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Abstract: We use file compression techniques to characterize colloidal gelation. The colloidal
system is built through a diffusion-limited aggregation simulation, and at the gelation point, the
growing dynamics are changed to emulate the transition. We compress images of the system before
and after the gelation point. Using the computable information density (CID) we have been able to
ascribe a second-order character to the transition.

I. INTRODUCTION

File compression is a widely used technique for storing
information in an optimal way. There are multiple algo-
rithms that can compress files in a lossless way; the most
commonly used is the Lempel-Ziv algorithm [1]. It is the
default algorithm used by computers to create a .zip file.

The size of a compressed file is a measure of the infor-
mation that it contains [2]. Recent research has demon-
strated that it is possible to quantify the order of a system
using compression techniques [3]. These techniques are
beginning to be used to measure order in condensed mat-
ter and other systems that exhibit phase transitions in
and out of equilibrium, as they display a sudden change
in the order of a system. It is also possible to determine
the nature of phase transitions, the position of critical
points, and the critical exponents for both equilibrium
and non-equilibrium phase transitions using these tech-
niques [4], [5].

In this work we will use image compression techniques
to characterize colloidal gelation through a simple cellu-
lar automaton based in Diffusion-Limited Aggregation. If
the results are successful, these techniques could be used
in microscope images to quantify order in experimental
settings.

A. Colloidal gelation

A colloidal suspension is a solution of particles with
diameters between 1 nm and 1 µm suspended in a con-
tinuous phase. Some examples of colloidal suspensions
are blood, paints, ink or clays.

Colloid particles in dispersion exhibit Brownian mo-
tion. The balance between electrostatic repulsion and
attractive forces determines if the system is stable. The
attractive force is called long-range Van der Waals force
and occurs between any two particles of the same mate-
rial immersed in a solvent. In the case of colloidal parti-
cles, these dispersion forces are considered to be additive,
so that the interaction between two particles is estimated
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by summing the interactions between the atoms of each
particle. The resulting force has a much longer range
than the attractive force between individual atoms or
molecules. Besides, this forces are much more intense
than kBT [6]. In their presence, colloids can form aggre-
gates made of unbreakable bounds. Colloidal gels form
when the aggregates percolate through the system. Both
the aggregates and the gel at the percolation point have a
fractal-like geometry. The aggregation can be computa-
tionally simulated using a Diffusion-Limited Aggregation
process, a model first introduced by Witten and Sander
to represent growth in colloidal aggregates [7].

Colloidal gelation then refers to the transition between
the colloidal suspension phase and the gel phase and is
known to have traits of a second-order phase transition
[8]. Recall, however, that the gel is out of equilibrium; the
strong attractive forces prevent equilibrium into lower en-
ergy states [9]. Second-order phase transitions are char-
acterized by a continuous behavior of the first derivative
of the Gibbs function, but discontinuous second deriva-
tives. Therefore, when plotted versus control parameters,
enthalpy, entropy and volume change continuously, but
their slopes are different above and below the transition.
Colloidal gelation shares similarities with the glass tran-
sition, since the glass is also out of equilibrium. They
both are kinetic phase transitions [9].

Colloidal suspensions can exhibit a diverse range of
rheological properties: they can behave as simple viscous
fluids and as highly elastic pastes, with a wide range
of intermediate states. For this reason, they are widely
used in industry. The parameters that determine their
rheological behavior are the particle volume fraction, φ,
and the attractive potential energy between the particles,
U . Here we will focus on the case where U is large:
the attractions between particles will be intense enough
so they get attached when they get in touch, and once
they have been bonded, they can not get unbind. In this
case, a gel can be formed even at low φ [10]. There is a
critical volume fraction φc: for φ < φc the system is a
colloidal liquid, and for φ > φc, the suspension is solid-
like. Finally, when φ = φc, the system is a gel. Above
φc, the gel loses its fractal character at large scales. A
new length scale then emerges, ξ, such that at distances
r < ξ, the gel remains fractal, while at r > ξ, the system
appears homogeneous.
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B. Fractals under compression algorithms

Compression techniques aim to reduce the size of data
by identifying and eliminating redundancy and ineffi-
ciency in the data. They look for patterns in data (such
as duplicated chains) and represent it in a more compact
way. The Lempel-Ziv algorithm is a lossless compression
algorithm, meaning that no data is lost in the compres-
sion process: the compression process can be undone to
completely recover the original data, while lossy compres-
sion algorithms get better compression rates, the original
information can only be partially recovered.

The computable information density (CID) is defined
as the ratio of the length of the compressed data string
to the length of the original data string [3]. The relation-
ship between information and entropy is widely studied in
information theory: information can serve as an approxi-
mation for entropy, particularly in out-of-equilibrium sys-
tems, where it is difficult (or impossible) to define entropy
at a single instant in macroscopic terms. For long chains,
the CID is a good approximation for Shannon’s entropy,
H, which can be understood as the minimum number of
bits required to store an observation.

