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Abstract 58 

Forest models are instrumental for understanding and projecting the impact of climate change on for-59 

ests. A considerable number of forest models have been developed in the last decades. However, few 60 

systematic and comprehensive model comparisons have been performed to date to compare model 61 

agreement with field data and evaluate structural uncertainties. Here, we evaluate 13 widely-used, 62 
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state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-co-63 

variance data of carbon and water fluxes over multiple decades across an environmental gradient at 64 

nine typical European forest stands. We test the models’ performance in three dimensions: accuracy of 65 

local predictions (agreement of simulated and observed annual data), realism of environmental responses 66 

(agreement of modelled and observed responses of daily gross primary productivity to temperature, 67 

radiation and vapor pressure deficit) and general applicability (proportion of European tree species 68 

covered). We find that multiple models are available that excel according to our three dimensions of 69 

model performance. For the accuracy of local predictions, variables related to forest structure have 70 

lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-71 

model ensemble mean provided overall more realistic daily productivity responses to environmental 72 

drivers across all sites than any single individual model. The general applicability of the models is high, 73 

as almost all models are currently able to cover Europe’s common tree species. We show that forest 74 

models complement each other in their response to environmental drivers and that there are several 75 

cases in which individual models outperform the model ensemble. Our framework provides a first step 76 

to capturing essential differences between forest models that go beyond the most commonly used ac-77 

curacy of predictions. Overall, this study provides a point of reference for future model work aimed at 78 

predicting climate impacts and supporting climate mitigation and adaptation measures in forests.  79 
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Introduction 80 

Forest models are widely used to assess the impacts of changing environmental conditions such as cli-81 

mate, atmospheric CO2 concentration and nitrogen deposition on forest functioning, dynamics and 82 

structure (e.g. Reyer et al. 2013). Yet, because of our incomplete understanding of forest ecosystems 83 

and computational constraints, these models differ in the way specific processes are represented, lead-84 

ing to differences in their predictions (Bugmann et al. 2019; Collalti et al. 2019; Huber et al. 2021). 85 

Hence, models need to be comprehensively evaluated using different data types at different spatio-tem-86 

poral scales before we can judge their structural uncertainties and suitability for answering specific 87 

questions (Maréchaux et al. 2021; Oberpriller et al. 2021). 88 

Model simulations need to be in adequate agreement with independent observations. Moreover, models 89 

have to be sensitive to environmental drivers to ensure that system responses are realistically predicted 90 

under a wide range of environmental and climatic conditions (Collalti et al. 2016). Additionally, for spa-91 

tially comprehensive assessments of climate impacts it is also required that the models have a large 92 

range of applicability covering different ecological conditions. Ideally, models meet all these require-93 

ments. 94 

Levins (1966) categorized these requirements as trade-offs between three dimensions: model accuracy, 95 

realism and generality. Accuracy indicates the goodness-of-fit between prediction and observation, re-96 

alism refers to causally correct internal model processes, and generality represents robust applicability 97 

across space and time (Kramer et al. 2002). While it is difficult to maximize accuracy, realism and gen-98 

erality simultaneously, model developers have to identify an optimal point on the trade-off according 99 

to the overall aim of the model. 100 
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Many climate sensitive forest models have been developed in Europe for different applications, regions 101 

and species (e.g., Fontes et al. 2010; Pretzsch et al. 2015). Yet, it is unknown how they perform relative 102 

to the same benchmark conditions, and how their structure leads to trade-offs between accuracy, real-103 

ism and generality since model inter-comparisons across large numbers of complex models are missing. 104 

Earlier model evaluations have either focused on selected processes (e.g., NPP: Morales et al. 2005; 105 

mortality: Bugmann et al. 2019), relied on short time series of observed data (Kramer et al. 2002), or 106 

investigated only few models and sites (Horemans et al. 2017). Yet, the increasing amount of harmo-107 

nized data recently becoming available across Europe (e.g. Reyer et al. 2020a,b) allows for a rigorous 108 

evaluation of the state-of-the-art in forest modeling across different biogeographical regions, forest 109 

types and types of data. Such an evaluation may provide a deeper understanding of model differences 110 

and structural uncertainties, and provide crucial guidance for designing ensemble studies of climate 111 

impacts on forests. 112 

The objective of this paper is to evaluate and compare 13 widely applied forest models in managed 113 

forests across an environmental gradient in Europe. The models range in complexity from empirically-114 

based to highly mechanistic approaches, while the evaluation data types range from ground-based in-115 

ventories to tower-based eddy-covariance measurements. To achieve this objective, we: (i) compare 116 

model outputs to observations to quantify the accuracy of local predictions by deriving the statistical fit 117 

between observations and model output of important forest variables; (ii) determine the realism of en-118 

vironmental responses by assessing the agreement of observed and modeled relationships between 119 

stand productivity and climatic drivers; (iii) describe the general applicability by deriving the propor-120 

tion of European forest stands that a model is able to cover; and (iv) integrate these three dimensions 121 

in a model performance framework. We hypothesize that trade-offs in our ensemble of forest models 122 

can be traced back to differences in accuracy, realism and generality as described by Levins (1966). 123 
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Methods 124 

Vegetation models and simulation protocol 125 

We used simulation outputs from 13 state-of-the-art, structurally different, forest models (3D-CMCC-126 

FEM LUE, 3D-CMCC-FEM BGC, 3PG, 3PGN-BW, 4C, BASFOR, ForClim v.3.3, FORMIND, GOTILWA+, Land-127 

scapeDNDC, PREBAS, SALEM, SIBYLA) that participated in the Inter-Sectoral Impact Model Intercom-128 

parison Project (ISIMIP, Frieler et al. 2017). The key assumptions and formulations for simulating pro-129 

cesses or variables between models as well as their differences are described in Tab. 1. All models are 130 

designed to predict long-term (multiple decades) forest growth and forest dynamics. Empirical models 131 

are geared towards one full stand rotation while gap models focus on describing successional dynamics 132 

in multi-species stands. Mechanistic models describe forest dynamics based on the dynamics of plant 133 

carbon and water exchange at a high temporal resolution. Ten of the models describe the ecosystem-134 

atmosphere exchange of carbon, and nine of them the exchange of water in forest stands at a daily to 135 

annual time step. All 13 models have been applied as research tools to study climate impacts on man-136 

aged forests. 137 

The simulations followed the ISIMIP phase 2a simulation protocol (https://www.isimip.org/protocol/), 138 

which provides a consistent simulation setup based on common, harmonized data for initializing, driv-139 

ing and evaluating models from the PROFOUND database (Reyer et al. 2020a,b). The models were ini-140 

tialized with observed stand characteristics (e.g. stem diameter at breast height, tree height, stand den-141 

sity, stand age) and then driven with locally measured weather data (e.g. surface air temperature, pre-142 

cipitation, vapor pressure deficit), atmospheric CO2 concentration and nitrogen deposition data, as well 143 

as historically observed forest management interventions. Simulated management was based on ob-144 

https://www.isimip.org/protocol/
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served stem numbers and thinning regimes, i.e. thinning from above (higher diameter classes preferen-145 

tially removed) or from below (lower diameter classes preferentially removed). Forest management 146 

was the only explicitly simulated disturbance. Drought effects were implicitly included by the driving 147 

weather data. The models were run for 13 to 63 years on nine forest stands across Europe that are 148 

contrasting in climate, species composition, phenology, management type and age (Tab. 2). Not all sites 149 

were simulated by all models due to incomplete parameterization for species. Site-specific parameter 150 

calibration on the observed data was not permitted.151 
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Tab. 1: Overview of main processes implemented in all forest models as well as examples of model applications. NSC: non-structural carbon; 152 

GPP: gross primary productivity; VPD: vapor pressure deficit; DBH: diameter at breast height; NA: not included explicitly. Models are classified 153 

according to their complexity into empirical (E), hybrid (H) and process-based (P) types. This classification is based on expert judgment to 154 

provide a rough overview of model complexity; in reality these models align along a continuum from more empirical to more process-based 155 

models. References are indicated by numbers. 156 
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height  diameter  
SALEM NA NA NA NA NA NA NA allometric equa-

tions (1) 
Diameter, density, 
and site index spe-
cific stand level- de-
pendent increment 
model (1,2) 

diameter-de-
pendent spe-
cific self thin-
ning (1) 

