ESSENTIAL NORMS AND SCHATTEN(-HERZ) CLASSES OF
INTEGRATION OPERATORS FROM BERGMAN SPACES TO
HARDY SPACES

JIALE CHEN*, JORDI PAU AND MAOFA WANG

ABSTRACT. In this paper, we completely characterize the compactness of the
Volterra type integration operators J, acting from weighted Bergman spaces
AP to Hardy spaces H? for all 0 < p,q < oco. It is quite surprising that the
boundedness and the compactness of J, : A2 — H? are not equivalent when
0 < g < p < 2, while, due to the well-known results, the compactness and
boundedness of J;, : AL — A% (resp. Jp : HP — HY) are always equivalent
when p > ¢. Furthermore, we give some estimates for the essential norms of
Jp : AP — HY in the case 0 < p < g < co. We finally describe the membership
in the Schatten(-Herz) class of the Volterra type integration operators.

1. INTRODUCTION

Let B,, be the open unit ball of C" and H(B,,) denote the algebra of holomorphic
functions on B,. A function b € #H(B,) induces a Volterra type integration
operator J, given by the formula:

(1.1) be(z):/o f(tz)Rb(tz)%, 2 € B,

where f € H(B,,) and Rb is the radical derivative of b:

=~ b
Rb(z) = sz—(z), z=(21,22,..-,2n) € B,.

A fundamental property of the operator J, is the following formula involving the
radical derivative R:

R(Jf)(2) = f(2)Rb(2), =z € By
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For 0 < p < oo, the Hardy space HP consists of those holomorphic functions f
in B,, with

71 = swp MI(£r) = sup [ |F(r)Pdo(s) < oo,

o<r<1Js,

where do is the surface measure on the unit sphere S,, = 0B,, normalized so that
o(S,) = 1. Given @ > —1 and 0 < p < o0, a function f € H(B,) belongs to the
weighted Bergman space AP, if

11, = / () Pdua(2) < oo,

Here dv = duy is the Lebesgue measure on B,,, normalized so that v(B,,) = 1. The
measure dv, is given by dv,(z) = ¢na(1 — |2]*)*dv(2) with normalized constant
Cn.o SO that v,(B,) = 1.

The operator J, has been studied by many authors, see [9, 13, 15, 18] and
the references therein. In particular, Wu [18] partially solved the boundedness of
Jp + A2 — H? in the setting of the unit disk. Recently, Miihkinen, Pau, Perala
and Wang [13] completely characterized the boundedness of .J, : A? — HY for
all dimensions n. In this paper, we follow the line of research to completely
characterize the compactness of the Volterra type integration operators .J, acting
from weighted Bergman spaces A? to Hardy spaces HY for all 0 < p,q < oo.
Furthermore, we give some estimates for the essential norms of J, : A? — H? in
the case 0 < p < ¢ < oco. We finally describe the membership in Schatten(-Herz)
classes of the Volterra type integration operators and give some descriptions of
asymptotic property of singular values.

Our first result is the following little version of the main result in [13].

Theorem 1.1. Let a > —1, 0 < p,q < oo and b € H(B,,). Then the following
hold:
(1) If 0 < p <min{2,q} or2 <p < q< oo, then J, : AL — HY is compact if
and only if
3i-nigte

lim Rb(z)(1 — |z[*)

|z| =1~

=0.

(2) If 2 < p=q < o0, then J, : AL — HY is compact if and only if
[Rb(2)[72 (1 — |2) 5% du(2)
s a vanishing Carleson measure.
(3) If p > max{2,q}, then J, : AL — H? is compact if and only if

p—2
2-2

e (f B ) ) )

belongs to L%(Sn).
(4) If 0 < q <p <2, then J, : AL — HY is compact if and only if

¢ osup |RB(R)|(1— [z

zel(n{|z|=r}
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. _pq_ _
converges to zero in Lv=a(S,) asr — 1.

Two remarks are in order. (1) Comparing the above theorem with [13, Theorem
1], we find that the boundedness and compactness of J, : A2 — H? are not
equivalent when 0 < ¢ < p < 2. This is quite different from the cases J, : AL —
Aqﬁ and J, : HP — H? where J, is compact if and only if it is bounded whenever
p > q, see |9, 15].

(2) By Theorem (4), we know that if 0 < ¢ < p <2, J, : AL — HY may
be not compact even when b is a polynomial. It is quite surprising because the
corresponding operators J, : AL — A% and J, : HP — HY are always compact for
any polynomial b if p > ¢, see [9, 15]. See Section 3 for more details.

Let X, Y be (quasi-)Banach spaces and T : X — Y a bounded operator. The
essential norm of T, denoted by ||T'||, is its distance from the space of compact
operators. It is clear that T is compact if and only if ||T||. = 0. Our next
result gives some estimates for the essential norm of J, : A? — HY in the case
0<p<g<oo.

Theorem 1.2. Leta > —1,0<p<gq < oo and b € H(B,) such that J, : AL —
H? 45 bounded.
(1) If 0 < p <min{2,q} or2 <p < q < oo, then
[l = limsup [ Rb(a) (1 — |af*) 7+~
la]—1—

(2) If 2 < p=q < o0, then

p—2

1-— 2\n 2p p—2a 2p
| Jolle < limsup (/ —( o) |Rb(2)|7=2(1 — |2|*) P2 dv(z)) )
B

as1- \Jg, |1 —(z,a)[*"

Recall that if T" is a compact operator acting on a separable Hilbert space
H, then there exist a nonincreasing sequence {s;(7T)} of nonnegative numbers
tending to 0 and orthonormal sets {ex}, {0k} in H such that

Te=> si(T)(x, ex)ou

for all x € H. This is the so-called canonical decomposition of the compact
operator T'. The number s;(7) is the kth singular value of T', which is exactly
the square root of the kth eigenvalue of the positive operator T*T if we rearrange
the eigenvalues in nonincreasing order, where 7™ is the Hilbert adjoint of T". For
0 < p < oo, the compact operator 7' belongs to the Schatten class S,(H) if
{sx(T)} is in the sequence space [P. If H; and H, are two separable Hilbert
spaces and 1" : H; — H, is a compact operator, we say that 7" is in the Schatten
class S,(Hy, Hy) if T*T is in S,/2(Hy). We refer to [21, Chapter 1] for a brief
account on Schatten classes.

Our third result is a complete characterization of the membership in the Schat-
ten class S,(A2, H?) of the Volterra type integration operator J.
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Theorem 1.3. Let « > —1, 0 < p < 0o and b € H(B,). Then the following
hold:

(1) If p(1 — @) /2 > n, then Jy, belongs to S,(A%, H?) if and only if

[Rb(2)[P(1 = |2*) 247V dAn(2) < o0,

B

where
dv(z)

(1 —|z?)"*
1$ the invariant measure on B,,.
(2) If p(1 — ) /2 < n, then Jy is in S,(A%, H?) if and only if b is constant.

d\,(z) =

Loaiza, Lopez-Garcia and Pérez-Esteva introduced the Schatten-Herz class of
Toeplitz operators in [10], which is a generalization of the Schatten class. Recall
that, given a positive Borel measure p on B,,, the Toeplitz operator T, on A2 is

defined by
Tuf<z) = f(w)Ka(va)d:u(w)v z € Bn?

where K*(z,w) is the reproducing kernel of A%. See [22] for more information
about Toeplitz operators. For 0 < p,q < oo, the Toeplitz operator T}, is said to
be in the Schatten-Herz class S, ,(A2) if each T}, is in S,(A?%) and the sequence
{1 T lls, tr=0 is in 19, where x; is the characteristic function of the annulus
Av={2€B,:1— 5 < |z| <1— 5=} for k > 0. Following [7], we say that
Jy+ A2 — H? is in the Schatten-Herz class S, ,(A2, H?) if JiJ, € Sp a(AZ). Our
next result characterizes the Schatten-Herz class of integration operators.

