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Abstract. In this paper, we completely characterize the compactness of the
Volterra type integration operators Jb acting from weighted Bergman spaces
Apα to Hardy spaces Hq for all 0 < p, q < ∞. It is quite surprising that the
boundedness and the compactness of Jb : Apα → Hq are not equivalent when
0 < q < p ≤ 2, while, due to the well-known results, the compactness and
boundedness of Jb : Apα → Aqβ (resp. Jb : Hp → Hq) are always equivalent
when p > q. Furthermore, we give some estimates for the essential norms of
Jb : Apα → Hq in the case 0 < p ≤ q <∞. We finally describe the membership
in the Schatten(-Herz) class of the Volterra type integration operators.

1. Introduction

Let Bn be the open unit ball of Cn andH(Bn) denote the algebra of holomorphic
functions on Bn. A function b ∈ H(Bn) induces a Volterra type integration
operator Jb given by the formula:

(1.1) Jbf(z) =

∫ 1

0

f(tz)Rb(tz)
dt

t
, z ∈ Bn,

where f ∈ H(Bn) and Rb is the radical derivative of b:

Rb(z) =
n∑
k=1

zk
∂b

∂zk
(z), z = (z1, z2, . . . , zn) ∈ Bn.

A fundamental property of the operator Jb is the following formula involving the
radical derivative R:

R(Jbf)(z) = f(z)Rb(z), z ∈ Bn.
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For 0 < p <∞, the Hardy space Hp consists of those holomorphic functions f
in Bn with

‖f‖pHp = sup
0<r<1

Mp
p (f, r) = sup

0<r<1

∫
Sn
|f(rξ)|pdσ(ξ) <∞,

where dσ is the surface measure on the unit sphere Sn = ∂Bn normalized so that
σ(Sn) = 1. Given α > −1 and 0 < p <∞, a function f ∈ H(Bn) belongs to the
weighted Bergman space Apα, if

‖f‖p
Apα

=

∫
Bn
|f(z)|pdvα(z) <∞.

Here dv = dv0 is the Lebesgue measure on Bn, normalized so that v(Bn) = 1. The
measure dvα is given by dvα(z) = cn,α(1 − |z|2)αdv(z) with normalized constant
cn,α so that vα(Bn) = 1.

The operator Jb has been studied by many authors, see [9, 13, 15, 18] and
the references therein. In particular, Wu [18] partially solved the boundedness of
Jb : Apα → Hq in the setting of the unit disk. Recently, Miihkinen, Pau, Perälä
and Wang [13] completely characterized the boundedness of Jb : Apα → Hq for
all dimensions n. In this paper, we follow the line of research to completely
characterize the compactness of the Volterra type integration operators Jb acting
from weighted Bergman spaces Apα to Hardy spaces Hq for all 0 < p, q < ∞.
Furthermore, we give some estimates for the essential norms of Jb : Apα → Hq in
the case 0 < p ≤ q <∞. We finally describe the membership in Schatten(-Herz)
classes of the Volterra type integration operators and give some descriptions of
asymptotic property of singular values.

Our first result is the following little version of the main result in [13].

Theorem 1.1. Let α > −1, 0 < p, q < ∞ and b ∈ H(Bn). Then the following
hold:

(1) If 0 < p ≤ min{2, q} or 2 < p < q <∞, then Jb : Apα → Hq is compact if
and only if

lim
|z|→1−

Rb(z)(1− |z|2)
n
q

+1−n+1+α
p = 0.

(2) If 2 < p = q <∞, then Jb : Apα → Hq is compact if and only if

|Rb(z)|
2p
p−2 (1− |z|2)

p−2α
p−2 dv(z)

is a vanishing Carleson measure.
(3) If p > max{2, q}, then Jb : Apα → Hq is compact if and only if

ξ 7→
(∫

Γ(ξ)

|Rb(z)|
2p
p−2 (1− |z|2)

2−2α
p−2

+1−ndv(z)

) p−2
2p

belongs to L
pq
p−q (Sn).

(4) If 0 < q < p ≤ 2, then Jb : Apα → Hq is compact if and only if

ξ 7→ sup
z∈Γ(ξ)∩{|z|≥r}

|Rb(z)|(1− |z|2)
p−1−α

p
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converges to zero in L
pq
p−q (Sn) as r → 1−.

Two remarks are in order. (1) Comparing the above theorem with [13, Theorem
1], we find that the boundedness and compactness of Jb : Apα → Hq are not
equivalent when 0 < q < p ≤ 2. This is quite different from the cases Jb : Apα →
Aqβ and Jb : Hp → Hq, where Jb is compact if and only if it is bounded whenever
p > q, see [9, 15].

(2) By Theorem 1.1 (4), we know that if 0 < q < p ≤ 2, Jb : Apα → Hq may
be not compact even when b is a polynomial. It is quite surprising because the
corresponding operators Jb : Apα → Aqβ and Jb : Hp → Hq are always compact for
any polynomial b if p > q, see [9, 15]. See Section 3 for more details.

Let X, Y be (quasi-)Banach spaces and T : X → Y a bounded operator. The
essential norm of T , denoted by ‖T‖e, is its distance from the space of compact
operators. It is clear that T is compact if and only if ‖T‖e = 0. Our next
result gives some estimates for the essential norm of Jb : Apα → Hq in the case
0 < p ≤ q <∞.

Theorem 1.2. Let α > −1, 0 < p ≤ q <∞ and b ∈ H(Bn) such that Jb : Apα →
Hq is bounded.

(1) If 0 < p ≤ min{2, q} or 2 < p < q <∞, then

‖Jb‖e � lim sup
|a|→1−

|Rb(a)|(1− |a|2)
n
q

+1−n+1+α
p .

(2) If 2 < p = q <∞, then

‖Jb‖e . lim sup
|a|→1−

(∫
Bn

(1− |a|2)n

|1− 〈z, a〉|2n
|Rb(z)|

2p
p−2 (1− |z|2)

p−2α
p−2 dv(z)

) p−2
2p

.

Recall that if T is a compact operator acting on a separable Hilbert space
H, then there exist a nonincreasing sequence {sk(T )} of nonnegative numbers
tending to 0 and orthonormal sets {ek}, {σk} in H such that

Tx =
∑
k

sk(T )〈x, ek〉σk

for all x ∈ H. This is the so-called canonical decomposition of the compact
operator T . The number sk(T ) is the kth singular value of T , which is exactly
the square root of the kth eigenvalue of the positive operator T ∗T if we rearrange
the eigenvalues in nonincreasing order, where T ∗ is the Hilbert adjoint of T . For
0 < p < ∞, the compact operator T belongs to the Schatten class Sp(H) if
{sk(T )} is in the sequence space lp. If H1 and H2 are two separable Hilbert
spaces and T : H1 → H2 is a compact operator, we say that T is in the Schatten
class Sp(H1, H2) if T ∗T is in Sp/2(H1). We refer to [21, Chapter 1] for a brief
account on Schatten classes.

Our third result is a complete characterization of the membership in the Schat-
ten class Sp(A

2
α, H

2) of the Volterra type integration operator Jb.
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Theorem 1.3. Let α > −1, 0 < p < ∞ and b ∈ H(Bn). Then the following
hold:

(1) If p(1− α)/2 > n, then Jb belongs to Sp(A
2
α, H

2) if and only if∫
Bn
|Rb(z)|p(1− |z|2)

p
2

(1−α)dλn(z) <∞,

where

dλn(z) =
dv(z)

(1− |z|2)n+1

is the invariant measure on Bn.
(2) If p(1− α)/2 ≤ n, then Jb is in Sp(A

2
α, H

2) if and only if b is constant.

Loaiza, López-Garćıa and Pérez-Esteva introduced the Schatten-Herz class of
Toeplitz operators in [10], which is a generalization of the Schatten class. Recall
that, given a positive Borel measure µ on Bn, the Toeplitz operator Tµ on A2

α is
defined by

Tµf(z) =

∫
Bn
f(w)Kα(z, w)dµ(w), z ∈ Bn,

where Kα(z, w) is the reproducing kernel of A2
α. See [22] for more information

about Toeplitz operators. For 0 < p, q < ∞, the Toeplitz operator Tµ is said to
be in the Schatten-Herz class Sp,q(A

2
α) if each Tµχk is in Sp(A

2
α) and the sequence

{‖Tµχk‖Sp}k≥0 is in lq, where χk is the characteristic function of the annulus
Ak = {z ∈ Bn : 1 − 1

2k
≤ |z| < 1 − 1

2k+1} for k ≥ 0. Following [7], we say that
Jb : A2

α → H2 is in the Schatten-Herz class Sp,q(A
2
α, H

2) if J∗b Jb ∈ S p
2
, q
2
(A2

α). Our
next result characterizes the Schatten-Herz class of integration operators.

Theorem 1.4. Let α > −1, 0 < p, q < ∞ and b ∈ H(Bn). Then the following
hold:

(1) If p(1− α)/2 > n, then Jb belongs to Sp,q(A
2
α, H

2) if and only if∫ 1

0

M q
p (Rb, r)(1− r)

q
2

(1−α)−n q
p
−1dr <∞.

