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Abstract: The volatility of asset returns can be classified into market and firm-specific volatility,
otherwise known as idiosyncratic volatility. Idiosyncratic volatility is increasing over time with
some literature attributing this to the IT revolution. An understanding of the relationship between
idiosyncratic risk and return is indeed relevant for idiosyncratic risk pricing and asset allocation,
in a context of emerging technologies. The case of high-tech exchange traded funds (ETFs) is
especially interesting, since ETFs introduce new noise to the market due to arbitrage activities and
high frequency trading. This article examines the relevance of idiosyncratic risk in explaining the
return of nine high-tech ETFs. The Markov regime-switching (MRS) methodology for heteroscedastic
regimes has been applied. We found that high-tech ETF returns are negatively related to idiosyncratic
risk during the high volatility regime and positively related to idiosyncratic risk during the low
volatility regime. These results suggest that idiosyncratic volatility matters in high-tech ETF pricing,
and that the effects are driven by volatility regimes, leading to changes across them.

Keywords: idiosyncratic risk; stock market return and volatility; Markov regime switching

1. Introduction

The role of idiosyncratic volatility in asset pricing has not received much attention
since, under the Capital Asset Pricing Model (CAPM), it is only the non-diversifiable
systematic risk that matters [1–3]. According to modern portfolio theory, idiosyncratic risk
can be completely diversified away. However, several studies [4–6] have observed that
portfolios of common stocks with higher idiosyncratic volatility record higher average
returns. In other words, there is a positive relationship between idiosyncratic risk and
their returns, providing empirical support for Merton’s [7] argument that in a world of
incomplete information, under-diversified investors are compensated for not holding
diversified portfolios.

Recently, an opposing scenario was reported by [8,9] in which a negative price of
idiosyncratic risk was found. In general, the existing literature is not clear about the
relationship between idiosyncratic risk and return.

This topic has become even more important in the light of recent evidence that
idiosyncratic volatility has increased overall [10,11]; which some literature attributes to the
IT revolution [10–12] and to the fact that the economy is increasingly driven by intangible
assets [13,14].

Innovation is leading to changes to goods and services, leading businesses to restruc-
ture their IT models. It therefore makes sense for the purchase of emerging technology
stocks to be part of a company’s strategy to ensure smooth adaption to the innovation
driven environment.

Firms in the high-tech sector exhibit high stock return volatility [15], and it is unclear
whether IT is more volatile because of the market perceptions or whether this is due to new
forms of firm management. Gharbi, Sahut, and Teulon [16] state that high-tech industries
exhibit high stock return because R&D activities involve information asymmetry in terms
of firms’ expectations and thus make their stock riskier. When more closely examining IT
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elements in the context of the rising idiosyncratic risk and considering their potential to
simultaneously affect a wide range of industries inside and outside of the IT sector [17], it
becomes clear why IT is considered a relevant factor.

The case of exchange traded funds (ETFs) is especially interesting, since some studies
reveal that ETFs introduce new noise to the market due to arbitrage activities and high
frequency trading [18,19]. It is therefore important to improve our understanding of
volatility patterns among high-tech specified ETFs. For instance, like common stock prices,
ETF prices can fluctuate throughout the day and can be traded on margin or sold short.
Arbitrage activities only occur if the deviation of the ETF price and the underlying index
price is relevant. When the price of an ETF is below the underlying portfolio value,
arbitrageurs step in to buy the cheap ETF and usually hedge their risk by selling the basket
of the underlying index. Hence, arbitrage activity moves ETF prices back up, aligning them
with their underlying index. ETFs also report economically large momentum profits [20].

We investigate the relationship between idiosyncratic volatility and excess return
among nine high-tech exchange traded funds (ETFs) using daily data for the period from
12/01/2017 to 1/31/2020. Markov regime-switching (MRS) modeling involving time series
analysis was deemed suitable for this study since idiosyncratic volatility and excess return
series are not constant in time.

In contrast to previous studies, this article not only looks in depth at the relationship
between idiosyncratic risk and return, but also considers it in the IT related environment
under a specific ETF scheme.

We found a negative relationship between idiosyncratic risk and return for the nine
high-tech ETFs during the high volatility regime and a positive relationship for eight
of the nine high-tech ETFs during the low volatility regime. These results suggest that
idiosyncratic volatility matters in high-tech ETF pricing, suggesting that firm-specific risk
may matter in high-tech ETF pricing and can lead to under-diversification of portfolios.
The explanatory power of idiosyncratic risk is shown to be robust when we control for two
volatility regimes, one high and one low.

The remainder of the article is structured as follows. Section 2 reviews the related
studies in the literature to provide relevant background for our research design. Section 3
describes the methodology. Section 4 presents the data, Section 5 presents the empirical
results, and Section 6 summarizes the conclusions and provides certain directions for
future research.

Our objective is to investigate whether the patterns of returns in the high-tech specific
sector are indeed linked to idiosyncratic volatility in ETF pricing.

This article contributes to the idiosyncratic volatility literature in the following ways:
First, it documents a significant relationship between idiosyncratic risk and return, contrary
to the fundamental theory of investment, which states that idiosyncratic risk should not
be priced since it can be eliminated through diversification. Second, it provides evidence
that idiosyncratic risk is priced negatively or positively depending on volatility regimes in
the context of an IT related environment. Third, the results highlight how investors do not
diversify the risk rationally under certain market circumstances.

This article also provides insights into the role of pricing of managed funds, especially
for funds exposed to equity investment, and has other important implications for investors
and international institutions that include high-tech investments in their portfolios. In order
to diversify investment in the high-tech sector, idiosyncratic risk can play an important role
in terms of idiosyncratic volatility and return since the effects are not constant but driven
by regimes, leading to changes across the two volatility regimes.

2. Literature
2.1. IT Revolution and Increasing Idiosyncratic Risk

The world economy has shifted from a tangible to an intangible asset driven one [13,14].
More than 50% of the GDP of most advanced economies is attributed to high-tech industries [21].
Recent studies attribute this to economy-wide factors, such as the role of the IT revolution [10–12].
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Fornari and Pericoli [22] revealed that small portfolios of IT- and non-IT equities are more
sensitive to technology shocks. However, a large body of the literature has reviewed the
spectrum of innovative firms in the new technology market and provided evidence that
innovative sectors are riskier and involve more idiosyncratic or firm-specific risk than
traditional markets do [14,15,17]. For example, Schwert [15] finds that NASDAQ, a partic-
ularly high-tech stocks index, is more volatile than the S&P index, concluding that such
unusual volatility is better explained by technology than such other factors as firm size
or immaturity.