Fractals are self-similar, meaning that they are exactly
or approximately similar to a part of themselves. The
same structures and statistical properties are present at
different scales. M. Grasa began to study how image
compression techniques could characterize order in frac-
tal systems in her final degree work [11], where she shown
that the CID of some fractals decreased as the fractal
grew. This means that compression algorithms might be
able to capture the scale invariance of fractal geometry.
A side goal of this work is to determine if the Lempel-Ziv
compression algorithm is capable of capturing the scale
invariant order of fractals like colloidal gels.

II. DLA SIMULATION

Our approach to model the colloidal gelation consists
on a Diffusion-Limited Aggregation (DLA) simulation to
emulate fractal aggregation processes and a variant of
the regular DLA to emulate the aggregation of particles
once the gelation point has been surpassed. DLA simu-
lation, along with the Diffusion-Limited Cluster Aggre-
gation (DLCA) has been widely used to describe systems
that have fractal geometry [12]. DLA is suitable to de-
scribe the aggregation of any system that has diffusion
as the primary mean of transport.

The algorithm works as follows: a first particle is
placed in the center of the system, and then a second
particle is placed far enough from the first one and moves
following random walks until it touches the other parti-
cle. At that point, the second particle stops and sticks to
the first particle, and a third particle is introduced, fol-
lowing the same dynamics. This process is repeated until
the system is large enough to reach one of the walls, at
which point we consider that the system has percolated

and the gelation point has been reached. This process
can be visualized in Figs. 1a, 1b and 1c. Notice that
in a discrete device like a computer, we can’t simulate a
continuously moving particle. At every step of the ran-
dom walk the particle moves to an adjacent pixel (up,
down, left or right), chosen randomly. When the fractal
arrives to one of the walls, the dynamics of the aggrega-
tion are changed to simulate the phase transition. We
define the accessible area Ac by applying a Gaussian fil-
ter to blur the fractal; Ac contains the points that are
screened by the fractal and is delimited in Fig. 1c for
an example DLA cluster. Once Ac is obtained, a new
particle is introduced at any point, now within Ac, and
the particle is allowed to diffuse via random walks until
it founds the cluster, at which point it becomes stuck to
it. This process, that can be seen in Figs. 1f, 1g and 1h,
results in the filling of the fractal gaps, which tend to-
wards homogeneity as the number of particles increases.
During this process, the fractality is gradually lost: while
at short scales it preserves fractal order, at large scales
the fractal becomes homogeneous.

The images used in this work have a resolution of
200 × 200 pixels. To effectively introduce particles the
from infinity, during the growth process, we put them in
a randomly selected point on a circle of radius slightly
larger than the distance between the most external par-
ticle and the center of the system, that defines the radius
of the cluster. With this, the code is optimized and the
dynamics of the process do not change. In addition, to
further optimize the simulation, if a certain particle fol-
lows a trajectory that leads it at a distance that doubles
the radius of the cluster, it is eliminated and another
particle is introduced.

The fractal dimension measures the space-filling ca-
pacity of a system. Before the gelation point, while the
simulation is an ordinary DLA, the cluster radius of gyra-
tion, Rg, must scale with the cluster size as Rg ∝ N1/Df ,
where Df is the fractal dimension and N is the num-
ber of particles in the cluster. Therefore, the fractal
dimension can be computed by fitting Rg vs N to a
power law. Results can be seen in Figs. 1d and 1e,
where we show results for a particular DLA cluster. The
radius of gyration is computed during the fractal ag-
gregation and the power-law fit of the data results in
logRg = (0.569±0.014) logN− (0.282±0.004). We then
find Df = 1/(0.569± 0.014) = 1.75± 0.04.

We also compute Df using the box counting method.
This method involves covering the fractal with an grid
of a particular size and counting the number of boxes
needed to cover the set. The fractal dimension is cal-
culated varying the size of the grid and seeing how this
number changes. For the particular cluster we are study-
ing in Fig. 1, the fractal dimension obtained by the box
couting method is Df = 1.643 ± 0.004. As it can be
seen, the fractal dimensions calculated using these two
methods slightly vary for each fractal. On average, we
find Df = 1.65± 0.10, a range of values that agrees with
previous works on DLA clusters [13].
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(a) 380 particles (b) 1680 particles (c) 3775 particles. Ac is delimited.

(d) (e)

(f) 6290 particles (g) 8470 particles (h) 10670 particles

FIG. 1: (a), (b), (c): Frames of the system growth with DLA. The delimited region in (c), that coincides with the
gelation point, is the area Ac. It contains the regions near the fractal, and will be the area filled in the gel phase.