Theorem 1.4. Let « > —1, 0 < p,q < oo and b € H(B,). Then the following
hold:

(1) If p(1 — @) /2 > n, then Jy, belongs to S, ,(A%, H?) if and only if
1
/0 MI(Rb,7)(1 — r)%(l_a)_"%_ldr < 0.

(2) If p(1 — ) /2 < n, then Jy is in S, (A%, H?) if and only if b is constant.

It is also interesting to consider the speed of s, (T") converging to zero if T" is a
compact operator on a separable Hilbert space. See [8] and references there for
more details. Based on the work concerning Toeplitz operators in [5], our next
result (see Theorem in Section 5) gives a description of the decay of singular
values of J, : A2 — H.

The paper is organized as follows. Some background and preliminary results
are given in Section 2. In Section 3 we consider the compactness of integration
operators J, : AP — H9. In Section 4 we estimate the essential norms. Section

is devoted to the proof of Theorem , Theorem and some descriptions
of asymptotic property of singular values of J, : A2 — H?. We also consider
the essential norms and membership in Schatten(-Herz) classes of integration
operators from Hardy spaces to Bergman spaces in Section
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Notation. For 1 < p < oo, we let p’ denote the conjugate exponent of p. The
notation A < B means that A < C'B for some inessential constant C' > 0. The
converse relation A 2 B is defined in an analogous manner, and if A < B and
A 2 B both hold, we write A < B. In addition, we always let r be a positive
number less than 1.

2. PRELIMINARIES

In this section we introduce some well-known results that will be used through-
out the paper.

2.1. Carleson measures. For £ € S, and 6 > 0, the non-isotropic metric ball
Bs(&) is defined by

By(€) = {z € By : |1 — (2,6)] < 6},

A positive Borel measure p on B, is said to be a Carleson measure if there is a
constant C' > 0 such that

p(Bs(§)) < Co"

for all £ € S,, and 0 > 0. Obviously every Carleson measure is finite. Hormander
6] extended to several complex variables the famous Carleson measure embedding
theorem [3, 4] asserting that, for 0 < p < oo, the embedding I, : H? — LP(B,,, du)
is bounded if and only if p is a Carleson measure. We denote by ||u|/ca the
infimum of all possible C' above. It is well-known (see [19, Theorem 45]) that u
is a Carleson measure if and only if for each (some) ¢ > 0 one has

(2.1) sup/B O_—Wd,u(z) < 0.

a€Byn JB, |1 - <Zaa>‘n+t

Moreover, with constant depending on ¢, the supremum of the above integral is
comparable to ||u]|car-
A positive Borel measure p on B, is called a vanishing Carleson measure if

i MBs(E) _
§—0 on

uniformly for £ € S,. Equivalently, one may require that for each (some) t > 0

one has

(2.2) lim (1 laP)"

T i) =0
a1 Sy 11— (z,a) " #z) =0,

or for 0 < p < oo, the embedding I; : H? — L*(B,,, du) is compact.

2.2. Separated sequences and lattices. A sequence of points {z;} C B, is said
to be separated if there exists §y > 0 such that 5(z;, z;) > & for all i and j with
i # 7, where B(z,w) denotes the Bergman metric on B,,. This implies that there
is 0 > 0 such that the Bergman metric balls D(z;,6) = {z € B, : f(z,2;) < ¢}
are pairwise disjoint.

We need a well-known result on decomposition of the unit ball B,,. By Theorem
2.23 in [20], there exists a positive integer N such that for any 0 < 6 < 1 we can
find a sequence {a;} in B,, with the following properties:
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() Bn = U, D(ax, 0);

(ii) The sets D(ay,d/4) are mutually disjoint;

(iii) Each point z € B,, belongs to at most N of the sets D(ay, 49).

Any sequence {a;} satisfying the above conditions is called a d-lattice (in the
Bergman metric). Obviously any d-lattice is a separated sequence.

2.3. Area methods and equivalent norms. For £ € S, and 7 > 1, recall that
the admissible approach region I'; () is defined as

00 = {2 € Busli - (591 < J0 - ).

In this paper we agree that I'(§) := I'y(€). It is known that for every 6 > 0 and
~v > 1, there exists v > 1 so that

(2.3) U D(z.6) cTy(©).

2€l'(8)

We will write I'(€) to indicate this change of aperture. If I(z) = {£¢ € S, : 2 €
(&)}, then o(I(2)) < (1 —|2*)", and it follows from Fubini’s theorem that, for
a positive measurable function ¢, and a finite positive measure v, one has

(2.4) | et = [ (/ i o) ) o)

This fact will be used repeatedly throughout the paper.

Let us recall the following Littlewood-Paley identity, which can be found in
[20].

Theorem A. Suppose 0 < p < co. Then
2

I = FO = = [ IRFEFE) = FOP 2 log au(a)

for all f € HP. In particular, if f(0) =0,
11 = [ IRFGPIFP 0 = P)dole).
Bn

The next estimate is the Calderdén’s area theorem [2, 12]. The variant we will
use can be found in [1] or in [15].

Theorem B. Let 0 < p < co. If f € H(B,) and f(0) =0, then

1z = /S (/F(é) [Rf(2)*(1 - |Z|2)1‘”dv(Z)>p/2da(§).

We will also need the following result essentially due to Luecking [11] (see also
[15]) describing those positive Borel measures for which the embedding from H?
into L*(u) is bounded when s < p.
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Theorem C. Let 0 < s < p < o0 and let p be a positive Borel measure on B,,.
Then the identity 1, : HP — L*(u) is bounded if and only if the function defined
on S, by

7i(e) = / A=)

belongs to LP/*=9)(S,)). Moreover, one has ||1a||gr—srs(u) = ][ﬁ\]lL/;(p,S)(S -
3. COMPACTNESS
In this section, we will prove Theorem 1.1. We need the following two lemmas

first.

Lemma 3.1. If u is a vanishing Carleson measure, then
Hm [ x(B,)epllon =0,
r—1

where (rB,)¢ = B, \ rB,, and X(rBn)e 5 the characteristic function of the set
(rBy)°.
Proof. Since ||x = Ll g it is suffici h

. (rBn)e || < SUPyep, f(TBn)c = w(2), it is sufficient to show

that
1— 2\n
lim sup/ ﬁdu(z) =0.
(rBn

r—=17 qaeB, Yo ‘1 — <Z, 0,>‘2n

We complete the proof by contradiction. Suppose that

1— 2\n
lim sup/ ﬁdu(z) # 0,
(rBn)c

r—1- 4cB, 1 —(z,a)]?"

and then there exist ¢y > 0, an increasing sequence of positive numbers {ry},
r, — 17, and {a;} C B, such that

/ (1 — lax*)" X (et (2)

(3.1 T {a, 2) P

du(z) > €, Vk>1.