This study considers high-tech sectors to be a unique setting that is systematically
different to that of traditional firms. High-tech firms are defined as knowledge-based
organizations since they are non-vertically integrated and human capital intense [23],
which entails a higher level of unreported assets compared to traditional firms [24–29].
Predictable earnings and returns in high-tech firms are generated by intangible assets that
are associated with a higher degree of uncertainty [14,30]. As reported by Kothari et al. [30]
earnings volatility related to R&D expenditure is three times larger than earnings volatility
associated to tangible assets. The positive relationship between the share of intangible
assets (as a proxy for IT-related changes) and the increase in idiosyncratic risk in the 1990s
is consistent with the view that IT increases uncertainty with respect to firm valuation [17].
Since intangible assets are highly transferable, high-tech firms are more exposed to un-
derinvestment [31], encounter higher risk levels [21], and find it harder to obtain external
funding for their R&D activities [32]. High-tech stocks are growth stocks but are also
considered riskier because they do not typically offer dividends. For instance, Aboody and
Lev [33] show that insiders in high-tech firms make more generous profits. Additionally,
the momentum of growth stocks may be higher [13].

2.2. Idiosyncratic Risk and Return

Traditional CAPM theory states that only systematic risk matters for asset pricing
because it is non-diversifiable, and that idiosyncratic risk should not be priced since it can
be completely diversified [1–3]. However, in a situation where more stocks are added to
a portfolio, there needs to be a tradeoff between the profit obtained from diversification
and the higher transaction cost, leading to a scenario in which investors do not have
full information about all of the securities in the market. Merton [7] postulated that
idiosyncratic volatility is relevant to asset pricing, and agents will demand a premium
for holding more idiosyncratically volatile assets if investors are not able to diversify the
risk [34,35]. As suggested by Merton [7], firms with greater firm-specific variance require
higher returns to compensate investors for holding an imperfectly diversified portfolio.

Several early-stage studies, such as [2,4,7,35], are consistent with recent studies sup-
porting a significant positive relationship between idiosyncratic risk and expected stock
returns, either at the aggregate level, or at the firm or portfolio level, supporting Merton’s
view of the relevance of idiosyncratic risk in asset pricing.

For the aggregate level, see [5,36], which also offers relevant insights into portfolio
level, following [6,37–40]. For instance, evidence for a significant positive effect of idiosyn-
cratic volatility was found, the results being robust for various portfolios of different sized
firms, sample periods, and measures of idiosyncratic risk [36].

Spiegel and Wang [39] find that stock returns are positively related with the level
of idiosyncratic risk and negatively related to a stock’s liquidity, the impact of idiosyn-
cratic risk being significantly stronger and more explanatory then the impact of liquidity.
Fu [6] applied an exponential GARCH and found that idiosyncratic volatilities and cross-
sectional returns are positively related, and also that the idiosyncratic risk varies in time.
Chua et al. [40] used data from all common stocks traded at NYSE, AMEX, and NASDAQ
to find that expected idiosyncratic volatility is significantly and positively related to ex-
pected returns, in addition to the fact that unexpected idiosyncratic volatility is positively
related to unexpected returns. Switzer and Picard [41] used a five-factor model to also
conclude that idiosyncratic risk is positively related to month-ahead expected returns for
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many emerging markets. Mazzucato and Tancioni [12] delivered further insights based on
industry level and firm level data showing that idiosyncratic risk has increased over time
and found that R&D intensive firms are characterized by higher idiosyncratic risk profiles
since innovation activity affects the uncertainty of expected future profits. Rachwalski and
Wen [42] found a short-lived negative relationship between idiosyncratic risk innovations
and high idiosyncratic risk stocks earning persistently high returns. Behavioral models also
support these theories regarding the positive relationship between idiosyncratic volatility
and expected return. For example, see [43].

However, Ang et al. [8,9] found contrary results to the prevailing assumption that
idiosyncratic risk is positively priced, indicating that stock prices with high idiosyncratic
volatility yield exceptionally low returns, controlling for value, size, liquidity, volume, dis-
persion of analysts’ forecasts, and momentum, although other studies [6,44–49] considered
these results weak since the findings could be attributed to liquidity or a skewed pattern of
returns. Nartea and Wald [49] studied this topic for the Philippine stock market and found
that the average equal-weighted idiosyncratic volatility is negatively related to market
returns, in stark contrast to the findings of Goyal and Santa-Clara [5] for the US market
who found no relationship between IV and abnormal returns, as opposed to the aforesaid
findings of Ang et al [8], and Brockman and Yan [50] for the US market.

This topic has gained further importance given the evidence that both firm-level
volatility and the number of stocks needed to achieve a specific level of diversification have
increased in the United States since the 1960′s [10]. Additional evidence [51–53] reports that
not only are individual investors’ portfolios undiversified, but mutual fund portfolios too.
Therefore, idiosyncratic volatility should play a significant role in the pricing of managed
funds, especially those with significant investments in equities [54].

3. Methodology
3.1. ARMA

The ARMA (autoregressive moving average) refers to stationary structure and time
discrete stochastic approach that is useful to identify past effects of the series themselves as
well as the MA (moving average) effect that identifies signals sent by the error term. We
can represent an ARMA (p, q) model as

Yt = αo + α1Yt−1 + α2Yt−2 + . . . + αpYt−p + β1et−1 + β2et−2 + . . . + βqet−q + et (1)

where (et) = 0; Var(et) = σ2; Cov(et, et−h) = 0 ∀h 6= 0, p is number of lags of the
dependent variable and q the number of lags of the error term.

3.2. ARCH

The autoregressive conditional heteroskedastic (ARCH) introduced by Engel [55] has
become a useful model to explain the behavior of asset return volatility over time, where
the conditional variance can be represented as

Var(et) ≡ σ2
t = θ0 +

q

∑
i=1

θie2
t−i (2)

where E(et) = 0; Var(et) = σ2, COV(et, et−h) = 0∀h 6= 0, p represents the number of lags
of the dependent variable and q represents the number of lags of the residuals.

3.3. GARCH

Bollerslev [56] introduced the generalized ARCH (GARCH) model, an extension of
the ARCH model. The conditional variance, as a function of its own lags, can be expressed
as follows:

Var(et) ≡ σ2
t = θ0 +

q

∑
i=1

θie2
t−i +

p

∑
j=1

πjσ
2
t−j (3)
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where θ0 > 0 and the GARCH (p, q) is covariance stationary only if
q
∑

i=1
θi +

p
∑

j=1
πj < 1.

