N, v1) is convex, then C(N, v1)∩ I(N, v2) is a non-empty set and

it is v2−externally stable.

It should be noted that Theorem 1 generalizes some already known results.

Corollary 3 (Shapley (1971) If (N, v) is a convex game, then C(N, v) is a stable set.

9



Proof: Since (N, v) is convex, C(N, v) = W (N, v). By Theorem 1 statement 2, taking

v1 = v2 = v, we have that C(N, v) is v-externally stable. This conclude the proof since

C(N, v) is always v-internally stable.

Corollary 4 (Rafels and Tijs, 1997) A game (N, v) is convex if and only if the Weber

set W (N, v) is a stable set.

Proof: If (N, v) is convex, then C(N, v) = W (N, v) and thus the Weber set is (the

unique) stable set. If W (N, v) is a stable set, then W (N, v) ⊆ I(N, v), or equivalently,

(N, v) is zero monotonic. Now, from Theorem 1 statement 3, taking v1 = v2 = v we get

C(N, v) = W (N, v), which implies the convexity of (N, v).

Next, we complete the above result with the analysis of the internal stability for the

cores of convex games involved in a max-decomposition.

Definition 1 Let (N, v) be a game and {λT}∅6=T⊆N its unanimity coordinates. We define

Nv := {∅ 6= S ⊆ N | λS 6= 0} and Nv :=
⋃

S∈Nv
S.

Theorem 2 Let (N, v) be the maximum game generated by the set of games {(N, vt)}t=1,...,k.

If for some t∗ ∈ {1, . . . , k} it is satisfied:

1. (N, vt∗) is convex and vt∗(N) = v(N),

2. vt∗(S) +
∑

i∈N\S v({i}) ≤ v(N), for all S ⊆ N , and

3. R ∩ (N\Nv∗
t
) 6= ∅, for all R ∈ ∪k

j=1,j 6=t∗Nvj
,

then C(N, vt∗) ∩ I(N, v) is a stable set for the game (N, v).

Proof: We can take, without loss of generality, t∗ = 1. External stability comes from

corollary 2 applied to (N, v1) and (N, v). Next we show internal stability. First notice that

statement 3 implies Nv1
6= N and, for all j ∈ N\Nv1

and all x ∈ C(N, v1)∩I(N, v), xj = 0

since 0 = v1({j}) ≤ xj ≤ v1(N) − v1(N\{j}) = 0. Suppose, on the contrary, there are

x, y ∈ C(N, v1)∩ I(N, v) such that y domv x. Then, there is a coalition Q ⊂ N such that

yi > xi, for all i ∈ Q, and y(Q) ≤ v(Q). We claim that, for any R ∈ Nv2
∪. . .∪Nvk

and any
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Q′ ⊆ Q, it holds R * Q′. Indeed, if R ⊆ Q′, by statement 3, there is j ∈ R∩(N\Nv1
), and

thus j ∈ Q. Since x, y ∈ C(N, v1) ∩ I(N, v), we have xj = yj = 0 and yj > xj, and reach

a contradiction. Therefore, for any R ∈ Nv2
∪ . . .∪Nvk

and any Q′ ⊆ Q, we have R * Q′,

which implies v2(Q
′) = . . . = vk(Q

′) = 0. In addition, since v = max{v1, . . . , vk} we have

v(Q′) = max{v1(Q
′), 0}, for any Q′ ⊆ Q. In particular, taking Q′ = {i} we get v({i}) ≥ 0,

for all i ∈ Q. As yi > xi for all i ∈ Q and x ∈ I(N, v), we have yi > 0 for all i ∈ Q, which

implies y(Q) > 0. Now, from 0 < y(Q) ≤ v(Q) = max{v1(Q), 0}, we obtain v(Q) = v1(Q).

But then x(Q) < y(Q) ≤ v1(Q), in contradiction with x ∈ C(N, v1) ∩ I(N, v). Hence,

C(N, v1) ∩ I(N, v) is v-internally stable, which concludes the proof.

In some special cases we can argue that given two ordered games (N, v1) and (N, v2),

with v1 ≤ v2, the intersection C(N, v1) ∩ I(N, v2) is the unique stable set for the game

(N, v2). This is what we state in the next theorem.

Theorem 3 Let (N, v1), (N, v2) be two games with v1 ≤ v2, v1(N) = v2(N), v2({i}) ≥ 0

for all i ∈ N, and such that:

1. for all S, T ∈ Nv1
, S ∩ T = ∅, and

2. for all S ∈ Nv1
and for all x ∈ C(N, λS · uS), there is y ∈ C(N, v2) such that

y|S = x|S.

If C(N, v1) ∩ I(N, v2) is a stable set for (N, v2), then it is the unique.

Proof: Suppose there is a stable set V for (N, v2) different from C(N, v1) ∩ I(N, v2) and

take x ∈ V \ C(N, v1) ∩ I(N, v2). Let T be a minimal coalition (w.r.t. inclusion) such

that x(T ) < v1(T ). Since v2({i}) ≥ 0 for all i ∈ N , we have v1(T ) > 0. Thus, there is

S ∈ Nv1
such that S ⊆ T. Let T := {S ∈ Nv1

|S ⊆ T} and suppose S ⊂ T, for all S ∈ T .