1,3,4 E 

SIBYLA NA NA NA NA NA NA NA empirical: based 
on tree age, site 
specification, tree 
vitality and com-
petition 

empirical: based on 
site specification, 
tree vitality and 
competition 

empirical: 
based on tree 
dimensions, 
growth and 
stand density 

5,6,7 E 

ForClim 
v.3.3 

NA NA NA 8 based on 9 Single 
layer 
bucket 
model 
(10) 

temperature 
sensitive and 
species specific 

NA derived from di-
ameter increment 
under considera-
tion of light availa-
bility and climate 
specific maximum 
tree height 

modified carbon 
budget model (11) 
considering environ-
mental constraints 

age-related, 
stress-related 

v.3.3: 
12; for 
most 
recent 
version 
v.4.0.1 
see 
13,14 

H 

FORMIND Light-use 
efficiency 
(15) 

NA Maintenance 
respiration + 
dynamic 
growth respi-
ration  

Water-use effi-
ciency as a func-
tion of GPP 

Single 
layer 
bucket 
model 

Degree day sum 
approach (16) 

dynamic alloca-
tion based on 
phenology, 
temperature, 
light and water 
availability 

allometric equa-
tions 

Dependent on car-
bon allocation to 
stem mass and cur-
rent DBH of the tree 

carbon-based 
stress mortal-
ity 

17,18,1
9 

H 
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3PG Light-use 
efficiency 
(20) 

NA Constant frac-
tion of GPP 

Penman-Monteith Single-
layer soil-
water-
balance  

Fixed species-
specific growing 
season 

Dynamic alloca-
tion based on 
age, size, soil 
water, VPD 

allometric equa-
tion from dbh, 
competition, ets. 

Dependent on car-
bon allocation to 
stem mass and cur-
rent DBH of the tree 

age-depend-
ent + stress-
related + self-
thinning 

21,22,2
3 

H 

3PGN-BW Light-use 
efficiency 
(20) 

NA Maintenance 
respiration + 
dynamic 
growth respi-
ration  

Penman-Monteith Single-
layer soil-
water-
balance 

species-specific 
based on mini-
mum monthly 
temperature 

dynamic alloca-
tion based on 
environmental 
modifiers 

allometric equa-
tions 

dependent on car-
bon allocation to 
stem mass and cur-
rent DBH of the tree 

age-depend-
ent + stress-
related + self-
thinning with 
stochastic 
component 

24,25 H 

BASFOR Light-use 
efficiency 

NA Fixed ratio 
NPP/GPP 

Penman Single 
layer 
bucket 
model 

Function of 
temperature, 
chilling days, 
day length 

Branch and 
stem fractions 
constant, leaf 
and root frac-
tions functions 
of water- and N- 
status 

Function of stem 
dry matter  

Function of stem dry 
matter and height 

NA 26,27 H 

PREBAS Light-use 
efficiency 
(28) 

NA Maintenance 
respiration + 
growth respi-
ration (29) 

Empirical formula-
tion based on 
daily photosyn-
thesis, VPD, and  
Priestley-Taylor 
(30) 

Bucket 
model 
(30) 

Photosynthesis: 
Reversible tem-
perature based 
model (31) De-
ciduous:, addi-
tionally a tem-
perature sum 
based on (32) 

dynamic alloca-
tion based on 
pipe-model and 
functional bal-
ance and crown 
allometry 

Follows from  car-
bon allocation 

Follows from carbon 
allocation 

competition 33,34,3
5,36 

H 

3D-CMCC-
FEM LUE 

Light-use 
efficiency 
(20) 

37,38 Maintenance 
respiration + 
dynamic 
growth respi-
ration (39,40)  

Penman-Monteith Single-
layer soil-
water-
balance 

species-specific 
temperature 
(i.e. Thermic 
sum), eli-
ophany, LAI and 
others 

dynamic alloca-
tion based on 
phenology, light 
and water avail-
ability (sensu 
41) 

allometric equa-
tions from dbh 

allometric equations 
from stem biomass 

age-depend-
ent + self-
thinning + 
NSC pool de-
pletion + sto-
chastic com-
ponent 

42,43,4
4,45 

H 

3D-CMCC-
FEM BGC 

Farquhar, 
von 
Caemmer
er and 
Berry 
(46,47) 

48,49 P 

4C Light-use 
efficiency 
(15,50) 

NA Constant frac-
tion of GPP 

Turc-Ivanov/Pen-
man-Mon-
teith/Priestley-
Taylor 

Dynamic 
multi-lay-
ered 
bucket 
model 

inhibitor-pro-
motor system 
(51) 

dynamic alloca-
tion based on 
pipe-model and 
functional bal-
ance theory 

function of foliage 
mass and crown 
architecture 

dependent on car-
bon allocation 

self-thinning 
+  carbon star-
vation + age-
related (52) 

53 P 

GOTILWA+ Farquhar 
(46)  

Stomatal 
conduct-
ance after 
54 

Maintenance 
respiration + 
dynamic 
growth respi-
ration  

Penman-Mon-
teith. Transpira-
tion calculated 
from stomatal 
conductance, leaf 
area and vapor 
pressure deficit. 

Two layer 
bucket 
model 

Temperature 
sensitive (55) 

dynamic alloca-
tion based on 
pipe-model and 
functional bal-
ance 

allometric equa-
tions from dbh 

allometric equations 
from dbh 

NSC pool de-
pletion + loss 
of active sap-
wood 

56,57,5
8 

P 
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Landscape-
DNDC 
(PSIM) 

Farquhar 
(46) 

Optimiza-
tion 
scheme af-
ter 59 (con-
sidering soil 
water influ-
ence) 

Maintenance 
respiration 
(60) + Growth 
respiration  
(fixed frac-
tion) 

61, stomatal con-
ductance after 59 

Multi-
layer 
model 

Cumulative 
temperature 
approach (62) 

sink-source ap-
proach driven 
by phenology 
(63) 

based on stem 
carbon allocation 
and density-de-
pendent 
height:diameter 
relations (64) 

based on stem car-
bon allocation and 
density-dependent 
height:diameter re-
lations (64) 

fixed fraction 
+ density re-
lated limits 
(65) 

66,67,6
8 

P 
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Evaluation data 166 

The PROFOUND database (Reyer et al. 2020a,b) hosts observed data from nine boreal and temperate 167 

forest stands located across Europe (Tab. 2). The database provides measurements of forest structure 168 

including basal area (BA), arithmetic mean diameter at breast height (DBH) and arithmetic mean tree 169 

height (H). On a subset of five sites, carbon and water fluxes measured at eddy-covariance towers are 170 

available (Tab. 2) including gross primary productivity (GPP), ecosystem respiration (Reco), net ecosys-171 

tem exchange (NEE) and actual evapotranspiration (AET). 172 

Tab. 2: Features of evaluation sites in the PROFOUND database used in this study. MAP: mean annual pre-173 

cipitation (mm/year); MAT: mean annual temperature (°C); lat.: latitude; long.: longitude; structure: 174 