There are two possibilities about the sequence {ax}: |ax] — 17 and |a| - 1~.
If |ag| — 17, then by (2.2) we have

/ (1- |ak|2)”><(rkzaan)c(2)dﬂ<z) S/ MW —0

1= {ar, 2)[>" o 1= aw, 2>

as k — oo. This is contradictory with (3.1). If |ag| - 17, there are a point
ap € B,, and a subsequence of {a;} converging to ay. Without loss of generality,
we assume ay — ag, then there exists 09 > 0 such that B(ag, dy) = {2z : |z — ag| <
do} C B, and a; € B(aop, &) if k is large enough. Therefore, we have

(1= lax*)"X(nmne(2) _ 1
11— (ak, 2)[>*  ~ [1— (Jag| + 00)]*"
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(1=]ak®)* X (rBp)e (2)
[1—(ag,2)|?"

for all z € B,, whenever k is large enough, and it is clear that —

0 for all z € B,,. Then we get
1 - 2\n r c
lim / (1 — Jar|*)"x( i2) (2)
B |1 - <ak7 Z>| "
by dominated convergence theorem since p is a vanishing Carleson measure (in

particular, p is finite). This, again, is contradictory with (3.1). Thus the proof
is finished. O

du(z) =0

k—o0

Lemma 3.2. Let 0 < p < o0, f > 0 and Z = {ax} be a §-lattice. Suppose
f€HB,) and [y sup.cre | f(2)P(1 = |2[*)7do(§) < co. If
(3.2) lim sup [ f(@)l’(1 — an]?)?do(€) = 0
r=17 s, apel(©n{jw|>r}
whenever § > 0 is small enough, then
lim sup [ f(2)IP(1 = |2[*)7do () = 0.
r=17 I8, zer(©n{jwl>r}
Proof. Given € > 0, choose § > 0 small enough so that é” < e. Fix this 9, and let
7= inf{|ax| : ap € Z,a, € D(z,0) for some |z| > r}.
By the same method as in the proof of [13, Lemma 3], we have

sup [ f(2)[P(1 — |2*)”
zer(©n{fuwl>r}

S sup [F()P(1— [+ sup |fa)P(1 — [axl*)”.
zel(€) ar€L(E)N{|w|>7}
Integrating over S,, yields

/ sup [ f(2)IP(1 — |2[*)7do (€)
Sn z€T'(€

){|w[=r}

55”/ sup [ f(2)["(1 - |Z|2)Bd0(§)+/S sup [ f(aw)"(1 = Jax|*) do (€)

Sn zef‘(é) n akef(ﬁ)ﬂ{\w\zf}
Set / sip |f(an)P(1 — Janf?)Pdo(©).
Sp, arel(§)N{|w|>7}

It is easy to see 7 — 1~ as r — 1. Combining the above estimate with (3.2), we
get
fimsup [ sup ()L o) do(e) S
r—=1= JS, 2€0(E)N{|w|>r}
The proof is finished since € > 0 is arbitrary. 0

Now we are ready to prove Theorem

Proof of Theorem 1.1. We only prove (2) and the necessary part of (4). The rest
parts can be proved by standard modifications of the corresponding parts in [13]
and so are omitted. Fix 0 < e < 1.
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(2) For any f € AP
Then

(3.3) 1 Jof |y = / (6o (€)

consider the measure duy,(z) = |f(2)[*|Rb(2)|*dvi(z).

o

by Theorem . For the sake of simplicity, we denote
dn(2) = |Rb(2)[72 (1 = |*) 57 do(2).

We first consider the sufficiency part. Suppose pu; is a vanishing Carleson
measure and {fx} is a bounded sequence in AP converging to 0 uniformly on
compact subsets of B,. We need to show |J,fi||mr — 0. For any h € HP/®P=2),
by Holder’s inequality and the fact that p, is a (vanishing) Carleson measure we
have that

| Gt
(L[, Jmensnemme P

Sl 2 - |[fr(2)[dva(2) +HhH 2, - IxBetsll i
Hpr B

Since py, is a vanishing Carleson measure, there exists roy (0 < 79 < 1) such that
p—2

X (roBn)e bl s < €

2/p
by Lemma 3.1. Fix this ry, we have (fTo]Bn ]fk(z)]pdva(z)> < € when k is large

enough since f; — 0 uniformly on r¢B,,. Thus

(3.4) | 1) S el
By

») the embedding

when k is large enough. Denote by I, : H? =2 — L(duy, ,
=0 by (3.1). Therefore,

operator, and then we get limy_, ||Z4, HHp/<p 2L (duy, )

by Theorem (', we have

2
| € 20 = Mol sy~ O

Sn

Thus
1o il = / G (€)P2do(€) = 0
Sn

by (3.3) and the proof of the sufficiency is complete.
Next we consider the necessity part. Assume that J, : A2 — HP is compact.
Then for any f € A2, by (3.3), we have

[ € do(©) = 1 s < .

n
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We see that the measure piy ), satisfies the conditions of Theorem ' for parameters

1 and -£5, and this implies /4, : HP/®=2) — LY(duy,) is compact. Moreover, for

any h € HP/(0=2),
1 dugal) S 10 0]

Let Byr = {f € A2 : || f]lar < 1} be the closed unit ball of A?, then J,(Bye)
is relatively compact in H?. We can find fi,---, f,, € Bye, such that for any
f € Bur, there are some j € {1,2,--- ,m} with

N Jof — Jofilloe < e

Suppose {hy} € HP/P=2) is a bounded sequence converging to zero uniformly
on compact subsets of B,,. Since I, : HP/®P=2 — [Y(dyuy,) is compact for any
f € AP, then for every j € {1,--- ,m}, there is K; > 0 such that £ > K implies

()l g (2) < €

By

Define dvy, () = |hi(2)||Rb(2)|*dv:(z). We now suppose f € Byr and k > K :=
max{ K7y, -, K}, then there is j € {1,--- ,m} such that

1/2
( i |f(z>|2duhk,b(z>>
' 1/2

S(MV@—E@WMMMYQ+(MM@WMMM)

: (/B |hk(2)|duf_fj’b(z)) i ( / n |hk(z>|dufj,b(z))l/2

B
s 1/2
SN = ) i - el sy + (/B |hk(2)|dufj,b(2)>

<e
This implies that the embeddings I, : A?. — L?(dvy, ;) are bounded and
Jim 1 gy | a2~ L2(dwy,, ) = O-

Therefore, since p > 2, by [19, Theorem 54], we have for any 6 > 0 and k > 1,

N Vn ,b(D(Z,d)) —
th,b(z) = (1 i ’Z‘Z)nJrlJra e LW 2)(Bnadva)

and
(3,5) ||ﬁhk,bl|Lp/(P—2)(dva) SJ ||]dk ||,24£—>L2(dl/hk,b)'

By subharmonic property, we have

(3.6) Vb (D(2,0)) 2 [hi(2)]| Rb(2)[*(1 = [[*)"*2.
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It follows from (3.5) and (3.0) that

/ [ha(2)[772 | Rb(2) |72 (1 — |2%) 7 dv(2) < HTdkHAuLz (dng )"
Therefore, we have

llm/ e (2) |72 dpu(2) = 0.

k—o0

This implies that I, : H?/®P=2) — [P/(°=2)(dy,) is compact. Consequently, j; is a
vanishing Carleson measure.

