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Abstract  

The concept of clusters has been popularized over the last two decades, mainly through the work of Michael 

Porter. A question that has arisen recently in relation to cluster theory is whether it can be complemented with 

Smart Specialization Strategies (S3). This study applies data envelopment analysis (DEA) to the Mexican 

economy to evaluate three effects: 1) whether the kind of policies envisaged through a S3 strategy has an impact 

on the efficiency of Mexican clusters; 2) whether this impact changes with the technological intensity of the 

clusters; 3) to what extent such impact is related to the technological intensity of the cluster. The results show 

that strategies following the S3 had a significant impact in all clusters, but when clusters were classified by 

technological intensity, the impact on efficiency is higher in clusters in the medium low-tech group. According 

to the results in the DEA, we can conclude that these S3 strategies have the potential to increase the clusters’ 

productivity significantly. 
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1. Introduction 

In the last two decades the cluster concept has become popular, but it represents the evolution of ideas 

that originated at the end of the nineteenth century (Vorley, 2008; Aranguren & Wilson, 2013). Cluster theory 

is rooted in Marshall’s work on “industrial districts” in the books Principles of economics (1890) and Industry 

and trade (1919). Marshall defined an industrial district as an area with a high concentration of firms 

specializing in a main industry and auxiliary industries. Marshall observed that the co-location of firms in an 

industrial district has more advantages than aggregating activities within a single large firm. Although 

Marshall’s work does not refer specifically to clusters, the empirical work established the fundamental ideas on 

which it is based. 

Since Marshall’s time cluster theory has gone through several stages in its evolution (Vorley, 2008). 

The most recent conceptualization was presented by Porter in the middle and late 1990s. He popularized the 

concept of cluster theory through his textbook The competitive advantages of nations (Porter, 1990) and two 

articles that became the primary references in this academic field (Porter, 1998, 2000). Unlike Marshall, Porter 

did not just analyze the macroeconomic effects of localized industrial organizations, but also the microeconomic 

strategies of firms.  

The concept of cluster theory continued to evolve and new approaches were introduced. One of the 

new questions that have arisen is related to the recent innovation policy called Smart Specialization Strategies 

(S3). The origin of S3 lies in the clear productivity gap that has existed between the United States and Europe 

since 1995 (Ortega-Argilés, 2012). A group of experts, called “Knowledge for Growth” (K4G) was established 

with the purpose of devising a strategy to close this gap. They suggested the S3 whose objective is building 

competitive advantages in research domains and sectors where regions have strengths. This innovation policy 

gained significant momentum in 2013 when it was adopted by the European Commission's Science and 

Knowledge Service. Table 1 summarizes the definition of the S3. 

Table 1 Definition of Smart Specialization Strategies 

 

Source: European commission, 2013. 

 

National/regional research and innovation strategies for Smart Specialization (RIS3 strategies) are 
integrated, place-based economic transformation agendas that do five important things: 

• They focus policy support and investments on key national/regional priorities, challenges, 
and needs for knowledge-based development. 

• They build on each country's/region’s strengths, competitive advantages and potential for 
excellence. 

• They support technological as well as practice-based innovation and aim to stimulate private 
sector investment. 

• They get stakeholders fully involved and encourage innovation and experimentation. 

• They are evidence-based and include sound monitoring and evaluation systems. 
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S3 is related to cluster policy because both have essential points in common: 1) they both focus on 

productivity and innovation as key drivers of competitiveness; 2) both argue that there are advantages to 

proximity between industries (Pronestì, 2019). On the other hand, their differences can make them 

complementary to each other. “The full potential of clusters and cluster policies will be reached if: The Smart 

Specialization Strategies integrate cluster policies into a broader transformation agenda for the entire regional 

economy, and complement cluster policies with other cross-cutting and technology/knowledge domain-specific 

activities (European Commission, 2013, p.4)”. Some authors talk about the possible complementarity between 

these two innovation policies (Aranguren & Wilson, 2013; Pronestí, 2019). 

For this reason, this paper aims to evaluate whether the integration of S3 elements into clusters has a 

significant impact on their efficiency. In order to reach this goal, variables that represent the S3 elements are 

included in Porter’s clusters classification and we evaluate its impact on efficiency in the year 2013. Data 

correspond to the Mexican economy because the industries are already classified into Porter’s cluster definition. 

This cluster classification has been already implemented in another study (Mendoza-Velazquez et al., 2018). 

Although the S3 has not been implemented in the Mexican economy, there are some variables that could be 

used to represent the S3 elements in order to estimate their impact on clusters. The analysis of these variables 

could be used to support the design and implementation of the S3 strategy in Mexico. It allows to identify which 

S3 elements are more effective, and how to improve their performance.  

The case of Mexico is interesting because of its stage of development. McCann and Ortega-Argilés 

(2015)  pointed out that, in leading knowledge regions, the S3 argument will be less relevant as almost all 

sectors and technological fields will be present. On the other hand, S3 should be very well suited to intermediate 

regions, because of their growth potential and the concentration of possibilities offered by their spatial structure 

(urban and rural areas). The Global Competitiveness Report (Schwab, 2018) classified countries into three 

categories according to their stage of development: 1) Factor-driven: natural resources and unskilled labor drive 

the economy; 2) Efficiency-driven: countries develop more efficient production processes; 3) Innovation-

driven: the most sophisticated production processes and innovation processes are used in industry. Mexico is 

classified as being in the second stage, so it offers an interesting opportunity to investigate whether the 

efficiency of clusters can be improves by applying S3 strategies in a country that is not a leader in the 

development of new technologies, and how S3 should be adapted to the technological level of such countries. 

Given this background, the aims of this study were: 1) to analyze the general effect of applying S3 

across all sub-clusters; 2) to determine whether the effect of S3 varies according to the technological intensity 

of the sub-cluster; 3) to determine which S3 is more suitable for sub-clusters at different levels of technological 

intensity. To achieve these goals the paper is structured as follows. The next section summarizes the most 

important research on the joint application of S3 and clusters. The literature on this topic is not extensive 

because S3 has only recently been implemented, hence the need for research that provides quantitative evidence 

on this topic. After the literature review, we describe the method we used, data envelopment analysis (DEA), 

the reasons for choosing this method and the rationale for our estimation strategy. After the methodology, we 

present the composition of the clusters and the variables that represent S3 strategies. This is followed by the 
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results of the analysis of how S3 affect sub-cluster efficiency; we present estimates for different sets of models 

and group of sub-clusters. Finally, we present our conclusions. 

 

2. Literature Review  

As the S3 approach was only introduced in 2013 there is not an extensive literature on the topic. First, 

there is a group of papers dealing with the definition and limitations of S3. McCann and Ortega-Argilés (2015) 

examined the S3 concept and explained the application challenges. They pointed out that S3 policy 

recommendations would need to be very different in different places, differing according to the technological 

profile, industrial structure and geography of the region concerned. They concluded that S3 would be very well 

suited to intermediate regions because of their growth potential and spatial structure. Piirainen et al. (2017) 

questioned the different paths for reaching S3 within the same industrial domain. Based on an analysis of the 

empirical cases of the offshore wind services sectors in four regions around the North Sea, they concluded that 

there are four distinct patterns of S3: diversification, transition, radical foundation and modernization. Krammer 

(2017) pointed out that S3 methodologies should consider the particular characteristics of developing countries, 

such as low entrepreneurship rates and limited technological opportunities. Based on an analysis of the 

industries in Bulgaria Krammer concluded that S3 will work in the less developed countries so long as they are 

able to identify the industries where it has the greatest potential. Balland et al. (2018) constructed a policy 

framework for S3 that highlights its potential risks and rewards. From an analysis of EU regions they concluded 

that the potential risk of S3 can be represented by the concept of relatedness, and the potential benefits can be 

derived from estimates of the complexity of technologies.  