3.4. Idiosyncratic Volatility Measure

Idiosyncratic risk is usually measured as the asset specific return volatility. For some
examples of this, see [57]. In this article we apply the market model approach to obtain the
residuals that are utilized to calculate the idiosyncratic volatility measure, as also applied
in [42,54,58,59] under similar circumstances. The MSCI World index is used as a proxy for
the market returns.

Idiosyncratic volatility is calculated as the 15-day moving standard deviation of the
residuals resulting from the one-factor market model as presented below:

rt = α + βMktt + et (4)

where rt is the excess return of the ETF, Mkt is the market excess return and et is the
residuals. The GARCH approach as specified in Section 3.3. was utilized for this purpose.

3.5. Heteroscedastic MRS for Idiosyncratic Volatility and Return

Financial time series present several characteristics that are also known as stylized
factors. These are volatility clustering, heteroscedastic variance, non-normal leptokurtic
distribution, and leverage effect. These stylized factors lead to sudden changes in financial
time series behavior. The underlying reason for this is related to the rate of information
arriving in the market [60]; errors in the learning processes of economic agents [61]; and
the artificial nature of a calendar timescale in lieu of a perceived operational timescale [62].
Regime switching models are able capture those sudden changes in behavior [63].

Markov regime-switching (MRS) models assume that an observed process is motivated
by an unobserved state process and are widely applied in finance and macroeconomics.
Moreover, RS (regime switching) and MS (Markov switching) models are in themselves
well-known examples of non-linear time series models. Evidence supports the idea that
MRS modeling outperforms static mean-variance strategies overall (e.g., [64–67]) and
specifically for ETFs [68].

The method for estimating a single switching point position for a lineal regression
system was introduced by Quandt [69] and the Markov switching model was presented by
Goldfeld and Quandt [70]. Hamilton [71] proposed a multivariate generalization of the
univariate Markov switching process to model the U.S. business cycle.

Under the MRS approach, the universe of occurrence can be decomposed into m states,
with si, i = 1, . . . , m, with m regimes. Yt switches regime according to an unobserved
st variable, where st = 1 and st = 2 represent how the process is in regime 1 at time t and
in regime 2 at time t, respectively. The state variable follows a Markov process with the
probability distribution of state t depending on state t − 1 only, as represented by the
following expression:

P[a < Yt ≤ b| y1, y2, . . . , yt−1]= P[a〈yt ≤ b| yt−1] (5)

The process captures changes in the mean and in the variance among states. Consider
a first order Markov process with an unobserved state variable, then:

P[st = 1|st−1 = 1] = p11
P[st = 2|st−1 = 1] = 1− p11

P[st = 2|st−1 = 2] = p22
P[st = 1|st−1 = 2] = 1− p22

(6)

where p11 and p22 are the probabilities of being in regime 1 given that the process was
previously in regime 1 and the probability of being in regime 2 given that the process was
previously in regime 2, respectively. Further, 1− p11 and 1− p22 are the probabilities that
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the process will switch from state 1 in period t− 1 to state 2 in t and from state 2 in period
t− 1 to state 1 in t. In this context the observed series can be represented as

yt = α1 + α2 +
(

σ2
1 + θst

)1/2
et (7)

where et ∼ N(0, 1). The mean and variance are α1, α1 + α2 and σ2
1 , σ2

1 + θ in state 1 and in
state 2, respectively. Maximum likelihood is used to estimate the unknown parameters.

Because the objective of our paper is to analyze the relationship between idiosyncratic
volatility and excess return under different market circumstances, we estimate the following
MRS specification for all individual ETFs:

r̂t =

{
αo,st + δ1 IRt + et,st = h
αo,st + δ1 IRt + et,st = l,

(8)

where r̂t is the ETF excess return, IR the ETF idiosyncratic volatility measure, αo,st and et,st
are the constant and residuals in the presence of the unobserved state variable s respectively
and δ1 is the coefficient related to the idiosyncratic volatility measure, in high volatility
regime h and in low volatility regime l.

4. Data

This article studies the following nine high-tech ETFs: First Trust NASDAQ Cyber-
security ETF (CIBR), Global X FinTech Thematic ETF (FINX), Fidelity MSCI Information
Technology Index ETF (FTE), ETFMG Prime Cyber Security ETF (HACK), iShares Expanded
Tech-Software Sector ETF (IGV), VanEck Vectors Semiconductor ETF (SMH), iShares PHLX
Semiconductor ETF (SOXX), SPDR S&P Semiconductor ETF (XSD), and SPDR S&P Soft-
ware & Services ETF (XSW). Table A1 in the Appendix A provides the specifications of
each ETF.

The sample period is from 12/01/2017 to 1/31/2020. Daily price data is used in the
form of log returns on the adjusted closing prices of the indices in US dollars and are
calculated by the following formula:

Rt = ln
(

Pt

Pt−1

)
(9)

where rt is the log return, Pt the closing price and Pt−1 the previous day closing price. We
used the 13-week Treasury Bill as the risk-free rate to calculate the excess return as:

rt = Rt − r ft (10)

where rt is the excess return, Rt the previous calculated log return and r ft the risk-free rate
in time t. The data are available to the public at www.finance.yahoo.com (accessed on 15
November 2020) [72].

5. Empirical Results
5.1. Preliminary Data

In Table 1, all ETFs excess returns are slightly negative. The kurtosis values of the
nine high-tech ETFs excess returns are higher than three, suggesting that the distribution
of returns could be fat-tailed. As the skewness values are generally negative, they define
the asymmetric tail, since the Jacque–Bera results are statistically significant and reject the
null hypothesis of a normal distribution for all ETFs returns. Nonetheless, our analysis is
robust, just as models are also usually robust in non-normal cases applying Huber–White
robust standard errors.

www.finance.yahoo.com
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Table 1. Summary statistics for daily excess returns of the nine exchange traded funds (ETFs).