(4) Let

pla

Vir(§) = sup  |Rb(2)|(1— [2*)
2eT(§)N{lz|2r}

Suppose that J, : A2 — HY is compact, and then it follows from [13, Theorem
1] that Vi o € LP9/®=9(S,)). We want to show that

(37) lim H‘/b,r“qu/(p*q)(Sn) =0.
r—1-

If p—1—a <0, then V; o € LP?/®=9)(S, ) implies b is constant. So (3.7) is obvious.
We now assume that p — 1 — a > 0. By Lemma 3.2, we only need to prove that

& sup |Rb(ag)|?(1 — |ak| ) (p=1=a)
agel'(E)N{|z[>r}

converges to zero in LP/P=9(S,) as r — 17, where Z = {a;} is a d-lattice with &
small enough.

Let Brpiz) = {c € TP(Z) : ||cllzz(z) < 1} be the closed unit ball of TP(Z). For
any ¢ = {cx} € Brp(z), define

S(C)(Z) = Z(l - |ak|2)n/pckgk(z)7 EAS ]Bm

where
(1 _ ‘ak |2)b—(n+1+a)/p

gk’(z) = (1 _ <Z,Clk>)b

with b > nmax{1,1/p}+ (e +1)/p. Then we have S(c) € A2 with ||S(c)||a» S1
for any ¢ € Byp(z) by [20, Theorem 2.30].

Since J, : A, — HY is compact, the set J, 0 S(Byp(z)) is relatively compact in
H?. We can choose 0 < rg < 1 such that

/ " ( /FWM [Rb(=) S () (=) 2(1 - \Z|2)1_”dv(z)>q/2da(§) <

for any ¢ € Brr(z). That is,

/Sn (/F(E)H{ZPTO}

2 q/2
dvl_n(z)) do(&) < €.

2) ) (1= lanl*)"Pergu(z)
k



12 J. CHEN, J. PAU AND M. WANG

By a same process as in the proof of [13, Theorem 7], we can establish

q/2
/ ( > |Ck|2|Rb(ak)|2(1—Iak|2)2_2(1+"‘)/”) do(§) < €,
Sn

ar€L(E)N{|z|2rg}

where g = inf{|ay| : D(ax,0) C {|z] > ro}}. Thus, for any ¢ € TP(Z), we have

q/2
. é( 3 kmMWWWWWVMMﬂ do(€)

ag€L()N{]z|2r5}

N 6qHCHqTZZ;(Z)-

Using the dual and factorization of sequence tent spaces (see the proof of Theorem
7 and Theorem 8 in [13]), by (3.8), we get

£ sup |Rb(az)|%(1 — |ag]?)» @17
apel(E)N{|z[>r}

converges to zero in LP/®=9(S,) as r — 1~ and then the necessity part holds.
The proof of Theorem is now finished. 0

As mentioned in Introduction, here we give an example indicating that the
integration operator J, : A> — H? may be not compact for some polynomials b
and some parameters p,q and «. For simplicity, we consider the case n = 1. Let

b(z) = z and
er(z) = \/wzk

Then |lex|| 42 = 1 and e, — 0 weakly in A. By an elementary calculation, we get

# k
hen) = [l = 2
lhenlle = (|J<@W@0W—-ﬁﬁiﬁi-
bRl = os<1il<31 S bERAT ’ SV 2k 4+ 1) V2

as k — oo. Consequently, J, : A2 — H? is not compact for any 0 < ¢ < oo.
However, if 0 < ¢ < 2, it is easy to see that b(z) = z satisfies the integrable
condition in [13, Theorem 1(4)]. That is, J, : A2 — H? is bounded if 0 < ¢ < 2.
Therefore, the boundedness and compactness of J, are not equivalent for 0 < g <
p < 2. This is in sharp contrast with the classical case where the boundedness
and the compactness of J, : H? — H (or J, : AL — Af) are always equivalent
for any 0 < ¢ < p < o0.

Thus
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4. ESSENTIAL NORMS

In order to estimate the essential norm of J;, : A? — H9, we need some auxiliary
results.

For v > 0, let B, be the 7-Bloch space, that is, the space of holomorphic
functions b € H(B,,) such that

[blls, = sup [RB(:)| (1~ [2f?)7 < oc.
z€bn

It becomes a Banach space provided that we identify functions that differ by a
constant. Let B, be the closed subspace of B, consisting of functions b € H(B,,)
such that

lim |Rb(2)|(1—|z[*)” = 0.

|z]—1

We have the following distance formula for the space B,.
Lemma 4.1. Let v >0 and b € B,. Then
dist(b, B, o) < limsup | Rb(2)|(1 — |2|*)".

|z]—1—

Proof. 1f v = 0, by maximum modulus principle, we have

dist(b, Boo) = ||bllz, = sup |Rb(z)| = limsup |Rb(z)].

2€B, |z] =1~

We now assume v > 0. The lower estimate can be easily deduced by triangle
inequality. We consider the upper estimate. It is clear that b, € B, for any
0 < r < 1. Here, b,(2) = b(rz). Hence, for any 0 < § < 1,

dist(b, B, ) < limsup ||b — b, ||,

r—1-

< limsup sup |Rb(z) — Rb(rz)|(1 — |z|*)"+

r—17  |z]<é

lim sup sup |Rb(z) — Rb(rz)|(1 — |z*)"

r—1—  |z|>¢

< sup |Rb(2)|(1 — |2|*)” + limsup sup |Rb(rz)|(1 — |2]*)".

|z|>6 r—1=  |z]>6
Let 0 — 17, and we get
dist(b, B, ) < limsup |Rb(2)|(1 — |2]*)7,

|z]—1—
which completes the lemma. O

Given 1 < p < oo and v > —1, let CM? be the space of holomorphic functions
b € H(B,,) such that

dpinp(2) = [Rb(2)[P(1 — |2]*)"dv(z)

is a Carleson measure, and define

1
1llertz, = i p 1l
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We also define the space CM? ;, to be the subspace of CM? consisting of b € H(1B,,)
such that (i, is a vanishing Carleson measure. We have the following distance
formulas for the space CM?. Here we denote Q(0) = B,, and for a € B, \{0},

Qa)={z€B,: |1 <z,’%|>| <1—|a.

