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Abstract: In this paper, we propose a bivariate extension of univariate composite (two-spliced)
distributions defined by a bivariate Pareto distribution for values larger than some thresholds and by
a bivariate Gumbel distribution on the complementary domain. The purpose of this distribution is to
capture the behavior of bivariate data consisting of mainly small and medium values but also of some
extreme values. Some properties of the proposed distribution are presented. Further, two estimation
procedures are discussed and illustrated on simulated data and on a real data set consisting of a
bivariate sample of claims from an auto insurance portfolio. In addition, the risk of loss in this
insurance portfolio is estimated by Monte Carlo simulation.

Keywords: bivariate composite (two-spliced) distribution; Gumbel’s bivariate exponential
distribution; bivariate Pareto of the first kind distribution; maximum likelihood estimation
procedure; risk of loss

1. Introduction

Dependent multivariate data frequently occur in practice in areas such as insurance,
finance, economics, reliability, etc. Therefore, the development of bivariate and multivariate
distributions is a very active field of research, especially since—in contrast to univariate
distributions—it gained interest later on. Nowadays, there are various methods of con-
structing multivariate distributions, see e.g., the review [1]. Some of these methods follow
lines from the univariate distributions. In this sense, in this paper, we propose a bivariate
composite distribution built on the same idea as the univariate composite (or two-spliced)
distribution (see [2] for the splicing method in the univariate case).

Two-component spliced distributions are usually encountered in univariate extreme
value theory, where a classical heavy-tailed distribution (such as the generalized Pareto) is
used to model the tail, in combination with a less heavy-tailed distribution used for the
so-called bulk model; see, e.g., the review [3]. More precisely, such a distribution is defined
from two different distributions on distinct intervals, with the aim to better capture tails
of distributions such as the loss ones. A two-component spliced distribution was called
composite in [4], where a particular form of such distribution, namely the lognormal–Pareto
composite distribution, was studied in connection with skewed and heavy-tailed loss data.

Therefore, the bivariate distribution we propose equals a certain bivariate distribution
on one domain and another bivariate distribution on another domain. More precisely, we
aim at using a more heavy-tailed bivariate distribution beyond some thresholds, such as the
Pareto one. As in the univariate case, the motivation of such a model is to better capture the
behavior of dependent random data that present many small and medium pairs of values
but also some very large ones; we note that this could be the case with, e.g., insurance or
financial data arising from two dependent lines of business. In this sense, we recall the
discussions in [5,6], where it was noticed that for the particular bivariate insurance data
set under study (consisting of auto claims, property damage costs, and medical expenses),
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the best globally fitted distribution does not provide the best model for tail risk measures
because heavier-tailed distribution is needed.

Thus, in this paper, we consider the bivariate Pareto distribution of the first kind for
the tail (i.e., from some thresholds on) and the bivariate Gumbel exponential distribution
for the remaining domain. In Section 2, we define some notation and recall the just-
mentioned bivariate distributions. In Section 3, we define the general bivariate composite
distribution, while in Section 4, we introduce the particular composite Gumbel–Pareto
distribution and study some continuity conditions, marginal distributions, and moments.
Further, we discuss simulation from this particular bivariate distribution, and in order
to reduce the computing time, we propose two procedures for parameter estimation: the
first one is based on marginal estimation and completed by a limited full Maximum
Likelihood Estimation (MLE), and the second one is based on conditional MLE. The
estimation procedures are illustrated on simulated data in Section 5.1 and on a real auto
insurance data set in Section 5.2, followed by a conclusions section. The paper ends with
Appendix A containing the proofs.

2. Preliminaries
2.1. Notation

We shall use the incomplete gamma function (or generalized plica function) defined by

Γ(α, z0, z1) =
∫ z1

z0

xα−1e−xdx, z1 > z0 ≥ 0.

We also introduce the notation

Γ(α, z0, z1; k) =
∫ z1

z0

xα−1e−kxdx, z1 > z0 ≥ 0, k > 0,

and note that
Γ(α, z0, z1; k) =

1
kα

Γ(α, kz0, kz1).

We recall the exponential integral notation

E1(z) =
∫ ∞

z

e−t

t
dt.

The following result holds (its proof is given in Appendix A).

Lemma 1. With the above notation, with 0 ≤ z0 < z1,

(i) Γ(−1, z0, z1) =
e−z0

z0
− e−z1

z1
− Γ(0, z0, z1), z0 > 0.

(ii) Γ(1, z0, z1; k) =
1
k

(
e−kz0 − e−kz1

)
.

(iii) Γ(2, z0, z1; k) =
1
k2

[
e−kz0(kz0 + 1)− e−kz1(kz1 + 1)

]
.

In particular,

(iii.1) Γ(2, 0, θ; k) =
1
k2

[
1− (1 + kθ)e−kθ

]
,

(iii.2) Γ(2, θ, ∞; k) =
e−kθ

k2 (1 + kθ).

(iv) Γ(3, z0, z1; k) =
1
k3

[
e−kz0

(
k2z2

0 + 2kz0 + 2
)
− e−kz1

(
k2z2

1 + 2kz1 + 2
)]

.
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In particular,

(iv.1) Γ(3, 0, θ; k) =
1
k3

[
2−

(
2 + 2kθ + k2θ2

)
e−kθ

]
,

(iv.2) Γ(3, θ, ∞; k) =
1
k3 e−kθ

(
k2θ2 + 2kθ + 2

)
=

e−kθ

k3

[
(kθ + 1)2 + 1

]
.

(v)
∫ ∞

c

e−ky

y
dy = E1(ck), k > 0,

(vi)
∫ ∞

c

e−ky

y2 dy =
e−ck

c
− kE1(ck).

For θ1 > 0, θ2 > 0, we also define the following domains

D11 = {(x1, x2)|0 < x1 ≤ θ1, 0 < x2 ≤ θ2 },
D12 = {(x1, x2)|0 < x1 ≤ θ1, x2 > θ2 },
D21 = {(x1, x2)|x1 > θ1, 0 < x2 ≤ θ2 },
D22 = {(x1, x2)|x1 > θ1, x2 > θ2 }

D = D11 ∪ D12 ∪ D21.

2.2. Bivariate Classical Distributions

The following two bivariate continuous distributions are used in the bivariate com-
posite model.