There is another group of papers about the methods used to identify industries to which S3 can 

profitably be applied: Gulc (2015) compared the methodological approaches used to identify S3 in Polish 

regions, concluding that the qualitative method was most popular but not complemented by the quantitative 

ones. Gonzalez et al. (2017) described and analyzed the location of industrial complexes for the construction of 

industrial policies based on the principles of related variety and S3.  

The brief literature on S3 contains just a few papers on the integration of S3 and the cluster concept. 

The first reference is a document produced by a group of experts in clusters and published by the European 

Commission (2013), which identifies the commonalities and differences between them in order to determine 

the potential contribution of clusters to the design and implementation of S3. This report makes clear, however, 

that a deeper analysis is required: “since both are policy approaches with a place-based dimension that aim at 

economic growth and competitiveness, the question of the differences, similarities, and contribution of one 

approach to the other, is highly relevant (European Commission, 2013, p. 7)”.  

As well as the European Commission’s report there are two papers supporting the idea of integrating 

S3 and clusters through the study of cases. Aranguren and Wilson (2013) presented the case of the Basque 

Country, which has two decades of experience in the design of cluster policy. Aranguren and Wilson carried 

out qualitative analysis to identify the differences and similarities between their mapping cluster and the S3 

characteristics mentioned in Foray et al.’s (2012) document. They identified specific points of S3 that contribute 
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to their cluster classification: 1) forms of cooperation among firms and a range of other agents that are 

developing related or complementary economic activities; 2) processes of prioritization and selection that 

combine top-down and bottom-up forces; 3) building from existing place-based assets and capabilities. Scutaru 

(2015) presented a case study of Romania in which clusters were evaluated to determine which had most 

potential for the development of a S3 plan. The main criterion was the availability of sufficient specialized 

human capital to support innovation. Bečić and Švarc (2015) analyzed Croatia’s clusters and concluded that S3 

is better suited to developed countries than developing ones due to the technological backwardness and lack of 

resources for R&D and advanced technologies. 

Todeva (2015) also analyzed the integration of these cluster and S3 policies based on a study of the 

specific cluster of health technology in the Greater South East of England. This author focuses on a specific 

characteristic of S3: the combining of the efforts of public administration agencies, business leaders and 

university establishments. The interaction between these organizations is referred to as the Triple Helix. Then, 

the location of the best health technology cluster for S3 is based on this characteristic.  

The smart guide to cluster policy (European Commission, 2016) is a very recent document published 

by the European Commission. Unlike the European Commission publication mentioned above, this one 

promotes transition towards modern cluster policies, because the systemic and strategic vision needed for 

modern cluster policy can be provided by the concept of Smart Specialization. The Guide also asserts that 

existing governmental innovation policies could, in many cases, be made significantly more effective by 

organizing them around S3 and clusters.  

The most recent reference on clustering is a book entitled The life cycle of clusters in designing smart 

specialization policies (Pronestí, 2019), which explores a new perspective on the role of clusters in catalyzing 

the effective design and implementation of S3. It explains how the different phases of the cluster life cycle 

(CLC) can help to identify a region’s potential to specialize in new domains. Different phases of the CLC have 

different roles in S3 policymaking. This research showed that a cluster in the stage of emergence, development 

and transformation offers the best conditions for the entrepreneurial discovery process. To sum up, Pronestí 

(2019) shows that clusters are useful in the implementation of S3. 

Despite the valuable contribution of these authors to understanding of the relationship between clusters 

and S3, the academic debates about the effective integration of these policies continue. There is a great need 

for research on this topic, which has been dominated so far by qualitative rather than quantitative analysis. It is 

fundamental to get estimates that demonstrate the relationships between the two approaches. We aimed to go 

one step further and investigate whether S3 affects clusters’ efficiency, and if so, whether the influence varies 

according to the technological intensity of the cluster. 

 

3. Methodology 

Our first objective was to generate a measure of efficiency. It is essential to start with a definition: 

efficiency means getting the highest possible level of output for a given amount of inputs and technology. It is 
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important to focus on efficiency because it is one parameter that contributes to variation in productivity3. S3 

and clusters were created to increment productivity, so if applying S3 increases clusters’ productivity, the 

objectives of both policies are achieved. 

To obtain a measure of efficiency it is necessary to compare actual performance with optimal 

performance, but as it is not possible to know what constitutes optimal performance it is approximated by the 

“best practice frontier.” There are two methods to estimate efficiency: the econometric approach and 

mathematical programming techniques. The econometric approach is stochastic; it can be implemented using 

maximum likelihood estimation or corrected OLS (COLS) (Rogers & Rogers, 1998). On the other hand, the 

programming approach is nonparametric. DEA is the representing methodology in this category.  

All the methods have advantages and disadvantages. The choice depends on the research objective and 

characteristics of the data. One of the main advantages of DEA is that it can handle multiple inputs and outputs 

(denominated in different units) in a non-complex way (Diaz-Balteiro et al., 2006). Furthermore, Costa et al. 

(2015) showed DEA estimate of efficiency scores (non-parametric) are more accurate than OLS estimates 

(parametric). They evaluated the operational efficiency of power distribution companies in Brazil through these 

methods. After a statistical comparison of the results in both cases, they concluded that the COLS Cobb-Douglas 

model has major deficiencies as a method of estimating efficiency scores.  

Many studies have applied DEA to compare the efficiencies of manufacturing industries. For instance, 

Zhao et al. (2016) and Chen and Jia (2017) evaluated the efficiency of industries with respect to environmental 

issues. They included two kinds of variables, those representing the production function and those related to 

the environment and pollution. Both models include the fundamental inputs to a production function (labor and 

capital). The output is represented by the value of production or the gross domestic product. DEA has also been 

used to evaluate innovation in firms and industries (Si & Qiao, 2017; Suh & Kim, 2012; Zhang et al., 2018). In 

these cases, patents represent the desirable output variable. These examples are relevant to our study because 

S3 are in essence innovation actions directed at specific objectives. 

We used DEA, which is a non-parametric technique, to measure the relative rather than absolute 

efficiencies of decision-making units (DMUs). DMUs can be firms, industries or countries. It does not require 

to assume any functional form. Although DMUs on the efficient frontier have a 100% efficiency score they 

could improve their productivity further (Huguenin, 2012). Linear programming methods are used to compute 

the efficient frontier from inputs and outputs. There are two main DEA approaches: 1) the Charnes, Cooper and 

Rhodes (1978) approach (CCR) assumes constant returns to scale (CRS) in order to estimate a global efficiency 

score, which is appropriate when all firms operate at the optimal scale; 2) the Banker, Charnes and Cooper 

(1984) approach (BCC) uses variable returns to scale (VRS) to estimate a pure technical efficiency score. Both 

approaches can be implemented in output-oriented models or input-oriented models. The former maximize the 

output for a fixed input, whereas the latter minimize inputs whilst holding output constant (Banker et al. 1984). 

 
3 The variation in productivity is a residual that can be attributed to the following reasons (Fried et al., 1993): 
differences in production technology, differences in the scale of operation, differences in operating efficiency, 
and differences in the operating environment in which production occurs. 