Lemma 4.2. Let 1 <p < oo,y > —1 and b€ CME. Then

dist(b, CM? ) < lim sup (/B M|Rb(z)|p(l - |z|2)7dv(z)) ’

al=1- \JB, |1 — (z,a)|*"

~ lim sup (m/ JLICITS |Z|2)7dv(2)) "

|a[—=1~ Qa

Proof. The lower estimate follows from triangle inequality. We deduce the upper
estimate. For any 0 < r < 1, it is easy to see b, € C/\/ll;’o. Moreover, for any

0<d<1,
(1 —a)"
sup g, (2
a|<6/]Bn |]_ — <27a>|2n Hb—b P’Y( )
1
= (1—4)n /ﬂ% |Rb(z) — Rb(rz)|P(1 — |2|*)dv(z) — 0
as r — 17. Thus we have

1
dist(b, CM? ) < limsup [[b— b ||& 4

r—1-

3=

< lim sup sup (/B Mmb(z) — Rb(rz)P(1 — |z|2)7dv(z))

r—1— |a|>§ n |1 - <Z>a>’2n

1
(1 —lal*)™ v
al>s \JB, |1 — (2, a)[*" pal?)

1

, (1 —a]*)" v

lim sup sup </ g Ay (2) | -
r—1= |a|>§ By ’1 - <Z>a>’2n »

Let 6 — 17, and we get

| | (1= la2)" g
dlSt(b,CMZ;O) < lim sup (/Bn Wdub,pﬁ(z) ;

la]—1—
which establishes the estimate
1
| | 1= Jaf)" ;
dist(b,CM? ;) =< lim sup (/ <—d,u 2) | .
( 7,0) a1~ - |1 — <Z,CL>|2" b,lh’)’( )

Noting that a positive Borel measure p is a Carleson measure if and only if
w(Q(a)) < C(1— |a*)" for all a € B,, and some absolute constant C' > 0, and

_ n(Q(a))
[pellerr = sup m7

a€B,
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the equivalent relation

dist (b, CMP ) = limsup <M) Z

la]—1—
can be proven by similar methods. Il
Remark 4.3. The spaces CM? are closely related to the so-called Hardy-Carleson
type spaces CT 4o studied in [17]. In fact, we have b € CM? if and only if
Rb € CT,—n, and this relation also holds for the little versions of these spaces.

Therefore, the distance formulas similar to Lemma can be obtained for CT 4.
Let 1 <g<oo,a>—-n—1land beCT,,. Then

dist(b,CT..) = limsup < /B APy — \z|2)a+ndv(z)> !

als1- \Jg, [1—(z,a)*

1
1 q
= limsup<—/ |b(2)|9(1 — ]2\2)‘””600(2)) .
a1 \ (1= [al*)" Joe)
In the rest part of this section, we agree that
1—la 2\s—(n+1+a)/p
(o) = (L layo
(1—(z,a))

for sufficiently large s and a € B,,. It is obvious that || f,||4z < 1 and f, — 0
uniformly on compact subsets of B, as |a| — 1~. For any a € B, let

S(a) ={¢ €8u: [1 = (C.a) < (1~ o)}

Lemma 4.4. Let0 <p < g < oo, > —1 andb € H(B,) such that J, : AL — H?
18 bounded. Then

lim |Jofal?do = 0.
|a\—>1 Sn\S(a)

Proof. Let v/63/8 < |a| < 1. We claim that
1= (G )| > 51 o)
for any ¢ €S, \ S(a) and 0 < r < 1. In fact, if 0 <7 < 1 — (1 — |a]?)?/3, then
1= (rGa)] 2 1= rliGal > (1~ o) > 31~ [a)*"
If 1 —(1—1a|?)?? <r <1, then
1= (¢, a)] = 1 = (Ca) — (1—1)

> (1= [af2) "% = (1 — |af)?"

> (L oy (5 - (1 o))

> (1 a2y

4
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Consequently,
(n+14a)/p . n+1+a
e = S < - s
and
’ 1 — (n+1+a)/p s—2 ntlta
|Rfa<rC)| = S|<TC a|>1|<_ <T|Ca|a§|5+1 < 45 S?”(l — ‘CL| ) p

for any ¢ € S, \ S(a) and 0 < r < 1. Therefore, for almost every ¢ € S,, \ S(a),
integration by parts yields

BSOS (OB + (/ |Rfat¢||bto|—)q

<(- |a|2>@‘”*if“” (o + / o)) )

Since J, : A2 — HY is bounded, we have

M = sup |Rb(2)|(1 — |2]2) 7% < 0,

ZE]BTL

which implies that b belongs to the Bloch space since 0 < p < g < ooand a > —1,
and subsequently [b(z)| < M log 1= for z € B,,. Moreover, b =b(0) + J,1 € H*.

Then, noting that s is large enough we establish

q(s—2 n+1l+4+a)q 1 1 q
/ o fa ]qd0<(1—|a|)( el (/ ]b\qdaJqu(/ log dt))
Sn\S(a) 0 1—t

(n+1+

q(s—2)
= (1 o) “(1bl14e + M) — 0

as |a] = 1. O
Now we are ready to prove Theorem

Proof of Theorem 1.2. (1) When n/q+1— (n+ 1+ «)/p < 0, the boundedness
of J, : A» — HY implies that b is a constant, and then there is nothing to prove.
Suppose now vy =n/qg+1—(n+1+a)/p > 0.

The upper estimate can be deduced easily by Theorem 1.1, [13, Theorem 4]
and Lemma 4.1. In fact, for any g € B, by Theorem 1.1, J, : A> — HY is
compact. Therefore, by the norm estimate for .J, in [13, Theorem 4], we have

[ slle < {11y = Joll < [Ib = gl|s,-

Since g € B, is arbitrary, the upper estimate follows from Lemma
We now take care of the lower estimate. Suppose K : A? — HY is a compact
operator. It is easy to see fsm) |K fo|?do — 0 as |a| — 1. Hence we have

17y = K| Z limsup [|(Jy = K) fal| o

la]—1—

L 1/q 1/q
> limsup(min{l,Ql_Q} (/ |bea|qda) - (/ |Kfa|d0> )
la|—1- S(a) S(a)
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1/q
= lim sup (/ \bea\qda)
la]—1— S(a)

= lim sup || Jy fal| 74,
la]—1—
where the last equality follows from Lemma 4.4. Since K : A? — H? is an
arbitrary compact operator, we obtain
(4.1) | Jolle 2 limsup || Jp fal| ga-
la]—1—
On the other hand, by the pointwise estimate for derivatives of Hardy space
functions, we have

Rb(w) EAA
A Japyer — IRALOIS g imr:

(4.2)

Combining (41.1) and (1.2) gives the desired lower estimate.
(2) The boundedness of J, : A2 — HP implies that b is a constant if pp%éa < -1

Suppose now pp%??a > —1. The upper estimate for ||Jy||. can be obtained by
Theorem 1.1, Lemma and the norm estimate for Jj, in [13, Theorem 5], which
completes the proof. |

5. SCHATTEN(-HERZ) CLASSES AND DECAY OF SINGULAR VALUES

5.1. Schatten class. Recall that A2 is a reproducing kernel Hilbert space with
the reproducing kernel function given by

1
(1 = (w, z))r e’
with norm ||K. |42 = K.(2)'/? = (1 — |2[*)~("#1%)/2_ The normalized kernel

functions are denoted by k, =

KZ(U)): Z,U)G]Bn

TRl We also need to introduce some “fractional
z AOL

derivatives” of the kernel functions. For z,w € B,, and ¢t > 0, define
1

(1 (w, 2}y vert

K (w) =
t_ _ K!
and let k£, = TRl
The following lemma is a generalization of [21, Theorem 6.6], which can be
found in [14].
Lemma D. Let T : A%(B,) — A%(B,,) be a positive operator and t > 0. Set

TO(z) = (T, k)42, 2 € B,

2z

(a) For0<p <1, if T® € L?(By,d\,), then T € S,(A2).