2.2.1. Gumbel’s Bivariate Exponential Distribution, Gu2

Gumbel’s [7] bivariate exponential distribution has pdf (see also [8])

e−(x1+x2+βx1x2)[(1 + βx1)(1 + βx2)− β], x1 > 0, x2 > 0,

with standard exponential marginal distributions. We shall, however, consider a more
general bivariate pdf, having general exponential distributions (see e.g., [9]). Therefore, let
Y = (Y1, Y2) follow Gumbel’s bivariate exponential distribution, Y ∼ Gu2(λ1, λ2, β), λ1,
λ2 > 0, 0 ≤ β ≤ 1, defined by the joint pdf

gY(x1, x2) = λ1λ2e−(λ1x1+λ2x2+βλ1λ2x1x2)[(1 + βλ1x1)(1 + βλ2x2)− β], x1 > 0, x2 > 0. (1)

Its cdf is given by

FY(x1, x2) = Pr(Y1 ≤ x1, Y2 ≤ x2) = 1− e−λ1x1 − e−λ2x2 + e−(λ1x1+λ2x2+βλ1λ2x1x2); (2)

its joint survival function is

F̄Y(x1, x2) = Pr(Y1 > x1, Y2 > x2) = e−(λ1x1+λ2x2+βλ1λ2x1x2);

while the marginal distributions are exponentials with pdf gYi (xi) = λie−λixi , xi > 0, cdf
GYi (xi) = 1− e−λixi , and expected value λ−1

i , i = 1, 2.
In view of the bivariate composite model defined in the next section, an easy calculation

yields the following lemma.

Lemma 2. Let Y ∼ Gu2(λ1, λ2, β) and θ1 > 0, θ2 > 0. Then, with the above notation, it holds that

PD = Pr(Y ∈ D) = 1− e−(λ1θ1+λ2θ2+βλ1λ2θ1θ2). (3)

The next lemmas are also needed.
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Lemma 3. If Y ∼ Gu2(λ1, λ2, β) and θ1 > 0, θ2 > 0, then

L1(x1; θ2) =
∫ θ2

0
gY(x1, x2)dx2 = λ1e−λ1x1

[
1− (1 + βλ2θ2)e−λ2θ2(1+βλ1x1)

]
, x1 > 0,

L2(x2; θ1) =
∫ θ1

0
gY(x1, x2)dx1 = λ2e−λ2x2

[
1− (1 + βλ1θ1)e−λ1θ1(1+βλ2x2)

]
, x2 > 0.

Lemma 4. If Y ∼ Gu2(λ1, λ2, β) and θ1 > 0, θ2 > 0, then

I(θ1, θ2) =
∫ ∞

θ1

∫ ∞

θ2

x1x2gY(x1, x2)dx1dx2

=
1

βλ1λ2

[(
2− 1

1 + βλ1θ1
− 1

1 + βλ2θ2
+ βλ1λ2θ1θ2

)
e−(λ1θ1+λ2θ2+βλ1λ2θ1θ2)

+E1

(
(1 + βλ1θ1)(1 + βλ2θ2)

β

)
e

1
β

]
.

Lemma 5. Given that Y1 = y1, the conditional cdf of the marginal Y2 of Y ∼ Gu2(λ1, λ2, β) is

FY2|Y1=y1
(y2) = 1− (1 + βλ2y2)e−λ2y2(1+βλ1y1).

2.2.2. Bivariate Pareto Distribution of the First Kind, PaI2

Let Z = (Z1, Z2) follow the bivariate Pareto of the first kind distribution, Z ∼
PaI2(a, θ1, θ2), a > 0, θ1 > 0, θ2 > 0. Its pdf is (see [10])

fZ(x1, x2) = a(a + 1)
(θ1θ2)

a+1

(θ2x1 + θ1x2 − θ1θ2)
a+2 , x1 > θ1, x2 > θ2. (4)

Its marginal distributions are univariate Pareto of the first kind, having pdf and cdf, respectively,

fZi (xi) = a
θa

i

xa+1
i

, FZi (xi) = 1−
(

θi
xi

)a
, xi > θi, i = 1, 2.

Moreover, we recall the formulas of the expected values and variances

EZi =
aθi

a− 1
, a > 1, Var(Zi) =

aθ2
i

(a− 1)2(a− 2)
, a > 2, i = 1, 2,

while the formula of the covariance is

cov(Z1, Z2) =
θ1θ2

(a− 1)2(a− 2)
.

From here, it is easy to see that

E[Z1Z2] = θ1θ2
a2 − a− 1

(a− 1)(a− 2)
. (5)

3. A Bivariate Composite Model

We shall now define the bivariate composite model. Let X = (X1, X2) be a bivariate
random vector, and let θ1, θ2 ∈ R. We say that X follows a bivariate composite distribution
if its pdf is defined as

f (x1, x2) =

{
r f1(x1, x2), {x1 ≤ θ1, x2 ≤ θ2} ∪ {x1 ≤ θ1, x2 > θ2} ∪ {x1 > θ1, x2 ≤ θ2}
(1− r) f2(x1, x2), x1 > θ1, x2 > θ2

=

{
r f1(x1, x2), (x1, x2) ∈ D
(1− r) f2(x1, x2), (x1, x2) ∈ D22

, (6)
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where 0 ≤ r ≤ 1 is a normalizing constant. We note that, in general, f1 and f2 are pdfs of
distributions truncated on the domains D and D22, respectively. Therefore, we can rewrite
this composite distribution as a two-component mixture model with mixing weights r and
1− r, i.e.,

f (x1, x2) = r f1(x1, x2) + (1− r) f2(x1, x2). (7)

This form can be used for random number generation.
We would like our pdf to be at least continuous. However, in this case, the bivariate

density changes shape on the line segments {x1 = θ1, x2 > θ2} and {x1 > θ1, x2 = θ2},
which generally restricts the continuity condition; more precisely, imposing continuity on,
e.g., the first segment, results in

r
PD

f1(θ1, x2) = (1− r) f2(θ1, x2), (8)

which, in general, cannot be satisfied for all x2 > θ2. We can impose a continuity condition
at (θ1, θ2) and obtain the restriction for r

r =
(

1 +
f1(θ1, θ2)

f2(θ1, θ2)

)−1
. (9)

We can also impose continuity conditions to the marginal pdfs, since each one is two-spliced
as we see in next section.

4. Particular Case: Bivariate Composite Gumbel–Pareto Distribution

In particular, we shall assume that f1 is the pdf of a Gumbel bivariate exponential
distribution truncated on the domain D, and that f2 is a bivariate Pareto pdf defined on
D22, which is left truncated by its nature. Therefore, let θ1 > 0, θ2 > 0, and let Y = (Y1, Y2)
follow Gumbel’s bivariate distribution (1) truncated on the domain D, with parameters
λ1, λ2 > 0, β ∈ [0, 1], and having pdf

f1(x1, x2) =
gY(x1, x2)

PD
, (x1, x2) ∈ D.