structure variable time coverage; flux: flux variable time coverage. 175 

site 
dom. spe-
cies 

forest 
type MAP MAT 

elevation 
(m a.s.l) country lat. long. structure flux 

Hyytiälä Pinus sylvestris even-aged 604 4.4 185 FI 61.8
5 

24.23 1995-2011 1996-
2014 

Solling 
beech 

Fagus sylvatica even-aged 1113 6.8 500 DE 51.7
7 

9.57 1967-2014 NA 

Solling 
spruce 

Picea abies even-aged 1113 6.8 508 DE 51.7
7 

9.57 1967-2014 NA 

Collelongo Fagus sylvatica even-aged 1179 7.2 1560 IT 41.8
5 

13.59 1992-2012 1996-
2014 

Bily Kriz Picea abies even-aged 1434 7.4 875 CZ 49.3
0 

18.32 1997-2015 2000-
2008 

Kroof Fagus sylvatica, 
Picea abies, de-
cid. species 

mixed 849 8.2 502 DE 48.2
5 

11.4 1997-2010 NA 

Sorø Fagus sylvatica even-aged 774 9.0 40 DK 55.4
9 

11.65 1997-2013 1996-
2012 

Peitz Pinus sylvestris even-aged 608 9.2 50 DE 51.9
2 

14.35 1948-2011 NA 

Le Bray Pinus pinaster even-aged 920 13.4 61 FR 44.7
2 

-0.77 1986-2009 1996-
2008 

 176 

For the carbon flux data, there are multiple products available for the same variable due to varying 177 

underlying estimation techniques (Pastorello et al. 2020). We used the data derived with constant fric-178 
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tion velocity (USTAR) threshold where the reference is selected based on model efficiency for pro-179 

cessing NEE (NEE_CUT_REF; https://fluxnet.org/data/fluxnet2015-dataset/data-processing/, Pasto-180 

rello et al. 2020) and the daytime (DT) method (Lasslop et al. 2010) for partitioning NEE into GPP and 181 

Reco. The first year of carbon flux measurements at each site was discarded since the majority of data 182 

points had a quality flag of “poor”. Daily AET was derived from measured latent heat flux (LE) to the 183 

atmosphere by 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐿𝐿𝐴𝐴/𝜆𝜆, with 𝜆𝜆 = (2.501 − 0.00237 ∗ 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎) ∗ 106, where 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 is the mean daily tem-184 

perature (Foken 2008). Annual AET was aggregated as the sum of daily AET derived from the measured 185 

daily latent heat flux. 186 

Evaluation framework 187 

We evaluated the models in three dimensions based on the framework by Levins (1966) and further 188 

specified by Kramer et al. (2002): accuracy of local predictions, realism of environmental responses and 189 

general applicability. We defined the accuracy of local predictions as the agreement between observed 190 

and predicted data of relevant forest variables at the annual time scale; the realism of environmental 191 

responses as the agreement of simulated to observed relationships between daily climatic drivers and 192 

gross primary productivity; and the general applicability as the proportion of European forests a model 193 

can represent based on parameterized tree species. In addition to the individual models, we evaluated 194 

the model ensemble as the arithmetic mean time series of all individual model predictions available for 195 

a given site and variable. We used the statistical computing language R (R Core Team 2020) for all anal-196 

yses. 197 

Uncertainty in model predictions arises from model structural uncertainty, parameter uncertainty and 198 

input data uncertainty (Lindner et al. 2014; Collalti et al. 2019). Here we focused on evaluating com-199 

pound model uncertainty originating from all uncertainty sources except for input data uncertainty 200 

https://fluxnet.org/data/fluxnet2015-dataset/data-processing/
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which is shared across all models. The coverage of sites and variables is model-specific and the temporal 201 

resolution of model predictions varies from daily to monthly to annual. The models used their individual 202 

default species-specific parameter settings for the simulations. 203 

Accuracy of local predictions 204 

The accuracy of local predictions was quantified for the primary variables of interest on an annual res-205 

olution: BA, DBH increment (DBHinc), H increment (Hinc), GPP, Reco, NEE, AET. DBHinc and Hinc were 206 

evaluated instead of DBH and H to eliminate the temporal autocorrelation that is associated with these 207 

variables, resulting from the incremental nature of diameter and height growth. In this way, we covered 208 

increments as well as the structure through BA (which is strongly dominated by temporal autocorrela-209 

tion). DBHinc and Hinc were computed as the average annual change of stand scale mean DBH and H, 210 

respectively, for the period between two consecutive observations, since there were no measurements 211 

available for every year at all sites and the uncertainty in single year increment measurements is high. 212 

The same approach was applied to derive increments from the simulated data. DBHinc and Hinc inte-213 

grate individual tree increments related to growth as well as changes of the stand scale mean DBH and 214 

H resulting from the removal of certain trees during management interventions and/or natural tree 215 

mortality. 216 

Following Gauch et al. (2003), we computed multiple metrics describing different aspects of the disa-217 

greement between predictions and observations. The mean squared deviation (MSD) and its compo-218 

nents squared bias (SB), lack of correlation (LC) and non-unity slope (NU) were computed for each 219 

model-site-variable combination. These metrics describe three sources of error: a systematic error (SB), 220 

random errors (LC) and linear patterns in the residuals (NU): 221 

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ (𝑋𝑋𝑛𝑛−𝑌𝑌𝑛𝑛)²𝑁𝑁
𝑛𝑛=1

𝑁𝑁
= 𝑀𝑀𝑆𝑆 + 𝑁𝑁𝑁𝑁 + 𝐿𝐿𝐿𝐿       (1) 222 
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with X = simulated data, Y = observed data and n = {1,2, … N}, with N = number of data pairs. 223 

𝑀𝑀𝑆𝑆 = (𝑋𝑋� − 𝑌𝑌�)²          (2) 224 

𝑁𝑁𝑁𝑁 = (1 − 𝑏𝑏)² ∗ (∑ 𝑥𝑥𝑛𝑛²𝑁𝑁
𝑛𝑛=1
𝑁𝑁

)         (3) 225 

with 𝑏𝑏 = ∑ 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛𝑁𝑁
𝑛𝑛=1  / ∑ 𝑥𝑥𝑛𝑛²𝑁𝑁

𝑛𝑛=1  which is the slope of the least-square-regression between Y and X. The 226 

deviations from the mean are described by 𝑦𝑦𝑛𝑛 = 𝑌𝑌𝑛𝑛 − 𝑌𝑌�  (analogous: 𝑥𝑥𝑛𝑛 = 𝑋𝑋𝑛𝑛 − 𝑋𝑋�). 227 

𝐿𝐿𝐿𝐿 = (1 − 𝑟𝑟²) ∗ (∑ 𝑦𝑦𝑛𝑛²𝑁𝑁
𝑛𝑛=1
𝑁𝑁

)         (4) 228 

with 𝑟𝑟² = (∑ 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛𝑁𝑁
𝑛𝑛=1 )² /  ∑ 𝑥𝑥𝑛𝑛²𝑁𝑁

𝑛𝑛=1 ∑ 𝑦𝑦𝑛𝑛²𝑁𝑁
𝑛𝑛=1  which is the square of the correlation between Y and X. 229 

The quantification of these three completely independent components of the MSD allowed us to derive 230 

which components drive the inaccuracies most strongly. 231 

For cross-variable and cross-site comparability, we normalized the MSD (norm. MSD; and analogous SB, 232 

LC, and NU) with the observed variance of a given variable at a specific site: 233 

𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛.𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀
1
𝑁𝑁  ∑ (𝑌𝑌𝑛𝑛−𝑌𝑌�)²𝑁𝑁

𝑛𝑛=1
        (5) 234 

𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛. 𝑀𝑀𝑆𝑆 = 𝑀𝑀𝑆𝑆
1
𝑁𝑁  ∑ (𝑌𝑌𝑛𝑛−𝑌𝑌�)²𝑁𝑁

𝑛𝑛=1
        (6) 235 

𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛. 𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿
1
𝑁𝑁  ∑ (𝑌𝑌𝑛𝑛−𝑌𝑌�)²𝑁𝑁

𝑛𝑛=1
        (7) 236 

𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛.𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁
1
𝑁𝑁  ∑ (𝑌𝑌𝑛𝑛−𝑌𝑌�)²𝑁𝑁

𝑛𝑛=1
        (8) 237 
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Then we aggregated the norm. MSD over all sites by computing the arithmetic mean of norm. MSD for a 238 

given model-variable combination. To derive a unique accuracy of local predictions score (A) for each 239 

model, we first computed the coefficient of determination as 𝑅𝑅2 = 1 − 𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛.𝑀𝑀𝑀𝑀𝑀𝑀 for each variable (cf. 240 