—

(b) Forp>1, if T € S,(A2), then T® € LP(B,,,d\,).
Proposition 5.1. Suppose 0 < p < oo, @ > —1 and J, € S,(A2, H?), then

(5.1) /B IRB(2)P(1 — |22) 509\, (2) < o0,
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Proof. Since Jy is in S,(A2, H?), the positive operator J;J, belongs to Sp/Q(A2)
We first consider the case p > 2. By Lemma D, the fact J;.J, € S,/2(A2) implies
jb”‘\jb = J;Jb(o) is in LP/%(B,,,d)\,). However, by Theorem A and subharmonic
property of |Rb|?, we have
T do(z) = (g Jokay k) ag = || Jok I

= [ k) PR ()

> W /D b))
> [Rb(2)P(1— [2)

for any z € B,,. Thus, (5.1) follows.
We next consider the case 0 < p < 2. For any f,g € A% by Theorem A and
Fubini’s theorem, we have

<Jl;k‘]bfa g)Ag - <be7 Jbg>H2

=2 [ SRR g ()

= <T1/bf> g>A?l>

where dvy(z) = 2|Rb(2)|?|z| 7" log |1 dv(z). Therefore, we have T,, = J;J, is in
the Schatten class S,2(A2). Let {ay} be a d-lattice and

~ o Vb(D(Za(S))
ETCTET TR

then {Dy5(ax)} € IP/?] see [22, Theorem 3]. It is well-known that v,(D(z,d)) <
(1 — |2|?)"*1*+=. Consequently, by Holder’s inequality, we have

2

o0 > Z(ﬁbﬁ(ak))
k
= (s | |Rb<z>|2|z|—2nlogidv<z>)g
=\ (1 = |ae[*)"™* Jp(a,.0) 2|
{
< S( ] IR o) o )
(ak,9) |Z|

>Z/ |Rb(z |p]z\_”p(1—|z|2)_§P<log%)2d)\n(z)
2 [ BP0 )

since p/2 < 1. Thus the proof is complete. O
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Proposition 5.2. Suppose a > —1, p > 2 and
[ IR~ 5O ) < o

then J, € Sp(A2, H?).
Proof. If p = oo, that is, sup,cg |Rb(2)](1—|2]?)1~%/2 < oo, then J, : A2 — H?

is bounded and we have
o]l a2 2 S sup |Rb(2)|(1 — |2[*)1=2/2,

ZeBn

See [13, Theorem 1].
If p =2, by (5.2), Fubini’s theorem and [20, Theorem 1.12], for the positive
operator J;Jp,, we have

VT bllss = tr(Jg o) = / TF(2)dM(2)
/ / Rb(w) L2 8;;;;8@[;”' ) do(w)d, ()

[Rb(w) (1 — |w|2> / il i

B, 11— <Z,w>|2(n+1+a) dv(z)dv(w)

By

< / IRb(w)2(1 — [w]?) " *dv(uw)
= / |Rb(2)[2(1 — |2/ d\,(2) < .

Thus, by complex interpolation, for any 2 < p < oo, Rb(z)(1—|z|?)1~*)/2 belongs
to LP(B,,, d\,) implies J;J, € S,/2(A2), which is, Jb € S,(A%, H?). The proof is
complete. O

Now we are ready to prove Theorem

Proof of Theorem 1.5. If p(1—«)/2 < n, then it is sufficient to prove the necessity
part. In fact, due to Proposition 5.1, we have the integrable condition (5.1), which
implies that b is constant and gives the desired necessity.

If n>2and p(1 —«)/2 > n, then p > ﬁ > 2 and the sufficiency part follows
from Proposition

We now consider the sufficiency part in the case n = 1. We only need to prove

[Rb(2)[P(1 = [o*)P12dAs (2) < o0

B
implies J;J, € Sp/2(AZ(B1)) when p(1 —a)/2 > 1 and p < 2 by Proposition

Choosing ¢ > 0 large enough, we only need to prove (J;J,)® € LP/2(B;,d)\;) by
Lemma . By Theorem A we have

—~——

(T3 T0)O(2) = (T Tkt K ag, = Tk

z) "z

= [ RSPl ()
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X/ [Rb(w) (1 — [2*)" (1 — Jwl?) | (

11— (2, w)[ 2t 1+at) v(w).

Thus we only need to show

: | Rb(w)[*(1 — |w]*) v 21 B(2+a+2t)—2
e /Bl( B, |1 — (2, w)|2@ et do(w) ) (1= [2]7)> dv(z) < oo.

Suppose that {a;} is a d-lattice of the unit disk. Then by subharmonic property
and Holder’s inequality we have

(, FEean)”
(Z |1 — 1z_a|a|]2| (2+att) /D(aj,a) <(1 — |1w’2)2 /D(w,a) |Rb(u)\”dv(u)) pdv(w)) 5
: (Z 1 Gaypomes (L 'Rb<“>’pd“<“)>2/p>p/2

0

| /
< b
B ; 1= (2, a;) [P0 [, o) | Rb(u)[dv(u)

< [ [Bb)lP(d — Jul?)*/2

~ B, |1 — <Z, u>‘17(2+0¢+t)

dv(u).

Since t > 0 is large enough, by Fubini’s theorem and [20, Theorem 1.12] we
establish

(1 _ |Z| ) (2+a+2t)—2

) [P@Fa+D) dv(z)dv(u)

Rb@)P(L = a2 [
B B

|Rb(w)|P(1 — |u|?)PE=9"2d) (u) < oo.
By

1 =(zu

The necessary part for p(1 — «)/2 > n is a direct consequence of Proposition
, which completes the proof. O]

5.2. Schatten-Herz class. In order to characterize the membership in Schatten-
Herz classes of J, : A2 — H?, we use the following inner product of the Hardy
space H?:

(F)oi2 = FOGO + [ RIRGE1 - [o)do(a)
and let J; denote the Hilbert adjoint of .J, : A2 — H? with respect to the standard
inner product of A2 and the inner product (-,-), g2 of H% It is easy to see
(53) Jl;ka :Tl/b7
where dvy(z) = |Rb(2)[*(1 — |2|*)dv(z).
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Proof of Theorem 1.. Fix § > 0 small enough. By [7, Theorem 4.1] and (5.3),
we have that J, € S, (A%, H?) if and only if