Additionally, let Z = (Z1, Z2) ∼ PaI2(a, θ1, θ2), a > 0. Then, using PD from (3), the pdf (6)
of X becomes

f (x1, x2) =


r λ1λ2e−(λ1x1+λ2x2+βλ1λ2x1x2)

1−e−(λ1θ1+λ2θ2+βλ1λ2θ1θ2)
[(1 + βλ1x1)(1 + βλ2x2)− β], (x1, x2) ∈ D

(1− r)a(a + 1) (θ1θ2)
a+1

(θ2x1+θ1x2−θ1θ2)
a+2 , (x1, x2) ∈ D22

. (10)

Note that by taking r = 0, we obtain the bivariate Pareto pdf; with r = 1, we obtain the
bivariate Gumbel truncated on the domain D; if we take r = 1 and θ1 = θ2 = 0, (10)
reduces to the usual Gumbel pdf. If β = 0, the Gumbel component becomes the bivariate
exponential with independent marginals.

If we impose the continuity condition at (θ1, θ2), we obtain the following formula of r

r =
(

1 +
gY(θ1, θ2)

f2(θ1, θ2)PD

)−1
=

(
1 +

(1 + βλ1θ1)(1 + βλ2θ2)− β(
eλ1θ1+λ2θ2+βλ1λ2θ1θ2 − 1

)
(a + 1)a

λ1λ2θ1θ2

)−1

. (11)

In the left side of Figure 1, we plotted a composite Gumbel–Pareto pdf satisfying marginal
continuity conditions and the continuity condition at (θ1, θ2); see (iii) in Proposition 2.
However, as discussed above, this pdf is not continuous everywhere; e.g., the continuity
condition (8) becomes, in this case, r

PD
gY(θ1, x2) = (1− r) fZ(θ1, x2), which, given the pdfs

gY and fZ, cannot be satisfied for all x2 > θ2. This can be seen from the right plot of
the same figure, where we focused better on the threshold lines {x1 = θ1, x2 > θ2} and
{x1 > θ1, x2 = θ2}.
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In Figure 2, we plotted another composite Gumbel–Pareto pdf with different parame-
ters and all continuity conditions, having a more heavy-tailed Pareto component (a < 1).
A certain flexibility of the pdf’s shape can be noticed from the two plots. However, in
both pdf plots, note the areas of strong decrease for small values of x1 and x2 due to the
exponential characteristic of the Gumbel distribution.

We also plotted in Figure 3 the marginal pdfs of the two composite Gumbel–Pareto
distributions considered in Figures 1 and 2, and we note their continuity and exponential
type shapes for small values of x.

Figure 1. Left: composite Gumbel–Pareto pdf with continuous marginals and continuity at (θ1, θ2);
Right: zoom of the same pdf (parameters: λ1 = 0.81, λ2 = 0.9, β = 0.2, a = 1.0258, θ1 = 2.1,
θ2 = 1.89).

Figure 2. Composite Gumbel–Pareto pdf with continuous marginals and continuity at (θ1, θ2) (pa-
rameters: λ1 = 1, λ2 = 1.2, β = 0.7, a = 0.7515, θ1 = 1.2, θ2 = 1).
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Figure 3. Marginal pdfs of composite Gumbel–Pareto distribution: left—with parameters from
Figure 1; right—with parameters from Figure 2 ( fX1 solid line, fX2 dashed line).

4.1. Some Properties

The marginal distributions of X are both of univariate composite type, having a
standard exponential pdf up to the threshold.

Proposition 1. (i) For the composite Gumbel–Pareto distribution, the marginal pdfs of X1 and X2
are given by

fX1(x1) =


r

PD
λ1e−λ1x1 , 0 < x1 ≤ θ1

r
PD

λ1e−λ1x1
[
1− (1 + βλ2θ2)e−λ2θ2(1+βλ1x1)

]
+ (1− r)a θa

1
xa+1

1
, x1 > θ1

,

fX2(x2) =


r

PD
λ2e−λ2x2 , 0 < x2 ≤ θ2

r
PD

λ2e−λ2x2
[
1− (1 + βλ1θ1)e−λ1θ1(1+βλ2x2)

]
+ (1− r)a θa

2
xa+1

2
, x2 > θ2

.

(ii) Further, the cdfs of X1 and X2 are

FX1(x1) =

{ r
PD

(
1− e−λ1x1

)
, 0 < x1 ≤ θ1

1 + r
PD

e−λ1x1
(

e−λ2θ2(1+βλ1x1) − 1
)
− (1− r)

(
θ1
x1

)a
, x1 > θ1

,

FX2(x2) =

{ r
PD

(
1− e−λ2x2

)
, 0 < x2 ≤ θ2

1 + r
PD

e−λ2x2
(

e−λ1θ1(1+βλ2x2) − 1
)
− (1− r)

(
θ2
x2

)a
, x2 > θ2

.

We can impose marginal continuity conditions and combine them with the continuity
condition at (θ1, θ2). The following restrictions result.

Proposition 2. Let X follow the bivariate composite Gumbel–Pareto distribution. Then:
(i) By imposing the continuity condition to the marginal X1, we obtain

r1 =

(
1 +

λ1θ1

a
1 + βλ2θ2

eλ1θ1+λ2θ2+βλ1λ2θ1θ2 − 1

)−1
.

(ii) By imposing the continuity condition to the marginal X2, we obtain

r2 =

(
1 +

λ2θ2

a
1 + βλ1θ1

eλ1θ1+λ2θ2+βλ1λ2θ1θ2 − 1

)−1
.

(iii) By simultaneously imposing continuity conditions to the marginals X1 and X2, we obtain

λ1θ1 = λ2θ2.

If, moreover, we also impose the continuity condition at (θ1, θ2), the following restriction must
be fulfilled
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a = λ1θ1

(
1 + βλ1θ1 −

β

1 + βλ1θ1

)
− 1.

Proposition 3. (i) The expected values of the marginals are given for a > 1 by

EX1 =
r

λ1PD

[
1− e−(λ1θ1+λ2θ2+βλ1λ2θ1θ2)

(
1

1 + βλ2θ2
+ λ1θ1

)]
+ (1− r)

aθ1

a− 1
,

EX2 =
r

λ2PD

[
1− e−(λ1θ1+λ2θ2+βλ1λ2θ1θ2)

(
1

1 + βλ1θ1
+ λ2θ2

)]
+ (1− r)

aθ2

a− 1
.

(ii) The second-order moments of the marginals are given for a > 2 by

E
[

X2
1

]
=

r
λ2

1PD

[
2− e−(λ1θ1+λ2θ2+βλ1λ2θ1θ2)

1 + (λ1θ1(1 + βλ2θ2) + 1)2

(1 + βλ2θ2)
2

]
+ (1− r)

aθ2
1

a− 2
,

E
[

X2
2

]
=

r
λ2

2PD

[
2− e−(λ1θ1+λ2θ2+βλ1λ2θ1θ2)

1 + (λ2θ2(1 + βλ1θ1) + 1)2

(1 + βλ1θ1)
2

]
+ (1− r)

aθ2
2

a− 2
.