(2) If p(1− α)/2 ≤ n, then Jb is in Sp,q(A
2
α, H

2) if and only if b is constant.

It is also interesting to consider the speed of sk(T ) converging to zero if T is a
compact operator on a separable Hilbert space. See [8] and references there for
more details. Based on the work concerning Toeplitz operators in [5], our next
result (see Theorem 5.4 in Section 5) gives a description of the decay of singular
values of Jb : A2

α → H2.

The paper is organized as follows. Some background and preliminary results
are given in Section 2. In Section 3 we consider the compactness of integration
operators Jb : Apα → Hq. In Section 4 we estimate the essential norms. Section
5 is devoted to the proof of Theorem 1.3, Theorem 1.4 and some descriptions
of asymptotic property of singular values of Jb : A2

α → H2. We also consider
the essential norms and membership in Schatten(-Herz) classes of integration
operators from Hardy spaces to Bergman spaces in Section 6.
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Notation. For 1 < p < ∞, we let p′ denote the conjugate exponent of p. The
notation A . B means that A ≤ CB for some inessential constant C > 0. The
converse relation A & B is defined in an analogous manner, and if A . B and
A & B both hold, we write A � B. In addition, we always let r be a positive
number less than 1.

2. Preliminaries

In this section we introduce some well-known results that will be used through-
out the paper.

2.1. Carleson measures. For ξ ∈ Sn and δ > 0, the non-isotropic metric ball
Bδ(ξ) is defined by

Bδ(ξ) = {z ∈ Bn : |1− 〈z, ξ〉| < δ}.
A positive Borel measure µ on Bn is said to be a Carleson measure if there is a
constant C > 0 such that

µ(Bδ(ξ)) ≤ Cδn

for all ξ ∈ Sn and δ > 0. Obviously every Carleson measure is finite. Hörmander
[6] extended to several complex variables the famous Carleson measure embedding
theorem [3, 4] asserting that, for 0 < p <∞, the embedding Id : Hp → Lp(Bn, dµ)
is bounded if and only if µ is a Carleson measure. We denote by ‖µ‖CM the
infimum of all possible C above. It is well-known (see [19, Theorem 45]) that µ
is a Carleson measure if and only if for each (some) t > 0 one has

(2.1) sup
a∈Bn

∫
Bn

(1− |a|2)t

|1− 〈z, a〉|n+t
dµ(z) <∞.

Moreover, with constant depending on t, the supremum of the above integral is
comparable to ‖µ‖CM .

A positive Borel measure µ on Bn is called a vanishing Carleson measure if

lim
δ→0

µ(Bδ(ξ))

δn
= 0

uniformly for ξ ∈ Sn. Equivalently, one may require that for each (some) t > 0
one has

(2.2) lim
|a|→1−

∫
Bn

(1− |a|2)t

|1− 〈z, a〉|n+t
dµ(z) = 0,

or for 0 < p <∞, the embedding Id : Hp → Lp(Bn, dµ) is compact.

2.2. Separated sequences and lattices. A sequence of points {zj} ⊂ Bn is said
to be separated if there exists δ0 > 0 such that β(zi, zj) ≥ δ0 for all i and j with
i 6= j, where β(z, w) denotes the Bergman metric on Bn. This implies that there
is δ > 0 such that the Bergman metric balls D(zj, δ) = {z ∈ Bn : β(z, zj) < δ}
are pairwise disjoint.

We need a well-known result on decomposition of the unit ball Bn. By Theorem
2.23 in [20], there exists a positive integer N such that for any 0 < δ < 1 we can
find a sequence {ak} in Bn with the following properties:
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(i) Bn =
⋃
kD(ak, δ);

(ii) The sets D(ak, δ/4) are mutually disjoint;
(iii) Each point z ∈ Bn belongs to at most N of the sets D(ak, 4δ).
Any sequence {ak} satisfying the above conditions is called a δ-lattice (in the
Bergman metric). Obviously any δ-lattice is a separated sequence.

2.3. Area methods and equivalent norms. For ξ ∈ Sn and γ > 1, recall that
the admissible approach region Γγ(ξ) is defined as

Γγ(ξ) =

{
z ∈ Bn : |1− 〈z, ξ〉| < γ

2
(1− |z|2)

}
.

In this paper we agree that Γ(ξ) := Γ2(ξ). It is known that for every δ > 0 and
γ > 1, there exists γ′ > 1 so that

(2.3)
⋃

z∈Γγ(ξ)

D(z, δ) ⊂ Γγ′(ξ).

We will write Γ̃(ξ) to indicate this change of aperture. If I(z) = {ξ ∈ Sn : z ∈
Γ(ξ)}, then σ(I(z)) � (1− |z|2)n, and it follows from Fubini’s theorem that, for
a positive measurable function ϕ, and a finite positive measure ν, one has

(2.4)

∫
Bn
ϕ(z)dν(z) �

∫
Sn

(∫
Γ(ξ)

ϕ(z)
dν(z)

(1− |z|2)n

)
dσ(ξ).

This fact will be used repeatedly throughout the paper.

Let us recall the following Littlewood-Paley identity, which can be found in
[20].

Theorem A. Suppose 0 < p <∞. Then

‖f − f(0)‖pHp =
p2

2n

∫
Bn
|Rf(z)|2|f(z)− f(0)|p−2|z|−2n log

1

|z|
dv(z)

for all f ∈ Hp. In particular, if f(0) = 0,

‖f‖pHp �
∫
Bn
|Rf(z)|2|f(z)|p−2(1− |z|2)dv(z).

The next estimate is the Calderón’s area theorem [2, 12]. The variant we will
use can be found in [1] or in [15].

Theorem B. Let 0 < p <∞. If f ∈ H(Bn) and f(0) = 0, then

‖f‖pHp �
∫
Sn

(∫
Γ(ξ)

|Rf(z)|2(1− |z|2)1−ndv(z)

)p/2
dσ(ξ).

We will also need the following result essentially due to Luecking [11] (see also
[15]) describing those positive Borel measures for which the embedding from Hp

into Ls(µ) is bounded when s < p.
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Theorem C. Let 0 < s < p < ∞ and let µ be a positive Borel measure on Bn.
Then the identity Id : Hp → Ls(µ) is bounded if and only if the function defined
on Sn by

µ̃(ξ) =

∫
Γ(ξ)

(1− |z|2)−ndµ(z)

belongs to Lp/(p−s)(Sn). Moreover, one has ‖Id‖Hp→Ls(µ) � ‖µ̃‖1/s

Lp/(p−s)(Sn)
.

3. Compactness

In this section, we will prove Theorem 1.1. We need the following two lemmas
first.

Lemma 3.1. If µ is a vanishing Carleson measure, then

lim
r→1−

‖χ(rBn)cµ‖CM = 0,

where (rBn)c = Bn \ rBn, and χ(rBn)c is the characteristic function of the set
(rBn)c.

Proof. Since ‖χ(rBn)cµ‖CM � supa∈Bn
∫

(rBn)c
(1−|a|2)n

|1−〈z,a〉|2ndµ(z), it is sufficient to show

that

lim
r→1−

sup
a∈Bn

∫
(rBn)c

(1− |a|2)n

|1− 〈z, a〉|2n
dµ(z) = 0.

We complete the proof by contradiction. Suppose that

lim
r→1−

sup
a∈Bn

∫
(rBn)c

(1− |a|2)n

|1− 〈z, a〉|2n
dµ(z) 6= 0,

and then there exist ε0 > 0, an increasing sequence of positive numbers {rk},
rk → 1−, and {ak} ⊂ Bn, such that

(3.1)

∫
Bn

(1− |ak|2)nχ(rkBn)c(z)

|1− 〈ak, z〉|2n
dµ(z) ≥ ε0, ∀k ≥ 1.