7 
 

The choice depends on the variables (inputs or outputs) over which the decision-maker has most control or on 

the objectives of the analysis (Yang, 2006).   

To demonstrate the rationale underlying DEA analysis, Figure 1 shows a simple example of efficiency 

scores estimation with just one input and one output (Huguenin, 2012). Axis “x” represents the input and the 

axis “y” the output. Each point in the figure represents one DMU with a different combination of input and 

output. The line 0B represents the efficient frontier for the CCR model under CRS. Meanwhile, the line ABE 

is the efficient frontier for the BCC model assuming VRS. A DMU is considered efficient if it lies on the 

efficient frontier. In the case of the CCR model, point B is globally efficient both in terms of management (as 

signaled by the VRS efficient frontier) and scale (as signaled by the CRS efficient frontier). On the other hand, 

ABE are efficient DMU’s for the BCC model. The rest of the DMUs (C and D) are inefficient for both cases. 

 

 

Figure 1 DEA model with one input and one output variable 

 

Source:  Data envelopment analysis (DEA). Huguenin, 2012 

 

 

The gap between the CCR (CRS) and the BCC (VRS) frontiers is due to a problem of scale. For 

instance, A needs to modify its scale (size) to become CRS-efficient. D not only has a problem of scale; it is 

also poorly managed. First D has to move to the point DVRS-1 to eliminate the inefficiency due to poor 

management. These two movements represent the components of efficiency: technical (due to management 

efficiency) and allocative (due to scale efficiency) (Diewert and Lawrence, 1999). Then, D has to move to point 

DCRS-I to eliminate the inefficiency due to a problem of scale. Observe that, even when D reduces its level of 

inputs, it still gets the same level of output. The objective of a DEA is to minimize the number of inputs required 

to maintain a fixed level of output.  
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The previous example is the simplest way to understand how DEA works. However, in a model with 

multiple inputs and outputs, the solution to this problem is formulated like a linear programming problem. The 

following equations represent the input-oriented model for the  CCR model (Huguenin, 2012), where s is the 

number of outputs; m is the number of inputs; n is the number of units to be evaluated (DMUs); xik represents 

the amount of input i consumed by the unit that is evaluated, unit k; xij represents the input quantities i ( i= 1, 

2,…,m) consumed by the jth unit (notice that this element is next to a summation operator); yik is the quantity 

of output i produced by the unit k;  yij represents the observed quantities of output r ( r = 1, 2, …, s) produced 

for the jth unit (this element also goes with a summation operator); θk is the relative technical efficiency score 

of the kth unit; λj expresses the weight that each DMU has within the comparison group; ε is a non-negative 

infinitesimal number for keeping coefficients of input and output variables positive; 𝑠𝑠𝑟𝑟− and  𝑠𝑠𝑟𝑟+ are non-

negative slack variables for input and output constraints.  

More details are needed to understand the meaning of the weights and slacks. This last one is the 

amount deviated from the efficient frontier. The terms ∑ 𝜆𝜆𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗𝑛𝑛
𝑗𝑗=1  and ∑ 𝜆𝜆𝑗𝑗𝑦𝑦𝑟𝑟𝑗𝑗  𝑛𝑛

𝑗𝑗=1  are called input virtual and 

output virtual respectively. These values express information about the importance that a unit attributes to 

specific inputs and outputs in order to obtain its maximum efficiency score. It is possible to determine the 

importance (contribution) of each input to the total as well as the contribution of each output to the efficiency 

score. On the other hand, the slack variables represent potential improvements. They relate to the further 

increases in output (𝑠𝑠𝑟𝑟+) or reductions in the input (𝑠𝑠𝑟𝑟−) that would be needed to reach the efficiency frontier. In 

other words, the slack variables can be interpreted as the output shortfall and input overconsumption relative to 

the efficient frontier. A unit is considered technically efficient if and only if θ*= 1 and all the slacks are null 

(𝑠𝑠𝑟𝑟−= 0, 𝑠𝑠𝑟𝑟+= 0). This means the unit is efficient in relative to the others since it is not possible to find another 

unit that obtains the same or greater output of that unit using fewer factors. In all other cases a unit is classified 

as inefficient. 

 

 

   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜃𝜃𝑘𝑘 − 𝜀𝜀 ∑ 𝑠𝑠𝑟𝑟+ − 𝜀𝜀∑ 𝑠𝑠𝑀𝑀− 𝑚𝑚
𝑖𝑖=1

𝑠𝑠
𝑟𝑟=1   

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡  

 𝑦𝑦𝑟𝑟𝑘𝑘 −�𝜆𝜆𝑗𝑗𝑦𝑦𝑟𝑟𝑗𝑗 + 𝑠𝑠𝑟𝑟𝑟𝑟+ = 0           𝑟𝑟 = 1, . . . , 𝑠𝑠
𝑛𝑛

𝑗𝑗=1

 

𝜃𝜃𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘 −�𝜆𝜆𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑀𝑀𝑟𝑟− = 0           𝑀𝑀 = 1, . . . ,𝑀𝑀
𝑛𝑛

𝑗𝑗=1

 

 

𝜆𝜆𝑗𝑗 , 𝑠𝑠𝑟𝑟+, 𝑠𝑠𝑀𝑀−  ≥ 0  ∀ 𝑆𝑆 = 1, . . . ,𝑀𝑀;   𝑟𝑟 = 1, . . . , 𝑠𝑠; 𝑀𝑀 = 1, . . . ,𝑀𝑀  
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The CCR model implies the existence of constant returns to scale. It means that all units are compared 

and their differences in operational scale are not taken into consideration. It can, however, be used to obtain a 

model with variable returns to scale. The following equations present the BCC input-oriented model (Huguenin, 

2012). Compared with the CCR model, it has an extra constraint ∑ 𝜆𝜆𝑗𝑗 = 1𝑛𝑛
𝑗𝑗=1 , which is a convexity constraint 

(Figure 1 makes clear the need for this condition). It tells the model that each unit has to be compared with 

those of the same size rather than with all the units present in the problem. The solution of this system gives, as 

a result, the pure technical efficiency score of the kth unit ( 𝜑𝜑𝑘𝑘). Compared with using technical efficiency (θk), 

l it is possible to get a higher number of efficient units using the BCC model, because units are compared only 

with those of the same size.   

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝜑𝜑𝑘𝑘 − 𝜀𝜀�𝑠𝑠𝑟𝑟+ − 𝜀𝜀�𝑠𝑠𝑀𝑀−
𝑚𝑚

𝑖𝑖=1

𝑠𝑠

𝑟𝑟=1

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡  

 𝑦𝑦𝑟𝑟𝑘𝑘 −�𝜆𝜆𝑗𝑗𝑦𝑦𝑟𝑟𝑗𝑗 + 𝑠𝑠𝑟𝑟𝑟𝑟+ = 0           𝑟𝑟 = 1, . . . , 𝑠𝑠
𝑛𝑛

𝑗𝑗=1

 

𝜃𝜃𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘 −�𝜆𝜆𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑀𝑀𝑟𝑟− = 0           𝑀𝑀 = 1, . . . ,𝑀𝑀
𝑛𝑛

𝑗𝑗=1

 

�𝜆𝜆𝑗𝑗 = 1
𝑛𝑛

𝑗𝑗=1

 

𝜆𝜆𝑗𝑗 , 𝑠𝑠𝑟𝑟+, 𝑠𝑠𝑀𝑀− ≥ 0  ∀ 𝑆𝑆 = 1, . . . ,𝑀𝑀;   𝑟𝑟 = 1, . . . , 𝑠𝑠; 𝑀𝑀 = 1, . . . ,𝑀𝑀  

 

 

The results of this minimization problem can be classified into two groups: DMUs with an efficiency 

score equal to 1 (100%) that are located at the frontier and inefficient DMUs whose score is less than one (less 

than 100%) that are located below the efficient frontier. The magnitude of the inefficiency depends on how far 

the DMU observation is from the efficient frontier (Charnes et al., 2013). 