(d): Radius of gyration in front of the number of particles as the system grows. (e): Rg vs N , in log-log scale. The
adjust shown corresponds to logRg = (0.569± 0.014) logN − (0.282± 0.004). (f), (g), (h): Aggregation during the

gel phase: the dynamics of the growing process have changed and now the fractal is being filled.
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III. COMPRESSION PROCESS AND RESULTS

(a)

(b)

FIG. 2: Compression results. (a): Result of the image
compression process. The blue line marks the number
of particles necessary for the percolation, after which the
dynamics of the system are changed because of the phase
transition. (b): Result of the image compression process
with the random images.

During the evolution of the simulation, the configura-
tion of the system is saved as a .tiff image. Each particle
is represented by a white pixel, while the background is
black. As the size of the system is constant, all images
have the same weight because we are using an uncom-
pressed format. Then, images are compressed, so their
size in bytes is reduced. We define the sizes of the original
and compressed images (in bytes) as Cd and Ĉd, respec-
tively. Results of the compression of a single fractal, us-
ing images of the simulation taken every 100 aggregated
particles, are shown in Fig. 2a. It can be seen that as
N increases, the size of the compressed image also in-
creases. The blue line marks the gelation point, where
the dynamics for introducing particles on the simulation
change. The size of the image begins decreasing when
about half of Ac is filled. This point is indicated with a
red line. To check that the compression process has been
well-done, Fig. 2b shows the evolution of the compressed

size of a random configuration of points as N increases.
The result is symmetric as it should, because when half
of the system is filled with random white pixels, the roles
of the white and black pixels are exchanged.

To measure the CID of an image, two extra data sets of
the same size must be considered. The first is the size of a
compressed black image (C0), and the second is the size of
an image with the same number of particles but that are
randomly distributed [C1(N)]. The area of our system is
Ac, so the size of the black image must be normalized to
represent the background size of the actual image. We
define C

′

0 = C0
Ac

A . For the same reason, in the second
image, particles can only be placed inside Ac, as it is the
total area of our system. As it is a completely disordered
system, its CID is the maximum we can achieve with
a fixed number of particles. All in all, the CID of our
system is defined as:

CID(N) =
Ĉd(N)− C ′

0

C1(N)− C ′
0

(1)

FIG. 3: CID as a function of the number of particles.
There is a a clear slope change.

As previously mentioned, entropy is directly related to
the CID in the large system-size limit, so in this work we
will be able to measure it. Fig. 3 shows the CID against
N . As the system grows in the gel phase, the CID tends
to 1, indicating that at large φ, the system resembles the
random image with the same number of particles. When
the gelation point is reached, the CID is continuous but
has a pronounced change in slope. In order to study
this further, and as it is commonly done in the study of
critical phenomena, we define a new variable N̂ :

N̂ =
N

Ng
− 1 (2)

With Ng the number of particles in the cluster at the
gelation point. N̂ represents the relative distance to the
critical point. To study the phase transition, 5 indepen-
dent fractals have been generated. Results can be seen
in Fig. 4.
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At the gelation point (N̂ = 0) the CID is continuous,
but there is a clear change in its slope: this is consis-
tent with the behavior of a second-order phase transition,
where entropy is continuous but its derivative is not. As
can be seen in Fig. 4, the CID increases with N. This
indicates that the scale invariance is not accurately cap-
tured by the compression algorithm. This differs with
the results obtained for spatially ordered systems, where
eventually the CID decreases when N increases. This dif-
ference might perhaps be due to the fact that the fractal
is ultimately a spatially disordered system. Note, how-
ever, the CID is maintained under 1, indicating that some
pattern is effectively detected by the compression algo-
rithm.

FIG. 4: CID vs N̂ for 5 different fractals. Each color
represents one of the configurations. There is a clear
trend change in N̂ = 0, this is, the gelation point.

IV. CONCLUSIONS

� We have studied the use of image compression tech-
niques to characterize colloidal gelation. We used
a Diffusion-Limited Aggregation (DLA) simulation
to model the aggregation process and identified the
gelation point, where the growing dynamics are
changed to emulate the transition.

� We then compressed images of the system and used
the computable information density (CID) to find
that the colloidal gelation transition has a second-
order character. Our results show that the CID is
continuous but that its derivative is not at the gela-
tion point, consistent with the behavior expected
for a second-order phase transition.

� The CID increases with N, meaning that the com-
pression algorithm is not effectively identifying the
scale invariance. As the system grows in the gel
phase, the CID tends towards 1, indicating that at
large volume fractions, the system becomes disor-
dered and random.

� Our approach using image compression techniques
could potentially be used to quantify order in ex-
perimental settings.

� Further work can be done by implementing Diffu-
sion Limited Cluster Aggregation (DLCA) to sim-
ulate colloidal gelation.
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