There are two possibilities about the sequence {ak}: |ak| → 1− and |ak|9 1−.
If |ak| → 1−, then by (2.2) we have∫

Bn

(1− |ak|2)nχ(rkBn)c(z)

|1− 〈ak, z〉|2n
dµ(z) ≤

∫
Bn

(1− |ak|2)n

|1− 〈ak, z〉|2n
dµ(z)→ 0

as k → ∞. This is contradictory with (3.1). If |ak| 9 1−, there are a point
a0 ∈ Bn and a subsequence of {ak} converging to a0. Without loss of generality,

we assume ak → a0, then there exists δ0 > 0 such that B(a0, δ0) = {z : |z− a0| ≤
δ0} ⊂ Bn and ak ∈ B(a0, δ0) if k is large enough. Therefore, we have

(1− |ak|2)nχ(rkBn)c(z)

|1− 〈ak, z〉|2n
≤ 1

[1− (|a0|+ δ0)]2n
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for all z ∈ Bn whenever k is large enough, and it is clear that
(1−|ak|2)nχ(rkBn)c (z)

|1−〈ak,z〉|2n
→

0 for all z ∈ Bn. Then we get

lim
k→∞

∫
Bn

(1− |ak|2)nχ(rkBn)c(z)

|1− 〈ak, z〉|2n
dµ(z) = 0

by dominated convergence theorem since µ is a vanishing Carleson measure (in
particular, µ is finite). This, again, is contradictory with (3.1). Thus the proof
is finished. �

Lemma 3.2. Let 0 < p < ∞, β ≥ 0 and Z = {ak} be a δ-lattice. Suppose
f ∈ H(Bn) and

∫
Sn supz∈Γ(ξ) |f(z)|p(1− |z|2)βdσ(ξ) <∞. If

(3.2) lim
r→1−

∫
Sn

sup
ak∈Γ(ξ)∩{|w|≥r}

|f(ak)|p(1− |ak|2)βdσ(ξ) = 0

whenever δ > 0 is small enough, then

lim
r→1−

∫
Sn

sup
z∈Γ(ξ)∩{|w|≥r}

|f(z)|p(1− |z|2)βdσ(ξ) = 0.

Proof. Given ε > 0, choose δ > 0 small enough so that δp < ε. Fix this δ, and let

r̃ = inf{|ak| : ak ∈ Z, ak ∈ D(z, δ) for some |z| ≥ r}.
By the same method as in the proof of [13, Lemma 3], we have

sup
z∈Γ(ξ)∩{|w|≥r}

|f(z)|p(1− |z|2)β

. δp sup
z∈˜̃Γ(ξ)

|f(z)|p(1− |z|2)β + sup
ak∈Γ̃(ξ)∩{|w|≥r̃}

|f(ak)|p(1− |ak|2)β.

Integrating over Sn yields∫
Sn

sup
z∈Γ(ξ)∩{|w|≥r}

|f(z)|p(1− |z|2)βdσ(ξ)

. δp
∫
Sn

sup
z∈˜̃Γ(ξ)

|f(z)|p(1− |z|2)βdσ(ξ) +

∫
Sn

sup
ak∈Γ̃(ξ)∩{|w|≥r̃}

|f(ak)|p(1− |ak|2)βdσ(ξ)

. ε+

∫
Sn

sup
ak∈Γ(ξ)∩{|w|≥r̃}

|f(ak)|p(1− |ak|2)βdσ(ξ).

It is easy to see r̃ → 1− as r → 1−. Combining the above estimate with (3.2), we
get

lim sup
r→1−

∫
Sn

sup
z∈Γ(ξ)∩{|w|≥r}

|f(z)|p(1− |z|2)βdσ(ξ) . ε.

The proof is finished since ε > 0 is arbitrary. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We only prove (2) and the necessary part of (4). The rest
parts can be proved by standard modifications of the corresponding parts in [13]
and so are omitted. Fix 0 < ε < 1.



INTEGRATION OPERATORS FROM BERGMAN TO HARDY SPACES 9

(2) For any f ∈ Apα, consider the measure dµf,b(z) = |f(z)|2|Rb(z)|2dv1(z).
Then

(3.3) ‖Jbf‖pHp �
∫
Sn
µ̃f,b(ξ)

p/2dσ(ξ)

by Theorem B. For the sake of simplicity, we denote

dµb(z) = |Rb(z)|
2p
p−2 (1− |z|2)

p−2α
p−2 dv(z).

We first consider the sufficiency part. Suppose µb is a vanishing Carleson
measure and {fk} is a bounded sequence in Apα converging to 0 uniformly on
compact subsets of Bn. We need to show ‖Jbfk‖Hp → 0. For any h ∈ Hp/(p−2),
by Hölder’s inequality and the fact that µb is a (vanishing) Carleson measure we
have that∫

Bn
|h(z)|dµfk,b(z)

=

(∫
rBn

+

∫
(rBn)c

)
|h(z)||fk(z)|2|Rb(z)|2dv1(z)

. ‖h‖
H

p
p−2
·
(∫

rBn
|fk(z)|pdvα(z)

) 2
p

+ ‖h‖
H

p
p−2
· ‖χ(rBn)cµb‖

p−2
p

CM .

Since µb is a vanishing Carleson measure, there exists r0 (0 < r0 < 1) such that

‖χ(r0Bn)cµb‖
p−2
p

CM < ε

by Lemma 3.1. Fix this r0, we have

(∫
r0Bn |fk(z)|pdvα(z)

)2/p

< ε when k is large

enough since fk → 0 uniformly on r0Bn. Thus

(3.4)

∫
Bn
|h(z)|dµfk,b(z) . ε‖h‖

H
p
p−2

when k is large enough. Denote by Idk : Hp/(p−2) → L1(dµfk,b) the embedding
operator, and then we get limk→∞ ‖Idk‖Hp/(p−2)→L1(dµfk,b)

= 0 by (3.4). Therefore,

by Theorem C, we have∫
Sn
µ̃fk,b(ξ)

p/2dσ(ξ) � ‖Idk‖
p/2

Hp/(p−2)→L1(dµfk,b)
→ 0.

Thus

‖Jbfk‖pHp �
∫
Sn
µ̃fk,b(ξ)

p/2dσ(ξ)→ 0

by (3.3) and the proof of the sufficiency is complete.
Next we consider the necessity part. Assume that Jb : Apα → Hp is compact.

Then for any f ∈ Apα, by (3.3), we have∫
Sn
µ̃f,b(ξ)

p/2dσ(ξ) � ‖Jbf‖pHp <∞.
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We see that the measure µf,b satisfies the conditions of Theorem C for parameters
1 and p

p−2
, and this implies Idf : Hp/(p−2) → L1(dµf,b) is compact. Moreover, for

any h ∈ Hp/(p−2), ∫
Bn
|h(z)|dµf,b(z) . ‖Jbf‖2

Hp · ‖h‖
H

p
p−2

.

Let BApα = {f ∈ Apα : ‖f‖Apα ≤ 1} be the closed unit ball of Apα, then Jb(BApα)
is relatively compact in Hp. We can find f1, · · · , fm ∈ BApα , such that for any
f ∈ BApα , there are some j ∈ {1, 2, · · · ,m} with

‖Jbf − Jbfj‖Hp < ε.

Suppose {hk} ⊂ Hp/(p−2) is a bounded sequence converging to zero uniformly
on compact subsets of Bn. Since Idf : Hp/(p−2) → L1(dµf,b) is compact for any
f ∈ Apα, then for every j ∈ {1, · · · ,m}, there is Kj > 0 such that k > Kj implies∫

Bn
|hk(z)|dµfj ,b(z) < ε2.

Define dνhk,b(z) = |hk(z)||Rb(z)|2dv1(z). We now suppose f ∈ BApα and k > K :=
max{K1, · · · , Km}, then there is j ∈ {1, · · · ,m} such that(∫

Bn
|f(z)|2dνhk,b(z)

)1/2

≤
(∫

Bn
|f(z)− fj(z)|2dνhk,b(z)

)1/2

+

(∫
Bn
|fj(z)|2dνhk,b(z)

)1/2

=

(∫
Bn
|hk(z)|dµf−fj ,b(z)

)1/2

+

(∫
Bn
|hk(z)|dµfj ,b(z)

)1/2

. ‖Jb(f − fj)‖Hp · ‖hk‖1/2

Hp/(p−2) +

(∫
Bn
|hk(z)|dµfj ,b(z)

)1/2

. ε.

This implies that the embeddings Idk : Apα → L2(dνhk,b) are bounded and

lim
k→∞
‖Idk‖Apα→L2(dνhk,b)

= 0.

Therefore, since p > 2, by [19, Theorem 54], we have for any δ > 0 and k ≥ 1,

ν̂hk,b(z) :=
νhk,b(D(z, δ))

(1− |z|2)n+1+α
∈ Lp/(p−2)(Bn, dvα)

and

(3.5) ‖ν̂hk,b‖Lp/(p−2)(dvα) . ‖Idk‖2
Apα→L2(dνhk,b)

.

By subharmonic property, we have

(3.6) νhk,b(D(z, δ)) & |hk(z)||Rb(z)|2(1− |z|2)n+2.
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It follows from (3.5) and (3.6) that∫
Bn
|hk(z)|

p
p−2 |Rb(z)|

2p
p−2 (1− |z|2)

p−2α
p−2 dv(z) . ‖Idk‖

2p
p−2

Apα→L2(dνhk,b)
.

Therefore, we have

lim
k→∞

∫
Bn
|hk(z)|

p
p−2dµb(z) = 0.

This implies that Id : Hp/(p−2) → Lp/(p−2)(dµb) is compact. Consequently, µb is a
vanishing Carleson measure.

(4) Let

Vb,r(ξ) = sup
z∈Γ(ξ)∩{|z|≥r}

|Rb(z)|(1− |z|2)
p−1−α

p .

Suppose that Jb : Apα → Hq is compact, and then it follows from [13, Theorem
1] that Vb,0 ∈ Lpq/(p−q)(Sn). We want to show that

(3.7) lim
r→1−

‖Vb,r‖Lpq/(p−q)(Sn) = 0.