Proposition 4. The expected value of the product X1X2 is

E[X1X2] =
r

PDβλ1λ2

[(
E1

(
1
β

)
− E1

(
(1 + βλ1θ1)(1 + βλ2θ2)

β

))
e

1
β

−
(

2− 1
1 + βλ1θ1

− 1
1 + βλ2θ2

+ βλ1λ2θ1θ2

)
e−(λ1θ1+λ2θ2+βλ1λ2θ1θ2)

]
+(1− r)θ1θ2

a2 − a− 1
(a− 1)(a− 2)

.

In view of the random generation procedure, we also need the following result on the
conditional distribution of a marginal.

Proposition 5. The conditional cdf of the marginal X2 given X1 = x1 is

FX2|X1=x1
(x2) =



1− e−λ2x2(1+βλ1x1)(1 + βλ2x2), x1 ≤ θ1, x2 > 0
r

PD
λ1e−λ1x1 1−e−λ2x2(1+βλ1x1)(1+βλ2x2)

r
PD

λ1e−λ1x1
[
1−(1+βλ2θ2)e

−λ2θ2(1+βλ1x1)
]
+(1−r)a

θa
1

xa+1
1

, x1 > θ1, x2 ≤ θ2

1− (1− r) aθa
1θa+1

2 (θ1x2+θ2x1−θ1θ2)
−(a+1)

r
PD

λ1e−λ1x1
[
1−(1+βλ2θ2)e

−λ2θ2(1+βλ1x1)
]
+(1−r)a

θa
1

xa+1
1

, x1 > θ1, x2 > θ2

.

4.2. Simulation

We propose two methods for generating random values from the bivariate composite
Gumbel–Pareto distribution. The first one is the inversion method, while the second one is
based on the representation in expression (7).

Method I: In the bivariate case, the inversion method consists of two steps:

1. Generate a value x1 from the marginal distribution of X1 by inverting its cdf given in
Proposition 1;

2. Generate a value x2 from the conditional distribution of X2 given X1 = x1 by inverting
the conditional cdf given in Proposition 5. Thus, the resulting pair (x1, x2) is simulated
from (10).

Method II: Starting from the two-component mixture representation (7) with mixing
weights r and 1− r, we propose the following algorithm:
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1. Generate a value b from the Bernoulli distribution with parameter r;
2. If b = 1, then generate the pair (x1, x2) from the Gumbel distribution truncated on D;
3. If b = 0, then generate the pair (x1, x2) from the bivariate Pareto distribution (4).

Now the problem is to generate values from the two bivariate distributions: Gumbel
and Pareto. Bivariate Pareto values can be generated without difficulty by the inversion
method as described in Method I. Concerning the Gumbel distribution truncated on D,
the following cdfs (obtained similarly to the ones in Propositions 1 and 5) can be used
for inversion:
The cdf of the truncated Gumbel marginal, YD

1 :

FYD
1
(x1) =

{ 1
PD

(
1− e−λ1x1

)
, 0 < x1 ≤ θ1

1 + 1
PD

e−λ1x1
(

e−λ2θ2(1+βλ1x1) − 1
)

, x1 > θ1
;

The conditional cdf of the marginal YD
2 given YD

1 = x1 of the truncated Gumbel distribution:

FYD
2 |YD

1 =x1
(x2) =

 1− (1 + βλ2x2)e−λ2x2(1+βλ1x1), x1 ≤ θ1
1−(1+βλ2x2)e

−λ2x2(1+βλ1x1)

1−(1+βλ2θ2)e
−λ2θ2(1+βλ1x1)

, x1 > θ1
, x2 > 0.

4.3. Parameter Estimation

For a univariate composite distribution, estimating the parameters is already a difficult
problem because the threshold where the distribution changes shape is itself a parameter.
Therefore, the usual approach in the univariate case consists of sorting the data, assum-
ing that the threshold lies between each two consecutive data points, and finding the
corresponding MLE solution; then, the best MLE solution is selected from among the
available ones. Alternatively, a set of possible thresholds can be defined, and for each
such value, the resulting likelihood is maximized; see also the review [11] for threshold
estimation approaches.

In the bivariate case, the estimation problem becomes even more difficult because
there are two unknown thresholds θ1, θ2 to estimate. Let x = (x1i, x2i)

n
i=1 be a bivariate

data sample of size n, let λ1, λ2, β, a, r denote the rest of the parameters of the bivariate
density defined in (10) (note that r might be obtained from a continuity condition such as
(11) or the ones in Proposition 2, if imposed), and let L denote the likelihood function

L(x; λ1, λ2, β, a, θ1, θ2, r) = ∏
{(x1i ,x2i)∈D}

r f1(x1, x2) ∏
{(x1i ,x2i)|x1i>θ1,x2i>θ2}

(1− r) f2(x1, x2). (12)

The log-likelihood function defined from (12) is the weighted sum of the two partial
log-likelihood functions associated with the two distributions of the composite model: the
Gumbel and the Pareto. Since the MLE exists for both distributions (see [10] for the bivariate
Pareto distribution), then for a known r, we can easily find the MLE of our composite
model. The aim of the proposed MLE procedures is to find the best value of r.

In the following, we propose two alternative methods to estimate the parameters.

Method 1: An approach similar to the one described in the univariate case would be to

sort the marginal data, obtaining
(

x1(i)

)n

i=1
and

(
x2(i)

)n

i=1
, assume that each threshold lies,

correspondingly, between each two consecutive marginal data points, find the MLEs, and
choose the best one. However, this procedure is very time-consuming in the bivariate case,
so we propose to combine it with marginal estimation in a two-part method as follows:

I. Perform marginal estimation for both marginals; since the marginals are univari-
ate composite distributions, the approach described above for the univariate case
can be used. This would give starting values for the marginal parameters and the
approximate location of the marginally estimated thresholds θ̃1, θ̃2.
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II. Let
(

x1(i)

)n

i=1
and

(
x2(i)

)n

i=1
denote the (increasing) sorted marginal data and as-

sume that the marginally estimated thresholds θ̃j ∈ mj(kj)
, j = 1, 2, where mj(kj)

=(
xj(kj)

, xj(kj+1)

)
. Now consider

(
mj(kj−h)

)l

h=1
the l intervals preceding and

(
mj(kj+h)

)l

h=1
the l intervals following the interval mj(kj)

that covers θ̃j, j = 1, 2, as long as they exist;
for each combination of such intervals, perform full MLE and keep the best solution.
The resulting algorithm is:

Step 1. For mj(kj−l) to mj(kj+l), j = 1, 2,
evaluate λ1, λ2, β, a, θ1, θ2, r as solutions of the optimization problem:

max log L(x; λ1, λ2, β, a, θ1, θ2, r),

under the constraints θ1 and θ2 in the corresponding intervals, and continuity
conditions, if imposed.
Step 2. Among the solutions obtained from Step 1, choose the one that maximizes
the log-likelihood function.

Note that in this way, for reasonable choices of m1(k1)
, m2(k2)

and l, the computing time
is significantly reduced.