Moffat et al. 2010). Then we calculated the arithmetic mean of the R² values across all structure varia-241 

bles and all carbon and water variables (𝑅𝑅²𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠 and 𝑅𝑅²𝑠𝑠𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛 𝑎𝑎𝑛𝑛𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎) and re-projected the result-242 

ing values to the range from 0.1 to 1 to derive 𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠 and 𝐴𝐴𝑠𝑠𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛 𝑎𝑎𝑛𝑛𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎. Overall A was then derived 243 

analogous to 𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠 and 𝐴𝐴𝑠𝑠𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛 𝑎𝑎𝑛𝑛𝑎𝑎 𝑤𝑤𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎 but with all variables available for a model. The predictive 244 

skill of a forest model was higher than the predictive skill of the observed mean in terms of the overall 245 

absolute error if norm. MSD < 1. 246 

Realism of environmental responses 247 

The realism of environmental responses was derived by quantifying the agreement of simulated to ob-248 

served relationships between climatic drivers and productivity, i.e., GPP, since GPP is sensitive to several 249 

interacting climatic drivers (Zhang et al. 2017, Zhang et al. 2019, Zhou et al. 2021). Only those models 250 

that output daily GPP could be evaluated for their realism of environmental responses. We considered 251 

mean daily temperature (temp), daily global incoming radiation (rad) and daily mean vapor pressure 252 

deficit (vpd) as forcing variables on the daily GPP. For each of the five FLUXNET sites, we assessed the 253 

realism of the environmental responses for the relation of GPP to temp, rad and vpd of every model. The 254 

observations were filtered for FLUXNET quality flags 0 (measured) and 1 (good quality gap-filled). Ad-255 

ditionally, the data was filtered for days with temp > 5 °C (cf. Franklin et al. 2013, Rehfeld et al. 2006) to 256 

ensure that the bulk of the data lie within the growing season, because this is the most important period 257 

in which the model needs to exhibit realistic responses of productivity to environmental drivers. 258 
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First, we visually compared the form of the observed and simulated relationships between GPP and the 259 

three forcing variables including their interactions by deriving general additive models (GAMs) for the 260 

0.5 quantile. The computation was done using the R library qgam (Fasiolo et al. 2017). The quantile 261 

GAMs have the form  262 

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑓𝑓1(𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡) + 𝑓𝑓2(𝑟𝑟𝑟𝑟𝑟𝑟) + 𝑓𝑓3(𝑣𝑣𝑡𝑡𝑟𝑟) + 𝑓𝑓4(𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡, 𝑟𝑟𝑟𝑟𝑟𝑟) + 𝑓𝑓5(𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡, 𝑣𝑣𝑡𝑡𝑟𝑟) + 𝑓𝑓6(𝑟𝑟𝑟𝑟𝑟𝑟, 𝑣𝑣𝑡𝑡𝑟𝑟) +263 

𝑓𝑓7(𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡, 𝑟𝑟𝑟𝑟𝑟𝑟, 𝑣𝑣𝑡𝑡𝑟𝑟)          (9) 264 

using tensor product (te) smooth functions 𝑓𝑓𝑎𝑎 . 265 

Second, to formally compute model scores for the realism of environmental responses, the residuals 266 

between daily simulated and observed GPP were derived from the GAMs. We computed simple linear 267 

regression models relating the residual daily GPP from the GAMs to each of the three forcing variables. 268 

The GAM predictions were obtained by fixing two of the three independent variables to their arithmetic 269 

mean value. The linear regressions take the form 270 

  𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑎𝑎𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑣𝑣𝑣𝑣𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑣𝑣𝑣𝑣𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝛽𝛽1 + 𝛼𝛼1 ∗ 𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡    (10) 271 

𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑎𝑎𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑣𝑣𝑣𝑣𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑣𝑣𝑣𝑣𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝛽𝛽2 + 𝛼𝛼2 ∗  𝑟𝑟𝑟𝑟𝑟𝑟    (11) 272 

𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑎𝑎𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  − 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  = 𝛽𝛽3 +  𝛼𝛼3 ∗ 𝑣𝑣𝑡𝑡𝑟𝑟    (12) 273 

Similar GPP-environment relationships in observed and simulated data were characterized by small 274 

residuals, or at least by a lack of patterns in the residuals across the environmental drivers. Hence, small 275 

absolute slopes in the linear regression of the residuals indicated an agreement of observed to simu-276 

lated relationships. For each environmental variable we re-projected the mean absolute slope across all 277 

models and sites |𝛼𝛼𝚤𝚤|����� to the range between 0 and 1 (|𝛼𝛼𝚤𝚤|�����′ ) to account for differences in the magnitude 278 

of the variable units (temp: °C; rad: J/cm²; vpd: kPa). Then we derived the realism of environmental 279 
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responses for each model as the mean of the re-projected slope (|𝛼𝛼1|������′+|𝛼𝛼2|������′+|𝛼𝛼3|������′

3
) of these linear regres-280 

sions. 281 

General applicability 282 

We interpreted the general applicability of the models as the application range across tree species. As 283 

opposed to the accuracy of local predictions and the realism of environmental responses, this quantifi-284 

cation was independent of the actual simulations and solely based upon the tree species represented in 285 

the models. We computed the share of European forests covered by dominant tree species each model 286 

is currently parameterized for. Data on tree species group coverage across Europe were derived from 287 

Brus et al. (2011). In case a model covered only subsets of a tree species group (e.g. only Larix decidua 288 

and not Larix kaempferi for genus Larix), we assumed the forest area of that species group to be covered 289 

fully by the model. We only expect a minor overestimation of the area covered by a model because the 290 

tree species groups with many species are the ones that are less dominant in Europe. In this way, we 291 

derived a rough approximation of the share of European forests where a given model could be applied 292 

without considering the actual predictive skill that the model would have in these forests.  293 

Standardization and aggregation  294 

The results for the accuracy of local predictions, the realism of environmental responses and the general 295 

applicability were projected back to a range from 0.1 to 1, which can be interpreted as relative differ-296 

ences across models. We would like to stress that the designation of 0.1 to a model does not indicate a 297 

failure or lack of performance but rather that the model had the lowest metric value (relative perfor-298 

mance) across the models that were investigated here. We selected 0.1 as the lower boundary simply 299 

to avoid misinterpretation that may be intuitively associated with the number zero.  300 
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Results 301 

Accuracy of local predictions 302 

There was no model that was able to predict all variables at all sites with high accuracy and only few 303 

models showed a high accuracy of local predictions for all variables at one site (SALEM at Bily-Kriz, 3PG 304 

at Solling-spruce and 3D-CMCC-FEM BGC at Solling-beech). At the same time, every model predicted at 305 

least one variable at one site with an adequate accuracy of local predictions except for 3PGN-BW which 306 

showed consistently lower predictive skill than the average of observations. (Fig. 1) 307 

Partitioning the accuracy differences between models into the three MSD components showed that the 308 

offset between model prediction and observed data had varying origins (Fig. 1). Random errors (LC) 309 

made up the largest share of the overall error except for BA and AET. Systematic errors (SB) of the struc-310 

ture variables may have been a result of offsets in model initialization from the reference data (see Figs. 311 

S4-S9 in the supplementary material). Flux variables were also prone to SB due to systematic over- or 312 

underestimation. Persistent underestimation of GPP was evident in GOTILWA+ and FORMIND as well 313 

as for a range of models at Hyytiälä, while 3PG persistently overestimated GPP and Landscape-DNDC 314 

overestimated GPP at Bily Kriz. Most models underestimated AET in Le Bray, while overestimation was 315 

evident at Bily Kriz (see Figs. S10-S17 in the supplementary material). Predicted-observed offsets from 316 

linear patterns in the residuals (NU) were generally low except for BA and DBHinc simulated by FOR-317 