Then v1(T ) =
∑

S∈T λS =
∑

S∈T v1(S) ≤
∑

S∈T x(S) ≤ x(T ), where the last equality

and the two inequalities follow from statement 1, the minimality of T and the fact that

xi ≥ v({i}) ≥ 0 for all i ∈ N . But this is a contradiction, and thus T = S for some S ∈ T .

In fact, from statement 1 we get T = {T}. Let y ∈ RN be given by yi := xi + v1(T )−x(T )
|T |

if i ∈ T, and yi := 0 otherwise. Clearly y ∈ C(N, λT · uT ). Now, from statement 2, there
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is z ∈ C(N, v2) such that z|T = y|T . But then, z domv2 x via T , in contradiction with the

internal stability of V . This concludes the proof.

4 Examples and applications

The applicability of both Theorems 2 and 3 is limited but could be used to find some

convex stable sets for a given game. Quoting Aumann (1985), ”finding stable sets involve

a new tour the force of mathematical reasoning for each game or class of games that

is considered. Other than a small number of elementary truisms (e.g. that the core is

contained in every stable set), there is no theory, no tools, certainly no algorithms.” In

this sense, these results are a new tool that not only gives some light on the problem of

existence of stable sets but also remarks the fact that a stable set of a given game can

be the core of another related game, even if the first game is not balanced. The next

examples and applications show some pragmatism of our previous results.

Example: Let (N, v) be a game, with N = {1, 2, 3, 4, 5, 6} and v = max{v1, v2, v3}, where

v1 = u{1,2}+u{1,3}+2·u{2,3}+u{1,3,4}, v2 = u{1,5}+u{2,6}+u{3,5}+u{1,2,5}+u{1,3,6} and v3 =

3·u{1,4,6}+2·u{4,6}. Notice that (N, v1), (N, v2) and (N, v3) have positive unanimity coordi-

nates and thus they are convex games. In addition, I(N, v1) = I(N, v2) = I(N, v3), which

implies the N-monotonicity of (N, v). Moreover, Nv1
= {{1, 2}, {1, 3}, {2, 3}, {1, 3, 4}}

and N\Nv1
= {5, 6}; Nv2

= {{1, 5}, {2, 6}, {3, 5}, {1, 2, 5}, {1, 3, 6}} and N\Nv2
= {4};

Nv3
= {{1, 4, 6}, {4, 6}} and N\Nv3

= {2, 3, 5}. Now, from Theorem 2 we obtain that

C(N, v1) and C(N, v3) are two different stable sets for the initial game (N, v).

Example: (Lucas, 1992) Let (N, v) be the 5-person game where v(N) = 2, v({1, 2}) =

v({3, 4}) = v({1, 3, 5}) = v({2, 4, 5}) = 1 and v(S) = 0 for all other S ⊂ N . The core

of (N, v) is the segment [(1, 0, 0, 1, 0), (0, 1, 1, 0, 0)]. The superadditive cover of this game

is v̂ = max{v1, v2}, where v1 = u{1,2} + u{3,4} and v2 = u{1,3,5} + u{2,4,5}. Notice that

(N, v1) and (N, v2) are convex games with the same imputations set, and thus (N, v̂) is
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N-monotonic. In addition, Nv1
= {{1, 2}, {3, 4}} and N\Nv1

= {5}. Then, from Theorem

2 we obtain that C(N, v1) is a stable set for the game (N, v̂), and consequently for the

original game (N, v). To show uniqueness, let x = (α, 1 − α, 0, 0, 0) ∈ C
(

N, u{1,2}

)

, with

0 ≤ α ≤ 1, and y = (0, 0, β, 1 − β, 0) ∈ C
(

N, u{3,4}

)

, with 0 ≤ β ≤ 1. It can be easily

checked that x′ = (α, 1 − α, 1 − α, α, 0), y′ = (1 − β, β, β, 1 − β, 0) ∈ C(N, v̂). Now, from

Theorem 3 we conclude that C(N, v1) is the unique stable set for the game (N, v).

Example: Let N = {1, . . . , n} and aS1
, . . . , aSk

be an arbitrary family of strictly pos-

itive real numbers associated to the non-empty coalitions S1, . . . , Sk of N . Let v =

max{aS1
· uS1

, . . . , aSk
· uSk

} and assume, without loss of generality, v(N) = aS1. Here

it is worth to point out that these assumptions are not restrictive in order to analyze

existence of stable sets because any monotonic game can be decomposed in this way (see

Einy, 1988), and any game is strategically equivalent to a monotonic game (see Peleg and

Sudhölter, 2007). In this context, by simple applying Theorem 2, if 1 < |Sr| ≤ n, for all

r = 1, . . . , k, and it is satisfied (N \ S1)∩ Sr 6= ∅, for all r = 2, . . . , k, then C(N, aS1
· uS1

)

is a stable set for (N, v). This is what happens in the following economic situation.

