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This project aims to study the ground state properties and excitations of self-bound quantum
droplets. The ground state is obtained by numerically solving the extended Gross-Pitaevskii equa-
tion, which takes into account quantum fluctuations. Then, using a Gaussian variational ansatz
for the ground state, we calculate the values of the number of particles for which the droplet is
metastable, obtaining results that agree with the numerical calculations. Furthermore, to study the
excited states, we use the Bogoliubov-de Gennes approximation. This approximation assumes small
oscillations of the wave function around the ground state. Once obtained the Bogoliubov equations,
we solve them numerically to analyze the first excited state, the breathing mode. The results show
that it is a bulk mode since the perturbation starts at the core of the droplet.

I. INTRODUCTION

At very low temperatures in the quantum regime,
bosonic atoms (with integer spin) obey the Bose-Einstein
statistics. When a gas of bosons is cooled down to tem-
peratures close to 0K, a new state of matter arises: a
Bose-Einstein condensate (BEC). It is characterized by
a macroscopic occupation of the lowest single-particle
state; atoms lose their individual identity and behave
coherently as a single “superatom”. The Bose-Einstein
condensation is a quantum phenomenon that was pre-
dicted in 1924 by A. Einstein and S. N. Bose, but it
wasn’t observed for the first time until 1995. The first
BEC was experimentally obtained by a research group
at JILA using rubidium atoms confined in an external
potential trap [1].

The reason why these experiments require low temper-
atures is the fact that, for a system to exhibit quantum
behavior, there has to be an overlap of the wave func-
tions of the atoms. In other words, the de Broglie wave-
length has to be larger than the interatomic distance. To
avoid recombination effects, the densities of these quan-
tum systems are very low, therefore, the interatomic dis-
tances are large and the temperature must also be very
low to obtain higher values of the de Broglie wavelength
λdB ∝ 1/

√
T .

Quantum droplets are small clusters of atoms that
are self-bound by the balance of attractive and repulsive
forces. In 2015, it was theoretically shown by Petrov [2]
that the inclusion of quantum fluctuations could stabilize
ultracold atomic gases from collapse, and that quantum
droplets could be self-bound and exist without external
confinement. A few years later, in 2018, the formation
of quantum liquid droplets in a mixture of BECs was
experimentally obtained [3].

The aim of this project is to study self-bound quantum
droplets, their ground state properties, and their excited
states through the Bogoliubov-de Gennes approximation.

II. SELF-BOUND QUANTUM DROPLETS

Quantum droplets are a self-bound state that stems
from a BEC with attractive mean-field interactions that
are balanced out by a repulsive beyond mean-field in-
teraction. This beyond mean-field contribution origi-
nates from quantum fluctuations and stabilizes the sys-
tem against the mean-field collapse, allowing it to ex-
ist without the presence of external trapping, i.e., self-
bound [4]. The first exact calculation of the quantum
fluctuations in bosonic atoms was carried out by T. Lee,
K. Huang, and C. Yang in 1957, hence this term being
referred to as the Lee-Huang-Yang (LHY) correction [5].
This beyond mean-field correction only depends on the
two-body scattering length and this is why it is consid-
ered a universal term [2].

Moreover, in order to enable the delicate aforemen-
tioned balance, the mean-field interactions have to be of
the same order of magnitude as the LHY term, and this
is achieved by having competing interactions within the
condensate. A one-component contact-interacting gas
cannot be stabilized because the interacting force is too
strong to be counterbalanced by quantum fluctuations.
On the contrary, a two-component system can be sta-
bilized since it has attractive and repulsive interaction
forces that almost completely cancel out each other, and
result in a small attractive mean-field force of the same
order of magnitude as the LHY term [3].

These competing interactions can arise from a Bose-
Bose contact-interacting mixture as mentioned before,
but also from a dipolar quantum gas that exhibits both
the contact interaction and the dipole-dipole interaction
between the atoms [6]. In this study, we will focus on the
case of Bose-Bose mixtures.