If p−1−α < 0, then Vb,0 ∈ Lpq/(p−q)(Sn) implies b is constant. So (3.7) is obvious.
We now assume that p− 1− α ≥ 0. By Lemma 3.2, we only need to prove that

ξ 7→ sup
ak∈Γ(ξ)∩{|z|≥r}

|Rb(ak)|q(1− |ak|2)
q
p

(p−1−α)

converges to zero in Lp/(p−q)(Sn) as r → 1−, where Z = {ak} is a δ-lattice with δ
small enough.

Let BT pp (Z) = {c ∈ T pp (Z) : ‖c‖T pp (Z) ≤ 1} be the closed unit ball of T pp (Z). For
any c = {ck} ∈ BT pp (Z), define

S(c)(z) =
∑
k

(1− |ak|2)n/pckgk(z), z ∈ Bn,

where

gk(z) =
(1− |ak|2)b−(n+1+α)/p

(1− 〈z, ak〉)b

with b > nmax{1, 1/p}+ (α+ 1)/p. Then we have S(c) ∈ Apα with ‖S(c)‖Apα . 1
for any c ∈ BT pp (Z) by [20, Theorem 2.30].

Since Jb : Apα → Hq is compact, the set Jb ◦ S(BT pp (Z)) is relatively compact in
Hq. We can choose 0 < r0 < 1 such that∫

Sn

(∫
Γ(ξ)∩{|z|≥r0}

|Rb(z)|2|S(c)(z)|2(1− |z|2)1−ndv(z)

)q/2
dσ(ξ) . εq

for any c ∈ BT pp (Z). That is,∫
Sn

(∫
Γ(ξ)∩{|z|≥r0}

∣∣∣∣Rb(z)
∑
k

(1− |ak|2)n/pckgk(z)

∣∣∣∣2dv1−n(z)

)q/2
dσ(ξ) . εq.
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By a same process as in the proof of [13, Theorem 7], we can establish∫
Sn

( ∑
ak∈Γ(ξ)∩{|z|≥r′0}

|ck|2|Rb(ak)|2(1− |ak|2)2−2(1+α)/p

)q/2
dσ(ξ) . εq,

where r′0 = inf{|ak| : D(ak, δ) ⊂ {|z| ≥ r0}}. Thus, for any c ∈ T pp (Z), we have∫
Sn

( ∑
ak∈Γ(ξ)∩{|z|≥r′0}

|ck|2|Rb(ak)|2(1− |ak|2)2−2(1+α)/p

)q/2
dσ(ξ)

. εq‖c‖q
T pp (Z)

.

(3.8)

Using the dual and factorization of sequence tent spaces (see the proof of Theorem
7 and Theorem 8 in [13]), by (3.8), we get

ξ 7→ sup
ak∈Γ(ξ)∩{|z|≥r}

|Rb(ak)|q(1− |ak|2)
q
p

(p−1−α)

converges to zero in Lp/(p−q)(Sn) as r → 1− and then the necessity part holds.
The proof of Theorem 1.1 is now finished. �

As mentioned in Introduction, here we give an example indicating that the
integration operator Jb : Apα → Hq may be not compact for some polynomials b
and some parameters p, q and α. For simplicity, we consider the case n = 1. Let
b(z) = z and

ek(z) =

√
(k + 1)(k + 2)

2
zk.

Then ‖ek‖A2
1

= 1 and ek → 0 weakly in A2
1. By an elementary calculation, we get

Jbek(z) =

∫ z

0

ek(ζ)b′(ζ)dζ =

√
k + 2

2(k + 1)
zk+1.

Thus

‖Jbek‖Hq = sup
0<r<1

(∫
S1
|Jbek(rξ)|qdσ(ξ)

)1/q

=

√
k + 2

2(k + 1)
→ 1√

2

as k → ∞. Consequently, Jb : A2
1 → Hq is not compact for any 0 < q < ∞.

However, if 0 < q < 2, it is easy to see that b(z) = z satisfies the integrable
condition in [13, Theorem 1(4)]. That is, Jb : A2

1 → Hq is bounded if 0 < q < 2.
Therefore, the boundedness and compactness of Jb are not equivalent for 0 < q <
p ≤ 2. This is in sharp contrast with the classical case where the boundedness
and the compactness of Jb : Hp → Hq (or Jb : Apα → Aqβ) are always equivalent
for any 0 < q < p <∞.
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4. Essential norms

In order to estimate the essential norm of Jb : Apα → Hq, we need some auxiliary
results.

For γ ≥ 0, let Bγ be the γ-Bloch space, that is, the space of holomorphic
functions b ∈ H(Bn) such that

‖b‖Bγ := sup
z∈Bn
|Rb(z)|(1− |z|2)γ <∞.

It becomes a Banach space provided that we identify functions that differ by a
constant. Let Bγ,0 be the closed subspace of Bγ consisting of functions b ∈ H(Bn)
such that

lim
|z|→1−

|Rb(z)|(1− |z|2)γ = 0.

We have the following distance formula for the space Bγ.

Lemma 4.1. Let γ ≥ 0 and b ∈ Bγ. Then

dist(b,Bγ,0) � lim sup
|z|→1−

|Rb(z)|(1− |z|2)γ.

Proof. If γ = 0, by maximum modulus principle, we have

dist(b,B0,0) = ‖b‖B0 = sup
z∈Bn
|Rb(z)| = lim sup

|z|→1−
|Rb(z)|.

We now assume γ > 0. The lower estimate can be easily deduced by triangle
inequality. We consider the upper estimate. It is clear that br ∈ Bγ,0 for any
0 < r < 1. Here, br(z) = b(rz). Hence, for any 0 < δ < 1,

dist(b,Bγ,0) ≤ lim sup
r→1−

‖b− br‖Bγ

≤ lim sup
r→1−

sup
|z|≤δ
|Rb(z)−Rb(rz)|(1− |z|2)γ+

lim sup
r→1−

sup
|z|>δ
|Rb(z)−Rb(rz)|(1− |z|2)γ

≤ sup
|z|>δ
|Rb(z)|(1− |z|2)γ + lim sup

r→1−
sup
|z|>δ
|Rb(rz)|(1− |z|2)γ.

Let δ → 1−, and we get

dist(b,Bγ,0) . lim sup
|z|→1−

|Rb(z)|(1− |z|2)γ,

which completes the lemma. �

Given 1 ≤ p <∞ and γ > −1, let CMp
γ be the space of holomorphic functions

b ∈ H(Bn) such that

dµb,p,γ(z) = |Rb(z)|p(1− |z|2)γdv(z)

is a Carleson measure, and define

‖b‖CMp
γ

= ‖µb,p,γ‖
1
p

CM .
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We also define the space CMp
γ,0 to be the subspace of CMp

γ consisting of b ∈ H(Bn)
such that µb,p,γ is a vanishing Carleson measure. We have the following distance
formulas for the space CMp

γ. Here we denote Q(0) = Bn and for a ∈ Bn\{0},

Q(a) = {z ∈ Bn : |1− 〈z, a
|a|
〉| < 1− |a|2}.

Lemma 4.2. Let 1 ≤ p <∞, γ > −1 and b ∈ CMp
γ. Then

dist(b, CMp
γ,0) � lim sup

|a|→1−

(∫
Bn

(1− |a|2)n

|1− 〈z, a〉|2n
|Rb(z)|p(1− |z|2)γdv(z)

) 1
p

� lim sup
|a|→1−

(
1

(1− |a|2)n

∫
Q(a)

|Rb(z)|p(1− |z|2)γdv(z)

) 1
p

.

Proof. The lower estimate follows from triangle inequality. We deduce the upper
estimate. For any 0 < r < 1, it is easy to see br ∈ CMp

γ,0. Moreover, for any
0 < δ < 1,

sup
|a|≤δ

∫
Bn

(1− |a|2)n

|1− 〈z, a〉|2n
dµb−br,p,γ(z)

≤ 1

(1− δ)2n

∫
Bn
|Rb(z)−Rb(rz)|p(1− |z|2)γdv(z)→ 0

as r → 1−. Thus we have

dist(b, CMp
γ,0) ≤ lim sup

r→1−
‖b− br‖

1
p

CMp
γ

. lim sup
r→1−

sup
|a|>δ

(∫
Bn

(1− |a|2)n

|1− 〈z, a〉|2n
|Rb(z)−Rb(rz)|p(1− |z|2)γdv(z)

) 1
p

≤ sup
|a|>δ

(∫
Bn

(1− |a|2)n

|1− 〈z, a〉|2n
dµb,p,γ(z)

) 1
p

+

lim sup
r→1−

sup
|a|>δ

(∫
Bn

(1− |a|2)n

|1− 〈z, a〉|2n
dµbr,p,γ(z)

) 1
p

.