Method 2: The second method is a more analytical procedure for a specific sample;
it takes into account that the parameter β of the bivariate Gumbel–Pareto density (10) is
restricted to the [0, 1] interval. This allows us to define a grid for it and to optimize the
rest of the parameters for each value in this grid. The following procedure is designed,
assuming the continuity conditions given in (i–iii) of Proposition 2 and the conditional
likelihood defined by:

Lc(x; λ1, θ1, θ2|β) = ∏
{(x1i ,x2i)∈D}

r f1(x1, x2) ∏
{(x1i ,x2i)|x1i>θ1,x2i>θ2}

(1− r) f2(x1, x2),

with the continuity conditions (constraints)

λ2 =
λ1θ1

θ2
,

a = λ1θ1

(
1 + βλ1θ1 −

β

1 + βλ1θ1

)
− 1,

β ∈ [0, 1).

The conditional likelihood Lc(x; λ2, θ1, θ2|β) is defined similarly. The procedure for maxi-
mizing log Lc(x; λ1, θ1, θ2|β) is described below:

Step 1. Obtain initial values for the parameters θ1, θ2, and λ1 as follows:

- The initially estimated thresholds are θ̃1 = x1([np1])
and θ̃2 = x2([np2])

, where pj,
j = 1, 2, are two given large proportions, and [·] denotes the integer part. An
initial value for each proportion can be deduced from the Hill plot or by doing
MLE of the univariate Pareto for the tail.

- The initially estimated value of the exponential parameter λ̃1 is obtained by MLE
of the univariate truncated exponential distribution with density function:

f
(
x1|x1 ≤ θ̃1

)
=

fX1(x1)

FX1

(
θ̃1
) =

λ1e−λ1x1

1− e−λ1 θ̃1
.

Step 2. Define a grid for β ∈ [0, 1), i.e., (βg)G
g=1. For each βg, the estimated parameters

θ̂
g
1 , θ̂

g
2 , and λ̂

g
1 are obtained by maximizing the conditional log-likelihood function

log Lc
g
(
x; λ1, θ1, θ2|βg

)
. The optim() function of R software with the “Nelder–Mead”
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method can be used; this works reasonably well for non-differentiable functions. The
parameters λ̂

g
2 and âg are estimated using the continuity conditions.

Step 3. Let (log L̃c
g)

G
g=1 be the optimal values of the log-likelihood obtained at Step 2,

and let
(

λ̂
g
1 , θ̂

g
1 , θ̂

g
2 , βg

)
be the corresponding parameters. The final estimated parame-

ters are: (
λ̂1, θ̂1, θ̂2, β̂

)
= arg max

g=1,...,G
log L̃c

g

with

λ̂2 =
λ̂1θ̂1

θ̂2
,

â = λ̂1θ̂1

(
1 + β̂λ̂1θ̂1 −

β̂

1 + β̂λ̂1θ̂1

)
− 1.

5. Numerical Illustration

In this section, we present two numerical illustrations: the first one is on simulated
data, and the second one is on a real data set.

5.1. Numerical Illustration Using Simulated Data

In this section, we used simulated data to check the performance of the first estima-
tion procedure (Method 1) proposed in Section 4.3. The true values of the parameters
were selected such that they satisfied all the continuity conditions given in Proposition 2:
Gumbel: λ1 = 1, λ2 = 1.2, β = 0.7; Pareto: a = 0.7515, θ1 = 1.2, θ2 = 1, while r = 0.9086,
PD = 0.9669. Note that due to the heavy-tailedness of the Pareto distribution (a < 1), there
is no expected value for this particular distribution (its pdf is plotted in Figure 2).

With the aim of studying the properties of Method 1, using the two simulation meth-
ods described in Section 4.2, we generated 100 samples of size n = 200 and n = 1000,
respectively, for the two methods. For each such sample, in the first step, we performed
marginal estimation by imposing the continuity condition for each marginal (which restricts
the parameters r, as stated in Proposition 2). As a consequence, β and a are estimated twice
(for each marginal), and because of the differences in these estimations, we cannot rely
only on marginal estimation. However, marginal estimation provides starting values for
performing full MLE, and even better, gives an idea of where to look for the thresholds.
More precisely, we restricted the search to about 40 intervals for each θj, i.e., we took l = 20.
Thus, the computing time was significantly reduced compared to the threshold search
through all data.

Finally, we estimated the Mean Square Error MSE = 1
100 ∑100

i=1
(
θ − θ̂

)2
and the Mean

Absolute Error MAE = 1
100 ∑100

i=1
∣∣θ − θ̂

∣∣, where θ and θ̂ represent the true and estimated
parameters, respectively.

With the estimated parameters obtained from the 100 replicas generated with each
simulation method, we obtained the MSE and the MAE that are shown in Table 1. The
results indicate that both error criteria decrease when the sample size increases. Some
differences between the two simulation methods can be observed (e.g., the MSE of β is
larger for simulation Method II than for simulation Method I, while the MSE of a is smaller
for simulation Method II than for simulation Method I), but we believe that these differences
are due to the randomness of the results, where some samples fall more in the Pareto part
or in the exponential part; further simulation investigation is worthwhile, assuming that
the estimation method can be modified to reduce the computing time.

Concerning Method 2, as already noticed, it is a more analytical procedure for a
specific sample, and therefore, it cannot be standardized and we cannot perform several
iterations to calculate MSE and MAE.

All the computations were preformed in R software using an optimization function
with constraints to implement the continuity restrictions. The code is available upon request
from the authors.
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Table 1. Simulation results with 100 replicas for MSE and MAE with sample sizes n = 200 and
n = 1000.

Simulation Method I

λ1 λ2 β a θ1 θ2
n MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

200 0.0037 0.0538 0.0060 0.0717 0.0124 0.1077 0.3855 0.6152 0.0530 0.2226 0.0144 0.1069
1000 0.0034 0.0511 0.0048 0.0610 0.0118 0.1044 0.0275 0.1625 0.0450 0.2109 0.0049 0.0619

Simulation Method II
λ1 λ2 β a θ1 θ2

n MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
200 0.0054 0.0721 0.0041 0.0447 0.1530 0.3900 0.0640 0.2493 0.0694 0.2619 0.0985 0.3010

1000 0.0048 0.0610 0.0002 0.0131 0.1234 0.3367 0.0174 0.1267 0.0638 0.2564 0.0567 0.2229

5.2. Numerical Illustration with Real Data

In this section, we fit our proposed bivariate Gumbel–Pareto distribution to a random
sample of n = 518 motor insurance claims that include bodily injury. For these claims,
we separately know the cost of property damage including third-part liability (variable
X1) and the cost of exceptional medical expenses not covered by public social security
(variable X2). The data were provided by a major insurer in Spain in the year 2002 and
correspond to claims that occurred in the year 2000. These data were studied in previous
works (see [5,6,12]).