A. The extended Gross-Pitaevskii equation

Bose-Einstein condensates in the mean-field regime
are described by means of the time-dependent Gross-
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Pitaevskii equation (GPE):

iℏ∂tψ(r, t) =
[
−ℏ2∇2

2m
+ g|ψ(r, t)|2 + Vext(r)

]
ψ(r, t) .

(1)
where ψ(r, t) is the wave function of the BEC normal-
ized to the total number of atoms N . The first and sec-
ond terms of the equation are the kinetic energy and
the interaction energy of the system, respectively, where
g = 4πℏ2as/m with as the scattering length, and m the
atomic mass. The third term is the external confining
potential.

In a Bose-Bose mixture, the system is described by
two coupled GPEs, one for each component. However,
following Ref. [2], in the ground state and lowest-lying
energy states, we can neglect the relative motion between
the two components and consider a single-mode approx-
imation, ψi(r, t) =

√
n0i ϕ(r, t), where n

0
i is the equilib-

rium density of the ith component in the uniform case
(i = 1, 2).

After adding the dimensionless LHY correction
5/2 |ϕ|3−µ̃, setting the external trapping to zero Vext = 0,
and expressing the GPE in dimensionless form, it follows
the extended GPE [2]:

i∂t̃ϕ = (−∇2
r̃/2− 3|ϕ|2 + 5/2 |ϕ|3 − µ̃)ϕ , (2)

where r̃ = r/ξ, t̃ = t/τ , and µ̃ is the dimensionless chem-
ical potential. The length and time units, ξ and τ , are
defined as follows:

ξ =

√
3
√
g22/m1 +

√
g11/m2

2|δg|√g11 n01
, τ =

3
√
g11 +

√
g22

2|δg|√g11 n01
. (3)

The masses of the first and second components are de-
fined by m1 and m2, respectively. The intra- and inter-
species coupling constants are g11, g22 and g12; and |δg|
is defined as |δg| = g12 +

√
g11g22.

The ground state wave function, ϕ0, is obtained by
solving the time-independent extended GPE:(

−∇2
r̃/2− 3|ϕ0|2 + 5/2 |ϕ0|3

)
ϕ0 = µ̃ ϕ0 , (4)

where µ̃ can be obtained from the normalization con-
dition Ñ =

∫
dr̃ |ϕ0|2. Moreover, Ñ can be written in

terms of the number of particles of the i-component as
Ni = n0i ξ

3Ñ [2].

We have numerically solved the time-independent ex-
tended GPE (4), by using the imaginary time step
method [7], to obtain the ground state of a self-bound

spherical droplet for different values of Ñ .

In Fig. 1 we show the ground state wave function as
a function of the radial coordinate. The stable droplets
present a saturation density at the bulk region but only
for values of Ñ higher than a threshold. This will be
further investigated in the following section.

FIG. 1: Ground state wave function of a self-bound droplet
as a function of the radial coordinate r̃ for different values of
Ñ .

B. Ground state: Gaussian ansatz

It is not possible to obtain self-bound droplets for val-
ues of Ñ < 18.65, even numerically the program can’t
converge. Since we consider spherically symmetric quan-
tum droplets, we can use a Gaussian ansatz for the
ground state to further explore this limit [8]:

ϕ0(r) =

√
N

π3/4σ3/2
exp

[
− r2

2σ2

]
, (5)

where the width σ is the variational parameter, and N
and r correspond to the variables Ñ and r̃ described in
Sect. II. To simplify the notation, from now on, we will
use the dimensionless variables in section II without the
tilde symbol.
Let us consider first the general case of a system with

an external harmonic potential, with ω0 the dimension-
less trapping frequency. The energy of the droplet is:

ETOT =

∫ ∞

0

dr

[
ϕ∗0(r)

(
−1

r

∂ϕ0
∂r

− 1

2

∂2ϕ0
∂r2

)
+

+
1

2
ω2
0 r

2 ϕ20 −
3

2
|ϕ0|4 + |ϕ0|5

]
. (6)

Using the variational ansatz (5) in Eq. (6), it yields:

ETOT

N
= 4π

[
3

16πσ4
− 3N

√
2

32π5/2σ3
+

√
10N3/2

50π13/4σ9/2

]
+
3

4
ω2
0σ

2 .