CIBR FINX FTE HACK IGV SMH SOXX XSD XSW

Mean −0.00708 −0.00697 −0.00688 −0.00711 −0.00681 −0.00700 −0.00699 −0.00698 −0.00692
Median −0.00629 −0.00536 −0.00612 −0.00606 −0.00576 −0.00579 −0.00570 −0.00585 −0.00547

Maximum 0.03457 0.04308 0.04905 0.03827 0.05398 0.04784 0.04914 0.04918 0.03676
Minimum −0.05674 −0.07273 −0.06066 −0.05704 −0.06481 −0.07852 −0.07689 −0.07971 −0.05855
Std. Dev. 0.01230 0.01351 0.01310 0.01234 0.01398 0.01686 0.01692 0.01684 0.01241
Skewness −0.67614 −0.82322 −0.60156 −0.57136 −0.47991 −0.42489 −0.38677 −0.47182 −0.76146
Kurtosis 4.38946 5.62110 5.32737 4.49567 4.95094 4.33956 4.29010 4.28648 4.92389

Jarque–Bera 85.21000 217.16760 155.58690 80.30415 107.15450 57.04179 51.28797 57.69760 136.46730
Probability 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Sum −3.85377 −3.79401 −3.74291 −3.86622 −3.70554 −3.81033 −3.80374 −3.79590 −3.76517
Sum Sq. Dev. 0.08214 0.09911 0.09322 0.08265 0.10618 0.15427 0.15536 0.15392 0.08359
Observations 544 544 544 544 544 544 544 544 544

Source: EViews 11 University Version.

Technology companies are known for their high profit margins, and explosive growth
patterns resulting in significant capital gains. On the downside, the high valuation of such
firms means that they are highly exposed to interest rate volatility; also, given the strong
performance of these firms in the long run, investors tend to have high expectations.

Figure 1 plots the excess return of the nine high-tech ETFs. We can observe similar
trends or an association between all high-tech ETFs, oscillating around zero, and highly
volatile with larger spikes during the fourth quarter of 2018. Interestingly, all series
retrieve high volatility in the fourth quarter of 2018, which can be linked to the general
plunge in tech stocks in October due to concerns about the US–China trade war and rising
interest rates.
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Figure 1. Daily excess returns, high-tech ETFs (12/01/2017-1/31/2020). 
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Figure 1. Daily excess returns, high-tech ETFs (12/01/2017-1/31/2020).
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The BDS test of Brock, Dechert, and Scheinkman was run to confirm the nonlinearity
of the series as described in [73]. The results (see Table A2 in the Appendix A) suggest that
we can reject the hypothesis of linearity in this sense, while nonlinearity is confirmed.

We also determine whether the analyzed series are stationary by using the Augmented
Dickey–Fuller (ADF) test, proposed by Dickey and Fuller [74], and the Phillips–Perron
(PP) test [75]. A stationary time series is mean-reverting and has a finite variance that
guarantees that the process will never drift too far away from the mean. Table A3 in the
Appendix A shows the results of the ADF test and the PP test for the daily logarithmic
returns. The hypothesis of a unit root is rejected for all the variables at 90%, 95%, and 99%
of confidence, which implies that the excess returns of price levels are stationary.

5.2. Constructing the Idiosyncratic Volatility Measure

The idiosyncratic volatility measure was estimated as specified in Section 3.4. The
results are available in Table A4 in the Appendix A.

In Figure 2, where the resulting idiosyncratic volatility measures are plotted, we can
observe similar trends or an association between all nine high-tech ETFs. High volatility
occurred with greater spikes during the fourth quarter of 2018. A mean comparison for the
idiosyncratic volatility measure was performed between the range of 2018 and 2019. The
average mean for the studied high-tech ETFs reported for this measure in 2018 and 2019 is
0.0017 and 0.0014, respectively, implying a decrease of 13%.
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Having estimated the one-factor market model structure and confirmed the robustness
of the model, we proceed by using the constructed idiosyncratic volatility measure in our
MRS model to measure the relationship between the expected excess return and the
constructed idiosyncratic volatility of the ETFs.

5.3. Heteroscedastic MRS (1,1) for Idiosyncratic Volatility and Return

In this section we present the results of the Heteroscedastic MRS model to analyze the re-
lationship between idiosyncratic and excess return in the context of emerging technologies.
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Multiple breakpoint Bai–Perron tests of 1 to M globally determined breaks was ex-
ecuted. For four of the nine ETFs the test indicated the existence of 1 break. The results
can be consulted in Appendix A Table A5. For simplicity, we assume that the nine ETFs
present a high and a low volatility regime. The results of the Heteroscedastic MRS model
are shown in Table 2.

The Wald Test is performed for the model coefficient associated to idiosyncratic risk,
to test the null hypothesis, which states that the mean idiosyncratic risk in both regimes
combined equals zero. The null hypothesis can be rejected for all associated coefficients for
the nine models. The results are shown in Table A6 in the Appendix A. The Wald Test was
also run to test equality between the idiosyncratic risk, Log(Sigma) and the mean coefficient
in the high volatility regime versus the low volatility regime. The null hypothesis can
be rejected for all nine models for idiosyncratic volatility and Log(Sigma) coefficient, as
reported in Tables A7 and A8 in the Appendix A. The equality test for the mean can be
rejected for only two models as shown in Table A9 in the Appendix A.

For comparative purposes, the same idiosyncratic risk and excess return structure
was modelled with a GARCH(1,1) in order to check the goodness of fit. The GARCH(1,1)
model output is shown in Table A10 in the Appendix A and the root mean square error
(RMSE) measure, log likelihood statistic and Akaike information criterion (AIC) are shown
for comparative purposes in Table A11 in the Appendix A. The results indicate that the
Heteroscedastic MRS model is preferable than the GARCH model.

A heteroscedastic MRS model was estimated to analyze the relationship between
idiosyncratic risk and excess return in the context of emerging technologies.

Idiosyncratic volatility and excess return are not constant in time, for they are regime
dependent. MRS involving time series analysis was therefore suitable for this study. The
coefficient of interest is related to the independent idiosyncratic risk variable that explains
the excess return for each individual high-tech ETF.

For all nine ETFs, a high volatility and a low volatility regime were identified. From
the estimated heteroscedastic MRS model we can observe that the coefficients related to the
idiosyncratic risk are statistically significant at 99% confidence, indicating that idiosyncratic
risk matters for ETF excess returns. The standard deviation for the high volatility regime is
0.0140 and for the low volatility regime is 0.0084.

In the high volatility regime, the estimated coefficients are negative and in the low
volatility regime the estimated coefficients are positive for eight of the nine ETFs. For the
remaining one, FTE ETF, the associated coefficient is negative in the low volatility regime,
but not statistically significant.

These findings indicate that idiosyncratic risk is relevant in explaining returns in the
context of high-tech ETFs and that the sign of the relationship is volatility dependent,
having a negative relationship in high volatility periods and a positive relationship in low
volatility periods.

Higher idiosyncratic risk hence leads to lower excess return during high volatility and
to higher excess returns during low volatility and higher excess returns for the studied
ETFs during low volatility regimes.

