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Abstract: Active matter resides far from equilibrium since its constituents are constantly dis-
sipating energy by converting ambient or internal energy into work. Previous studies showed that
active matter exhibit giant number fluctuations(GNF). By studying fire-ant systems, we find that
in the course of time, ants exhibit two distinctive phases: ’active’, where essentially all ants move,
and ’inactive’, where a large fraction of ants are stationary. In both states, we find giant number
fluctuations. However, the underlying origin for this result is different. In the ’active’ case, the re-
sults are genuinely the same resulting in GNF like in other active matter systems. In the ’inactive’
case, the GNF we see are due to the inhomogeneous nature of the system in this phase.

I. INTRODUCTION

For the past centuries, physicists have had many con-
cerns regarding biological organization and how could it
be understood mathematically. An example of interest
has been active matter, which consists of large number of
self-propelling particles that can convert biochemical en-
ergy into work, often resulting in collective motion. Some
living species such as birds, fish, insects or even bacte-
ria can be described as active matter and under certain
situations, they illustrate the collective motion state in
the form of bird flocks, fish schools or bacterial colonies.
Since particles are constantly injecting and dissipating
energy into the system, active matter is far from equilib-
rium and therefore cannot be described using physics in
equilibrium.

For a system in thermodynamic equilibrium which can
interchange particles and energy with a reservoir, fluctu-
ations in particle number scale linearly with the volume
of the system and thus, ⟨(∆N)2⟩ ∼ V ∼ ⟨N⟩, where
in the last relation it is used that the number density
ρ = ⟨N⟩/V = cte. In contrast, for active systems, it
is often observed that fluctuations no longer scale lin-
early with the number of particles, but instead, they
scale as: ⟨(∆N)2⟩ ∼ ⟨N⟩α with α > 1.[1] This fact is
referred to as giant number fluctuations(GNF). To un-
derstand their origin recall that if the particles in the
system are spatially distributed randomly, the hypothe-
sis of the central limit theorem(CLT) is fulfilled and we
find that ⟨(∆N)2⟩ ∼ ⟨N⟩. Conversely, if there is some
spatial correlation between the particles in the system,
for example, due to neighbouring alignment or any other
sophisticated interactions, the system starts to deviate
from the CLT expectation and fluctuations scale with
⟨N⟩ to an exponent greater than 1.[2] This effect was
first studied with thin rods made out of cuts of copper
wire, confined in a quasi-2-dimensional cell that vibrated
perpendicularly to the plane, and that resulted in the
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in-plane motion of the rods with anomalously large fluc-
tuations in density. It is the collective motion of the rods,
resembling to a ferromagnetic state, that allows changes
in the coarse grained v⃗ of the collective of the rods, what
results in more pronounced fluctuations relative to what
is seen for disordered isotropic systems, or systems in
equilibrium.[3]
My work focuses on exploring number fluctuations in

fire-ant collectives. Solenopsis invictae collectives, are
known to form interesting structures in nature[4]. They
can form living rafts in order survive floods and even ar-
range themselves to form towers to climb to higher sur-
faces.
Recently, the group I am part of has been studying in-

tensively the mechanical properties of these type of ant
collectives as well as their social interactions, that have
been modeled in terms of motility-induced phase separa-
tion(MIPS) [5]. Taking advantage of the data collected
in their previous work, I analysed the number fluctu-
ations on dense ant collectives. From the early data,
it is observed that for long periods of time, many ants
are stationary and aggregate into clusters with few other
ants moving freely, but at some point clusters sponta-
neously break and the ants all become active and move.
This behaviour occurred as cycles, with the collective be-
ing either ’inactive’ or ’active’. Studying the fluctuations
separately, we find that for ’active’ periods α > 1 due to
GNF, and for ’inactive’ periods, we also find that α > 1,
but in this case due to the spatial heterogeneities in the
system. To prove this last fact, we generated images sim-
ulating heterogeneous systems and determined how the
exponent changed when varying the density distribution
in the system.

II. SET UP AND EXPERIMENTAL
PROCEDURE

The experiment consists of a quasi-2-dimensional cylin-
drical system of diameter Dd = (4.50 ± 0.02) cm, made
by acrylic walls and an upper glass plate to cover the
cell and confine the ants. The height of the cylinder is a
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bit larger than the mean height of the ants. The system
of ants is thus 2D. The size and mass of the ants were
computed by calculating the standard deviation from a
sample of 1000 ants; these are Lant = (3.4±0.7) mm and
mant = (0.8± 0.1) mg, respectively.

When ants were placed inside the experimen-
tal cell, a CCD camera recorded the system of
ants at a frame rate of 3.75 fps. Eight different
experiments were performed with ant masses of
mexp = [0.35, 0.36, 0.45, 0.45, 0.50, 0.57, 0.68, 0.81] ±
0.01 g, corresponding to Nants ≈
[438, 450, 563, 563, 625, 713, 850, 1013]. 40000 images
were recorded for each experiment, meaning that the
recording time for each experiment was trec ≈ 3h.