In Table 2, we display the descriptive statistics of the original data divided by 1000; this
change of scale is convenient, and it facilitates the MLE of the parameters. These descriptive
statistics show that both variables have a strong right skewness. Furthermore, the left plot
in Figure 4 shows the scatterplot of both cost variables in the original scale divided by
1000, where the existence of extreme values in both variables can be noticed. When we
have right-skewed variables with extreme values, the MLE of a simple distribution as, e.g.,
the exponential, the Weibull, or the log-normal, tends to underestimate the probability
on the right tail. Figure 5 displays the univariate exponential pdf fitted by MLE to each
marginal variable; with these densities, we also plotted the observed costs: on top the costs
of property damage, including third-part liability, and on bottom the costs of exceptional
medical expenses not covered by public social security. For better visibility, the domains
of the cost variables were divided in two parts, resulting in two plots for each marginal.
Figure 5 shows how the density reaches zero in the part of the domain where there are still
sample observations; so clearly, this model assumes a zero probability where it should not.
Similar results are obtained using univariate Weibull and log-normal densities.

Therefore, the composite model with a Pareto right tail is a good way to improve the
MLE fit for both univariate and bivariate data. Moreover, graphical analysis (e.g., the Hill
plot) indicates that both variables have a Pareto tail with a shape parameter very close
to 1, i.e., we have heavy-tailed marginal distributions. Thus, we can conclude that their
distributions have only the first-order moment finite, or they do not have finite moments at
all. In the left scatterplot of Figure 4, we can note that the sample information on extreme
values is scarce; this is a difficulty in samples from heavy-tailed or Pareto distributions.

Table 2. Descriptive statistics of property damage and third-party liability costs (X1) and exceptional
medical expenses (X2).

Mean STD Min Q25 Median Q75 Max Kurtosis Skewness
X1 1.83 6.87 0.01 0.26 0.68 1.39 137.94 15.70 301.30
X2 0.28 0.86 0.00 0.02 0.09 0.20 11.86 8.06 85.35
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Figure 4. Scatterplots of X1 vs. X2 in original (left) and natural (right) logarithm scales.

Figure 5. Exponential pdf fitted by MLE and sample data shown as points on the horizontal axis for
both marginals.

To asses the joint behavior of X1 and X2, we calculated the Pearson linear correlation
and the Kendall and the Spearman rank correlation coefficients, displayed in Table 3. These
results show a strong dependence between the two cost variables. However, as can be seen
from Figure 4, which presents the data scatterplot in both original and natural logarithm
scales, the dependence is not linear. As shown in [12], these data exhibit extreme value
dependence, i.e., the higher the costs, the stronger the dependency. This behavior can also
be observed in Figure 4. Furthermore, [10] shows that when the bivariate Pareto parameter
a is a ≤ 2, as is the case with our cost data, the theoretical variance and covariance
do not exist or cannot be calculated. Therefore, the Pearson linear correlation cannot
be interpreted.
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Further, from the right plot in Figure 4, it can be observed that for small values of
both variables, the shape of the point cloud is spherical, i.e., the dependence is almost
zero; however, for larger values, the shape indicates positive dependence between both
variables. Clearly, this denotes a change of the joint distribution between the smaller and the
larger costs.

Table 3. Sample linear and rank correlation coefficients.

Pearson Kendall Spearman
Correlation 0.7288 0.4252 0.5903

In Table 4, we present the MLE parameters for Gumbel’s bivariate exponential distribu-
tion described in Section 2.2.1 and for the Gumbel–Pareto distribution from Section 4. The
estimated parameters of the latter were obtained with Method 2 described in Section 4.3,
imposing all continuity conditions (Method 1 yielded similar results). The initial values of
the thresholds were taken from the Hill plots, and in this case, p1 = p2 = 0.102, resulting
in [np] = [518× 0.103] = 52, i.e., θ̃1 = 3.1 and θ̃2 = 0.5; also, λ̃1 = 1.4175. Comparing
the AICs, BICs, and CAICs given in Table 4 indicates that the bivariate Gumbel–Pareto
clearly outperforms Gumbel’s bivariate exponential distribution. Moreover, from MLE, the
dependence parameter of Gumbel’s bivariate exponential distribution, β, is zero, and it is
close to zero for the Gumbel–Pareto distribution, which is coherent with the scatterplot
in Figure 4.

In Figure 6, we also plotted a partial histogram of the data alongside the corresponding
Gumbel–Pareto pdf with the estimated parameters, while in Figure 7, we plotted the
marginal histograms with the fitted pdfs.

Figure 6. Histogram of real data (left) and Gumbel–Pareto pdf with the estimated parameters (right).

Figure 7. Histogram of real data marginals with fitted pdfs: left, X1; right, X2.
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Table 4. MLE of bivariate distributions with standard errors in parentheses.

Gumbel Gumbel–Pareto
λ̂1 0.5472 (0.0240) 1.4184 (0.0328)
λ̂2 3.5221 (0.1548) 11.1996
θ̂1 - 0.9870 (0.0040)
θ̂2 - 0.1250 (0.0003)
β̂ 0.0000 0.0455 (0.0465)
a - 0.4292
r - 0.8303
log L −696.1630 −272.5549
AIC 1398.3261 557.1097
BIC 1411.0759 582.6096
CAIC 1414.0759 588.6096

Finally, as a risk management application, we estimated the total risk of loss for the
aggregate cost random variable S = X1 + X2 using Monte Carlo simulation, and based on
it, we calculated the Value-at-Risk (VaR) measure. VaR is equivalent to an extreme quantile
of the distribution, i.e., VaRα(S) = inf{s ∈ R|Pr(S ≤ s) ≥ α}, where α is close to 1. In
Table 5, we present the VaR results with α = 0.95, 0.99, 0.995 for: the empirical distribution
of the original data, the distribution of S simulated from Gumbel’s bivariate exponential
distribution, and the distribution of S simulated from the Gumbel–Pareto distribution.
Furthermore, we added the VaR obtained for the bivariate log-normal distribution fitted
to the data; note that this distribution underestimates the risk in a way similar to that of
Gumbel’s bivariate exponential.

Table 5. Value-at-Risk for the empirical distribution and alternative distributions, obtained using
Monte Carlo simulation.

95% 99% 99.50%
Empirical 7.926 25.409 31.216
Gumbel 6.312 9.700 11.178
Gumbel–Pareto 6.361 114.067 410.897
Log-normal 6.529 15.122 20.787

When data follow a heavy-tailed distribution, the empirical VaR depends on the maxi-
mum data observed, and it is not an efficient estimator. The Gumbel–Pareto distribution
provides an estimation that extrapolates beyond the observed maximum cost and takes
into account the long and heavy bivariate tail with dependent marginal distributions.