MIND, DBHinc simulated by ForClim v.3.3 as well as Reco and AET for 3PGN-BW. 318 

Forest structure variables displayed a higher overall accuracy of local predictions than the carbon and 319 

water variables. On average, simulated BA showed the highest accuracy of local predictions. This is 320 

partly related to the temporal autocorrelation of the variable. Annual carbon variables had the lowest 321 

accuracy of local predictions, while NEE had the lowest accuracy of the annual carbon variables. No 322 
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model had a better predictive skill at any site than the observed mean NEE. None of the sites’ observed 323 

data could be predicted with a high accuracy of local predictions for all carbon and water variables sim-324 

ultaneously by any given model. 325 
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Fig. 1: Metrics for the accuracy of local predictions for all site-model-variable combinations. On the y-axis 327 

are the sites, the x-axis shows variables, vertical panels are different models and horizontal panels show 328 

the different metrics. Colors visualize the normalized metric values, where yellow indicates high agreement 329 

and blue indicates low agreement of observed and predicted data. Cells in the column for mean squared 330 

deviation (right) in dark blue (norm. MSD ≥ 1) indicate cases where the observed average has a higher 331 

predictive skill than the model predictions. White cells indicate cases with no evaluation data available 332 

whereas grey cells indicate cases that are not provided by the model. The model coverage of sites and var-333 

iables depends on the model application range. norm. SB: normalized squared bias; norm. LC: normalized 334 

lack of correlation; norm. NU: normalized non-unity slope; norm. MSD: normalized mean squared devia-335 

tion. 336 

The models varied regarding the overall accuracy of local prediction score (A, Fig. 2). Only few models 337 

had a consistently better predictive skill for single variables than the observed mean (norm. MSD < 1): 338 

SALEM for DBHinc, 3D-CMCC-FEM BGC, 3D-CMCC-FEM LUE and SIBYLA for BA, 3PG for BA and DBHinc 339 

and BASFOR for Reco and AET. Although 3PG had a high predictive skill for structure variables, the pre-340 

dictions for GPP had the lowest predictive skill of any model. While some models performed consistently 341 

well for one or two variables over multiple sites, other models performed worse than the observed 342 

mean for all variable-site combinations. The ensemble mean ranked sixth for accuracy of local predic-343 

tions of forest structure variables and fourth for carbon and water fluxes. Overall, the ensemble mean 344 

had a higher accuracy of local predictions than eight of the individual models. 345 
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  346 

Fig. 2: Aggregated metrics for accuracy of local predictions for all model-variable combinations assessed 347 

(aggregated across sites). Numbers indicate the metric value and colors visualize the normalized metric 348 

values, where yellow indicates high agreement and blue indicates low agreement of observed and predicted 349 

data. 350 

  351 
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Realism of environmental responses 352 

Observed relationships of daily GPP to temp, rad and vpd followed plausible patterns for all models 353 

while the distinct patterns differed from site to site (Fig. 3). Increasing temp and increasing rad were 354 

related to increasing daily GPP, except for temp relationship at higher temp values in Bily Kriz, while an 355 

increase in vpd was related to decreasing daily GPP. Most models were able to reproduce these observed 356 

patterns. Distinct site-specific patterns however were not predicted well at all sites by all models. Strong 357 

non-linear patterns were observed for the temp relationship in GOTILWA+ at Collelongo and for the vpd 358 

relationship of 4C at Sorø, which may be artifacts of the model fitting procedure or model responsive-359 

ness to other drivers such as water availability, which was not analyzed here due to the lack of observed 360 

data at the sites. For vpd, models overestimated daily GPP at high vpd. High daily GPP at high levels of 361 

vpd for 4C at Bily-Kriz and Sorø and many models at Le Bray and Hyytiälä indicated unrealistic produc-362 

tivity responses. 363 
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 364 

Fig. 3: Relationship between climate variables and simulated and observed gross primary productivity 365 

(GPP). Quantile general additive models are displayed (as lines) by fixing two of the three independent 366 

variables to their arithmetic mean value. Small indicators along the axes display individual simulated and 367 

observed daily GPP data and observed data on temp, rad and vpd. 368 

The slopes of the linear regressions of the daily GPP residuals (sim. GPP - obs. GPP) to environmental 369 

variables indicated varying agreement of observed and simulated environmental responses across 370 

models and sites (Tab. 3; Fig. S2 in the supplementary material). The temp and rad response had the 371 



Forest Model Evaluation 
 

26 
 

lowest average absolute slope at Le Bray and Sorø had the lowest average absolute slope for vpd (see 372 

Tab. S2 in the supplementary material).  373 

On average, the ensemble mean showed the most realistic environmental responses while Landscape-374 

DNDC and 3D-CMCC-FEM BGC also show highly realistic responses of daily GPP to different environ-375 

mental drivers. Yet, there is no individual model that shows the most realistic responses of GPP to all 376 

three environmental variables at all sites. Some models feature intermediate realism of environmental 377 

responses to all environmental variables, e.g. 3D-CMCC-FEM LUE. The most realistic response to rad 378 

was obtained by the ensemble mean. Landscape-DNDC had the most realistic GPP response to vpd, while 379 

GOTILWA+ had the most realistic GPP response to temp. At the same time GOTILWA+ had the least 380 

realistic GPP response to rad, 4C had the least realistic GPP response to temp and BASFOR had the least 381 

realistic GPP response to vpd. 382 

  383 
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Tab. 3: Realism of environmental responses per model and environmental variable derived from multiple 384 

linear regression slopes of residuals from simulated to observed daily GPP. The overall realism of the envi-385 

ronmental response score is the average of the variable-specific realism of environmental responses re-386 

projected to the range 0.1 to 1. Note that for the models not listed here realism of environmental responses 387 

was not derived because of missing representation of daily GPP. 388 

model 

Mean absolute slope 
(re-projected mean absolute slope) 

Realism of 
environ-

mental re-
sponses temp rad vpd 

ensemble mean 1.887 ∗ 10−9 
(0.601) 

0.913∗ 10−11 
(0.000) 

4.488∗ 10−8 
(0.511) 1.00 

Landscape-DNDC 2.121 ∗ 10−9 
(0.716) 

1.587∗ 10−11 
(0.677) 

1.686∗ 10−8 
(0.000) 0.70 

3D-CMCC-FEM BGC 1.376∗ 10−9 
(0.352) 

1.396 ∗ 10−11 
(0.485) 

3.847∗ 10−8 
(0.612) 0.63 

GOTILWA+ 0.654 ∗ 10−9 
(0.000) 

1.909∗ 10−11 
(1.000) 

3.856∗ 10−8 
(0.615) 0.45 

PREBAS 1.602 ∗ 10−9 
(0.462) 

1.908∗ 10−11 
(0.998) 

2.631∗ 10−8 
(0.268) 0.33 

BASFOR 1.351 ∗ 10−9 
(0.340) 

1.319∗ 10−11 
(0.408) 

5.215∗ 10−8 
(1.000) 0.31 

3D-CMCC-FEM LUE 1.865 ∗ 10−9 
(0.590) 

1.412∗ 10−11 
(0.501) 

4.412∗ 10−8 
(0.772) 0.18 

4C 2.705 ∗ 10−9 
(1.000) 

1.198∗ 10−11 
(0.286) 

3.995∗ 10−8 
(0.654) 0.10 

 389 

General applicability 390 

The most common tree species and species groups in Europe are Pinus sylvestris, Picea spp., Fagus syl-391 

vatica and Quercus robur and Quercus petraea, which dominate around 75 % of Europe’s forests (Brus 392 

et al. 2011). Almost all models covered these species with species-specific parameterizations. Only 393 

PREBAS and BASFOR were missing Quercus robur and Quercus petraea, whereas GOTILWA+ was miss-394 

ing Picea spp. and Quercus robur and Quercus petraea. Additionally, most models covered other species 395 

that are less common in Europe, hence most models had species parameterized that represented the 396 
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dominant tree species on 73 - 98 % of Europe’s forest cover.  The two models covering the least of 397 