= a/p
Z(/ ﬁb,ﬁ(z)p/2d)\n(z)) < 0.
k=0 \ Ak
We now show that
- q/p 1 ) q
o0 Z (/ ﬁb"s(Z)p/zd)‘n(Z)) a / ME(Rb,r) (1 —r)2 =7,
k=0 Ak 0
For simplicity, write r, =1 — 55, k=0,1,2,---. For k > 1, by the subharmonic

property of |Rb|* and the monotonicity of M,(Rb,r), we obtain

/ Phs(2)P2d0(2) 2 [ [RB(2)P(L - |2) T2 dAn(2)
Ay A
> Mt A (R, 1),

Therefore,

e}

qa/p 0 o(l—a
Z(/ ﬁb,g(z)p/QdAn(z)) 522%'“(”— T MI(Rb, 1)
k=0 \ Ak
> Z/ ME(Rb,r)(1 — )20 gy

:/0 MI(Rb,r)(1 _T)g(ha),n%fldr'

To prove the converse inequality, note that

p/2
([ imwPa) s a-1pes [ )
D(z,9) D(z,20)

by subharmonic property and
Ak = U D(Z, 25) C Ak—l U Ak U Ak—i—l

ZEAL

for any k& > 0 since 6 > 0 is small enough. Here A_; = (). Then by Fubini’s
theorem we have

bs(2)2dv(z) S [ (1= [o) P Rb(w)v(w)) do(z)
/. /. (o )

< 1 — [z]2)50-)-n-1 Rb(w) |Pdv(w)dv(z
N/Ak< 22) /DW\ (w)Pdv(w)du(2)
< / (1 — )02 Rb(uw) P do(w),

which implies

(/Ak Dy (2)P/2d N, (Z)) a/p
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q/p
(1= ) ( [ = by R >rpdv<w>)
Apg

Tk42 Q/p
<(1- rk)_‘I(”“)/p (/ (1-— r)p(l_a)/2M£(Rb, r)dr)

Tk—1

<(1- rk)*n%+%<1*a>Mg(Rb, Thi2)

for kK > 1. It is easy to see

q/p
( / ﬁbﬁ(z)pmd)\n(z)) < MS(Rb,r3).
Ao

Therefore,

o0 q/p
S ([ insterano) <Z MRS, 7o)
Ag

k=0
Tk+3 q q
< § j/ MI(Rb, 7)(1 — )2~y

Tk+2

< / MA(Rb, 7)(1 — )21 g
0
Hence (5.1) is established and J, € S, (A%, H?) if and only if
(5.5) /1 MI(Rb,7)(1 — Pyl « o,
0
Since (5.5) implies that b is a constant if p(1—a)/2 < n, the proof is complete. [

5.3. Decay of singular values. In the rest part of this section, we consider
asymptotic property of singular values of J, : A2 — H?. Recall that, if H; and
H, are separable Hilbert spaces and T : H; — H, is a compact operator, then
the kth singular value s;(T') of T is the square root of the kth eigenvalue of the
positive operator T*T' if we rearrange the eigenvalues in nonincreasing order.

Let H be a separable Hilbert space and T" be a compact operator on H, and
let h: RT — R be a continuous increasing function such that h(0) = 0. We say
that T' € Sy (H) if there exists C' > 0 such that

> h(Csi(T)) < o0

The class Si(H) is a generalization of Schatten class, which was introduced in

[5]-
If 11 is a positive Borel measure on B,,, we use i denoting the Berezin transform
of u, which is defined by

i(2) = Tu(2) = (T k) az = [ [ke(w)Pdp(w), 2 € B,

Bn
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Let {a;} be a d-lattice and let ji5 denote the average function of p, that is,

R w(D(z,0

ILL(S(Z) = ( ( >) )
UOZ(D(Zv 5))

Then we have the following description of the membership in Sj,(A2%) of Toeplitz

operators, which was proved in [5] in the setting of weighted Bergman spaces A%
on a domain 2 C C for some more general weights w.

z €B,.

Theorem 5.3. Let o > —1, p be a positive Borel measure on B,, and h : Rt —
R* be an increasing convex function. Then the following conditions are equiva-
lent.

(a) T, € Sp(A7).-
(b) There exists C; > 0 such that

/ B(Cyji(2))dn () < 0.

n

(¢) There exists Cy > 0 such that
> h(Cajis(ay)) < oo
J

Recall that, J;J, = T,, on A%, where

2 1
dvp(z) = ﬁ]Rb(z)]2\2| ' log md’u(z).

Therefore, we get

$5() = \Jse( i o) = \/sx(T3,).
By (5.2), we have

R e

It is easy to see

~ —2n —a 1
inalay) = [ RGP~ 2P o )

dv(w).

n

= [ B
D(ajvé)
if j is large. Thus, due to [5, Lemma 6.1] and Theorem 5.3, we have the following

result about the asymptotic behavior of the singular values of J, : A2 — H2.

Theorem 5.4. Suppose o > —1 and b € H(B,,). Let n : [1,00) — (0,00) be a
decreasing convez function such that n(oco) = 0 and satisfy

n(xlogz) < n(x), = — 0.

Define hy, : RY — R by h,(n*(z)) = 1/z and let sx(J,) denote the kth singular
value of Jy : A2 — H?. Then the following conditions are equivalent.
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(a) se(Jo) = O(n(k)).
(b) There exists C; > 0 such that

/n & (Cl /n |Rb(w)||21(1—_<z|i|j>)|r;:r$)_ lle)dU(w))dAn(z) < 0.

(c) There exists Co > 0 such that

Sty (02 /D@j,(s) |Rb(2)2(1 — |z|2)1_0‘d)\n(z)) < 0.

6. CONCLUDING REMARKS

6.1. Schatten-Herz class of Toeplitz type operators on the Hardy space.
For a positive Borel measure p on B,,, the Toeplitz type operator @), is defined
by
f(w)
Q)= [ e, = € By
The boundedness, compactness and membership in Schatten class of (), on Hardy
spaces were studied by Pau and Perild in [16]. In particular, the Schatten class

of Q, : H* — H?* can be characterized as follows, which is a direct consequence
of [16, Theorem 10].

Theorem E. Let 0 < p < 0o and u be a positive Borel measure on B,,. Then
Qu € Sp(H?) if and only if fis € LP(B,,,dN,) for some (or any) § > 0. Moreover,
1@ulls, = 115l 7(a - Here,

X p(D(z,9))

fs(z) = =, zE€DB,.

(1= 1[2%)
Following [10], for 0 < p,q < oo, we say @, is in the Schatten-Herz class

Sp.q(H?) if each @y, is in S,(H?) and the sequence {||Quy, ||s, x>0 is in 19. Using
Theorem I, and the same method as in the proof of [10, Theorem 4.2], we obtain

the following result characterizing the membership in S, ,(H?) of Toeplitz type
operator @,,.

Theorem 6.1. Let 0 < p,q < oo and i be a positive Borel measure on B,,. Then
Qu € S, q(H?) if and only if

i ( /A k /lg(z)pd/\n(z)>q/p < o0

k=0
for some (or any) 6 > 0.
6.2. Volterra operators from Hardy to Bergman spaces. We consider the
operator J, : H? — A% for b € H(B,), 0 < p,q < oo and a > —1. The

boundedness of J, : H? — A? was mentioned in [13]. The compactness of J, :
HP — A% is trivial if we note that

1 6.f g = I1R(Jof) % / [f(2)TIRb(2)]7(1 = |2]*)* dv(2)
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(see [20, Theorem 2.16]). Thus, the compactness of J, : H? — A% is equivalent
to the compactness of the embedding Iy : H? — L9(du4), where dpuy,,(2) =
|Rb(2)|9(1 — |2|*)*Tdv(z). More specifically, we have the following result.