III. IMAGE PROCESSING

Each experiment consisted of roughly 40000 images in
an 8-bit jpeg format in grey scale. Despite the resolu-
tion of the images was not the same in all experiments,
on average, the image size was 760x756 pixels. Instead of
calculating the number of ants within the image, which is
hard at the experimental high densities, we counted the
pixels corresponding to ants. To do so, we proceeded to
simply subtract the i-th frame with a background image
and selected a threshold in order to binarize the sub-
tracted image. The processed image was then a matrix
whose entries are ones and zeros corresponding ants and
background, respectively. The image processing sequence
can be seen in FIG. 1.

We used randomly selected images and compared the
processed image with the original one to check the valid-
ity of the thresholding.

Once all images were binarized, we computed the fluc-
tuations generating windows of radius Rj that explored
the whole image, and counted the number of white pixels
within the window. By repeating this count in the same
window for all frames and then averaging for all windows
we were able to compute the mean particle number ⟨Nj⟩
and its fluctuation ⟨(∆Nj)

2⟩ = ⟨(Nj)
2⟩ − (⟨Nj⟩)2. This

can be thought as if each window was an independent
microstate and each frame was a replica of the system.

Repeating this process for different Rj , we were able to
establish a relationship between ⟨N⟩ and ⟨(∆N)2⟩ which
in logarithmic scale, we obtained a linear relationship,
the slope of the corresponding line was α.

IV. RESULTS AND DISCUSSION

A. Preliminary results

Before getting into the ant systems, we proceeded to
study the fluctuations of two different point pattern sys-
tems: a disordered and a crystalline arrangement of
points; see FIG. 2(a,b). The point distribution in the first
case is spatially random; the system is homogeneous and

isotropic. However, for the crystalline case, the point pat-
tern is homogeneous but anisotropic. Note that, since we
are dealing with 2D homogeneous systems, ⟨N⟩ = ρπR2

with ⟨N⟩ the average number of points inside a window
of radius Rj , and ρ is the number density. This is indeed
what we find, as shown in FIG. 2(c,d). We then com-
pute ⟨(∆N)2⟩ and plot the results as a function of ⟨N⟩.
We find ⟨(∆N)2⟩ ∼ ⟨N⟩α, with α = 0.9985± 0.0015 and
α = 0.54 ± 0.03 for the disordered and crystalline point
pattern systems, respectively.
It is important to point that fluctuations deviate for

large window sizes since the statistics diminish in those
dimensions. The fits to obtain α are computed for the
⟨N⟩ values where ⟨(∆N)2⟩ scale in power-law fashion.
We find that α ≈ 1 for the disordered point pattern.

That means that the particle distribution complies with
the CLT and that no GNF are present for this system.
For the crystalline point pattern, we obtain α ≈ 0.5 since
in this case, the only variation in particle number is given
by the particles that lay near the perimeter of the circular
window which is 1D, and not 2D. The points contributing
to ⟨(∆N)2⟩ are no longer the ones located inside the win-
dow, since the number of inner particles is the same for
every window with radius Rj irrespective of its position.

Therefore, ⟨(∆N)2⟩ ∼ R ∼
√
⟨N⟩.

B. Analysis of ant experiments

From the data, one can clearly notice that ants ex-
perience activity cycles. As an example, FIG. 3 shows
two frames corresponding to both ’active’ and ’inactive’
states. Motivated by this transition, we analysed sepa-
rately both the ’active’ and ’inactive’ periods and studied
the differences in number fluctuations between the two.

FIG. 3: Left image corresponds to a frame from an active
cycle whereas the right image corresponds to a frame from
an inactive cycle which can clearly be observed the cluster
formation.

Several methods were proposed to classify the activity
of the system such as subtracting consecutive images,
computing the density of the system as a function of time
or even fluctuations to parameterize the homogeneity of
the system, though eyesight ended up being essential to
bin the data by activity. After generating movies with
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FIG. 1: Processing all frames undergo. The original image is subtracted to the background image, and finally, by selecting
a threshold, the image is then binarized so ants correspond to ones and the rest are zeros. For the final result, it has been
displayed in red, a window of radius Rj , as well as the radius of the dish, Rd.

FIG. 2: Left column correspond to the results obtained for the
disordered point pattern whilst the right column corresponds
to the crystalline point pattern. Both c) and d) plots are
represented with the window radius normalized to the dish
radius Rd

the frames, we could clearly observe, and then classify,
periods where ants remained mostly inactive and periods
where they were fully active.

After the classification, we proceeded to compute the
fluctuations by averaging over the corresponding frames
following the procedure explained in section III. Image
Processing.

FIG. 4: Number fluctuations as a function ⟨N⟩ and linear fits
for both ’active’ and ’inactive’ states in a log-log scale for the
0.81± 0.01 g experiment, the densest one.