Let δ → 1−, and we get

dist(b, CMp
γ,0) . lim sup

|a|→1−

(∫
Bn

(1− |a|2)n

|1− 〈z, a〉|2n
dµb,p,γ(z)

) 1
p

,

which establishes the estimate

dist(b, CMp
γ,0) � lim sup

|a|→1−

(∫
Bn

(1− |a|2)n

|1− 〈z, a〉|2n
dµb,p,γ(z)

) 1
p

.

Noting that a positive Borel measure µ is a Carleson measure if and only if
µ(Q(a)) ≤ C(1− |a|2)n for all a ∈ Bn and some absolute constant C > 0, and

‖µ‖CM = sup
a∈Bn

µ(Q(a))

(1− |a|2)n
,
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the equivalent relation

dist(b, CMp
γ,0) � lim sup

|a|→1−

(
µb,p,γ(Q(a))

(1− |a|2)n

) 1
p

can be proven by similar methods. �

Remark 4.3. The spaces CMp
γ are closely related to the so-called Hardy-Carleson

type spaces CT q,α studied in [17]. In fact, we have b ∈ CMp
γ if and only if

Rb ∈ CT p,γ−n, and this relation also holds for the little versions of these spaces.
Therefore, the distance formulas similar to Lemma 4.2 can be obtained for CT q,α.
Let 1 ≤ q <∞, α > −n− 1 and b ∈ CT q,α. Then

dist(b, CT 0
q,α) � lim sup

|a|→1−

(∫
Bn

(1− |a|2)n

|1− 〈z, a〉|2n
|b(z)|q(1− |z|2)α+ndv(z)

) 1
q

� lim sup
|a|→1−

(
1

(1− |a|2)n

∫
Q(a)

|b(z)|q(1− |z|2)α+ndv(z)

) 1
q

.

In the rest part of this section, we agree that

fa(z) =
(1− |a|2)s−(n+1+α)/p

(1− 〈z, a〉)s

for sufficiently large s and a ∈ Bn. It is obvious that ‖fa‖Apα � 1 and fa → 0
uniformly on compact subsets of Bn as |a| → 1−. For any a ∈ Bn, let

S(a) = {ζ ∈ Sn : |1− 〈ζ, a〉| < (1− |a|2)1/3}.

Lemma 4.4. Let 0 < p ≤ q <∞, α > −1 and b ∈ H(Bn) such that Jb : Apα → Hq

is bounded. Then

lim
|a|→1

∫
Sn\S(a)

|Jbfa|qdσ = 0.

Proof. Let
√

63/8 < |a| < 1. We claim that

|1− 〈rζ, a〉| > 1

4
(1− |a|2)2/3

for any ζ ∈ Sn \ S(a) and 0 ≤ r ≤ 1. In fact, if 0 ≤ r ≤ 1− (1− |a|2)2/3, then

|1− 〈rζ, a〉| ≥ 1− r|〈ζ, a〉| ≥ (1− |a|2)2/3 >
1

4
(1− |a|2)2/3.

If 1− (1− |a|2)2/3 < r ≤ 1, then

|1− 〈rζ, a〉| ≥ r|1− 〈ζ, a〉| − (1− r)
≥ r(1− |a|2)1/3 − (1− |a|2)2/3

> (1− |a|2)1/3

(
1

2
− (1− |a|2)1/3

)
>

1

4
(1− |a|2)2/3.
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Consequently,

|fa(ζ)| = (1− |a|2)s−(n+1+α)/p

|1− 〈ζ, a〉|s
≤ 4s(1− |a|2)

s
3
−n+1+α

p

and

|Rfa(rζ)| = s|〈rζ, a〉|(1− |a|2)s−(n+1+α)/p

|1− 〈rζ, a〉|s+1
≤ 4ssr(1− |a|2)

s−2
3
−n+1+α

p

for any ζ ∈ Sn \ S(a) and 0 ≤ r ≤ 1. Therefore, for almost every ζ ∈ Sn \ S(a),
integration by parts yields

|Jbfa(ζ)|q . |fa(ζ)b(ζ)|q +

(∫ 1

0

|Rfa(tζ)||b(tζ)|dt
t

)q
. (1− |a|2)

q(s−2)
3
− (n+1+α)q

p

(
|b(ζ)|q +

(∫ 1

0

|b(tζ)|dt
)q)

.

Since Jb : Apα → Hq is bounded, we have

M := sup
z∈Bn
|Rb(z)|(1− |z|2)

n
q

+1−n+1+α
p <∞,

which implies that b belongs to the Bloch space since 0 < p ≤ q <∞ and α > −1,
and subsequently |b(z)| .M log 1

1−|z| for z ∈ Bn. Moreover, b = b(0) + Jb1 ∈ Hq.

Then, noting that s is large enough, we establish∫
Sn\S(a)

|Jbfa|qdσ . (1− |a|2)
q(s−2)

3
− (n+1+α)q

p

(∫
Sn
|b|qdσ +M q

(∫ 1

0

log
1

1− t
dt

)q)
= (1− |a|2)

q(s−2)
3
− (n+1+α)q

p (‖b‖qHq +M q)→ 0

as |a| → 1 . �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. (1) When n/q + 1 − (n + 1 + α)/p < 0, the boundedness
of Jb : Apα → Hq implies that b is a constant, and then there is nothing to prove.
Suppose now γ = n/q + 1− (n+ 1 + α)/p ≥ 0.

The upper estimate can be deduced easily by Theorem 1.1, [13, Theorem 4]
and Lemma 4.1. In fact, for any g ∈ Bγ,0, by Theorem 1.1, Jg : Apα → Hq is
compact. Therefore, by the norm estimate for Jb in [13, Theorem 4], we have

‖Jb‖e ≤ ‖Jb − Jg‖ � ‖b− g‖Bγ .

Since g ∈ Bγ,0 is arbitrary, the upper estimate follows from Lemma 4.1.
We now take care of the lower estimate. Suppose K : Apα → Hq is a compact

operator. It is easy to see
∫
S(a)
|Kfa|qdσ → 0 as |a| → 1. Hence we have

‖Jb −K‖ & lim sup
|a|→1−

‖(Jb −K)fa‖Hq

≥ lim sup
|a|→1−

(
min{1, 21− 1

q }
(∫

S(a)

|Jbfa|qdσ
)1/q

−
(∫

S(a)

|Kfa|dσ
)1/q)
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� lim sup
|a|→1−

(∫
S(a)

|Jbfa|qdσ
)1/q

= lim sup
|a|→1−

‖Jbfa‖Hq ,

where the last equality follows from Lemma 4.4. Since K : Apα → Hq is an
arbitrary compact operator, we obtain

(4.1) ‖Jb‖e & lim sup
|a|→1−

‖Jbfa‖Hq .

On the other hand, by the pointwise estimate for derivatives of Hardy space
functions, we have

(4.2)
|Rb(a)|

(1− |a|2)(n+1+α)/p
= |R(Jbfa)(a)| . ‖Jbfa‖Hq

(1− |a|2)1+n/q
.

Combining (4.1) and (4.2) gives the desired lower estimate.
(2) The boundedness of Jb : Apα → Hp implies that b is a constant if p−2α

p−2
≤ −1.

Suppose now p−2α
p−2

> −1. The upper estimate for ‖Jb‖e can be obtained by

Theorem 1.1, Lemma 4.2 and the norm estimate for Jb in [13, Theorem 5], which
completes the proof. �

5. Schatten(-Herz) classes and decay of singular values

5.1. Schatten class. Recall that A2
α is a reproducing kernel Hilbert space with

the reproducing kernel function given by

Kz(w) =
1

(1− 〈w, z〉)n+1+α
, z, w ∈ Bn

with norm ‖Kz‖A2
α

= Kz(z)1/2 = (1 − |z|2)−(n+1+α)/2. The normalized kernel

functions are denoted by kz = Kz
‖Kz‖A2

α

. We also need to introduce some “fractional

derivatives” of the kernel functions. For z, w ∈ Bn and t ≥ 0, define

Kt
z(w) =

1

(1− 〈w, z〉)n+1+α+t

and let ktz = Kt
z

‖Kt
z‖A2

α

.

The following lemma is a generalization of [21, Theorem 6.6], which can be
found in [14].

Lemma D. Let T : A2
α(Bn)→ A2

α(Bn) be a positive operator and t ≥ 0. Set

T̃ (t)(z) = 〈Tktz, ktz〉A2
α
, z ∈ Bn.

(a) For 0 < p ≤ 1, if T̃ (t) ∈ Lp(Bn, dλn), then T ∈ Sp(A2
α).

(b) For p ≥ 1, if T ∈ Sp(A2
α), then T̃ (t) ∈ Lp(Bn, dλn).

Proposition 5.1. Suppose 0 < p <∞, α > −1 and Jb ∈ Sp(A2
α, H

2), then

(5.1)

∫
Bn
|Rb(z)|p(1− |z|2)

p
2

(1−α)dλn(z) <∞.
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Proof. Since Jb is in Sp(A
2
α, H

2), the positive operator J∗b Jb belongs to Sp/2(A2
α).