Europe’s forest cover are BASFOR and GOTILWA+ with 66 % and 54 %. The ensemble mean had the 398 

highest general applicability because it combined the species covered by all models. (Tab. 4)399 
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Tab. 4: Tree species groups parameterized in complex forest models as an indicator for the general applicability across European tree species 400 

groups. Tree species group cover (“cover Europe”) is according to Brus et al. (2011). The general applicability per model is the coverage of 401 

European forests re-projected to a range of 0.1 to 1. 402 
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3D-CMCC-FEM BGC 
3D-CMCC-FEM LUE X  X  X  X  X X X X X X X X   X  97.34 0.97 

ForClim v.3.3 X X X X X  X X X X X X X X  X X X X  96.93 0.95 
Landscape-DNDC X  X   X X X X X  X X X X X X X X  97.29 0.91 
3PG X  X    X X X X  X  X  X  X X  90.02 0.84 
3PGN-BW X  X    X X X X  X  X  X  X X  90.02 0.84 
SALEM X      X     X X X X X  X X  88.88 0.83 
4C X  X   X X     X  X  X X X X X 86.97 0.79 
FORMIND   X    X X      X  X X X X  80.16 0.68 
SIBYLA X      X       X  X   X  78.87 0.67 
PREBAS   X   X X       X X X X   X 73.38 0.57 
BASFOR       X       X  X     66.04 0.46 
GOTILWA+      X X X    X X  X X    X 54.11 0.1 
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Model performance along the three dimensions of the model performance frame-404 

work 405 

Besides the analysis of model performance, accuracy of local predictions, realism of environmental re-406 

sponses and general applicability in isolation, we also analyzed the relations between the three dimen-407 

sions. Figure 4 shows that the ensemble mean had the highest overall score across the three dimensions. 408 

3D-CMCC-FEM BGC, Landscape-DNDC and 3D-CMCC-FEM LUE performed best across the three dimen-409 

sions, followed by PREBAS, BASFOR, 4C, and GOTILWA+. The models covering only two dimensions of 410 

model performance ranked as follows: SALEM, SIBYLA, 3PGN-BW, ForClim v.3.3, 3PG and FORMIND. 411 

  412 

Fig. 4: Model performance along with accuracy of local predictions, realism of environmental responses 413 

and general applicability. The highest theoretical total score along three dimensions is 1-1-1 (“1-1-1 414 

model”). *note that for SALEM, SYBILA, 3PGN-BW, ForClim v.3.3, 3PG and FORMIND realism of environ-415 

mental responses could not be calculated. For further information regarding the interpretation of individ-416 

ual metrics cf. the methods section. 417 
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Discussion 418 

This study evaluates a large number of complex forest models in an unprecedented model comparison 419 

study against a large number of observations: 72 (carbon and water variables) to 128 (forest structure 420 

variables) site-years with multiple data sources covering forest structure, carbon and water variables. 421 

We developed a model performance framework based on Levin’s (1966) concept to evaluate accuracy, 422 

realism and general applicability of the participating models against this data. Overall, we find that no 423 

individual model outperforms the others across all three dimensions, and that the model ensemble 424 

performs mostly well. 425 

Model performance 426 

Accuracy of local predictions 427 

3PG and 3D-CMCC-FEM BGC simulate the structure variables most accurately, while BASFOR and 3D-428 

CMCC-FEM LUE do so for the carbon and water variables. The main difference between 3D-CMCC-FEM 429 

BGC and 3D-CMCC-FEM LUE is the representation of photosynthesis (see Tab. 1), with the BGC version 430 

featuring a more process-based approach. The BGC version performs better for the structure variables 431 

than the LUE version, while the LUE version is more accurate than the BGC version regarding carbon 432 

flux variables at the annual scale. This unexpected trade-off cannot be explained in a straight-forward 433 

manner by the differences in the model versions, but indicates that more empirical photosynthesis mod-434 

els (LUE version) do not necessarily produce less accurate predictions of annual flux variables than 435 

more process-based approaches (BGC version). 3PG is rather simple compared to the other models ap-436 

plied here (Tab. 1), but it still produces accurate predictions of DBHinc for the subset of sites in this 437 

study that are truly monospecific and even-aged. Apparently, less detailed but more robust model for-438 

mulations are an advantage when simulating these types of forests. Likewise, the other models that 439 
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focus on forest dynamics alone rather than also simulating biogeochemical fluxes, such as SALEM and 440 

SIBYLA, also show a high accuracy of local predictions for structure variables. ForClim v.3.3 and FOR-441 

MIND show a lower accuracy of local predictions for structure variables mainly because the predictions 442 

of DBHinc have a large offset to observations. These offsets result from the simulated thinning regime 443 

and, in the case of ForClim v.3.3, a bias in the allocation (which has been addressed in v4.01, Huber et 444 

al. 2020). Low accuracy of BA among all models may be explained by simulated mortality reducing stand 445 

density below the observed stem numbers (see Fig. S9 in the supplementary material). BASFOR, which 446 

is also among the less complex models of our ensemble, produces accurate predictions of carbon and 447 

water variables while it predicts the structure variables with low accuracy. Such systematic errors re-448 

garding structure variables may also result from specifics in model initialization (see Figs. S4-S9 in the 449 

supplementary material), e.g. BASFOR initialized trees with a planting procedure while most models 450 

were initialized with observed data of adult stands. In models that operate at the forest stand-scale 451 

rather than the tree level, systematic errors may also arise from the underestimation of BA if it is calcu-452 

lated internally from a multimodal DBH distribution and stem number. For example, Landscape-DNDC 453 

and 3PGN-BW initialized mean DBH assuming a mean weighted by basal area and not an arithmetic 454 

mean, leading to systematically higher BA, DBH and H (but not growth) at sites with a heterogenous 455 

diameter distribution as is the case in particular in Sorø. Finally, the systematic over- as well as under-456 

estimation of flux variables shown by most models at least for some sites may be an effect of an insen-457 

sitivity for specific environmental conditions defined by either model structure or the generic parame-458 

ter sets used in this study. 459 

Generally, the models predicted structure variables more accurately than annual carbon and water var-460 

iables, except for BASFOR and FORMIND. Earlier findings by Kramer et al. (2002) and Morales et al. 461 

(2005) suggested that forest models have an adequate accuracy regarding daily carbon and water 462 
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fluxes. Yet, on the multi-annual time scale, Horemans et al. (2017) found larger uncertainties for NEE 463 

than on the daily time scale. Our findings using a much larger ensemble of models confirm these earlier 464 

findings. Carry-over effects from preceding years, which are usually not well represented in models, 465 

may be a reason for the inaccurate year-to-year variation of carbon fluxes in the models (Aubinet et al. 466 

2018). 467 

Moreover, besides the reasons for individual model-data mismatches discussed above, the quality of the 468 

observed data may affect all models collectively. Systematic and unsystematic observation errors affect 469 

the reference data the models are compared to, e.g. uncertainty from the method used to partition NEE 470 

into GPP and Reco (Oikawa et al. 2017). Checking the agreement of estimates from these different meth-471 

ods, we found that GPP estimated with the DT partitioning method (Lasslop et al. 2010) is highly corre-472 

lated with GPP estimated with the nighttime method (NT, Reichstein et al. 2005) in the evaluation data 473 

with no apparent bias (see Fig. S3 in the supplementary material). Consequently, using DT- or NT-based 474 

GPP estimates led to only minor changes in the results. Moreover, abiotic or biotic disturbances that 475 

affect the reference data but are not represented in model simulations may affect model accuracy (Finzi 476 

et al. 2020, Trugman et al. 2021). Furthermore, the understory contribution to the carbon balance was 477 

not assessed in any of the models but contributes to the measured carbon balance (Dirnböck et al. 478 

2020).  479 

Additionally, uncertainties in model forcing data may contribute to model-data mismatches. For exam-480 

ple, the climate data used to drive the simulations was sometimes observed at or close to the forest 481 

stand, but in some cases only inferred from the nearest climate station (Reyer et al. 2020a), which may 482 

introduce additional uncertainties, e.g. due to orographic effects. Likewise, even though the stands are 483 

managed using standard silvicultural treatments (Reyer et al. 2020a), specific, local forest management 484 

actions may not be perfectly covered by the models’ approximation of the management. 485 
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Overall, we find that simpler models, like SALEM, SIBYLA, 3PG, BASFOR and PREBAS did not necessarily 486 

perform worse than more complex models like 3D-CMCC-FEM BGC, 3D-CMCC-FEM LUE, 4C, Landscape-487 