It is necessary to check the robustness of any DEA to outliers. To do this we used a computational 

approach to detect outliers. It is based on the concept of leverage. The leverage for a single DMU is a measure 

of the impact that removing one of the DMUs has on the efficiency scores of all the other DMUs (Zhu, 2001). 

A super-efficient model looks for extreme points with a level of efficiency that can be unrealistic for the rest of 

the DMUs. The leverage of the jth DMU is defined as a standard deviation (Martínez-Núñez & Pérez-Aguilar, 

2014). First, the DEA model is estimated from the complete database to obtain the efficient DMUs {θk|k=1, 2, 
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…, K}. Then, DMUs are removed from the data in turn to generate the new set of efficient DMUs {𝜃𝜃𝑘𝑘∗|k=1, 2, 

…, K; k ≠ j}. 

𝑙𝑙𝑗𝑗 = �∑ �𝜃𝜃𝑘𝑘𝑗𝑗∗ − 𝜃𝜃𝑘𝑘�
2𝐾𝐾

𝑘𝑘=1 𝑘𝑘≠𝑗𝑗

𝑟𝑟 − 1
 

 

This estimation allows us to get efficiency scores bigger than one. For this reason, it is called a super-

efficient model. As a rule of thumb, DMUs that get efficiency scores greater than two are excluded from the 

estimations (Avkiran, 2007). 

 

4. Variable Selection and Data Description   

4.1 Data Source and Clusters  

The data source for this study was the National Institute of Statistics and Geography (INEGI) in 

Mexico. The data were taken from the last Economic Census (2014), which included an exclusive survey of 

"Science, Technology, and Innovation”. The variables were obtained at the national industry level and the most 

disaggregated level, six digits in the North American Industry Classification System (NAICS). However, to 

answer the research questions of this paper, these industry observations were classified into clusters. As 

mentioned in the Introduction, we used the cluster classification system suggested by Porter et al. (2015).  

The Porter’s definition of a cluster only covers traded industries, whose localization depends on issues 

of competitiveness. The algorithm that defines the clusters measures inter-industry linkages based on the three 

distinct drivers of agglomeration: co-location patterns, input-output links and similarities in employment 

patterns. Applying Porter’s algorithm to the Mexican economy generates 51 clusters and 185 sub-clusters. So, 

it is essential to point out that the cluster's classification and the consequent analysis are sectorial oriented 

instead of geographically-based. The models reported in this paper were estimated at the sub-cluster level to 

maximize the number of observations, so the DMU was the sub-cluster. The table in the Appendix shows a 

complete list of clusters and sub-clusters with the number of industries and firms in each. The total number of 

firms was 657, 973 classified in 551 industries, 182 sub-clusters, and 51 clusters. The average number of firms 

in each sub-cluster was 3,654. See Table A1 in the Appendix for a detailed list of clusters and sub-clusters. 

 

4.2 Input/Output Selection  

We used the Pastor test (Pastor et al., 2002) to determine whether introducing new inputs or outputs to 

a model contributes significantly to efficiency. Models are estimated twice, first with the variable of interest 

included (total model), and second, when it has been excluded (reduced model). The variable is considered 

relevant if more than a certain share (P) of DMUs have an associated change in efficiency greater than ρ. 

Following Pastor et al. (2002), the values selected are P=15% and ρ=10%. The null hypothesis is that excluding 

the variable will lead to a random improvement in the total model. It is evaluated with a binomial statistical test 
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(Nataraja & Johnson 2011). The candidate variable is not included in the model if the test statistic leads to the 

rejection of the null hypothesis. The Pastor test can be used to evaluate the contribution of a single variable or 

a group of variables and Nataraja and Johnson (2011) demonstrated that it performs moderately well under both 

scenarios. Studies that have applied the Pastor test include Lovel and Pastor (1997), Mancebon and Molinero 

(2000), Matthews (2013) and Martínez-Núñez and Pérez-Aguilar (2014). 

Our data set included seven input variables: (1) employees, (2) capital, (3) presence of collaborative 

innovation initiatives involving universities and research centers, (4) presence of collaborative innovation 

activities involving companies without productive relationship, (5) presence of innovation activities in 

partnership with customers or suppliers, (6) presence of innovation activities in collaboration with the 

government and (7) investment in research and development for innovation. All variables were measured at the 

sub-cluster level. Table 2 presents the summary statistics for all of them. There are various rules for determining 

the minimum number of observations required for a DEA model. In this case, the number of observations (185) 

was much higher than the minimum number suggested by all of them4. All S3 input variables were introduced 

with a one-year lag because the outcome of innovation activities is not observed immediately5. Table 2 shows 

that some of the variables had a widely scattered distribution (large standard deviation). This is why it is 

important to carry out super efficiency estimates to check the robustness of the results to the presence of outliers.  

 

 

 

 

 

 

 

 

 

 

 
4 The rules of thumb for the minimum number of observations required for a DEA model with 7 inputs and 2 
outputs are: a) At least twice the number of inputs and outputs (Golany & Roll, 1989). According to this rule, 
we would need 18 DMUs; b) Three times as many DMUs as there are input and output variables, (Sinuany-
Stern & Friedman, 1998), DMU=27; c) Twice the product of the number of input and output variables (Dyson 
et al., 2001), DMU=28 
 
5 Wang et al. (2016) test the time lags effects of innovation input on output in the national innovation systems 
in China. They demonstrate that it is not just necessary to lag those variables, but also the distribution of time 
lags varies according to the characteristics of the innovation input and influencing factors in the internal 
transformation. The variables included in their study are industry-academy research collaboration, R&D 
expenditure, and researchers in R&D and are lagged differently. Their variables are quite similar to the ones 
included in this analysis. Unlike their work, the available database for our study allows only lagging each 
innovation variable just one year.   
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Table 2 Summary statistics of outputs and inputs 
(Data correspond to the 185 sub-clusters) 

              
Variable Descriptive Statistics      
  Unit of 

measurement Mean  Minimum Maximum  Standard 
Deviation   

              
       
y1 Value added, 2013 

Thousands of 
dollars 

         
1,759,004.75  

                   
456.07  

       
70,159,482.93  

         
5,752,917.77  

y2 Subcluster patentsa, 2013 Number of patents 
                     
15.73  0  

                   
115.00  

                     
21.96  

x1 Employment, 2013 Persons 
              
50,040.25  

                   
127.00  

            
946,966.00  

              
95,047.49  

x2 Capital, 2013 
Thousands of 
dollars 

         
2,521,926.37  

                   
387.86  

     
133,840,417.38  

       
11,370,636.40  

z1 Innovation universitiesb, 
2012 Number of firms 

                       
8.38  0 

                   
222.00  

                     
18.50  

z2 Innovation firmsc, 2012 Number of firms 
                       
7.01  0 

                   
198.00  

                     
16.64  

z3 Innovation clientsd, 2012 Number of fimrs 
                     
14.08  0 

                   
139.00  

                     
23.10  

z4 Goverment innovatione, 
2012 Projects # 

                       
2.62  0 

                     
24.00  

                       
3.13  

z5 Innovation investmentf, 
2012 

Thousands of 
dollars 

                
5,850.57  0 

            
116,501.41  

              
13,408.14  

 

Note:  
a. Number of firms in the sub-cluster that register patents.  
b. Number of firms in the sub-cluster that register innovation activities in collaboration with 
universities, 2012   
c. Number of firms in the sub-cluster that register innovation activities in collaboration with other 
firms, 2012   
d. Number of firms in the sub-cluster that register innovation activities in collaboration with clients, 
2012   
e. Number of firms in the sub-cluster that register innovation activities in collaboration with the 
Government, 2012   
f. Investment in research and development for innovation, 2012. 