We first consider the case p ≥ 2. By Lemma D, the fact J∗b Jb ∈ Sp/2(A2
α) implies

J̃∗b Jb := J̃∗b Jb
(0) is in Lp/2(Bn, dλn). However, by Theorem A and subharmonic

property of |Rb|2, we have

J̃∗b Jb(z) = 〈J∗b Jbkz, kz〉A2
α

= ‖Jbkz‖2
H2

�
∫
Bn
|kz(w)|2|Rb(w)|2(1− |w|2)dv(w)

&
1

(1− |z|2)n+α

∫
D(z,δ)

|Rb(w)|2dv(w)

& |Rb(z)|2(1− |z|2)1−α

(5.2)

for any z ∈ Bn. Thus, (5.1) follows.
We next consider the case 0 < p < 2. For any f, g ∈ A2

α, by Theorem A and
Fubini’s theorem, we have

〈J∗b Jbf, g〉A2
α

= 〈Jbf, Jbg〉H2

=
2

n

∫
Bn
f(z)g(z)|Rb(z)|2|z|−2n log

1

|z|
dv(z)

= 〈Tνbf, g〉A2
α
,

where dνb(z) = 2
n
|Rb(z)|2|z|−2n log 1

|z|dv(z). Therefore, we have Tνb = J∗b Jb is in

the Schatten class Sp/2(A2
α). Let {ak} be a δ-lattice and

ν̂b,δ(z) =
νb(D(z, δ))

vα(D(z, δ))
, z ∈ Bn,

then {ν̂b,δ(ak)} ∈ lp/2, see [22, Theorem 3]. It is well-known that vα(D(z, δ)) �
(1− |z|2)n+1+α. Consequently, by Hölder’s inequality, we have

∞ >
∑
k

(
ν̂b,δ(ak)

) p
2

�
∑
k

(
1

(1− |ak|2)n+1+α

∫
D(ak,δ)

|Rb(z)|2|z|−2n log
1

|z|
dv(z)

) p
2

�
∑
k

(∫
D(ak,δ)

|Rb(z)|2|z|−2n(1− |z|2)−α log
1

|z|
dλn(z)

) p
2

&
∑
k

∫
D(ak,δ)

|Rb(z)|p|z|−np(1− |z|2)−
α
2
p

(
log

1

|z|

) p
2

dλn(z)

&
∫
Bn
|Rb(z)|p(1− |z|2)

p
2

(1−α)dλn(z)

since p/2 < 1. Thus the proof is complete. �
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Proposition 5.2. Suppose α > −1, p ≥ 2 and∫
Bn
|Rb(z)|p(1− |z|2)

p
2

(1−α)dλn(z) <∞,

then Jb ∈ Sp(A2
α, H

2).

Proof. If p =∞, that is, supz∈Bn |Rb(z)|(1− |z|2)(1−α)/2 <∞, then Jb : A2
α → H2

is bounded and we have

‖Jb‖A2
α→H2 . sup

z∈Bn
|Rb(z)|(1− |z|2)(1−α)/2.

See [13, Theorem 1].
If p = 2, by (5.2), Fubini’s theorem and [20, Theorem 1.12], for the positive

operator J∗b Jb, we have

‖J∗b Jb‖S1 = tr(J∗b Jb) �
∫
Bn
J̃∗b Jb(z)dλn(z)

�
∫
Bn

∫
Bn
|Rb(w)|2 (1− |z|2)n+1+α(1− |w|2)

|1− 〈z, w〉|2(n+1+α)
dv(w)dλn(z)

=

∫
Bn
|Rb(w)|2(1− |w|2)

∫
Bn

(1− |z|2)α

|1− 〈z, w〉|2(n+1+α)
dv(z)dv(w)

.
∫
Bn
|Rb(w)|2(1− |w|2)−n−αdv(w)

=

∫
Bn
|Rb(z)|2(1− |z|2)1−αdλn(z) <∞.

Thus, by complex interpolation, for any 2 ≤ p <∞, Rb(z)(1−|z|2)(1−α)/2 belongs
to Lp(Bn, dλn) implies J∗b Jb ∈ Sp/2(A2

α), which is, Jb ∈ Sp(A2
α, H

2). The proof is
complete. �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. If p(1−α)/2 ≤ n, then it is sufficient to prove the necessity
part. In fact, due to Proposition 5.1, we have the integrable condition (5.1), which
implies that b is constant and gives the desired necessity.

If n ≥ 2 and p(1−α)/2 > n, then p > 4
1−α > 2 and the sufficiency part follows

from Proposition 5.2.
We now consider the sufficiency part in the case n = 1. We only need to prove∫

B1

|Rb(z)|p(1− |z|2)p(1−α)/2dλ1(z) <∞

implies J∗b Jb ∈ Sp/2(A2
α(B1)) when p(1− α)/2 > 1 and p < 2 by Proposition 5.2.

Choosing t > 0 large enough, we only need to prove ˜(J∗b Jb)
(t) ∈ Lp/2(B1, dλ1) by

Lemma D. By Theorem A we have

˜(J∗b Jb)
(t)(z) = 〈J∗b Jbktz, ktz〉A2

α
= ‖Jbktz‖2

H2

�
∫
Bn
|ktz(w)|2|Rb(w)|2(1− |w|2)dv(w)
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�
∫
Bn

|Rb(w)|2(1− |z|2)n+1+α+2t(1− |w|2)

|1− 〈z, w〉|2(n+1+α+t)
dv(w).

Thus we only need to show

I :=

∫
B1

(∫
B1

|Rb(w)|2(1− |w|2)

|1− 〈z, w〉|2(2+α+t)
dv(w)

)p/2
(1− |z|2)

p
2

(2+α+2t)−2dv(z) <∞.

Suppose that {aj} is a δ-lattice of the unit disk. Then by subharmonic property
and Hölder’s inequality we have(∫

B1

|Rb(w)|2(1− |w|2)

|1− 〈z, w〉|2(2+α+t)
dv(w)

)p/2
.

(∑
j

1− |aj|2

|1− 〈z, aj〉|2(2+α+t)

∫
D(aj ,δ)

(
1

(1− |w|2)2

∫
D(w,δ)

|Rb(u)|pdv(u)

) 2
p

dv(w)

) p
2

.

(∑
j

(1− |aj|2)3−4/p

|1− 〈z, aj〉|2(2+α+t)

(∫
D(aj ,2δ)

|Rb(u)|pdv(u)

)2/p)p/2
≤
∑
j

(1− |aj|2)3p/2−2

|1− 〈z, aj〉|p(2+α+t)

∫
D(aj ,2δ)

|Rb(u)|pdv(u)

.
∫
B1

|Rb(u)|p(1− |u|2)3p/2−2

|1− 〈z, u〉|p(2+α+t)
dv(u).

Since t > 0 is large enough, by Fubini’s theorem and [20, Theorem 1.12] we
establish

I .
∫
B1

|Rb(u)|p(1− |u|2)3p/2−2

∫
B1

(1− |z|2)
p
2

(2+α+2t)−2

|1− 〈z, u〉|p(2+α+t)
dv(z)dv(u)

.
∫
B1

|Rb(u)|p(1− |u|2)p(1−α)/2dλ1(u) <∞.

The necessary part for p(1 − α)/2 > n is a direct consequence of Proposition
5.1, which completes the proof. �

5.2. Schatten-Herz class. In order to characterize the membership in Schatten-
Herz classes of Jb : A2

α → H2, we use the following inner product of the Hardy
space H2:

〈f, g〉∗,H2 = f(0)g(0) +

∫
Bn
Rf(z)Rg(z)(1− |z|2)dv(z),

and let J∗b denote the Hilbert adjoint of Jb : A2
α → H2 with respect to the standard

inner product of A2
α and the inner product 〈·, ·〉∗,H2 of H2. It is easy to see

(5.3) J∗b Jb = Tνb ,

where dνb(z) = |Rb(z)|2(1− |z|2)dv(z).
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Proof of Theorem 1.4. Fix δ > 0 small enough. By [7, Theorem 4.1] and (5.3),
we have that Jb ∈ Sp,q(A2

α, H
2) if and only if

∞∑
k=0

(∫
Ak

ν̂b,δ(z)p/2dλn(z)

)q/p
<∞.

We now show that

(5.4)
∞∑
k=0

(∫
Ak

ν̂b,δ(z)p/2dλn(z)

)q/p
�
∫ 1

0

M q
p (Rb, r)(1− r)

q
2

(1−α)−n q
p
−1dr.

For simplicity, write rk = 1− 1
2k
, k = 0, 1, 2, · · · . For k ≥ 1, by the subharmonic

property of |Rb|2 and the monotonicity of Mp(Rb, r), we obtain∫
Ak

ν̂b,δ(z)p/2dλn(z) &
∫
Ak

|Rb(z)|p(1− |z|2)
p(1−α)

2 dλn(z)

& 2k(n+1− p(1−α)
2
−1)Mp

p (Rb, rk).