Example: There are k-different disjoint sets of workers (or types): N1, . . . , Nk, and one

agent who has the capital, denoted by 1. A coalition formed by exactly one agent of each

type and the owner of the capital, that is {1, i1, . . . , ik} where i1 ∈ N1, . . . , ik ∈ Nk, is

called a clique. The worth of a clique is given by a real positive number a{1,i1,...,ik} > 0. Let

N = {1}∪N1∪. . .∪Nk, and suppose that the profit of an arbitrary coalition S ⊆ N is zero

if it does not contain any clique, and its profit is the maximum worth generated by the

cliques contained in S, otherwise. This situation can be described as a cooperative game

(N, v) with v := maxi1∈N1,...,ik∈Nk

{

a{1,i1,...,ik} · u{1,i1,...,ik}

}

. Let {1, i∗1, . . . , i
∗
k} be a clique

such that v(N) = a{1,i∗
1
,...,i∗

k
}. Since {1, j1, . . . , jk} ∩ (N \ {1, i∗1, . . . , i

∗
k}) 6= ∅, for any j1 ∈

N1, . . . , jk ∈ Nk, if (i∗1, . . . , i
∗
k) 6= (j1, . . . , jk), we have that C

(

N, a{1,i∗
1
,...,i∗

k
} · u{1,i∗

1
,...,i∗

k
}

)

is

a stable set for (N, v). Since C(N, v) ⊂ C
(

N, a{1,i∗
1
,...,i∗

k
} · u{1,i∗

1
,...,i∗

k
}

)

, the core C(N, v) is

not a stable set for (N, v).
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The last example shows that rearranging some factors of an initial max-convex de-

composition of a game we can discover other stable sets for the decomposed game.

Example: Let (N, v) be the following game: N = {1, 2, 3, 4}, and v({i}) = 0, for all

i ∈ N, v({1, 2}) = v({1, 4}) = 2, v({2, 3}) = v({3, 4}) = 0, v({1, 3}) = 3, v({1, 3, 4}) = 5,

v({2, 4}) = v({1, 2, 4}) = v({2, 3, 4}) = v({1, 2, 3}) = v({1, 2, 3, 4}) = 6. It is easy to

check that (N, v) is N -monotonic and it can be decomposed as

v = max
{

6 · u{1,2,3}, 2 · u{1,2}, 3 · u{1,3}, 2 · u{1,4}, 6 · u{2,4}, 5 · u{1,3,4}

}

.

From Theorem 2 we know that C
(

N, 6 · u{2,4}

)

is an stable set for (N, v). However, we

can rewrite

v = max
{

2 · u{1,2} + 3 · u{1,3} + u{1,2,3}, 2 · u{1,4}, 6 · u{2,4}, 5 · u{1,3,4}

}

.

Again applying Theorem 2, C
(

N, 2 · u{1,2} + 3 · u{1,3} + u{1,2,3}

)

is another stable set for

(N, v).

In future works it could be interesting to analyze conditions in terms of a max-convex

decomposition to understand better when a game has no stable sets. Notice that from

n = 5 to n = 9 it is an open problem to get examples without stable sets (if there are

any). Perhaps by using these techniques and results we could be able to solve these open

problems.

References

[1] Aumann R (1985) What is game theory trying to accomplish? In: Arrow K, Honkapo-

hja S, (eds) Frontiers of Economics. Basil Blackwell, Oxford

[2] Einy E (1988) The Shapley value on some lattices of monotonic games. Math Soc Sci

15: 1–10

[3] Gillies D (1959) Solutions to general non-zero-sum games. In: Tucker A, Luce R

(eds) Contributions to the theory of games. Princeton University Press, Princeton,

pp 47-85

14



[4] Ichiishi T (1981) Supermodularity: Applications to convex games and to the Greedy

Algorithm for L.P. J Econ Theory 25: 283–286

[5] Llerena F, Rafels C (2006) The vector lattice structure of the n-person TU games.

Games Econ Behav 54: 373–379

[6] Lucas W (1992) Von Neumann-Morgenstern Stable Sets. In: Aumann R, Hart S (eds)

Handbook of Game Theory. Elsevier, Amsterdam/New York, pp 543–590

[7] Lucas W (1968) A game with no solution. Bull Math Soc 74: 237–239

[8] Mart́ınez-de-Albéniz F, Rafels C (2004) An intersecction theorem in TU cooperative

game theory. Int J Game Theory 33: 107–114

[9] Peleg B, Sudhölter P (2007) Introduction to the theory of cooperative games.

Springer, Berlin/Heidelberg/New York

[10] Rafels C, Tijs S (1997) On the cores of cooperative games and the stability of the

Weber set. Int J Game Theory 26: 491–499

[11] Shapley L (1971) Cores of Convex Games. Int J Game Theory 1: 11–26

[12] von Neumann J, Morgenstern O (1944) Theory of games and economic behaviour.

Princeton Universsity Press, Princeton

15


	245.pdf
	Depósito legal 245.pdf
	245.pdf