The Markov-chain transition probability shows how ETF prices fluctuate across the
regimes. We observed that the probabilities of transiting from one state to another are
lower than the probabilities of remaining in the same regime.

The average probabilities of the nine high-tech ETFs staying in the high and low
volatility regimes are 64% and 62%, respectively. The probabilities of transit from the high
volatility regime to the low volatility regime and vice versa are 36% and 37%, respectively.

The likelihood of each regime remaining in the same regime interval demonstrates
the presence of a moderate volatility clustering among the excess returns of ETFs. In
other words, a high volatility observation is preceded by a low volatility observation,
and vice versa; also, no re-estimation of the two-regime heteroscedastic MRS model with
restrictions on the transition matrix was required since none of the transition probabilities
have near-zero values.
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Table 2. Heteroscedastic Markov regime-switching (MRS) for high-tech ETFs excess returns, individual idiosyncratic risk, and excess return in two regimes.

Intercept IR Log
(Sigma) Sigma Ph,h Ph,l Pl,l Pl,h Exp. Duration

(Q)
Log Like-

lihood Akaike Schwarz Hanna
Quinn

CIBR High Vol. Regime −0.00480 −4.93236 −4.43995 0.01180 0.58574 0.41426 0.57669 0.42331 2.41397 1644.94800 −6.17716 −6.11267 −6.15192
(0.0000) *** (0.0000) *** (0.0000) ***

Low Vol. Regime −0.00634 3.48308 −4.99912 0.00674 2.36232
(0.0000) *** (0.0000) *** (0.0000) ***

FINX High Vol. Regime −0.00485 −4.52062 −4.26045 0.01412 0.64503 0.35497 0.66512 0.33489 2.81713 1600.03000 −6.00766 −5.94316 −5.98242
(0.0005) *** (0.0000) *** (0.0000) ***

Low Vol. Regime −0.00733 4.42451 −4.97272 0.00692 2.98610
(0.0000) *** (0.0000) *** (0.0000) ***

FTE High Vol. Regime −0.00609 −3.10167 −3.97750 0.01873 0.93439 0.06561 0.96224 0.03776 15.24088 1619.08800 −6.07958 −6.01508 −6.05433
(0.0060) *** (0.0613) * (0.0000) ***

Low Vol. Regime −0.00464 −0.49479 −4.87928 0.00760 26.48399
(0.0000) *** (0.6215) (0.0000) ***

HACK High Vol. Regime −0.00543 −4.91211 −4.52888 0.01079 0.55954 0.44046 0.59515 0.40485 2.27033 1648.01100 −6.18872 −6.12422 −6.16348
(0.0000) *** (0.0000) *** (0.0000) ***

Low Vol. Regime −0.00730 4.14989 −4.89826 0.00746 2.47008
(0.0000) *** (0.0000) *** (0.0000) ***

IGV High Vol. Regime −0.00465 −4.90839 −4.40792 0.01218 0.51685 0.48315 0.43073 0.56927 2.06974 1571.25600 −5.89908 −5.83458 −5.87383
(0.0008) *** (0.0000) *** (0.0000) ***

Low Vol. Regime −0.00667 4.60133 −4.40792 0.01218 1.75663
(0.0000) *** (0.0000) *** (0.0000) ***

SMH High Vol. Regime −0.00304 −4.73511 −4.12797 0.01612 0.73104 0.26896 0.60441 0.39559 3.71798 1470.74000 −5.51977 −5.45528 −5.49453
(0.0634) * (0.0000) *** (0.0000) ***

Low Vol. Regime −0.00785 4.64143 −4.77049 0.00848 2.52787
(0.0000) *** (0.0000) *** (0.0000) ***
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Table 2. Cont.

Intercept IR Log
(Sigma) Sigma Ph,h Ph,l Pl,l Pl,h Exp. Duration

(Q)
Log Like-

lihood Akaike Schwarz Hanna
Quinn

SOXX High Vol. Regime −0.00329 −4.62590 −4.12295 0.01620 0.71761 0.28239 0.59578 0.40423 3.54119 1468.55200 −5.51152 −5.44702 −5.48627
(0.0468) ** (0.0000) *** (0.0000) ***

Low Vol. Regime −0.00780 4.61432 −4.76429 0.00853 2.47387
(0.0000) *** (0.0000) *** (0.0000) ***

XSD_RET High Vol. Regime −0.00432 −4.86952 −4.14846 0.01579 0.61971 0.38029 0.60545 0.39455 2.62957 1467.35700 −5.50701 −5.44251 −5.48176
(0.0277) ** (0.0000) *** (0.0000) ***

Low Vol. Regime −0.00731 4.04369 −4.62026 0.00985 2.53455
(0.0000) *** (0.0000) *** (0.0000) ***

XSW_RET High Vol. Regime −0.00607 −5.39041 −4.55161 0.01055 0.44203 0.55797 0.58739 0.41261 1.79221 1646.97000 −6.18479 −6.12030 −6.15955
(0.0000) *** (0.0000) *** (0.0000) ***

Low Vol. Regime −0.00534 3.05782 −4.88180 0.00758 2.42361
(0.0000) *** (0.0000) *** (0.0000) ***

Source: EViews 11 University Version. Note 1: * significant at level of 10%, ** significant at level of 5%, *** significant at level of 1%.
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Regarding the expected duration of regimes, the average for the high volatility regime
is four days and for the low volatility regime is five days, which is aligned with the behavior
of the high-tech sector subject to short-term noise across stock markets.

Overall, the results indicate that the heteroscedastic MRS models for the nine high-
tech ETFs identify and distinguish between several sources of volatility clustering, where
regime persistence implies that if the unconditional variance is high in one regime, then
the phases of high volatility tend to cluster together due to that regime persistence [76].
This shows that volatility clustering is moderately caused by the persistence of the high
volatility regime.

Figures 3–11 show the filtered and smooth probability plots for the nine high-tech
ETFs. The heteroscedastic MRS (1,1) models cause switching between regimes for all nine
high-tech ETFs, which are consistent with the probabilities of staying and switching. Hence,
association between regimes can be crucial to capture volatility clustering. Figures 3–11 also
indicate similar patterns across the nine high-tech ETFs where, as expected, the probability
of the ETF price return is slightly higher in a low volatility regime than in a high volatility
regime, indicating that ETFs can be used to a certain extent as hedging tools.

These results provide empirical support for the idea that under-diversified investors
are not compensated for not holding diversified portfolios in high volatility regimes, as
opposed to low volatility regimes, where compensation for not holding a diversified
portfolio does occur. The benefits of diversification vary across the studied period, which
also implies that the number of stocks required for a specific diversification level also varies.