Theorem 6.2. Let « > —1, 0 < p,q < oo and b € H(B,,). Then the following
hold:

(1) For 0 <p < oo, Jy,: HP — AP is compact if and only if
[Rb(2)[P(1 = [2]*)**Pdu(z)
s a vanishing Carleson measure.

(2) For 0 <p < q<oo, J,: H* — A% is compact if and only if
lim Rb(2)(1 — |z|?)

|z|] =1~

Lpmtte s
(3) For 0 < q <p<oo, Jy: HP — A% is compact if and only if it is bounded,
which s equivalent to
Er | Rb(2)]7(1 = [2]*)* T du(2)

I'(¢)

belongs to LP/P=9)(S,).
Applying Theorem 6.2, Lemma .1, Lemma and the norm estimates for
Jy : H? — A% implied in [13, Theorem 10], we can obtain the following estimates

for the essential norm of J, : H? — A%. The proof is analogous to Theorem
and is left to the reader.

Theorem 6.3. Let 1 <p<g<oo, a>—1andbe H(B,) such that J, : HP —
A? is bounded.

(1) If 1 <p=q < oo, then
. (1= |aP)" : v
Jethsup(/—szpl—z Predu(z )
I = s ([ 2 B B P~
(2) If 1 <p<q< oo, then
[Jole = Tim sup [Rb(a)|(1 — |a]?)

la]—1—

nt+l4+a _n
1+ q D,

In order to characterize the membership in Schatten classes of J, : H? — A2,
we consider the following inner product

(f, )12 = f(0)g(0) +/ Rf(2)Rg(2)(1 — |2*)*dv(2)

of the Bergman space A%, and let J; denote the Hilbert adjoint of J, : H* — A2
with respect to the standard inner product of H? and the inner product (-, -),. A2
of A2, Then for any f,g € H?, we have

<J;be7 g>H2 = <be> Jbg>>|<,A?x

= || FEIEIRNI = =)+ dv(2)
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= <Qub,2fv 9>H2-

Thus we have J;J, = Q,,, and J, € S,(H?, A2) if and only if Q,,, € S,/2(H?).
More precisely, we have the following characterization of the membership in Schat-
ten classes of J, : H* — A2,

Theorem 6.4. Let o > —1, 0 < p < o0 and b € H(B,). Then the following
hold:
(1) If n < p(3+ a)/2 < oo, then J, belongs to S,(H?, A2) if and only if
(6.1) |Rb(2)[P(1 — |2]?) 23 YdN, (2) < co.
B,
(2) If p(3+4 «)/2 < n, then Jy, is in S,(H?, A2) if and only if b is constant.

Proof. Suppose J, € S,(H? A%), then Q,,, € Sy2(H?). By [16, Theorem 10],
we have

dpp2(2)
_ 1 . 2\n+t >
Stﬂb,Q(w) ( [w|?) /]Bn 11— (w, z) [+t

belongs to LP/?(B,,, d)\,) for some t > 0 large enough. By subharmonic property,
we get
Sehnp(w) Z | Rb(w)* (1 — |w]?)**.
Since the integrable condition (6.1) implies b is constant when p(3 4+ «)/2 < n, it
completes the necessity.
We now consider the sufficiency part. In the case p > 2, suppose {a;} is a
0-lattice of the unit ball. Then we need to show

3 (2Dl N
= TPy
by [16, Theorem 10]. By Hoélder’s inequality, we have

pv,2(D(ay; 9)) p/2v V2(1 — [2]2)0+3 - o/
%xquy)A;u%wwle)ﬁdo
SZLéﬁWWFMWMWMd

< |Rb(2)[P(1 — |2[2)P@+D2aN, (2) < oo.
]Bn

In the case 0 < p < 2, it is enough to prove that

[ (- [ PEERR ) vt <

for some t > 0 large enough by [16, Theorem 10]. This can be done by the same

method as in the proof of Theorem 1.3. Therefore, the proof is finished. OJ
For 0 < p,q < oo, we say J, is in Sp4(H? A2) if JyJy € Spa(H?). Using
Theorem 6.1, we have the following result. The proof is the same as the proof of

Theorem and so is omitted.
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Theorem 6.5. Let « > —1, 0 < p,q < oo and b € H(B,,). Then the following
hold:

1) If n < p(3+a)/2 < oo, then Jy belongs to S, ,(H? A2%) if and only if
p,q [o%
1
/0 MI(Rb,7)(1 — r)2GrO=pn -l « .

(2) If p(3+ «)/2 < n, then Jy is in S,,(H?, A2) if and only if b is constant.

6.3. Volterra companion integration operators. It is also interesting to s-
tudy the Volterra companion integration operator I,, which is defined by

Lf(z) = /01 Rf(tz)b(tz)%, zeB,

for b, f € H(B,). The operator I, is closely related to Volterra operator J, as
follows:
Lf +Jof = Myf — f(0)b(0),

and has been studied between various spaces of holomorphic functions, where
Myf = bf is the multiplication operator induced by b. We consider the bound-
edness and compactness of [, : A2 — H? and I, : H? — A here.

Noting that R(I,f)(z) = Rf(z)b(z) for any z € B,,, by [20, Theorem 2.16], we
have

126 1% = 1B X/}B [RF()Ib(2)[*(1 — |2]*)*dv(z).

Thus, the boundedness (resp. compactness) of I, : HP — A% is equivalent to
the boundedness (resp. compactness) of the embedding derivative R : H? —
LY(dvy,), where duy 4(2) = [b(2)|9(1 — |2*)*dv(2).

We next consider the boundedness and compactness of I, : A? — H9. Using
the standard pointwise estimate for the derivative of Hardy space functions I, f,,
where o (4

_ s—(n a)/p
folw) = (1 —1z[%) o

(1—(w,z))
for large s, we can get the following necessary condition for I, : A? — HY to be
bounded.

z,w e B,

Proposition 6.6. Let 0 < p,q < oo and o > —1. If I, : A — HY is bounded,
then
sup [b(2)|(1 - |2%)5 "7 < oo,
z€B,
By Proposition 6.6, if p < (1+ 1+T'J“)q and I : A2 — H?is bounded, then b = 0.
In the case p > (1+ HTO‘)Q, by the similar methods as in the proof of .J, : A2 — HY
when p > ¢, we can get the following result.

Theorem 6.7. Let « > —1, 0 < p,q < o0 and b € (B,). Then the following
hold:
(1) If p< (1+2)q or (1+122)g < p <2, then I, : A2, — H? is bounded if
and only if b = 0.
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(2) If p> (14 £2)q and p > 2, then I, : AL, — H? is bounded if and only if
Iy : A? — HY is compact, which in turn is equivalent to

p—2

er ([ eI B E we) "

belongs to L1 (S,).
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