DNDC or GOTILWA+. The ensemble mean has an intermediate overall accuracy. Hence, in most cases 488 

there are more accurate individual models available for each site-variable combination. Moreover, the 489 

range of annual model predictions did not always overlap with observations. Hence, assessing the range 490 

of the model ensemble and assuming that the “true” value lies within that range is not always advisable. 491 

This was most pronounced for Hinc at Hyytiälä, Le-Bray, Solling-beech, Solling-spruce and Sorø, Reco at 492 

Collelongo and Sorø, NEE at Collelongo, Bily-Kriz and Sorø as well as DBHinc, GPP and AET at Le Bray. 493 

Hence, in some cases all models overestimate or underestimate the observed data, which points either 494 

to general issues in model structure and/or parameterization across all models, or it may relate to is-495 

sues with the reference data outlined above. 496 

Realism of environmental responses 497 

Earlier findings by Kramer et al. (2002) showing realistically simulated relationships of daily GPP to 498 

daily mean temperature and global radiation can be confirmed by our large ensemble. In addition, we 499 

find that models exhibit also realistic responses of GPP to vapor pressure deficit (vpd). Properly captur-500 

ing GPP responses to vpd has proven to be fundamental to reproduce annual productivity patterns 501 

(Medlyn et al., 2011), especially in stands where the most limiting environmental driver for GPP shifts 502 

from water availability to vpd along the year (e.g. Nadal-Sala et al., 2021), and given that vpd-driven 503 

limitation of productivity is expected to increase under global warming (e.g. Novick et al., 2016). In this 504 

regard, our lumped GAM analysis is not able to fully determine the exact driver that is limiting GPP at a 505 

given moment, and therefore interactive effects of constraining environmental drivers cannot be fully 506 

discarded. Hence, the impact of vpd on GPP for each individual model remains unassessed, with the 507 
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realism of this key response potentially being masked by its positive correlation with temperature and 508 

radiation. 509 

While 3D-CMCC-FEM BGC shows relatively realistic daily GPP response, the closely related model 3D-510 

CMCC-FEM LUE has the second least realistic GPP response. The single difference between these two 511 

models is the description of photosynthesis that is more process-based for 3D-CMCC-FEM BGC which 512 

used the Farquhar, von Caemmerer and Berry biochemical photosynthesis model (Farquhar et al. 1980) 513 

and the 3D-CMCC-FEM LUE which uses the Monteith empirical approach (Monteith et al. 1977). While 514 

the BGC version shows more realistic daily environmental responses of GPP the LUE version is more 515 

accurate at the annual scale. Since the BGC version was constructed to provide daily estimates of 516 

productivity while the LUE version was originally constructed to provide estimates at the monthly time 517 

scale, and compensating for possible over and under estimations, this performance relation can be ex-518 

pected. Biases originating from missing site-specific calibration and, given the higher number of param-519 

eters in biochemical photosynthesis models, increased uncertainty in the daily outputs of the BGC ver-520 

sion could explain the worse performance at the annual scale. The issue related to the temporal scale in 521 

modeling GPP has already been discussed by Collalti et al. (2016) and Lasch-Born et al. (2020). 522 

Overall, the individual models complemented each other with regard to the realism of environmental 523 

responses of productivity. On average, the ensemble mean produced more realistic daily GPP responses 524 

to environmental variables than any of the individual models. This is due to overestimating and under-525 

estimating individual models that cancel out when aggregated into an ensemble mean. Nevertheless, 526 

the ensemble mean’s performance relative to individual models strongly depends on whether the un-527 

derlying models are balanced (over- as well as underestimation) and represent different model struc-528 

tures. 529 
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General applicability 530 

Following our rather simple definition of the general applicability of models, we find that most of the 531 

models are able to simulate a relatively large share of European forests. However, having a tree species 532 

parameterized does not necessarily mean that the models can really cover all potential mixtures in 533 

which that species might grow. Still, it is encouraging to see that the models generally cover the main 534 

species that are of commercial and ecological relevance in Europe, and hence from this point of view 535 

most models are suitable to be applied in climate impact studies covering different European forests. 536 

However, the focus of forest policies on adapting forests by generating more complex and species rich 537 

forests will challenge the general applicability of the models. Finally, the ensemble covers almost all 538 

European forest tree species because the individual models complement each other especially for the 539 

less common tree species. 540 

Trade-offs between the three dimensions of the model performance framework 541 

Even though our framework of model performance does not theoretically prevent models from scoring 542 

high in all three dimensions, we did not expect that any model would do so, but that trade-offs between 543 

accuracy of local predictions, realism of environmental responses and general applicability were pre-544 

sent. While our results confirm that there is no “silver bullet”, we could not find explicit trade-offs such 545 

as a systematic negative relation between general applicability and accuracy of local predictions either. 546 

Models that have a high general applicability score such as 3D-CMCC-FEM BGC also perform well in 547 

terms of accuracy of local predictions and realism of environmental responses. In general, the scores of 548 

the three dimensions of model performance seem to be more or less balanced for most models although 549 

at different overall levels. One of the exceptions is the model GOTILWA+ which has a relatively low score 550 

for accuracy of local predictions but a comparably high score for realism of environmental responses. 551 
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Such results may originate from parameter uncertainties in the initial model setup, as physiological and 552 

allometric parameters for a given species have not been calibrated, though they have been observed to 553 

be highly site-dependent (e.g. allometric and photosynthetic parameters) and varying also with forest 554 

developmental stages (Collalti et al. 2019). Also, the lack of trade-offs between accuracy of local predic-555 

tions, realism of environmental responses and general applicability may be an artifact of the way we 556 

derived the realism of environmental responses. The potential trade-off in the framework provided by 557 

Levins (1966), and further elaborated by Weisberg (2006), may not be apparent in the suggested frame-558 

work here, because we did not strictly follow the definitions of accuracy, realism and generality since 559 

they are inherently difficult to assess and not meant to be operationalized for actual simulation models. 560 

Operationalizing the framework for complex forest models may have distorted the relation between the 561 

three dimensions as defined by Levins (1966). Furthermore, although a balance between the three di-562 

mensions is advisable, it may not always be necessary. For example, qualitatively correct insights about 563 

forest growth and dynamics under global change may be sufficient to guide adaptation planning, e.g. 564 

insights about the growth dominance of one species over the other, indicating that realism and gener-565 

ality may be more important for this purpose than accuracy. 566 

Another key aspect that might explain the differences in performance among models is that some mod-567 

els were initially developed for other scopes. Some models have been developed to simulate forest 568 

growth and fluxes in the short-term (i.e. the variables of interest here), but others to simulate forest 569 

growth and demography over the medium- to long-term (decadal to centennial) and, thus, focusing 570 

more on processes such as reproduction and mortality (not analyzed here). For instance, a specific strat-571 

egy for model development in ForClim is that each model development step should lead to better pre-572 

dictions of long-term (centennial) forest dynamics and/or of potential natural vegetation (simulations 573 

over >1000 years) (Didion et al. 2009). Testing for these model capabilities would probably lead to a 574 



Forest Model Evaluation 
 

38 
 

different model ranking than presented here. Furthermore, some models have been developed with the 575 

primary aim to capture multi-decadal dynamics in complex multi-species stands (e.g. SIBYLA, FOR-576 

MIND, ForClim), but eight of the nine stands used here were rather homogenous single-species stands 577 

(see Tab. 2), which may be, in theory, easier to simulate using mechanistic biogeochemistry models. 578 