These facts suggest that investors do not rationally diversify the risk under certain
market conditions in the context of the emerging technology sector. One area requiring
further examination is the role of information arriving in the market. Excess volatility
peaks precisely during periods associated to uncertainty [77], such as radical technological
changes, and therefore the resulting fundamental information is less useful for making
predictions about future values [77]. Moreover, high-tech firms suffer from the asymmetric
information problem [16,78,79], which may also explain why investors do not seem to
necessarily diversify their portfolios rationally under certain market conditions.
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Figure 3. Computed smoothed probabilities and filtered conditional volatilities for CIBR. Figure 3. Computed smoothed probabilities and filtered conditional volatilities for CIBR.
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6. Conclusions

We investigate the relationship between idiosyncratic risk and return among nine
high-tech ETFs using daily return data for the 12/01/2017–1/31/2020 period using id-
iosyncratic volatility as a proxy for idiosyncratic risk. According to the fundamental theory,
idiosyncratic risks can be eliminated through diversification and hence should not be
priced, though the empirical evidence is mixed.

To further investigate these relationships, time series analysis and a heteroscedastic
MRS model were used because the results obtained are not constant over time. Two regimes
were identified, namely those of high and low volatility.

By studying the relationship between excess return and idiosyncratic volatility we
found that a negative relationship between idiosyncratic risk and return prevails during the
high volatility regime, while in low volatility regimes a positive relationship is identified
for eight of the nine high-tech ETFs.

The results are partially aligned with the predominant theory that idiosyncratic risk is
priced positively and suggest that firm-specific risk matters for ETF pricing and indeed
for the underlying index pricing of the high-tech sector. High-tech investment therefore
seems to entail a higher or lower idiosyncratic risk and a negative or positive effect on the
high-tech ETF returns during different regimes.

This indicates that investors do require a greater risk premium for being more exposed
to idiosyncratic risk during low volatility in the high-tech sector. However, during high
volatility periods, compensation for such exposure does not occur.

There are relevant implications for investors. In the high-tech sector, the return
and idiosyncratic risk can play an important role in risk diversification and allocation,
thus leading to changes across volatility regimes. However, idiosyncratic risk might not
necessarily reflect a risk premium and lead to inconclusive price inference. The adjustment
of returns by idiosyncratic risk should be considered when evaluating performance with
benchmarks. If portfolio managers ignore idiosyncratic risk, this may lead to under-
diversification of those portfolios, and given the recent evidence that idiosyncratic risk and
the number of stocks needed to achieve a specific level of diversification have increased,
those implications require even greater attention.

The results also indicate that the idiosyncratic component impacts market returns and
drives the predictability of the expected returns of high-tech companies. Adding ETFs
from the high-tech sector to a portfolio does not necessarily lead to risk reduction, since the
patterns between idiosyncratic volatility and return are similar, and regime dependent.

This article makes the following new contributions to the idiosyncratic volatility liter-
ature: First, it documents a significant relationship between idiosyncratic risk and return
in the high-tech sector, contrary to the fundamental theory of investment that generally
states that idiosyncratic risk should not be priced since it can be eliminated through di-
versification. Second, it provides evidence that idiosyncratic risk is priced negatively or
positively depending on volatility regimes in the IT context. Third, the results highlight
how investors do not diversify the risk rationally under certain market circumstances.
This article also provides insights into the role of pricing of managed funds, especially
for funds exposed to equity investment, and has important implications for investors and
international institutions that include high-tech investment portfolios in their decision-
making. This paper is merely the first step towards determining the scope of excess return
and idiosyncratic volatility for purposes of asset pricing in the high-tech sector, and its
conclusions are therefore tentative.

Future work will cover the analyzed sectors in a broader manner, including a compar-
ative view of ETFs versus underlying assets, and will improve the database by extending
the sample over time. Areas for further research include the actual portfolio implications
of changes in idiosyncratic risk and return.
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Appendix A

Table A1. ETF Specifications.

ETF Underlying Index Description of the Index

1 First Trust NASDAQ
Cybersecurity ETF (CIBR)

Nasdaq CTA Cybersecurity
IndexSM

The equity index includes securities of companies
classified by the CTA as “cyber security” companies.

2 Global X FinTech Thematic
ETF (FINX)

Indxx Global FinTech
Thematic Index

The equity index seeks to invest in companies on the
cutting edge of the emerging financial technology
sector, which encompasses a range of innovations

helping to transform established industries like
insurance, investment, fundraising, and third-party

lending through unique mobile and digital solutions.

3 Fidelity MSCI Information
Technology Index ETF (FTE)

MSCI USA IMI Information
Technology Index

The equity index includes securities classified in the
Information Technology sector as per the Global

Industry Classification Standard (GICS®).

4 ETFMG Prime Cyber Security
ETF (HACK) ISE Cyber SecurityTM Index.

The equity index is designed to track companies that
are actively involved in providing cyber security

technology and services.

5
iShares Expanded

Tech-Software Sector ETF
(IGV)

S&P North American
Expanded Technology

Software Index

The equity index includes securities in the GICS®

application software, systems software, and home
entertainment software sub-industries as well as

applicable supplementary stocks.

6 VanEck Vectors
Semiconductor ETF (SMH)

Market Vectors US Listed
Semiconductor 25 Index

The equity index is intended to track the overall
performance of companies involved in semiconductor

production and equipment.

7 iShares PHLX Semiconductor
ETF (SOXX) PHLX Semiconductor (ˆSOX)

The equity index is designed to track companies that
produce semiconductors, a crucial part of modern

computing.

8 SPDR S&P Semiconductor
ETF (XSD)

S&P® Semiconductor Select
IndustryTM Index.

The equity index includes companies that produce
semiconductors, a crucial part of modern computing.

9 SPDR S&P Software &
Services ETF (XSW)

S&P Software & Services
Select Industry Index

The equity index seeks to provide exposure to the
software and services segment of the S&P TMI, which
comprises the following sub-industries: Application

Software, Data Processing & Outsourced Services,
Interactive Home Entertainment, IT Consulting &

Other Services, and Systems Software.

www.finance.yahoo.com
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Table A2. BDS Test for Nonlinearity for ETF excess return.