(7)
By minimizing this energy we can obtain a relation be-
tween ω0, N , and the variational parameter σ:

ω2
0 =

1

σ4
− 3N

√
2

4π3/2σ5
+

3N3/2

(5/2)3/2π9/4σ13/2
. (8)
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For a given ω0 and N , the value of the variational pa-
rameter shall be obtained numerically.

For a self-bound quantum droplet, without trapping
potential ω0 = 0, there is a range for the number of atoms
where the system is metastable. Fig. 2 shows that this
range is given by N ∈ [Nc, Nm]. Nm is the value of N
where the global energy minimum becomes a local mini-
mum with positive energy. Particles can tunnel into free
space and ultimately reach zero energy at infinity. Nc is
the value of N where the minimum disappears. For val-
ues of N smaller than Nc, the kinetic energy per particle
becomes dominant in front of the mean-field and beyond-
mean-field energies, breaking the balance and provoking
instability [8]. The values for Nm and Nc can be obtained
analytically using the Gaussian ansatz, which provides a
good approximation with respect to the numerical values.

FIG. 2: Energy per particle as a function of σ when N = Nc

(blue line), N = Nm (black line), and N = 100 (red line) [8].

The lower threshold number Nc is given by
∂2(ETOT/N)/∂σ2 = 0. The calculation of this deriva-
tive, by using the expression in Eq. (8), leads to:

N1/2
c =

40σ3/2π3/4

29/2
√
10

. (9)

Given that σ ≈ 1.03 [8], it follows Nc = 19.62. The nu-
merical result is Nc = 18.65, which is close to the lowest

value of Ñ represented in Fig. 1. The upper threshold
Nm, can be calculated by imposing that the total en-
ergy is zero which leads to Nm = 24.03. However, the
Gaussian variational ansatz does not give a good approx-
imation of the density profile of the droplet, since it does
not predict the flat-top shape (saturation) of the droplet
for large particle numbers.

III. THE BOGOLIUBOV-DE GENNES
APPROXIMATION

The elementary excitations or normal modes of a self-
bound droplet can be obtained by linearizing the time-
dependent extended GPE (2). Within the Bogoliubov-de
Gennes approximation [9], we assume small oscillations
of the wave function around the stationary solution, ϕ0,
as:

ϕ(r, t) = [ϕ0(r) + δϕ(r, t)] e−iµt/ℏ , (10)

where µ is the chemical potential. Since we will focus on
excitations with an energy ℏω around the ground state,
we can write:

δϕ(r, t) = u(r) e−iωt + v∗(r) eiωt , (11)

where ω is the oscillation frequency, and u and v are
the components characterizing the Bogoliubov transfor-
mation. Notice that there is no loss of generality taking
the complex conjugate function v∗(r). Introducing this
ansatz in Eq. (2) and retaining terms up to first order
in u and v, we find three equations. The first one is the
extended GPE for the ground state wave function ϕ0,
Eq. (4), while u(r) and v(r) obey two coupled Bogoliubov
equations. Defining the normal mode as (u(r), v(r)),
these coupled equations allow us to find the eigenfrequen-
cies ω as the spectrum of excitations. It can be seen more
clearly when the Bogoliubov equations are written in the
matrix form:

(
−µ− 1

2∇
2 − 6ϕ20 +

25
4 ϕ

3
0 −3ϕ20 +

15
4 ϕ

3
0

−3ϕ20 +
15
4 ϕ

3
0 −µ− 1

2∇
2 − 6ϕ20 +

25
4 ϕ

3
0

)(
u(r)
v(r)

)
= ω

(
1 0
0 −1

)(
u(r)
v(r)

)
. (12)

All resulting frequencies must be real as can be seen by
taking the two Eqs. (12), denoting the upper one by
(12.1) and the lower one by (12.2), and performing the
following calculations: [u∗·(12.1)−v·(12.2)∗−u·(12.1)∗+
v∗·(12.2)]. This yields an expression that once integrated
on both sides gives place to [9]:

(ω − ω∗)

∫
dr

(
|u|2 − |v|2

)
= 0 , (13)

where the integral doesn’t vanish. Moreover, generalizing
the above procedure, it is straightforward to see that two
solutions with different frequencies, ωi ̸= ωj , fulfill (ωi −
ω∗
j )

∫
dr (u∗i uj − v∗i vj) = 0. Therefore, they must satisfy

the ortogonality relation
∫
dr (u∗i uj − v∗i vj) = 0.

