Estimating spectroscopic ages of red-giant stars using machine learning
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Abstract: Over the last few years, many studies have found an empirical relation between
the abundance of a star and its age, rather well known as chemical tagging. Here we estimate
spectroscopic stellar ages for 197.000 stars observed by the APOGEE survey. To this end, we use
the supervised machine learning technique XGBoost, trained on a set of 3314 stars with asteroseismic
ages observed by both APOGEE and Kepler (Miglio et al. 2021). Eventually, to verify the obtained
age estimates, we investigated the chemical, kinematic and positional relationship of the stars in

respect to their age.

I. INTRODUCTION

Frequently, isochrone matching is used to determine
stellar ages of the main sequence turn off and sub-giant
branch. Another well-tested (but also model-dependent)
method to estimate ages for field stars is asteroseismol-
ogy. The main problem of these methods remains on
the fact that they are not feasible nor accurate for an
enormous sample of stars, just usable for a limited group
of them. Therefore, for large-scale spectroscopic surveys
like GALAH, other methods are necessary in order to
know their age.

Here is where a recent study [1] comes into play, as it
confirms an obvious relation between the age and abun-
dances in field stars from the GALAH survey. This work
hint at the possibility of Weak Chemical Tagging: the
abundances of a star can be enough to determine its birth
time, and possibly also its approximate birth position. In
this way, we can study the kinematic and spatial struc-
ture of the galaxy (Galactic Archaeology), as it will be
shown in this paper.

In addition to that, some authors [2] [3] have also con-
sidered the possibility of Strong Chemical Tagging: the
idea to link the abundance pattern of a star directly with
its birth cluster or association.

A recent study [4] shows that this is not realistic. This
research explains that it is not clear if each cluster just
has one chemical signature, if this one can be different
from the neighbour clusters (overlapping chemical signa-
tures) or even if these signatures evolve over time. In this
study it has been found that more of the 70% of groups
of stars marked by the chemical signature actually be-
longed to groups created statistically from stars pertain-
ing to different real clusters. It is therefore unlikely to
recover most birth clusters. Hence, dismissing the Strong
Chemical Tagging, the Weak Chemical Tagging is used
in our research.

Another study [5] found that approximately 30 ele-
ments (from the totality of those he resolved to study)
show significant trends with age, a fact that suggests/
shows the path to follow. Thus, if abundances can be
measured accurately, it is potentially possible to estimate
the stars’ age.

A similar procedure to the one used in [1] will be car-
ried out, in which if the same algorithm is used, it stud-
ies different types of stars. This research will use the
data test of Kepler field and will extrapolate the age-
chemistry relations to the wider galaxy. Moreover, while
[1] has utilised main-sequence turn-off stars, ours will be
red-giant stars.

So, the objectives of this work is reproducing the cin-
ematic and spatial measures with the predicted chemical
ages. These chemical ages will be predicted with an al-
gorithm of Extreme Gradient Boosting using as training
the data from Kepler field and extrapolating the model
to new zones of the galaxy.

II. EXPERIMENTAL
A. Machine Learning basics

A brief introduction about the basic functioning of a
machine learning model will be shown in the following
lines. A machine learning model is a mathematical repre-
sentation of a system which learns about the introduced
data. This models are used to predict outcomes based
on an introduced input (a feature). The features are the
variables of the data that the model will utilise to train
itself. So, it will be necessary to introduce input features
in order to obtain the corresponding labels. Therefore,
when the model is trained, it can be used to make pre-
dictions on new data. We can see a visual schema of this
explanation in the Figure 1.

B. XGB Algorithm

The Extreme Gradient Boosting will be used in this
paper. This algorithm is the culmination of other ma-
chine learning algorithm development. The basis of this
model is a decision tree, which is a graphical representa-
tion of possible solutions to a decision based on certain
conditions. Above this basic machine learning model was
established the random forest, which is a bagging-based
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FIG. 1: Schema of a simple machine learning system. The
symbol marked as ”Data” corresponds to our trained set of
3.314 stars and the one marked as ”"New Data” corresponds
to the 197.000 stars from APOGEE survey.

algorithm where we select randomly the features to con-
struct a decision tree. Subsequently, due to the previous
models, the Boosting and Gradient Boosting methods
were created, which minimise the errors and increase the
performance of the models. This last model is different
due to the fact that it uses a gradient descent algorithm
to minimise the errors of the sequential models.

Finally, taking over from the previously described algo-
rithms, XGB differs from gradient boosting in that it per-
forms parallel processing, tree-pruning, handling missing
values and regularises the data to avoid over fitting [6].
Also, his training time is incredibly minor compared to
the gradient boosting and random forest, and whose pre-
diction power is similar to gradient boosting.

We will make a brief explanation of how the algorithm
works [6].