6. Conclusions

To model bivariate dependent data that exhibit many small/medium values but also
some very large values (i.e., extreme values), in this paper, we proposed a bivariate two-
component spliced distribution. This distribution assumes a bivariate Pareto distribution
on the domain consisting of values larger than some thresholds, and a bivariate Gumbel
distribution on the complementary domain. We discussed some properties of the new
distribution and focused on parameter estimation, proposing two alternative procedures.
Because performing full MLE for this distribution may become time-prohibitive for larger
data sets, as further work, we plan to investigate alternative methods that could reduce the
computing time. Additionally, starting from the mixture formula (7), we plan to address
the problem of parameter identifiability (see, e.g., [13] or [14]). Goodness-of-fit tests are
envisaged for a future study.

Moreover, we also plan to study other such distributions by replacing the bivariate
Gumbel with alternative distributions.
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Appendix A. Proofs

Proof of Lemma 1. Using integration by parts, it is easy to prove (i)–(iv); (v) results by
changing variable t = ky, while (vi) is obtained by parts and by using (v).

Proof of Lemma 3. Without loss of generality, we prove the formula of L2; proof of L1
results in a similar way.

L2(x2; θ1) = λ2e−λ2x2

∫ θ1

0
λ1e−x1(λ1+βλ1λ2x2)[βλ1x1(1 + βλ2x2) + 1 + βλ2x2 − β]dx1

= λ2e−λ2x2

[
βλ2

1(1 + βλ2x2)
∫ θ1

0
x1e−x1(λ1+βλ1λ2x2)dx1

+λ1(1 + βλ2x2 − β)
∫ θ1

0
e−x1(λ1+βλ1λ2x2)dx1

]
= λ2e−λ2x2

[
βλ2

1(1 + βλ2x2)Γ(2, 0, θ1; λ1 + βλ1λ2x2)

+λ1(1 + βλ2x2 − β)Γ(1, 0, θ1; λ1 + βλ1λ2x2)].

Using formulas (ii) and (iii.1) from Lemma 1, we obtain, with some calculation,

L2(x2; θ1) = λ2e−λ2x2

(
βλ2

1(1 + βλ2x2)

λ2
1(1 + βλ2x2)

2

[
1− (1 + θ1λ1(1 + βλ2x2))e−θ1λ1(1+βλ2x2)

]
+λ1(1 + βλ2x2 − β)

1− e−θ1λ1(1+βλ2x2)

λ1(1 + βλ2x2)

)

=
λ2e−λ2x2

1 + βλ2x2

[
β− e−θ1λ1(1+βλ2x2)(β + βθ1λ1(1 + βλ2x2) + (1 + βλ2x2 − β))

+1 + βλ2x2 − β]

= λ2e−λ2x2
[
−e−θ1λ1(1+βλ2x2)(1 + βθ1λ1) + 1

]
.
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Proof of Lemma 4. We write

I(θ1, θ2) =
∫ ∞

θ1

λ1x1e−λ1x1 J(θ2)dx1,

where

J(θ2) =
∫ ∞

θ2

λ2x2e−λ2x2(1+βλ1x1)[βλ2x2(1 + βλ1x1) + (1 + βλ1x1)− β]dx2

= βλ2
2(1 + βλ1x1)

∫ ∞

θ2

x2
2e−λ2x2(1+βλ1x1)dx2

+λ2(1 + βλ1x1 − β)
∫ ∞

θ2

x2e−λ2x2(1+βλ1x1)dx2

= βλ2
2(1 + βλ1x1)Γ(3, θ2, ∞; λ2(1 + βλ1x1))

+λ2(1 + βλ1x1 − β)Γ(2, θ2, ∞; λ2(1 + βλ1x1)),

and using the corresponding formulas (iv.2) and (iii.2) from Lemma 1, we obtain

J(θ2) = βλ2
2(1 + βλ1x1)

e−θ2λ2(1+βλ1x1)

(λ2(1 + βλ1x1))
3

[
(θ2λ2(1 + βλ1x1) + 1)2 + 1

]
+λ2(1 + βλ1x1 − β)

e−θ2λ2(1+βλ1x1)

(λ2(1 + βλ1x1))
2 (θ2λ2(1 + βλ1x1) + 1)

=
e−θ2λ2(1+βλ1x1)

λ2(1 + βλ1x1)
2

[
β
(

θ2
2λ2

2(1 + βλ1x1)
2 + 2θ2λ2(1 + βλ1x1) + 2

)
+ θ2λ2(1 + βλ1x1)

2 + (1 + βλ1x1)− βθ2λ2(1 + βλ1x1)− β
]

=
e−θ2λ2(1+βλ1x1)

λ2(1 + βλ1x1)
2

[
θ2λ2(1 + βλ1x1)

2(1 + βλ2θ2) + (1 + βλ1x1)(1 + βλ2θ2) + β
]
.

Inserting this result into the equation of I(θ1, θ2) yields

I(θ1, θ2) =
λ1e−λ2θ2

λ2

∫ ∞

θ1

x1e−λ1x1(1+βλ2θ2)

(1 + βλ1x1)
2

[
θ2λ2(1 + βλ1x1)

2(1 + βλ2θ2)

+(1 + βλ1x1)(1 + βλ2θ2) + β]dx1,

and by changing variable βy = (1 + βλ1x1) and letting c = 1+βλ1θ1
β , we obtain

I(θ1, θ2) =
λ1e−λ2θ2

λ2

∫ ∞

c

βy− 1
βλ1(βy)2 e−

βy−1
β (1+βλ2θ2)

[
θ2λ2(βy)2(1 + βλ2θ2)

+(βy)(1 + βλ2θ2) + β]
dy
λ1

=
e

1
β

βλ1λ2

∫ ∞

c
e−y(1+βλ2θ2)(βy− 1)

[
θ2λ2(1 + βλ2θ2) +

1 + βλ2θ2

βy
+

1
βy2

]
dy.
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For simplicity, we denote u2 = 1 + βλ2θ2; hence

I(θ1, θ2) =
e

1
β

βλ1λ2

∫ ∞

c
e−yu2

(
λ2θ2u2βy− θ2λ2u2 + u2 −

u2

βy
+

1
y
− 1

βy2

)
dy

=
e

1
β

βλ1λ2

[
βλ2θ2u2

∫ ∞

c
ye−yu2 dy + u2(1− λ2θ2)

∫ ∞

c
e−yu2 dy

+

(
1− u2

β

) ∫ ∞

c

e−yu2

y
dy− 1

β

∫ ∞

c

e−yu2

y2 dy
]

.

Using (iii.2), (v), and (vi) from Lemma 1, we evaluate

I(θ1, θ2) =
e

1
β

βλ1λ2
[βλ2θ2u2Γ(2, c, ∞; u2) + u2(1− λ2θ2)Γ(1, c, ∞; u2)

+

(
1− u2

β

)
E1(cu2)−

1
β

(
e−cu2

c
− u2E1(cu2)

)]

=
e

1
β

βλ1λ2

[
βλ2θ2u2

e−cu2

u2
2

(1 + cu2) + u2(1− λ2θ2)
e−cu2

u2
− e−cu2

βc
+ E1(cu2)

]

=
1

βλ1λ2

[(
βλ2θ2

(
1
u2

+ c
)
+ 1− λ2θ2 −

1
βc

)
e

1
β−cu2 + e

1
β E1(cu2)

]
.