BDS Statistic (p-Value)

Dimension 2 3 4 5 6

CIBR
0.01473 0.03157 0.04682 0.05660 0.05964

(0.0000) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) ***

FINX
0.01747 0.04312 0.06078 0.06953 0.07347

(0.0000) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) ***

FTE
0.02460 0.05286 0.07342 0.08494 0.09080

(0.0000) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) ***

HACK
0.01459 0.03213 0.04801 0.05702 0.06027

(0.0001) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) ***

IGV
0.01310 0.03283 0.04934 0.05919 0.06411

(0.0007) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) ***

SMH
0.01050 0.02443 0.03181 0.03592 0.03602

(0.0000) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) ***

SOXX
0.00910 0.02271 0.02963 0.03401 0.03431

(0.0099) *** (0.0001) *** (0.0000) *** (0.0000) *** (0.0000) ***

XSD
0.00894 0.02288 0.02995 0.03399 0.03421

(0.0087) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) ***

XSW
0.01282 0.03015 0.04501 0.05406 0.05896

(0.0008) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) ***

Source: EViews 11 University Version. Note 1: * significant at level of 10%, ** significant at level of 5%, *** signifi-
cant at level of 1%.

Table A3. Unit Root Test for ETF excess return.

Augmented Dickey-Fuller Phillips-Perron Test Statistic

CIBR
−4.30736 −22.38953

(0.0000) *** (0.0000) ***

FINX
−6.46143 −21.31145

(0.0000) *** (0.0000) ***

FTE
−4.14791 −23.77997

(0.0000) *** (0.0000) ***

HACK
−4.32316 −21.89608

(0.0000) *** (0.0000) ***

IGV
−4.68651 −23.12612

(0.0000) *** (0.0000) ***

SMH
−7.86721 −23.94438

(0.0000) *** (0.0000) ***

SOXX
−7.95505 −23.70267

(0.0000) *** (0.0000) ***

XSD
−7.98970 −23.37335

(0.0000) *** (0.0000) ***

XSW
−4.30680 −22.23300

(0.0000) *** (0.0000) ***

Source: EViews 11 University Version. Note 1: * significant at level of 10%, ** significant at level of 5%, *** signifi-
cant at level of 1%.
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Table A4. Generalized autoregressive conditional heteroskedastic (GARCH) (1,1) one-factor model for constructing the idiosyncratic volatility measure.

Coefficient
(p-Value)

M
ea

n
Eq

ua
ti

on

Intercept Market R

Va
ri

an
ce

Eq
ua

ti
on

Intercept ARCH(1) GARCH(1) Log Likelihood Akaike Schwarz Hanna Quinn ARCH−LM

CIBR 0.00102 1.09002 0.61212 0.00000 0.02374 0.95519 1881.51600 −6.89896 −6.85944 −6.88351 0.32206
(0.0130) ** (0.0000) *** (0.5641) (0.0212) ** (0.0000) *** (0.5704)

FINX 0.00212 1.21887 0.65135 0.00000 0.06875 0.88672 1866.34500 −6.84318 −6.80367 −6.82773 0.01155
(0.0001) *** (0.0000) *** (0.5035) (0.3356) (0.0000) *** (0.9144)

FTE 0.00318 1.33796 0.80566 0.00000 0.04880 0.92450 2043.68400 −7.49516 −7.45565 −7.47972 0.93166
(0.0000) *** (0.0000) *** (0.0000) *** (0.00000) *** (0.0000) *** (0.3344)

HACK 0.00084 1.07376 0.59770 0.00000 0.02280 0.97127 1876.51100 −6.88055 −6.84104 −6.86511 0.67917
(0.0460) ** (0.0000) *** (0.5111) (0.0062) *** (0.0000) *** (0.4099)

IGV 0.00289 1.29443 0.65310 0.00001 0.06961 0.83038 1848.63000 −6.77805 −6.73854 −6.76260 0.07261
(0.0000) *** (0.0000) *** (0.0676) * (0.0153) ** (0.0000) *** (0.7876)

SMH 0.00453 1.55661 0.62584 0.00000 0.03043 0.94149 1722.36900 −6.31386 −6.27435 −6.29841 0.02727
(0.0000) *** (0.0000) *** (0.1990) (0.0433) ** (0.0000) *** (0.8688)

SOXX 0.00452 1.55226 0.62010 0.00000 0.02614 0.94248 1714.87600 −6.28631 −6.24680 −6.27086 0.02305
(0.0000) *** (0.0000) *** (0.3867) (0.0664) * (0.0000) *** (0.8793)

XSD 0.00435 1.52977 0.61121 0.00000 0.02883 0.93714 1710.93500 −6.27182 −6.23231 −6.25637 0.10811
(0.0000) *** (0.0000) *** (0.1781) (0.0101) ** (0.0000) *** (0.7423)

XSW 0.00121 1.10303 0.62122 0.00000 0.05440 0.92547 1895.17900 −6.94919 −6.90968 −6.93374 0.23474
(0.0000) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.6280)

Source: EViews 11 University Version. Note 1: * significant at level of 10%, ** significant at level of 5%, *** significant at level of 1%.
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Table A5. Multiple breakpoint Bai–Perron tests for ETF excess return.

Scaled Weighted Critical

Breaks F-Statistic F-Statistic F-Statistic Value

CIBR 1 * 7.11165 7.11165 7.11165 7.04000

FINX 1 5.71161 5.71161 5.71161 7.04000

FTE 1 * 10.14441 10.14441 10.14441 7.04000

HACK 1 * 8.14408 8.14408 8.14408 7.04000

IGV 1 * 7.83996 7.83996 7.83996 7.04000

SMH 1 4.28344 4.28344 4.28344 7.04000

SOXX 1 3.60544 3.60544 3.60544 7.04000

XSD 1 3.53195 3.53195 3.53195 7.04000

XSW 1 6.30704 6.30704 6.30704 7.04000

Source: EViews 11 University Version. Note 1: * significant at level of 10%, ** significant at level of 5%, *** signifi-
cant at level of 1%.

Table A6. WALD Test for idiosyncratic risk coefficient combined.

CIBR FINX FTE HACK IGV SMH SOXX XSD XSW

F-statistic 75.81303 27.54180 3.54320 95.07122 66.62550 98.06830 101.37350 71.85350 73.13990

(0.0000) *** (0.0000) *** (0.0296) ** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) ***

Chi-square 151.62610 55.0837 7.0865 190.1424 133.2511 196.1366 202.7471 143.7070 146.2799

(0.0000) *** (0.0000) *** (0.0289) ** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) ***

Source: EViews 11 University Version. Note 1: * significant at level of 10%, ** significant at level of 5%, *** significant at level of 1%.

Table A7. WALD Test for the idiosyncratic risk coefficient.