Additionally, when a numerical solution of an oscilla-
tion frequency takes a complex value, the system presents
a dynamic instability [9]. This can be understood as fol-
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lows: if ω ∈ C, ω = ωR + i ωI with ωR, ωI ∈ R. Then

δϕ(r, t) = u(r) e−iωRt eωIt + v∗(r) eiωRte−ωIt .

This means that for large times, when t → ∞, the ex-
ponential eωIt → ∞ and δϕ diverges. The latter denotes
that the system becomes unstable.

The excited states can be better understood in the
second quantization formalism. Starting with the many-
body Hamiltonian for a weakly interacting BEC in second
quantization up to second-order terms on the creation
and annihilation operators,

H =
gN2

2V
+

∑
p

p2

2m
â†pâp +

+
1

2
gn

∑
p̸=0

[
2â†pâp + â†pâ

†
−p + âpâ−p +

mgn

p2

]
,(14)

where â†p and âp, are the creation and annihilation oper-
ators of a particle with momentum p, respectively. The
density is n = N/V , with N the number of particles and
V the volume.

The previous Bogoliubov equations can be obtained
from Eq. (14) by using the Bogoliubov transforma-
tions [10]:

âp =upb̂p + v∗−pb̂
†
−p (15)

â†p =u∗pb̂
†
p + v−pb̂−p . (16)

Writing the operators b̂†p and b̂p in terms of the afore-
mentioned creation and annihilation operators, the for-
mer turn out to be a superposition of the latter. In other

words, b̂†p and b̂p are a superposition of states with a
different number of particles, therefore, they are quasi-
particle operators.

More interestingly, the Hamiltonian can be expressed
in terms of these new operators in a much simpler and
intuitive way [10]:

H = E0 +
∑
p

ϵ(p) b̂†pb̂p (17)

E0 =
gN2

2V
+

1

2

∑
p̸=0

[ϵ(p)− gn− p2

2m
+
m(gn)2

p2
] , (18)

where E0 is the energy of the ground state, ϵ(p) =√
(vsp)2 + (p2/(2m))2 is the dispersion relation of the

elementary excitations of the system, and vs =
√
gn/m

is the speed of sound.
At zero temperature, all the bosons of a non-

interacting bosonic system (ideal Bose gas) occupy the
same single-particle state, and the BEC is formed by all
the particles. However, in a weakly interacting bosonic
system, the presence of interactions is responsible for a
small depletion of the condensate. This phenomenon is
called quantum depletion and produces a small reduc-
tion in the number of particles of the BEC. The chemical

potential, defined as follows, is responsible for this phe-
nomenon since it is the necessary energy for a particle to
escape the ground state of the condensate.

µ =
∂E0

∂N
= gn

(
1 +

32

3
√
π

√
na3s

)
. (19)

Since E0 includes the LHY correction, the above expres-
sion is the correction to the chemical potential of the
extended GPE.
The number of particles out of the condensate that are

at excited states can be calculated as [11]:

Np ≡ ⟨â†pâp⟩ =
∑
p̸=0

v2p . (20)

A. Numerical solution of the Bogoliubov equations

To facilitate the solving of the coupled Bogoliubov
equations (12), it is useful to write u(r) and v(r) in terms
of two auxiliary functions ψ±(r) = u(r)± v(r) [8].
Defining the ground state potential as Vgs(r) =(