 

 

The first two inputs were the traditional ones in a production function. The variable employees is the 

number of persons working in each sub-cluster. Business Support Services is the sub-cluster with the highest 

number of employees, 946,966, which is equivalent to 10.2% of the total labor force in the clusters. Forestry 

had the fewest employees, with 127. Capital was measured in thousands of dollars. It is interesting to notice 

that the three sub-clusters with the highest levels of capital are related to the production of energy: Electric 

Power Generation and Transmission, Oil, and Gas Extraction and Petroleum Processing. Together they account 

for 49% of the total capital.  

The rest of the input variables represent the S3 elements. Table 3 summarizes the S3 elements and the way that 

they are represented in the model. The first element is aiming to get stakeholders involved in innovation 

activities and it is captured by three input variables: the number of firms in the cluster that carry out innovation 

activities in collaboration with 1) universities and research centers (innovation with universities); 2) other 
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companies without a productive relationship (innovation with firms); 3) with customers or suppliers (innovation 

with clients). These three variables can be highly correlated, but this tends not to affect the average efficiency 

score in DEA (López et al., 2016). As expected, the sub-cluster Colleges, Universities, and Professional Schools 

had the greatest number of firms carrying out innovation activities in collaboration with others, 9.8% of the 

total projects. The Construction sub-cluster was in second place, with 4.5% of firms collaborating with other 

organization on innovation activities.  

 According to the European Commission (2013), the range of stakeholders to be involved in the 

implementation of S3 is potentially very wide. However, it is typically focused on the Triple Helix members 

(Etzkowitz & Leydesdorff, 1995), which refers to the relationship between universities, private industry, and 

government. For this reason, we represent the first S3 element with the number of firms in the sub-cluster that 

register innovation activities in collaboration with universities, research centers, and other firms. The 

government was not included because, by itself, it represents the following component. 

Turning back to Table 3, the second key element is implementation of a policy that supports and invests 

in national/regional priorities, challenges and needs for knowledge-based development. This element is 

captured as the number of firms in the cluster that have received government funding for a specific project or 

for innovation activities (government innovation). The government invested in innovation projects in 484 firms 

in 2012. The three sub-clusters with the highest number of firms that had received funding were Automotive 

Parts (24), Bus Transportation (21) and Biopharmaceutical Products (14). We can conclude that these sectors 

are the government’s priority when it comes to innovation. The role of the government in the S3 context is to 

provide incentives and encourage entrepreneurs and other organizations to be involved in identifying the 

regions’ specializations, supported through a targeted investment agenda (European Commission, 2016). 

During the period 2000- 2012, the Mexican government significantly increase its investment in Science and 

Technology. The public-private partnership was being encouraged by Strategic Alliances and Innovation 

Networks for Competitiveness (AERIs) (OECD, 2012). Therefore, this variable represents the public-private 

partnership envisaged in the S3 strategy. 

The third key element of S3 is stimulation of private sector investment to support technology and 

innovation. This element is represented in the model by the amount invested in innovation in each sub-cluster 

(investment in innovation). The sub-clusters with the greatest investment in innovation were automotive parts 

(10.1%), motor vehicles (8.5%) and biopharmaceutical products (4.4%). Although Mexico has not developed 

an S3 strategy,  this variable helps to approximate the effect of investment on innovation. 

The data set includes two outputs: (1) value-added and (3) patents. As mentioned in the methodological 

section, output can be measured as gross output or value added. However, value-added is mainly used in 

analyses at the industry or firm level (Organization for Economic Cooperation and Development; OECD, 2001). 

“Value-added is a net measure in the sense that it includes the value of depreciation or consumption of fixed 

capital” (OECD, 2001, p. 24). Value added was measured in thousands of dollars.  

The fourth element in Table 3 points to the need for an evidence-based, monitoring and evaluation 

system for the S3 innovation strategies. We attempted to create a proxy for this element in the form of an 

additional output, the number of firms in a cluster that have registered patents. In our dataset there were 2,910 
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firms that had registered patents, which is equivalent to 0.43% of the total. Considering that the Mexican 

government incentivized the public-private partnership for innovation, and given the insignificance of private 

investment on innovation in the Mexican case (OECD, 2008), the number of patents that are registered by sub-

clusters must be very likely the result of the public economic support.  

Following the Guide to Research and Innovation Strategies for S3 (European Commission, 2012), 

there is no single standardized approach for developing an evaluation system for a S3, since it needs to be 

tailored to each specific region. In general, the evaluation should measure a change in the region towards 

activities globally competitive or with potential for value-added. For more specific objectives, it should be 

evaluated with different variables in the short and long term. For instance, when the objective for the S3 strategy 

is an increase of the research activity in a region, which is the case for this study, we can use the number of 

patents as an intermediate indicator. In the long term, the evaluation should be made based on improving 

innovation performance and enhanced reputation. Therefore, the information from this guide supports to 

consider the value-added and the number of patents registered as variables for evaluation.The last S3 key 

element in Table 3 is building on each country or region’s strengths, competitive advantages and potential for 

excellence. This characteristic is already included in the definition of the clusters. It was mentioned above that 

Porter's methodology just considers traded industries, whose localization depends on factors relevant to 

competitiveness (Porter et al., 2015). 

 

Table 3 Variables representing the S3 key elements 
Key elements of S3  Representative variable Measure 

1. Getting stakeholders fully 
involved and encouraging 
innovation and experimentation 

Innovation activities in 
coordination with universities 
and research centers. 

Number of firms in the sub-
cluster that register innovation 
activities in collaboration with 
universities, 2012   

Innovation activities in 
collaboration with companies 
without productive relationship 

Number of firms in the sub-
cluster that register innovation 
activities in collaboration with 
other firms, 2012   

Innovation activities in 
partnership with customers or 
suppliers. 

Number of firms in the sub-
cluster that register innovation 
activities in collaboration with 
clients, 2012   

2. Policy support and 
investments are focused on key 
national/regional priorities, 
challenges and needs for 
knowledge-based development 

Innovation activities in 
collaboration with the 
Government 

Number of firms in the sub-
cluster that register innovation 
activities in collaboration with 
the Government, 2012  

3. There is support for 
technological as well as practice-
based innovation and efforts to 

Investment in research and 
development for innovation. 

Thousands of dollars of private 
investment in each sub-cluster, 
2012 
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stimulate private sector 
investment 

4. Policies are evidence-based 
and include provision for sound 
monitoring and evaluation 
systems 

Industries that register patents Number of firms in the sub-
cluster that register patents.  

5. Policies build on each country 
or region’s strengths, 
competitive advantages and 
potential for excellence.  

This characteristic is already 
include in the Porter's cluster 
definition because it consider 
just traded industries.  

Traded industries are classified 
in 51 clusters and 185 sub-
clusters. 