CIBR FINX FTE HACK IGV SMH SOXX XSD XSW

F-statistic 151.61420 49.19077 1.47613 184.46400 122.82360 161.37110 158.65970 38.96023 127.70790

(0.0000) *** (0.0000) *** (0.2249) (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) ***

Chi-square 151.61420 49.19077 1.47613 184.46400 122.82360 161.37110 158.65970 38.96023 127.70790

(0.0000) *** (0.0000) *** (0.2244) (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) *** (0.0000) ***

Source: EViews 11 University Version. Note 1: * significant at level of 10%, ** significant at level of 5%, *** significant at level of 1%.

Table A8. WALD Test for the LOG(SIGM) coefficient.

CIBR FINX FTE HACK IGV SMH SOXX XSD XSW

F-statistic 9.88669 20.37216 131.90750 6.79993 7.08012 33.33429 31.86846 16.18007 4.07243

(0.0018) *** (0.0000) *** (0.0000) *** (0.0094) *** (0.0080) *** (0.0000) *** (0.0000) *** (0.0001) *** (0.0441)

Chi-square 9.88669 20.37216 131.90750 6.79993 7.08012 33.33429 31.86846 16.18007 4.07243

(0.0007) *** (0.0000) *** (0.0000) *** (0.0091) *** (0.0078) *** (0.0000) *** (0.0000) *** (0.0001) *** (0.0436) **

Source: EViews 11 University Version. Note 1: * significant at level of 10%, ** significant at level of 5%, *** significant at level of 1%.

Table A9. WALD Test for the mean.

CIBR FINX FTE HACK IGV SMH SOXX XSD XSW

F-statistic 81.16899 1.66628 0.33594 1.72741 0.84624 3.79511 3.54408 1.07838 0.27057

(0.3381) 0.1973) (0.5624) (0.1893) (0.3580) (0.0519) * (0.0603) * (0.2995) (0.6032)

Chi-square 81.16899 1.66628 0.33594 1.72741 0.84624 3.79511 3.54408 1.07838 0.27057

(0.3376) (0.1968) (0.5622) (0.1887) (0.3576) (0.0514) * (0.0598) * (0.2991) (0.6029)

Source: EViews 11 University Version. Note 1: * significant at level of 10%, ** significant at level of 5%, *** significant at level of 1%.
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Table A10. GARCH (1,1) model of ETF idiosyncratic risk and excess return.

Coefficient
(p-Value)

M
ea

n
Eq

ua
ti

on

Intercept IR R

Va
ri

an
ce

Eq
ua

ti
on

Intercept ARCH(1) GARCH(1) Log Likelihood Akaike Schwarz Hanna Quinn ARCH−LM

CIBR −0.00361 −1.99015 0.03996 0.00001 0.11894 0.83319 1625.14200 −6.11374 −6.07343 −6.09797 0.45406
(0.0000) *** (0.0001) *** (0.0062) *** (0.0001) *** (0.0000) *** (0.5004)

FINX −0.00285 −2.36393 0.04905 0.00001 0.136994 0.823527 1588.33000 −5.97483 −5.93452 −5.95905 0.78418
(0.0001) *** (0.0000) *** (0.0028) *** (0.0001) *** (0.0000) *** (0.3759)

FTE −0.00427 −1.62162 0.02015 0.00001 0.19713 0.76240 1608.61600 −6.05138 −6.01107 −6.03560 0.00044
(0.0000) *** (0.0002) *** (0.0002) *** (0.0000) *** (0.0000) *** (0.9832)

HACK −0.00414 −1.55154 0.02598 0.00001 0.12369 0.82430 1619.39500 −6.09206 −6.05175 −6.07628 0.76849
(0.0000) *** (0.0026) *** (0.0110) ** (0.0003) *** (0.0000) *** (0.3807)

IGV −0.00320 −1.91296 0.02598 0.00001 0.16705 0.78463 1565.00400 −5.88681 −5.84650 −5.87103 1.06029
(0.0002) *** (0.0000) *** (0.0041) *** (0.0000) *** (0.0000) *** (0.3031)

SMH −0.00560 −0.44159 0.00347 0.00002 0.09901 0.84731 1428.91600 −5.37327 −5.33296 −5.35749 0.21481
(0.0000) *** (0.4891) (0.0098) *** (0.0002) *** (0.0000) *** (0.6430)

SOXX −0.00604 −0.18411 0.00020 0.00002 0.10382 0.84408 1426.96200 −5.36589 −5.32558 −5.35012 0.14914
(0.0000) *** (0.7626) (0.0101) ** (0.0002) *** (0.0000) *** (0.6994)

XSD −0.00584 −0.20168 −0.00027 0.00002 0.10347 0.84560 1428.63200 −5.37220 −5.33189 −5.35642 0.19424
(0.0000) *** (0.7247) (0.0179) ** (0.0002) *** (0.0000) *** (0.6594)

XSW −0.00300 −2.25355 0.04103 0.00001 0.14434 0.81401 1626.68200 −6.11955 −6.07924 −6.10378 0.42984
(0.0000) *** (0.0000) *** (0.0019) *** (0.0001) *** (0.0000) *** (0.5121)

Source: EViews 11 University Version. Note 1: * significant at level of 10%, ** significant at level of 5%, *** significant at level of 1%.
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Table A11. Comparing GARCH vs. Heteroscedastic MRS, root mean square error (RMSE), Log
Likelihood, AIC for Idiosyncratic Risk vs. Return.

RMSE Log Likelihood AIC

GARCH MRS GARCH MRS GARCH MRS

CIBR 0.01211 0.01221 1625.14200 1644.94800 −6.11374 −6.17716

FINX 0.01330 0.01371 1588.33000 1600.03000 −5.97483 −6.00766

FTE 0.01306 0.01304 1608.61600 1619.08800 −6.05138 −6.07958

HACK 0.01229 0.01239 1619.39500 1648.01100 −6.09206 −6.18872

IGV 0.01385 0.01393 1565.00400 1571.25600 −5.88681 −5.89908

SMH 0.01695 0.01693 1428.91600 1470.74000 −5.37327 −5.51977

SOXX 0.01702 0.01700 1426.96200 1468.55200 −5.36589 −5.51152

XSD 0.01694 0.01691 1428.63200 1467.35700 −5.37220 −5.50701

XSW 0.01226 0.01241 1626.68200 1646.97000 −6.11955 −6.18479

Source: EViews 11 University Version. Note 1: * significant at level of 10%, ** significant at level of 5%, *** signifi-
cant at level of 1%.
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