Limitations of the model performance framework 579 

Most model evaluation studies to date have assessed the accuracy of local predictions (e.g., Irauschek et 580 

al. 2021). Yet, in addition to the agreement of predicted and observed variables of primary interest, also 581 

realistic secondary patterns, like the responses of productivity to environmental drivers are important, 582 

especially when assessing models that are being used for climate impact studies. Likewise, given the 583 

rapid expansion of model uses and users, the general applicability is important to help the latter to as-584 

sess whether the model is likely to be useful for comprehensive impact studies across a large range of 585 

tree species. Our model performance framework is a first attempt to operationalize Levins’ (1966) ideas 586 

within the context of climate impact assessments with complex vegetation models. 587 

We quantified the accuracy of local predictions by deriving the average differences between predicted 588 

and observed data for forest variables of primary interest at multiple sites on an annual time scale. The 589 

approach is a robust way for assessing the agreement of predicted-observed data for models with dif-590 

ferent numbers of variable outputs. Models that provide more output variables for assessment in the 591 

performance framework are not necessarily less accurate. Nevertheless, those models that assess vari-592 

ables which are generally more difficult to accurately predict will have lower levels of accuracy than 593 

those models only assessing variables that are less difficult to predict. Future applications of the frame-594 

work could explore different weightings of the variables depending on the difficulty in predicting them 595 

and the availability of data to test them. Furthermore, we acknowledge that model predictions are also 596 
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useful if they have less predictive skill than the observed mean because there are many instances where 597 

no data are available to derive the mean for a given variable. Here, we used the observed mean as 598 

threshold to identify especially well performing models and not to penalize poorly performing models. 599 

Besides an accurate representation of historical data, forest models should be characterized by a real-600 

istic response of productivity to environmental drivers under varying climatic conditions. However, to 601 

assess model realism more comprehensively all processes represented in the model need to be as-602 

sessed, rather than only the productivity response (see also Huber et al. 2020). Therefore, even though 603 

we test the models with carbon and water variables, further refinements of the model performance 604 

framework should include testing other variables for their realism to environmental responses such as 605 

structure and mortality variables or autotrophic and soil respiration to test model realism across a 606 

broader range of processes. Likewise, model comparisons in which the models have been forced to 607 

mimic experimental changes in environmental variables such as shifting of atmospheric CO2 concentra-608 

tions in FACE experiments (Zaehle et al. 2014, Walker et al. 2021) or rainfall manipulation experiments 609 

(Paschalis et al. 2020) could help us to learn further about the model’s realism of environmental re-610 

sponses. Whether the model includes flexible traits (Berzaghi et al. 2019) and whether it is able to mimic 611 

natural adaptive processes (Collalti et al. 2020) could be a further element of testing the realism of en-612 

vironmental response. 613 

Moreover, restricting the quantification of realism to periods when the environmental driver analyzed 614 

(e.g. temperature, radiation or vapor pressure deficit) is actually the one that is driving the process 615 

should be included in the evaluation of the GPP response (e.g. Nadal-Sala et al., 2021). Additionally, 616 

model parameterization is important. For instance, if a model assumes the same allometric relationship 617 

for a single species regardless of environmental conditions, we expect it to be less accurate than other 618 

models that account for site differences by using either different allometric coefficients in different 619 
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stands or incorporating environmental drivers (Cysneiros et al. 2021), or if models, and their parame-620 

terizations, account for changes in tree growth and carbon allocation and acclimation in response to 621 

environmental stressors as well as during different stages of forest development (Collalti et al. 2019; 622 

Merganičová et al. 2019). These considerations also hold for other structural aspects such as leaf distri-623 

bution or process parametrization, e.g. regarding photosynthesis. Evaluating process rates (e.g. GPP) in 624 

contrast to model states (e.g. BA) requires a higher realism of environmental responses to produce ac-625 

curate predictions, because model states are dominated more strongly by long-term model assumptions 626 

on stand dynamics (such as mortality definitions, carbon allocation, allometric relationships, manage-627 

ment regime). Overall, to test realism properly, one should test the response of the models to different 628 

forcing conditions, and compare the (qualitative) responses of the models to our general understanding 629 

of the processes and observed data describing these responses. 630 

Also, it is noteworthy that even though we interpret the results along three dimensions, the quantifica-631 

tion of the accuracy of local predictions and the realism of environmental responses are not fully inde-632 

pendent of each other. These two dimensions are both based on the comparison of predicted to ob-633 

served data, therefore there is no trade-off sensu stricto to be expected. Furthermore, the quantification 634 

of realism of environmental responses does not consider other non-linear patterns in the residuals of 635 

simulated to observed values which may overestimate the agreement of simulated to observed re-636 

sponses of GPP to climatic drivers. Thus, in this respect future studies could refine the relationship be-637 

tween the computation of accuracy of local predictions and realism to environmental responses. 638 

Generality, as the robust model applicability across space and time, is challenging to assess since exten-639 

sive data are needed to apply and evaluate models across large spatial and temporal scales. We did not 640 

derive the general applicability across time but focused on the general applicability in space. However, 641 

simply being able to simulate tree species or plant functional types does not warrant that models area 642 
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able simulate for example complex forest mixtures or management systems (Grote et al. 2011, Pretzsch 643 

et al. 2015, Bravo et al. 2019). Information on whether the models are able to simulate mixed forests 644 

with a complex structure, comprising both managed and natural dynamics, could be used to widen the 645 

general applicability metric which is important since the structural complexity of forests may increase 646 

in the future as part of forest adaptation to climate change (Huber et al. 2020, Pardos et al. 2021, de 647 

Wergifosse et al. 2022). 648 

Finally, because we investigated the model performance based on current model parameterization 649 

without further site specific parameter calibration, the resulting uncertainty is originating from both 650 

model structure and model parameterization. The model performance is reflecting the current state of 651 

the model only. However, model parameterization and calibration have the potential to increase the 652 

performance along all three dimensions of the model performance framework. In theory, if a model is 653 

general in its structure (i.e., more process-based models), it would need less data to be parameterized 654 

to different environments or species, if it is less general (i.e., more empirical models) it would need more 655 

data. Hence, the effort that is needed for calibrating a model to specific environments is model specific 656 

and different calibration efforts would lead to varying levels of improvement of the three dimensions of 657 

model performance. But not all three dimensions are dependent on model structure and parameteriza-658 

tion to the same extent. The realism of environmental responses is mostly driven by model structure, 659 

accuracy of local predictions is affected by both model structure and parameterization while the general 660 

applicability is mostly dependent on the model parametrization effort. In summary, the current model 661 

performance can be improved not only by development of the model structure itself but also by model 662 

parameter calibration. 663 
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Conclusions and implications for model applications 664 

We performed the, to our knowledge, largest forest model comparison with a wide range of multi-665 

source evaluation data in an innovative model performance framework. We found that the accuracy of 666 

local predictions in the historical period is not related to the level of complexity of a model, i.e. empirical 667 

models do not necessarily provide less accurate predictions than hybrid or process-based models under 668 

current climate conditions. Furthermore, accurate predictions of carbon variables at annual scale are 669 

more difficult to obtain than accurate predictions of structure variables. The realism of environmental 670 

responses in model simulations provides an approximation how well relationships that are crucial to 671 

assessing climate impacts are covered. We showed that the model ensemble mean has the most realistic 672 

daily GPP responses to environmental variables. General applicability, in terms of the coverage of Euro-673 

pean tree species is high for most models but less common species that may become more important 674 

under climate change are only partly covered by models. 675 

We conclude that, if accuracy is the objective, individual models may provide the best results at single 676 

specific locations. Which model will provide optimal results depends on the environmental conditions, 677 

structural properties, disturbances, etc. of those locations. Moreover, most individual models cover the 678 

most relevant European tree species, but to cover all and particularly the less abundant species, multi-679 

ple models need to be applied. Finally, we highlight the importance to evaluate several model output 680 

variables with a wide range of data, because models struggle to achieve high accuracies for several var-681 

iables at the same time. Because already multiple models exist to study climate impacts on forests we 682 

expect that our study will provide a common benchmark to test whether new modelling efforts outper-683 

form the models presented here to add value to the existing set of tools. 684 
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