 
 

5. Results  

This section is divided into two parts. The first describes the testing of the different sets of models to 

find the most appropriate ones. The second takes the selected set of models to estimate CCR and BCC models 

in order to provide evidence relevant to our main objective. As commented before, given that the cluster 

classification was made at the national level, all the results presented in this section are sectorial oriented instead 

of geographically-based.  

 

5.1 Sensitivity Analysis  

Table 4 shows the results of the first set of models. Model 1 is the basic production function with two 

inputs (labor and capital) and one output (value added). This model was extended with the addition of 

universities (model 2).The Pastor test showed that the extra variable contributed to the explanation of sub-

cluster efficiency. Similarly, the input variables other firms and government, which were added in model 3 and 

5 respectively, were also shown to contribute to variance in sub-cluster efficiency (all ps significant at the 1% 

level). These variables were therefore retained in the model. On the other hand, the variables clients (model 4) 

and investment in innovation (model 6) did not contribute to variance in efficiency.  

Results for the second set of models are presented in Table 5. In this set of models patents was treated 

as the output variable. Once again the variables universities, other firms, and government contributed to 

variance in sub-cluster efficiency. Unlike the previous set of models, innovation activities with clients also 

contributed to sub-cluster efficiency, possibly because output is related to innovation, although investment in 

innovation did not contribute to efficiency.  

Previous tables show that most of the inputs have an impact on both output variables. Table 6 considers 

the two outputs, value-added and patents together. All the inputs contributed to efficiency in this case, except 

for investment in innovation. This variable was therefore not included in the final model. Doing so caused an 

increase in the number of efficient DMUs that is not rightful. Consequently, the model selected to test the 

hypothesis was model 22. We expected the variable picking up the investment in innovation not to have a 

significant contribution to the efficiency given the lack of privet investment to this issue in Mexico. In 2008, 
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the OECD Review of Innovation Policy indicates that the ratio of R&D expenditures to GDP in Mexico was 

the second-lowest among OECD countries. Furthermore, despite growing R&D investment by industry, most 

R&D was performed by the public sector. Therefore, it seems that in the sensitivity analysis the variable 

government has a significant contribution whereas this is not the case for the variable innovation investment. 

 

Table 4 Results of Pastor et al model selection procedure  

          
    Model Model Model Model Model Model  Model   
    1 2 3 4 5 6 7   
y1 Value added  x x x x x x x   
y2 Registered patents                 
x1 Employment  x x x x x x x   
x3 Capital x x x x x x x   
z1 Universities    x         x   
z2 Other firms     x       x   
z3 Clients       x     x   
z4 Goverment          x   x   
z5 Innovation investment            x x   
B     120 128 98 163 102 170   
T     64.9% 69.2% 53.0% 88.1% 55.1% 91.9%   
p value     0.000*** 0.000*** 0.462 0.000*** 0.186 0.000***   
B= Number of sub-clusters whose efficiency changes by at least 10% in the new 
model.          
T= Percentage of sub-clusters whose efficiency changes by at least 10% in the 
new model.          
* Significant at the 10%; ** Significant at the 5%; *** Significant at the 
1%            
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Table 5 Results of Pastor et al model selection procedure   
  

          
    Model Model Model Model Model Model Model    
    8 9 10 11 12 13 14   
y1 Value added                  
y2 Registered patents x x x x x x x   
x1 Employment  x x x x x x x   
x3 Capital x x x x x x x   
z1 Universities    x         x   
z2 Other firms     x       x   
z3 Clients       x     x   
z4 Goverment          x   x   
z5 Innovation investment            x x   
B     156 155 165 164 104 174   
T     84.3% 83.8% 89.2% 88.6% 56.2% 94.1%   
p value     0.000*** 0.000*** 0.000*** 0.000*** 0.106 0.000***   

B= Number of sub-clusters whose efficiency changes by at least 10% in the new model.        
T= Percentage of sub-clusters whose efficiency changes by at least 10% in the new model.        
* Significant at the 10%; ** Significant at the 5%; *** Significant at 
the 1%            

 

 

Table 6 Results of Pastor et al model selection procedure  

           
    Model Model Model Model Model Model Model  Model    
    15 16 17 18 19 20 21 22   
y1 Value added  x x x x x x x x   
y2 Registered patents x x x x x x x x   
x1 Employment  x x x x x x x x   
x3 Capital x x x x x x x x   
z1 Universities    x         x x   
z2 Other firms     x       x x   
z3 Clients       x     x x   
z4 Goverment          x   x x   
z5 Innovation investment            x x     
B     134 137 141 151 100 166 163   
T     72.4% 74.1% 76.2% 81.6% 54.1% 89.7% 87.6%   
p 
value     0.000*** 0.000*** 0.000*** 0.000*** 0.303 0.000*** 0.000***   

B= Number of sub-clusters whose efficiency changes by at least 10% in the new model.          
T= Percentage of sub-clusters whose efficiency changes by at least 10% in the new model.          
* Significant at the 10%; ** Significant at the 5%; *** Significant at 
the 1%              
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5.2 Comparison of DEA Results  

Model 15 was taken as the base case in the comparison of CCR and BCC results. It includes two inputs 

(employment and capital) and two outputs (value-added and registered patents). Table 7 shows the results for 

the CCR and BCC models. In these models the Mexican sub-clusters had an average efficiency of 24.22% or 

35.59%6, depending on whether the model considered CRS or VRS. These numbers indicate that sub-clusters 

could achieve the same output, in terms of value added or patents, whilst making input savings of 75.78% and 

64.41% respectively. Seven of the 185 sub-clusters in the sample were deemed efficient by the CCR model 

(CRS), and 16 by the BCC model (VRS). In other words, seven sub-clusters are globally efficient, and 16 are 

technically efficient. That implies that there are nine sub-clusters that become globally efficient by scaling up 

their activity. The percentage of sub-clusters deemed efficient was 3.79% and 8.65% in the CCR model and 

BCC model respectively, indicating very high levels of global and operational or management inefficiency in 

the sub-clusters. 

Table 7 Original DEA Efficiency coefficients (model 15) 

    
  CCR BBC Scale 
        
    
# efficient DMUs (Sub-clusters) 7 16 7 
% Efficient DMUs (Sub-clusters) 3.79% 8.65% 3.79% 
Average Efficiency 24.22 35.59 75.92 
Standard deviation  21.14 28.44 23.48 
Maximum  100 100 100 
Minimum  4.31 4.34 14.79 
        

 

Table 8 DEA results applying Super Efficiency  

         

  
Model 

15 
Model 

16 
Model 

17 
Model 

18 
Model 

19 
Model 

20 
Model 

21 
Model 

22 
                  
         
# outlier removed a 2 3 3 3 3 4 8 4 
# efficient DMUs (Sub-clusters) 7 16 18 17 20 23 57 38 
% Efficient DMUs (Sub-clusters) 3.83% 8.79% 9.89% 9.34% 10.99% 12.71% 32.20% 20.99% 
Average Efficiency 27.25 45.59 46.05 45.54 46.16 41.82 70.25 59.49 
Potential input savings (respect to model 
15)  18.34 18.80 18.29 18.91 14.57 43.00 32.24 
Average Efficiency score of inefficient 
DMUs 24.36 40.35 40.13 39.93 39.52 33.36 56.11 48.73 
Standard deviation  21.52 26.22 25.90 25.15 27.41 28.78 25.95 27.50 
Maximum  100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
Minimum  4.62 7.60 7.58 7.80 7.18 8.46 16.66 9.08 
                  

 
6 In DEA analysis, the maximum magnitude obtained for efficiency is 1 (100%), which corresponds to the units 
of analysis that reach the frontier. In other words, the unit that registered the most efficient use of their inputs 
compare to others. An efficiency lower than 100% implies that the unit is inefficient, being below the frontier.   
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Outliers from the supper-efficiencies. 