Therefore,
∞∑
k=0

(∫
Ak

ν̂b,δ(z)p/2dλn(z)

)q/p
&

∞∑
k=1

2
qk
p

(n− p(1−α)
2

)M q
p (Rb, rk)

&
∞∑
k=1

∫ rk

rk−1

M q
p (Rb, r)(1− r)

q
2

(1−α)−n q
p
−1dr

=

∫ 1

0

M q
p (Rb, r)(1− r)

q
2

(1−α)−n q
p
−1dr.

To prove the converse inequality, note that(∫
D(z,δ)

|Rb(w)|2dv(w)

)p/2
. (1− |z|2)(n+1)( p

2
−1)

∫
D(z,2δ)

|Rb(w)|pdv(w)

by subharmonic property and

Ãk =
⋃
z∈Ak

D(z, 2δ) ⊂ Ak−1 ∪ Ak ∪ Ak+1

for any k ≥ 0 since δ > 0 is small enough. Here A−1 = ∅. Then by Fubini’s
theorem we have∫

Ak

ν̂b,δ(z)p/2dv(z) .
∫
Ak

(1− |z|2)−p(n+α)/2

(∫
D(z,δ)

|Rb(w)|2dv(w)

)p/2
dv(z)

.
∫
Ak

(1− |z|2)
p
2

(1−α)−n−1

∫
D(z,2δ)

|Rb(w)|pdv(w)dv(z)

.
∫
Ãk

(1− |w|2)p(1−α)/2|Rb(w)|pdv(w),

which implies(∫
Ak

ν̂b,δ(z)p/2dλn(z)

)q/p
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.(1− rk)−q(n+1)/p

(∫
Ãk

(1− |w|2)p(1−α)/2|Rb(w)|pdv(w)

)q/p
.(1− rk)−q(n+1)/p

(∫ rk+2

rk−1

(1− r)p(1−α)/2Mp
p (Rb, r)dr

)q/p
.(1− rk)−n

q
p

+ q
2

(1−α)M q
p (Rb, rk+2)

for k ≥ 1. It is easy to see(∫
A0

ν̂b,δ(z)p/2dλn(z)

)q/p
.M q

p (Rb, r3).

Therefore,

∞∑
k=0

(∫
Ak

ν̂b,δ(z)p/2dλn(z)

)q/p
.

∞∑
k=1

(1− rk)−n
q
p

+ q
2

(1−α)M q
p (Rb, rk+2)

.
∞∑
k=1

∫ rk+3

rk+2

M q
p (Rb, r)(1− r)

q
2

(1−α)−n q
p
−1dr

≤
∫ 1

0

M q
p (Rb, r)(1− r)

q
2

(1−α)−n q
p
−1dr.

Hence (5.4) is established and Jb ∈ Sp,q(Apα, H2) if and only if

(5.5)

∫ 1

0

M q
p (Rb, r)(1− r)

q
2

(1−α)−n q
p
−1dr <∞.

Since (5.5) implies that b is a constant if p(1−α)/2 ≤ n, the proof is complete. �

5.3. Decay of singular values. In the rest part of this section, we consider
asymptotic property of singular values of Jb : A2

α → H2. Recall that, if H1 and
H2 are separable Hilbert spaces and T : H1 → H2 is a compact operator, then
the kth singular value sk(T ) of T is the square root of the kth eigenvalue of the
positive operator T ∗T if we rearrange the eigenvalues in nonincreasing order.

Let H be a separable Hilbert space and T be a compact operator on H, and
let h : R+ → R+ be a continuous increasing function such that h(0) = 0. We say
that T ∈ Sh(H) if there exists C > 0 such that∑

k

h(Csk(T )) <∞.

The class Sh(H) is a generalization of Schatten class, which was introduced in
[5].

If µ is a positive Borel measure on Bn, we use µ̃ denoting the Berezin transform
of µ, which is defined by

µ̃(z) = T̃µ(z) = 〈Tµkz, kz〉A2
α

=

∫
Bn
|kz(w)|2dµ(w), z ∈ Bn.
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Let {aj} be a δ-lattice and let µ̂δ denote the average function of µ, that is,

µ̂δ(z) =
µ(D(z, δ))

vα(D(z, δ))
, z ∈ Bn.

Then we have the following description of the membership in Sh(A
2
α) of Toeplitz

operators, which was proved in [5] in the setting of weighted Bergman spaces A2
ω

on a domain Ω ⊂ C for some more general weights ω.

Theorem 5.3. Let α > −1, µ be a positive Borel measure on Bn and h : R+ →
R+ be an increasing convex function. Then the following conditions are equiva-
lent.
(a) Tµ ∈ Sh(A2

α).
(b) There exists C1 > 0 such that∫

Bn
h(C1µ̃(z))dλn(z) <∞.

(c) There exists C2 > 0 such that∑
j

h(C2µ̂δ(aj)) <∞.

Recall that, J∗b Jb = Tνb on A2
α, where

dνb(z) =
2

n
|Rb(z)|2|z|−2n log

1

|z|
dv(z).

Therefore, we get

sk(Jb) =
√
sk(J∗b Jb) =

√
sk(Tνb).

By (5.2), we have

ν̃b(z) = T̃νb(z) = J̃∗b Jb(z) �
∫
Bn

|Rb(w)|2(1− |z|2)n+1+α(1− |w|2)

|1− 〈z, w〉|2(n+1+α)
dv(w).

It is easy to see

ν̂b,δ(aj) �
∫
D(aj ,δ)

|Rb(z)|2|z|−2n(1− |z|2)−α log
1

|z|
dλn(z)

�
∫
D(aj ,δ)

|Rb(z)|2(1− |z|2)1−αdλn(z)

if j is large. Thus, due to [5, Lemma 6.1] and Theorem 5.3, we have the following
result about the asymptotic behavior of the singular values of Jb : A2

α → H2.

Theorem 5.4. Suppose α > −1 and b ∈ H(Bn). Let η : [1,∞) → (0,∞) be a
decreasing convex function such that η(∞) = 0 and satisfy

η(x log x) � η(x), x→∞.

Define hη : R+ → R+ by hη(η
2(x)) = 1/x and let sk(Jb) denote the kth singular

value of Jb : A2
α → H2. Then the following conditions are equivalent.
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(a) sk(Jb) = O(η(k)).
(b) There exists C1 > 0 such that∫

Bn
hη

(
C1

∫
Bn

|Rb(w)|2(1− |z|2)n+1+α(1− |w|2)

|1− 〈z, w〉|2(n+1+α)
dv(w)

)
dλn(z) <∞.

(c) There exists C2 > 0 such that∑
j

hη

(
C2

∫
D(aj ,δ)

|Rb(z)|2(1− |z|2)1−αdλn(z)

)
<∞.

6. Concluding remarks

6.1. Schatten-Herz class of Toeplitz type operators on the Hardy space.
For a positive Borel measure µ on Bn, the Toeplitz type operator Qµ is defined
by

Qµf(z) =

∫
Bn

f(w)

(1− 〈z, w〉)n
dµ(w), z ∈ Bn.

The boundedness, compactness and membership in Schatten class of Qµ on Hardy
spaces were studied by Pau and Perälä in [16]. In particular, the Schatten class
of Qµ : H2 → H2 can be characterized as follows, which is a direct consequence
of [16, Theorem 10].

Theorem E. Let 0 < p < ∞ and µ be a positive Borel measure on Bn. Then
Qµ ∈ Sp(H2) if and only if µ̂δ ∈ Lp(Bn, dλn) for some (or any) δ > 0. Moreover,
‖Qµ‖Sp � ‖µ̂δ‖Lp(Bn,dλn). Here,

µ̂δ(z) =
µ(D(z, δ))

(1− |z|2)n
, z ∈ Bn.

Following [10], for 0 < p, q < ∞, we say Qµ is in the Schatten-Herz class
Sp,q(H

2) if each Qµχk is in Sp(H
2) and the sequence {‖Qµχk‖Sp}k≥0 is in lq. Using

Theorem E, and the same method as in the proof of [10, Theorem 4.2], we obtain
the following result characterizing the membership in Sp,q(H

2) of Toeplitz type
operator Qµ.

Theorem 6.1. Let 0 < p, q <∞ and µ be a positive Borel measure on Bn. Then
Qµ ∈ Sp,q(H2) if and only if

∞∑
k=0

(∫
Ak

µ̂δ(z)pdλn(z)

)q/p
<∞

for some (or any) δ > 0.

6.2. Volterra operators from Hardy to Bergman spaces. We consider the
operator Jb : Hp → Aqα for b ∈ H(Bn), 0 < p, q < ∞ and α > −1. The
boundedness of Jb : Hp → Aqα was mentioned in [13]. The compactness of Jb :
Hp → Aqα is trivial if we note that

‖Jbf‖qAqα � ‖R(Jbf)‖q
Aqα+q

�
∫
Bn
|f(z)|q|Rb(z)|q(1− |z|2)α+qdv(z)
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(see [20, Theorem 2.16]). Thus, the compactness of Jb : Hp → Aqα is equivalent
to the compactness of the embedding Id : Hp → Lq(dµb,q), where dµb,q(z) =
|Rb(z)|q(1− |z|2)α+qdv(z). More specifically, we have the following result.