The overall optimisation objective for XGB is to search
the minimisation of the regularised loss function:

n

£ = Zl(yi,ﬁi(t_l) + fe(x:)) + Q(ft) (1)

i=1

where L is the loss function, y; is the true label of the
i-th iteration, ¢; is the predicted label and Q(f;) is the
regularisation term. The model parameters are given by
t. The loss function is similar to other machine learning
functions as logistic loss or the least squares loss.

The regularisation term Q(f;) is defined as:

1 T
Qfi) =T + gAY ) (2)

Jj=1

where v is a parameter that controls the complexity of
the model, T" is the number of leaves in the tree and w;
is the weight of the i-th leaf. The regularisation term is
used to prevent over fitting by adding a penalty term to
the loss function.
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FIG. 2: Kiel diagram (log g vs. Teff) for the APOGEE DR17
catalogue (red density). In green our overplot the training
sample (taken from the APOGEE-Kepler catalogue of Miglio
et al. 2021). The box highlights the stellar parameter range
for which our method provides stellar age estimates.

C. Data selection

Once the prediction algorithm has been explained,
the data selected to train the model are limited
at 4400<TEFF<5200 and 2.2<LOGG<3.4 of all
APOGEE data. In figure we can see a plot of all the
data of the survey and our selected training data.

The area chosen to be studied are 3314 stars preceding
from the Kepler Field [7]. It is necessary to differentiate
the red clumps from the rest of the stars, since due to
the CNO cycle it will have a different metallicity, so that
their chemical ages can be better predicted.

The chosen features to train the model are:

o cffective temperature (Teff)

e logg

e chemical abundances

The chosen chemical abundances are: [C/Fe|, [Cl/Fe],
[N/Fe], [O/Fe], [Na/Fe], [Mg/Fe], [Al/Fe], [K/Fe],
[Ca/Fe], [Ti/Fe], [V/Fe], [Mn/Fe], [Co/Fe|, [Ni/Fe|. The
other abundances are not used because we discarded
them using the SHAP values method.

D. SHAP values

The SHAP (SHapley Additive exPlanations) values
provide information to understand the output of a ma-
chine learning model [8]. In XGB’s case, they can be
used to understand how every feature has an impact on
the predictions of the model.

The sum of SHAP values is equal to the difference be-
tween the expected output and the baseline output. In
other words, a positive value means that the feature in-
creases the output’s model, while a negative value de-
creases it.

Barcelona, January 2023
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FIG. 3: Representation of the SHAP values of our trained
model, where the X-axis represent to the SHAP value, the
Y-axis corresponds to the different labels and the colour in-
dicates the magnitude of the feature value.

In the present case, the SHAP values has been used
not only to recognize the metallicites which have a major
impact on the model, but also to discard those who don’t
contribute to the prediction (data selected in the section
I1.C).

The SHAP values with major impact in the model (Fig
3.) are the fffective temperature and the chemical abun-
dances [C/Fe], [Mg/Fe] and [N/Fe].

To understand how it works we will make an example:
if we look at the effective temperature, we can observe
that an increase in its value (high feature value) implies a
negative shap value, i.e. a negative impact on the model.
This implies that the predicted age decreases. It makes
sense since the higher the temperature, the lower the age
of the stars and vice versa.

Thanks to this method we were able to discard the fol-
lowing chemical abundances because their shap value was
too low: [Si/Fel, [P/Fe], [S/Fe], [Cr/Fe|, [Fe/H], [Cu/Fe]
and [Ce/Fe].

E. Grid Search

Grid Search [9] is a method for hyper-optimising pa-
rameters for a parameters for a machine learning model.
It is based that, by defining ourselves a set of possible
parameter values, the algorithm will train and evaluate
models using all possible combinations of the parameter
values, so it will find the best set of parameter values for
the model. We use it because gives us the best perfor-
mance of the model.

The optimal parameters obtained are:

e learning rate: 0.03

max depth: 5
e min child weight: 4

n estimators: 500
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FIG. 4: Comparison of the predicted age (y-axis) vs. test
age (x-axis). The diagonal line represents perfect prediction.
The scatter plot illustrates the accuracy of the model, with
denser clusters around the diagonal line indicating better per-
formance. The colour of the points represents the evolution-
ary state of the star

e ntheard: 4

e objective: "reg:linear”
e silent: 1

e subsample: 0.7

These parameters have been used in the final modelling
to optimise the results of the regression.

III. RESULTS AND DISCUSSION
A. DModel training results

We will briefly show the performance of the model be-
fore showing the results of its application to the large
table to be studied.

If we compare the chemical ages obtained from the
seismic ages (Fig. 4) it is observable a good correlation
of R? =0.91

Our XGBoost regression is capable of estimating mean-
ingful ages for both red-clump stars (blue points in Fig.
4) and first-ascent red-giant branch stars (red points in
Fig. 4). We can appreciate that the performance for the
red-clump stars is significantly better (lower dispersion
around the identity line), but the model still works well
on average for RGB stars. The statistical age error of
our method is around 25%, almost independent of stellar
age.
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B. Chemical, spatial and kinematic relations with
age

Our model has been applied to 197.000 APOGEE
DR17 [10] stars located within the Teff - log g box high-
lighted in Fig. 1. To be sure that the results are correct,
in the following subsections we show a number of vali-
dation plots that reproduce well the expected chemical,
positional and kinematic trends with age.