−3ϕ20 +
5
2ϕ

3
0

)
and f(r) = 2

(
−3ϕ20 +

15
4 ϕ

3
0

)
, equations

(12) read:(
−1

2
∇2 + Vgs(r)− µ

)
ψ+(r) + f(r)ψ+(r) = ωψ−(r)

(21)(
−1

2
∇2 + Vgs(r)− µ

)
ψ−(r) = ωψ+(r) . (22)

These equations can be solved by expanding the auxiliary
functions in a new basis: ψ±(r) =

∑
α c

±
αψα. The basis

set can be obtained through:(
−1

2
∇2 + Vgs(r)

)
ψα = ϵαψα . (23)

Substituting the auxiliary wave functions with their re-
spective superposition in Eqs. (21) and (22), multiplying
by the complex conjugate of the basis wave functions, and
integrating in space leads to:

(ϵα − µ) c−α = ω c+α (24)

(ϵα − µ) c+α +
∑
β

c+α

∫
ψ∗
β f(r)ψα dr = ω c−α . (25)

Inserting Eq. (24) into (25) gives place to an algebraic
system of equations. Diagonalizing this system, we can
obtain the eigenvalues corresponding to ω2, being ω the
frequency of the excitations, and the eigenstates corre-
sponding to the coefficients c−α . The algebraic system
reads:

c−α (ϵα − µ)2 + (ϵα − µ)
∑
β

c−α

∫
ψ∗
β f(r)ψα dr = ω2c−α .

(26)
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The coefficients c+α can be obtained from Eq. (24).
Fig. 3 shows the results for the lowest monopole mode,

the breathing mode, which is the excitation with the low-
est energy with l = 0, being l the angular momentum of
the modes. The numerical result obtained, ω = 0.198, is
in perfect agreement with Refs. [2, 8].

FIG. 3: Reduced radial part of the Bogoliubov functions u(r)
and v(r) of the breathing mode for N = 10000.

There are two types of modes when it comes to the
excitations of the droplet: the bulk mode and the surface
mode. The bulk mode spreads through the whole droplet
while the surface mode only does so at the surface using
the surface tension to propagate [8]. In Fig. 3 it can be
seen that the breathing mode is a bulk mode because the
perturbation is present at the core of the droplet.

Furthermore, it is important to note that these discrete
modes only exist below the particle emission threshold
given by −µ [8].

When the excitation spectrum is located within the
continuum region (above the particle emission threshold),
the droplet experiences what is called a self-evaporation
process. During this process, the droplet loses atoms
that tunnel into the vacuum until its energy is below the
threshold and it can sustain the collective modes.

In addition, the droplet also experiences three-body
losses that continuously steer the system away from
equilibrium, ultimately leading to depletion. Gener-
ally, three-body losses are dominant in front of the self-

evaporation process at the initial stages of the evolution
of a quantum droplet. However, it was discovered that
there is a range of parameters for which the densities are
lower and, thus, the lifetime of the droplet is larger and
self-evaporation can take place [12].
Without the presence of three-body losses, the evo-

lution of a droplet gives place to two different scenar-
ios. When the energy is within the continuum region,
the droplet experiences self-evaporation and presents
damped oscillations (damped monopole mode). On the
contrary, if the droplet’s energy is below the parti-
cle emission threshold, it presents sinusoidal oscillations
given by the existence of the monopole mode [8].

IV. SUMMARY AND CONCLUSIONS

Self-bound droplets can be stabilized by a repulsive be-
yond mean-field correction, the LHY term, which stems
from quantum fluctuations and counterbalances the at-
tractive mean-field interaction forces of the droplet.
Moreover, given the spherical symmetry of the droplet,

we can consider the Gaussian ansatz approach for the
ground state. It can be used to calculate the range of
particle numbers within which the system is metastable,
but it does not give a good approximation of the density
profile because it doesn’t predict the flat-top shape of the
droplet for large particle numbers.
The excited states of the droplet can be studied

through the Bogoliubov-de Gennes approximation. The
Bogoliubov equations have been solved numerically to
study the first excited state with the lowest energy, the
breathing mode. As can be seen from the results, it is a
bulk mode since the perturbation starts at the center of
the droplet.
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