Theorem 6.2. Let α > −1, 0 < p, q < ∞ and b ∈ H(Bn). Then the following
hold:

(1) For 0 < p <∞, Jb : Hp → Apα is compact if and only if

|Rb(z)|p(1− |z|2)α+pdv(z)

is a vanishing Carleson measure.
(2) For 0 < p < q <∞, Jb : Hp → Aqα is compact if and only if

lim
|z|→1−

Rb(z)(1− |z|2)1+n+1+α
q
−n
p = 0.

(3) For 0 < q < p <∞, Jb : Hp → Aqα is compact if and only if it is bounded,
which is equivalent to

ξ 7→
∫

Γ(ξ)

|Rb(z)|q(1− |z|2)α+q−ndv(z)

belongs to Lp/(p−q)(Sn).

Applying Theorem 6.2, Lemma 4.1, Lemma 4.2 and the norm estimates for
Jb : Hp → Aqα implied in [13, Theorem 10], we can obtain the following estimates
for the essential norm of Jb : Hp → Aqα. The proof is analogous to Theorem 1.2
and is left to the reader.

Theorem 6.3. Let 1 < p ≤ q <∞, α > −1 and b ∈ H(Bn) such that Jb : Hp →
Aqα is bounded.

(1) If 1 < p = q <∞, then

‖Jb‖e � lim sup
|a|→1−

(∫
Bn

(1− |a|2)n

|1− 〈z, a〉|2n
|Rb(z)|p(1− |z|2)p+αdv(z)

)1/p

.

(2) If 1 < p < q <∞, then

‖Jb‖e � lim sup
|a|→1−

|Rb(a)|(1− |a|2)1+n+1+α
q
−n
p .

In order to characterize the membership in Schatten classes of Jb : H2 → A2
α,

we consider the following inner product

〈f, g〉∗,A2
α

= f(0)g(0) +

∫
Bn
Rf(z)Rg(z)(1− |z|2)α+2dv(z)

of the Bergman space A2
α, and let J∗b denote the Hilbert adjoint of Jb : H2 → A2

α

with respect to the standard inner product of H2 and the inner product 〈·, ·〉∗,A2
α

of A2
α. Then for any f, g ∈ H2, we have

〈J∗b Jbf, g〉H2 = 〈Jbf, Jbg〉∗,A2
α

=

∫
Bn
f(z)g(z)|Rb(z)|2(1− |z|2)α+2dv(z)
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= 〈Qµb,2f, g〉H2 .

Thus we have J∗b Jb = Qµb,2 and Jb ∈ Sp(H2, A2
α) if and only if Qµb,2 ∈ Sp/2(H2).

More precisely, we have the following characterization of the membership in Schat-
ten classes of Jb : H2 → A2

α.

Theorem 6.4. Let α > −1, 0 < p < ∞ and b ∈ H(Bn). Then the following
hold:

(1) If n < p(3 + α)/2 <∞, then Jb belongs to Sp(H
2, A2

α) if and only if

(6.1)

∫
Bn
|Rb(z)|p(1− |z|2)

p
2

(3+α)dλn(z) <∞.

(2) If p(3 + α)/2 ≤ n, then Jb is in Sp(H
2, A2

α) if and only if b is constant.

Proof. Suppose Jb ∈ Sp(H
2, A2

α), then Qµb,2 ∈ Sp/2(H2). By [16, Theorem 10],
we have

Stµb,2(w) = (1− |w|2)n+t

∫
Bn

dµb,2(z)

|1− 〈w, z〉|2n+t

belongs to Lp/2(Bn, dλn) for some t > 0 large enough. By subharmonic property,
we get

Stµb,2(w) & |Rb(w)|2(1− |w|2)3+α.

Since the integrable condition (6.1) implies b is constant when p(3 +α)/2 ≤ n, it
completes the necessity.

We now consider the sufficiency part. In the case p ≥ 2, suppose {ak} is a
δ-lattice of the unit ball. Then we need to show∑

k

(
µb,2(D(ak, δ))

(1− |ak|2)n

)p/2
<∞

by [16, Theorem 10]. By Hölder’s inequality, we have∑
k

(
µb,2(D(ak, δ))

(1− |ak|2)n

)p/2
�
∑
k

(∫
D(ak,δ)

|Rb(z)|2(1− |z|2)α+3dλn(z)

)p/2
.
∑
k

∫
D(ak,δ)

|Rb(z)|p(1− |z|2)p(α+3)/2dλn(z)

.
∫
Bn
|Rb(z)|p(1− |z|2)p(α+3)/2dλn(z) <∞.

In the case 0 < p < 2, it is enough to prove that∫
Bn

(
(1− |w|2)n+t

∫
Bn

|Rb(z)|2(1− |z|2)α+2

|1− 〈w, z〉|2n+t
dv(z)

)p/2
dλn(w) <∞

for some t > 0 large enough by [16, Theorem 10]. This can be done by the same
method as in the proof of Theorem 1.3. Therefore, the proof is finished. �

For 0 < p, q < ∞, we say Jb is in Sp,q(H
2, A2

α) if J∗b Jb ∈ S p
2
, q
2
(H2). Using

Theorem 6.1, we have the following result. The proof is the same as the proof of
Theorem 1.4 and so is omitted.
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Theorem 6.5. Let α > −1, 0 < p, q < ∞ and b ∈ H(Bn). Then the following
hold:

(1) If n < p(3 + α)/2 <∞, then Jb belongs to Sp,q(H
2, A2

α) if and only if∫ 1

0

M q
p (Rb, r)(1− r)

q
2

(3+α)− q
p
n−1dr <∞.

(2) If p(3 + α)/2 ≤ n, then Jb is in Sp,q(H
2, A2

α) if and only if b is constant.

6.3. Volterra companion integration operators. It is also interesting to s-
tudy the Volterra companion integration operator Ib, which is defined by

Ibf(z) =

∫ 1

0

Rf(tz)b(tz)
dt

t
, z ∈ Bn

for b, f ∈ H(Bn). The operator Ib is closely related to Volterra operator Jb as
follows:

Ibf + Jbf = Mbf − f(0)b(0),

and has been studied between various spaces of holomorphic functions, where
Mbf = bf is the multiplication operator induced by b. We consider the bound-
edness and compactness of Ib : Apα → Hq and Ib : Hp → Aqα here.

Noting that R(Ibf)(z) = Rf(z)b(z) for any z ∈ Bn, by [20, Theorem 2.16], we
have

‖Ibf‖qAqα � ‖R(Ibf)‖q
Aqα+q

�
∫
Bn
|Rf(z)|q|b(z)|q(1− |z|2)α+qdv(z).

Thus, the boundedness (resp. compactness) of Ib : Hp → Aqα is equivalent to
the boundedness (resp. compactness) of the embedding derivative R : Hp →
Lq(dνb,q), where dνb,q(z) = |b(z)|q(1− |z|2)α+qdv(z).

We next consider the boundedness and compactness of Ib : Apα → Hq. Using
the standard pointwise estimate for the derivative of Hardy space functions Ibfz,
where

fz(w) =
(1− |z|2)s−(n+1+α)/p

(1− 〈w, z〉)s
, z, w ∈ Bn

for large s, we can get the following necessary condition for Ib : Apα → Hq to be
bounded.

Proposition 6.6. Let 0 < p, q < ∞ and α > −1. If Ib : Apα → Hq is bounded,
then

sup
z∈Bn
|b(z)|(1− |z|2)

n
q
−n+1+α

p <∞.

By Proposition 6.6, if p < (1+ 1+α
n

)q and Ib : Apα → Hq is bounded, then b = 0.

In the case p ≥ (1+ 1+α
n

)q, by the similar methods as in the proof of Jb : Apα → Hq

when p > q, we can get the following result.

Theorem 6.7. Let α > −1, 0 < p, q < ∞ and b ∈ (Bn). Then the following
hold:

(1) If p < (1 + 1+α
n

)q or (1 + 1+α
n

)q ≤ p ≤ 2, then Ib : Apα → Hq is bounded if
and only if b = 0.
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(2) If p ≥ (1 + 1+α
n

)q and p > 2, then Ib : Apα → Hq is bounded if and only if
Ib : Apα → Hq is compact, which in turn is equivalent to

ξ 7→
(∫

Γ(ξ)

|b(z)|
2p
p−2 (1− |z|2)−

p+2α
p−2
−ndv(z)

) p−2
2p

belongs to L
pq
p−q (Sn).
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[6] L. Hörmander, Lp estimates for (pluri-)subharmonic functions, Math. Scand. 20 (1967),
65-78.

[7] Z. Hu and X. Tang, Schatten(-Herz) class extended Cesàro operators on Bergman spaces
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