1. Age-Metallicity relations

At the beginning of the Milky Way’s formation, the
Milky Way consisted of a halo of gas and the first stars
began to emerge. These first stars, when they died, re-
sulted in type II supernovae, in which oxygen and mag-
nesium were released [11]. As the Milky Way formed into
a thin disc, the number of type II supernovae decreased.
These stars are now located in the thick disc, due to the
halo in which the galaxy formed. So, the thick disk will
have a high concentration of elements such as O and Mg
formed in type II supernovae and its stars will be very
old.

In contrast, as the thin disk formed, type la super-
novae, in which Fe is released, increased. The thin disk
formed later than the thick disk, so its stars must be
younger. Therefore, it is to be expected that there are
younger stars in the thin disk and older stars in the thick
disk. And the ratio of magnesium to iron is lower in the
thin disk and higher in the thick disk.

We can see this information reflected in the image
above in Fig. 5 [12]. We have plotted our results in the
image below in Figh., with a similar axis ranges to the im-
age above. We can see that we have obtained very good
results, with a zone with older ages and another area with
younger ones, corresponding to the tick and thin zones
respectively. Also, it is accomplished the same relation
with the [Mg/Fe| and [Fe/H] chemical abundances. The
white contours in the lower panel of Fig. 5 represent the
density iso-contours, so it is easier to see the two different
zones.

2. Age-Spatial relations

In this section we have investigated how the age of
stars changes as a function of the height above the Galac-
tic plane (Zgq;) and distance from the Galactic centre
(Rgat)- We can see a plot in Figure 6.

We can see that for a radius smaller than 8-10kpc, it
is true that for the thin disk the stars are younger and
for the thick disk the stars are older. We can also see
that the thickness of the thin disk in the plot (0.3 kpc
approx.) agrees with the data we currently have on the
Galaxy.

For a radius larger than 8-10kpc, we can observe that
most of the stars are young. We know that the thick
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FIG. 5: [alpha/Fe] vs. [Fe/H] diagram, colour-coded by stellar
age. Top panel: High-resolution solar-vicinity sample [12].
Bottom panel: Our results for the full APOGEE red-giant
sample with spectroscopic ages.
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FIG. 6: Zgai vs. Rga diagram, colour-coded by stellar age.
Stars from the full APOGEE red-giant sample.

disk of the galaxy has a strong radial age gradient [13].
In which the median age for red clump stars ranges from
9 Gyr in the inner disk to 5 Gyr in the outer disk. This
strong radial age gradient can be attributed to the for-
mation process of the galaxy: the inner regions of the
galaxy formed earlier faster than the outer regions. As
a result, there is a higher concentration of older stars in
the inner parts of the galaxy and higher concentration of
younger stars in the outer parts.
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FIG. 7: Median age vs. galactocentric radius, colour-coded
by height with respect to the galactic axis [13]. Stars from
the outer parts of the Milky Way.
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FIG. 8: Age-velocity dispersion relation within the ranges
5kpc to 11kpc, in various plots. The slope of the line repre-
sents the rate of change in the velocity dispersion with respect
to chemical age.

Figure 7, obtained by [13] from earlier APOGEE data,
illustrates the radial age gradients in the Galactic disc
at different heights above the Galactic plane, which our
Fig. 6 reproduces well at least qualitatively.

8. Age-Kinematics relations

Finally we compare the velocity dispersion of the stars
with their chemical age. The data shown in Fig. 8 are
for a galactocentric radius between 5kpc and 11 kpc,
in various plots. The age-kinematics relations are ac-
curately replicated when compared to [1]. But if we pro-
pose that the decrease in gravitational potential as we
move away from the center of the galaxy leads to an in-
crease in scattering velocity, this hypothesis is disproven.
Consequently, we need further investigation in the age-
kinematics relations.

IV. CONCLUSIONS

In summary, our XGboost algorithm has been able to
accurately estimate the spectroscopic ages of the red-
giant stars observed by the APOGEE survey. The re-
sults show a correct reproduction of the expected chemi-
cal, positional, and kinematic trends with age. This sug-
gests that the Weak Chemical Tagging method is a valu-
able tool in galactic archaeological research, as it allows
a large amount of information to be obtained from the
chemical abundances.

In addition, it could be mentioned that the use of ma-
chine learning algorithms such as XGboost has allowed
for greater efficiency and accuracy in estimating the spec-
troscopic ages of stars, which is especially important in
large-scale studies such as GALAH. One could also point
out the importance of continuing research in this field, as
knowledge of the ages and detailed chemical abundances
of stars can provide valuable information about the evo-
lution of the Galaxy and its formation.
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