 

Table 8 presents the CCR results for models 15 to 22. These results are provided for comparison 

purposes, because CCR represents global efficiency (in management and scale). The CCR approach, using 

CRS, provides more conservative estimates of efficiency than the BCC approach, which uses VRS (Cantos et 

al., 2000. In order to get robust results we used the super-efficiency approach to detect and exclude outliers 

from the data used for the CCR analysis. The first row of Table 8 shows the outliers removed in each model. A 

trend can be seen towards an association between efficiency and use of S3 in the sub-clusters. It is evident that 

average efficiency is higher in the extended models than in the base model (15). The highest average efficiency 

score was obtained when all the S3 elements were included; this raised average efficiency from 27.25% to 

59.49%. When the production process included collaborative innovation activities with universities, the 

potential input saving was 18.34%, which corresponds to the average efficiency increment from Model 15 to 

Model 16. Similar percentages were obtained when production included collaborative innovation activities with 

other firms (18.80%) and clients (18.29%). The highest input saving was observed with the industries in the 

sub-clusters carrying out innovation activities in collaboration with the government (18.91%). The smallest 

input saving was for investment in innovation, but this result was expected since this variable failed the Pastor 

Test.  

Based on the Pastor test, the final model selected was model 22, which included all the proposed 

variables except for investment in innovation. In this model the potential input saving was 32.24%. In other 

words, the performance of its inputs improves by this ratio. In this case, the average inefficiencies are reduced 

by 24.4% (average efficiency increase of model 21 with respect to 15). This means that when all S3 variables 

are included in the production process, the average inefficiency of sub-clusters is reduced by 24.4%. 

Furthermore, including S3 variables also increased the number of sub-clusters that reach global efficiency (in 

management and scale) from 7 to 38. More sub-clusters make optimal use of their inputs. 

5.3 Results by Technological Intensity 

So far, we have not considered how the different technological intensities of sub-clusters could affect 

the impact of the S3 variables. For that reason, this section presents the results by groups of sub-clusters. First, 

we separate them according to the classification scheme for technical intensity of manufacturing industries by 

Eurostat Statistics (2018), which defines four groups of manufacturing industries: high-tech, medium high-tech, 

medium low-tech and low tech. Services are classified into two groups: knowledge-intensive and less 

knowledge-intensive. The sub-clusters were assigned to one of these categories based on the kind of industries 

they contained. For instance, since the pharmaceutical industry is classified as high-tech, the biopharmaceutical 

products sub-cluster was assigned to that category. Other examples are motor vehicles industries and the motor 

vehicles sub-cluster in the medium high-tech category; rubber and plastic product industries and Plastic 

products cluster in the medium low-tech group; textile industries and textile and fabric-finishing sub-cluster in 

the low-tech category; air transport services and air transportation sub-cluster in the knowledge-intensive 

services; and business support activities and business support services sub-cluster in the less knowledge-
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intensive services. To sum up, this process identified 8 high-tech sub-clusters, 34 medium high-tech sub-

clusters, 26 medium low-tech sub-clusters, 43 low-tech sub-clusters, 35 knowledge-intensive services sub-

clusters and 39 less knowledge-intensive services sub-clusters. For a full list of this classification see Table A1 

in the Appendix.  

We obtained DEA results for all groups by applying the super efficiency approach. The high-tech and 

medium high-tech were treated as a single group because high-tech contained just eight sub-clusters, and it is 

not possible to get DEA results with this number of DMUs. Tables A2 to A6 in the Appendix present the 

estimations by group. In this section, Table 9 summarizes the results just for models 15 and 22. Remember that 

model 15 includes the essential inputs in a production function (labor and capital) whilst model 22 also includes 

the variables that represent S3 strategies.  

The results in Table 9 make it clear that S3 strategies have the highest impact on the efficiency of the 

medium low-tech group: the percentage of sub-clusters that reach global efficiency (in management and scale) 

increases from 24% to 65.2%. This group also has the highest average efficiency (91.25%). Furthermore, even 

the inefficient sub-clusters comprising medium low-tech industries obtained the greatest average efficiency 

score (74.85%). On the other hand, with respect to input saving, S3 had most impact on the high-tech and 

medium high-tech groups, the performance of their inputs improving by the ratio of 32.35%. Nevertheless, 

despite the high input saving, the average efficiency and the percentage of efficient sub-clusters were still higher 

in the medium low-tech group. This can be attributed to the fact the industries in Mexico’s high-tech sub-

clusters are still developing (which is reflected in the fact that this group was represented by just 8 sub-clusters).  

Service sub-clusters present similar results to manufacturing; S3 converted a higher percentage of sub-clusters 

to efficiency in the case of less knowledge-intensive services (38.2%) than the knowledge-intensive service 

sector (25.8%). It seems that the implementation of S3 offers more advantages in industries and services that 

have a medium dependence on technology and are less knowledge-intensive.  

 Some facts allow us to explain the magnitude of the efficiency estimated. First, the results for the 

base model (Model 15) approximate to the ones obtained in a similar study. Mateo et al. (2014) estimate 

efficiency for Mexican manufacturing industries through a DEA. They also take into account as a data source 

the Economic Census, but their analysis corresponds to the year 2008. The inputs considered are labor and 

capital, while the output is gross production. The results are presented by groups of technological intensity: low 

tech, medium low-tech, and high-tech. Even when the output variables and the year of analysis are not the same 

as our study, their results can be considered as a point of reference.  

According to Mateo et al. (2014) the average efficiency of manufacturing industries in Mexico was 

49.787  in 2008. Meanwhile, in our study, the average cluster efficiency is 57.718. The gap between these values 

could be attributed to the different specifications in each model and the different economic situation in 2008 

 
7 Mateo et al. (2014 [60]) present the efficiency estimations according to the size of the firms (micro, small, 
medium, and large). The average efficiency mentioned (49.78) considers all of them except for micro firms. 
We compare our result with this average because we also did not take into account this firms’ size.  . 
8 In order to compare our results with the ones in Mateo et al. (2014 [60]), the average of 57.71 considers just 
the estimations for High-tech and medium High-tech (47.32), Medium low-tech (71.01) and low-tech (54.8). 
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and 2014. For instance, their research analyzes data before the great recession (2008), and our analysis after the 

downturn(2014). By technological intensity, the estimations for low tech manufacturing are very similar in both 

cases. We obtain an average efficiency of 54.8; meanwhile, this value corresponds to 56.33 in the other study. 

The medium high-tech group shows the highest difference: 71.01 in our study and 34.67 in the other one. In the 

case of high tech manufacturing, we estimate the average efficiencies of 47.32, compared with 58.33. 

Therefore, the significant impact of innovation variables on the base model could be explained by the 

strategy for science and technology implemented in Mexico. The Mexican government carries out the Special 

Programme for Science, Technology, and Innovation (PECiTI) in the period 2008 – 2012. This strategy had an 

ambitious set of objectives as a greater focus on innovation carried out by enterprises and, in particular, by 

small and medium-size enterprises (SMEs) (OECD, 2012). Apart from this program, the stage of development 

in Mexico could explain the higher impact of the innovation variables on the medium high-tech clusters. This 

stage of development is characterized by some gaps in physical infrastructure, restrictive regulations, and low 

levels of human capital. Therefore, Mexican firms have a preference for imported technologies over the 

development of domestic capacity (OECD, 2012). They prefer to adopt and adapt those high tech technologies 

that already exist, which gives place to the fact that the high tech but the medium high tech manufactures are 

the ones making the innovation effort. 