α

Ant mass (g) ’Active’ ’Inactive’

0.35 ± 0.01 1.605 ± 0.003 1.540 ± 0.004

0.36 ± 0.01 1.598 ± 0.005 1.549 ± 0.009

0.45 ± 0.01 1.544 ± 0.008 1.491 ± 0.009

0.45 ± 0.01 1.642 ± 0.003 1.588 ± 0.005

0.50 ± 0.01 1.611 ± 0.003 1.532 ± 0.005

0.57 ± 0.01 1.499 ± 0.005 1.519 ± 0.006

0.68 ± 0.01 1.388 ± 0.007 1.487 ± 0.006

0.81 ± 0.01 1.321 ± 0.004 1.411 ± 0.007

TABLE I: α results for all systems divided in two columns by
the ’active’ and the ’inactive’ cycles.
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FIG. 5: An illustration of density fluctuation caused by local
currents. The black arrow corresponds to the velocity vector
of each ant.

1. ’Active’ phase

The active phase was considered to be the period of
time where all ants moved and no clustering was ob-
served. The result for ⟨(∆N)2⟩ vs ⟨N⟩ for the experi-
ment with m = 0.81± 0.01 g is shown in FIG. 4 as blue
dots. We find α > 1. This is true for all experiments;
see TABLE I. For the active periods, dense ant collec-
tives do not fulfill the CLT and exhibit GNF. By locally
analysing a subset of ants moving collectively, they can
be thought of as tiny self-propelling regions with velocity
v⃗. Given a certain configuration of these regions at time
t, after a time ∆t, the motion of a region may fluctuate
as this would not locally change the ant alignment; see
FIG. 5. As a consequence, ants experience local currents
which generate fluctuations in the direction perpendicu-
lar to the direction of motion that enhance fluctuations
overall and that explains why we obtain α > 1. Note this
implies that the ’active’ phase corresponds to a collective
motion state.

2. ’Inactive’ phase

In the ’inactive’ period most of the ants form large
clusters that remain static for long periods of time. The
’inactive’ phase is then characterized by large accumu-
lations of ants in clusters with a few, usually located in
the boundaries of the experimental cell, that move freely
through the open areas left by the rest of the ants.

This motility phase coexistence can be explained by
means of an effective potential, that depends strongly on
the mean speed of the ants, U(r⃗) ∼ ln (⟨v(r⃗)⟩/v0), where
⟨v(r⃗)⟩ is the mean speed at r⃗ and v0 is the mean speed of
the ants at large separations. The decreasing speed, due
to ants slowing down when approaching each other, lead
to local particle accumulation, and hence further veloc-
ity reduction, generating a positive feedback loop which
manifests as large-sized clusters that fill the system [5].
Though the presence of aligning interactions would dis-
rupt the effective attraction, the fact that particles barely
move when located within a cluster allows the aggrega-
tion to last for long periods of time. Furthermore, due to
the large accumulations of ants, there are some regions

FIG. 6: Three proposed examples for heterogeneous systems.
Mid row corresponds to number fluctuations vs. mean particle
number. Bottom row corresponds to the dependency of the
mean particle number with R2 normalised to the dish radius
Rd.

System α

System 1 1.913 ± 0.003

System 2 1.887 ± 0.004

System 3 1.857 ± 0.003

TABLE II: α obtained for the three heterogeneous systems.

where density decreases considerably and the remaining
ants that are not bounded to any clusters can move lead-
ing to a motility phase coexistence.

For these ’inactive’ states, we find that α > 1 for
all experiments; see FIG. 4 for the experiment with
m = 0.81±0.01 g where it is shown with red dots and TA-
BLE I. Note that in this case there are no local currents
that generate density fluctuations since inactive periods
are not characterized by any collective motion of the ants.
Instead, we believe the origin of this result is due to the
heterogeneity of the system, with ρ being no longer con-
stant but rather dependant on its position ρ = ρ(r⃗). To
prove this, we generate images with distinctive but het-
erogeneous distributions of pixels; see FIG. 6(a-c).

Simulations of heterogeneous systems lead to α > 1
and it is observed that the more distributed the particles
are, the lesser the exponent is; see FIG. 6(d) and TABLE
II. These results illustrate that heterogeneity intensifies
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the fluctuations of the system in accordance with the
results obtained for the ant experiments in the ’inactive’
phase.

V. CONCLUSIONS

The main objective of my work was to examine the
fluctuations in fire-ant collectives. We began by studying
two point pattern systems which we knew what to obtain.
We found ⟨(∆N)2⟩ ∼ ⟨N⟩ for the disordered arrangement

of points and ⟨(∆N)2⟩ ∼
√

⟨N⟩ for the crystalline point
pattern; the latter is due to the fact that only points near
the border of the window contribute to the fluctuations.
We then introduced the activity cycles ants experience
in the course of time and, separately studied fluctuations
for both ’active’ and ’inactive’ periods. We ended up ob-
taining an exponent α > 1 and discussed its origins for
both cases by showing that the ant interactions in the
’active’ periods lead to GNF similar to other active mat-
ter systems, whereas in the ’inactive’ periods, we blamed
heterogeneity as the cause of enhanced fluctuations as

seen in simulations of heterogeneous systems in FIG. 6.
It is worth mentioning that we discussed and brought

up ideas to quantify the activity cycles so that we would
be able to distinguish the ’active’ and ’inactive’ periods
together with eyesight observations, albeit we only par-
tially succeeded depending on the experiment. This is
the subject of future work.
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