 

Table 9 DEA results applying Super Efficiency 

Sub-clusters groups by technological intensity 

  

High-tech and 
Medium High-

tech 

  
Medium low-tech 

  
Low-tech 

  knowledge-
intensive services  

  Less knowledge-
intensive services          

Model 
15  

Model 
22 

  Model 
15  

Model 
22 

  Model 
15  

Model 
22 

  Model 
15  

Model 
22 

  Model 
15  

Model 
22         

                              

# Sub-clusters 42 42   26 26   43 43   35 35   39 39 

# outlier removed 1 4   1 3   3 5   1 4   1 5 
# efficient DMUs (Sub-clusters) 3 12   6 15   5 14   7 8   8 13 
% Efficient DMUs (Sub-clusters) 7.3% 31.6%   24.0% 65.2%   12.5% 36.8%   20.6% 25.8%   21.1% 38.2% 
Average Efficiency 47.32 79.67   71.01 91.25   54.80 74.81   53.52 75.48   56.85 76.11 
Potential input savings (respect to model 15)   32.35     20.24     20.01     21.96     19.26 
Average Efficiency score of inefficient DMUs 43.17 70.29   61.85 74.85   48.34 60.11   41.47 66.95   45.34 61.32 

Standard deviation  20.96 21.63   21.80 17.37   28.48 25.74   31.74 25.33   30.89 24.55 
Maximum  100 100   100 100   100 100   100.00 100   100 100 
Minimum  11.32 25.5   18.64 27.17   17.28 24.54   8.79 16.63   11.85 27.94 

 

 

 

Tables A2 to A6 (see Appendix section) present other important results, such as the most effective S3 

strategy for each kind of sub-cluster group. For the high-tech and medium high-tech group, the highest 
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increment in the percentage of efficient sub-clusters (from 7.32% to 26.83%) was observed when the variable 

innovation activities in coordination with universities and research centers (model 16) was added to the model. 

This is because only high-tech firms can absorb the knowledge provided by the universities, which is of a more 

fundamental nature and needs to be developed into new processes or new products. In the case of the medium 

low-tech group, investment in research and development for innovation had the highest impact on efficiency 

(model 20). The percentage of efficient sub-clusters doubled from 24% to 48%. Firms with this level of 

technology need to adopt and adapt technology to their production process, making it necessary for them to 

invest in innovation. In the case of the low-tech group the greatest impact came from the inclusion of innovation 

activities in collaboration with the government (model 19), which increased the percentage of efficient sub-

clusters from 12.5% to 28.21%. Investment in innovation is not one of the main priorities for firms in this group, 

so perhaps government investment enables them to become involved in innovation activities.  

Service sub-clusters present similar results to those of the last two manufacturing groups. For 

knowledge-intensive services, the most critical S3 element was investment in research and development for 

innovation, which increased the percentage of efficient sub-clusters from 20.59% to 38.71%. As in the 

manufacturing group, this S3 is crucial because firms have to adapt and adopt knowledge. For less knowledge-

intensive services, however, the most influential variable was innovation activities in collaboration with the 

government, which increased the percentage of efficient sub-clusters from 21.05% to 31.58%. The development 

of new knowledge does not occur to a meaningful extent in this group, so it is possible that government 

resources are required to enable it to innovate.  

6. Conclusions and Discussion  

This research aimed to provide empirical evidence relevant to the discussion about whether S3 can be 

considered as a new step in the evolution of the cluster concept. We therefore evaluated the impact of the 

different strategies envisaged in a S3 on the efficiency of 185 sub-clusters in Mexico using a DEA. The results 

confirmed that the application of S3-type policies increased sub-cluster efficiency. This indicates that policies 

addressed to clusters should be complemented with S3 strategies to enable them to make more efficient use of 

their inputs. 

Although policies envisaged in a S3 had a general positive influence, it should be remembered that the 

effects varied with the technological intensity of sub-clusters. We found that S3 had most impact on the medium 

low-tech group, producing the greatest increment in the percentage of efficient sub-clusters in this group. This 

result makes sense in the case of Mexico, a country that is not a leader in the development of new technologies. 

This finding also contributes to debate on whether S3 implementation should be different in developed and 

developing countries. Another important observation is that, although S3 had most impact on the percentage of 

efficient sub-clusters in the medium low-tech group they produced the greatest input saving in high-tech 

industries. 

This study has provided an in-depth analysis of which specific S3 elements are most effective for 

industries at each technological intensity. The high tech and medium high-tech sub-clusters benefit most from 

innovation activities in collaboration between firms and universities and research centers. This makes sense, 
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since the most revolutionary innovation depends on highly specialized research. For the medium low-tech 

group, the most effective S3 was internal investment in research and development for innovation. The main 

reason could be that firms with this level of technology need to adopt and adapt technology to their production 

process. Meanwhile, for the sub-clusters groups of low-tech, the key S3 element was innovation activities in 

collaboration with the government, perhaps because development of new technology is not a priority for this 

group and is only possible with financial support from government. The results for services were similar to 

those for the last two manufacturing groups. For knowledge-intensive services, the most important strategy was 

internal investment in research and development for innovation, whereas for the less knowledge-intensive 

services it was innovation activities in collaboration with the government. Similar reasons to those given above 

with reference to the manufacturing groups may apply. All the findings noted here have implications for public 

policy. The main message is that the technological intensity of sub-clusters should be considered in the design 

and implementation of an S3 initiative.  

This research also contributes to the academic discussion about how to implement the S3 approach. 

As it has only recently been introduced there is a lack of analytical tools (McCann & Ortega-Argilés, 2015) and 

empirical evidence (Morgan, 2017; Piirainen et al., 2017) to guide its application. Although this study did not 

attempt to determine whether clusters are the most appropriate base for applying S3, it sheds light on this option. 

As noted by Aranguren and Wilson (2013), many countries already use clusters to guide regional development, 

so they could easily be used to facilitate the design and implementation of S3. In this study we analyzed clusters 

using Porter’s classification, which is amongst the most widely adopted by policymakers.  

As well as contributing to the academic literature this study has important implications for public 

policy in Mexico. As Mexico has not implemented any overall strategy for S3 the results could be used to 

support design and implementation of such a strategy. We have shown that application of S3 produces a general 

increase in sub-cluster efficiency, which is one of the main issues on Mexico’s political agenda. In recent 

decades Mexico’s growth in productivity has been modest, leading to low and volatile economic growth 

(Padilla-Perez & Villarreal, 2017). This topic is so important for the Mexican government that some actions 

have already been implemented, for example a National Commission on Productivity was established in 2013.   

The application of S3 in Mexico should focus on the medium low-tech industries. This group includes 

sub-clusters like metal containers, jewelry, and precious metals products, glass products, and rubber products, 

among others. It should be remembered that the most effective S3 in this group is investment by firms in 

research and development for innovation. The design of the S3 policy should include mechanisms to encourage 

such investment, for example tax rebates for firms that invest in innovation projects. Finally, if Mexico were to 

adopt an S3-based innovation policy the effects of the variables that represent S3 might become more 

prominent. We have used some variables from the Economic Census to represent the S3 and shown that they 

have a positive impact on efficiency. 
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