We now insert the formulas of c and u2; note that

cu2 =
(1 + βλ1θ1)(1 + βλ2θ2)

β
,

1
β
− cu2 = −(λ1θ1 + λ2θ2 + βλ1λ2θ1θ2),

and with some calculation, we obtain the stated formula of I(θ1, θ2).

Proof of Lemma 5. We note that

FY2|Y1=y1
(y2) =

∫ y2

0

gY(y1, x)
gY1(y1)

dx =
1

gY1(y1)
L1(y1; y2)

=
λ1e−λ1y1

[
1− (1 + βλ2y2)e−λ2y2(1+βλ1y1)

]
λ1e−λ1y1

,

where we used the formula of L1 from Lemma 3. This easily yields the stated result.

Proof of Proposition 1. We prove the formulas for X1, with the formulas for X2 resulting
in a similar manner.
(i) Since fX1(x1) =

∫ ∞
0 f (x1, x2)dx2, we have two cases:

Case x1 ≤ θ1: it is easy to see that

fX1(x1) =
r

PD

∫ ∞

0
gY(x1, x2)dx2 =

r
PD

λ1e−λ1x1 .

Case x1 > θ1: in this case,

fX1(x1) =
r

PD

∫ θ2

0
gY(x1, x2)dx2 + (1− r)

∫ ∞

θ2

fZ(x1, x2)dx2

=
r

PD
L1(x1; θ2) + (1− r)a

θa
1

xa+1
1

.
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We insert the formula of L1 from Lemma 3 and obtain the stated formula of fX1 .
(ii) Based on the formula of fX1 , we again have two cases:
Case x1 ≤ θ1: clearly, here we obtain the cdf of the exponential distribution of Y1.
Case x1 > θ1: in this case,

FX1(x1) =
∫ θ1

0

r
PD

λ1e−λ1xdx +
∫ x1

θ1

r
PD

λ1e−λ1xdx

−
∫ x1

θ1

r
PD

λ1e−λ1x(1 + βλ2θ2)e−λ2θ2(1+βλ1x)dx +
∫ x1

θ1

(1− r)a
θa

1

xa+1
1

dx.

The first two integrals add to the cdf of the exponential distribution of Y1 in x1, while the
last integral yields the cdf of the Pareto distribution of Z1. Therefore,

FX1(x1) =
r

PD

(
1− e−λ1x1

)
− r

PD
λ1(1 + βλ2θ2)e−λ2θ2

∫ x1

θ1

e−λ1x(1+βλ2θ2)dx

+(1− r)
(

1−
(

θ1

x1

)a)
=

r
PD

(
1− e−λ1x1

)
+

r
PD

e−λ2θ2 e−λ1x(1+βλ2θ2)

∣∣∣∣x1

θ1

+ (1− r)
(

1−
(

θ1

x1

)a)
=

r
PD

(
1− e−λ1θ1−λ2θ2−βλ1λ2θ1θ2 + e−λ2θ2−λ1x1(1+βλ2θ2) − e−λ1x1

)
+(1− r)

(
1−

(
θ1

x1

)a)
= r +

r
PD

(
e−λ2θ2−λ1x1(1+βλ2θ2) − e−λ1x1

)
+ (1− r)− (1− r)

(
θ1

x1

)a
,

where for the last equality, we used formula (3) of PD. From here, the formula of FX1

is immediate.

Proof of Proposition 2. (i) The continuity condition fX1(θ1−) = fX1(θ1+) yields

r
PD

λ1e−λ1θ1 =
r

PD
λ1e−λ1θ1

[
1− (1 + βλ2θ2)e−λ2θ2(1+βλ1θ1)

]
+ (1− r)a

θa
1

θa+1
1

⇔ − rλ1(1 + βλ2θ2)e−(λ1θ1+λ2θ2+βλ1λ2θ1θ2)

1− e−(λ1θ1+λ2θ2+βλ1λ2θ1θ2)
+

a
θ1
− ra

θ1
= 0

⇔ a
θ1

= r
a
θ1

(
1 +

θ1

a
λ1(1 + βλ2θ2)

eλ1θ1+λ2θ2+βλ1λ2θ1θ2 − 1

)
,

which yields Formula (i). The proof of Formula (ii) is similar.
(iii) We equate r1 = r2 from (i) and (ii) and obtain

1 +
λ1θ1

a
1 + βλ2θ2

eλ1θ1+λ2θ2+βλ1λ2θ1θ2 − 1
= 1 +

λ2θ2

a
1 + βλ1θ1

eλ1θ1+λ2θ2+βλ1λ2θ1θ2 − 1
⇔ λ1θ1(1 + βλ2θ2) = λ2θ2(1 + βλ1θ1)

⇔ λ1θ1 = λ2θ2.

Moreover, the continuity condition at (θ1, θ2) means r = r1 = r2; hence, using (11) and
λ1θ1 = λ2θ2, we obtain

1 +
(1 + βλ1θ1)(1 + βλ2θ2)− β(

eλ1θ1+λ2θ2+βλ1λ2θ1θ2 − 1
)
(a + 1)a

λ1λ2θ1θ2 = 1 +
λ1θ1

a
1 + βλ2θ2

eλ1θ1+λ2θ2+βλ1λ2θ1θ2 − 1

⇔
(
(1 + βλ1θ1)

2 − β
)

λ1θ1 = (a + 1)(1 + βλ1θ1),

from which results the stated formula of a.
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Proof of Proposition 3. We calculate the expected value and the second-order moment for
X1 (those of X2 result in a similar way). Using the expected value of the exponential and
Pareto distributions, we have

EX1 =
∫ ∞

0
x1 fX1(x1)dx1 =

r
PD

∫ θ1

0
λ1x1e−λ1x1 dx1

+
r

PD

∫ ∞

θ1

λ1x1e−λ1x1
[
1− (1 + βλ2θ2)e−λ2θ2(1+βλ1x1)

]
dx1 + (1− r)

∫ ∞

θ1

x1
aθa

1

xa+1
1

dx1

=
r

PD

[∫ ∞

0
λ1x1e−λ1x1 dx1 − λ1(1 + βλ2θ2)e−λ2θ2

∫ ∞

θ1

x1e−λ1x1(1+βλ2θ2)dx1

]
+(1− r)

aθ1

a− 1

=
r

PD

[
1

λ1
− λ1(1 + βλ2θ2)e−λ2θ2 Γ(2, θ1, ∞; λ1(1 + βλ2θ2))

]
+ (1− r)

aθ1

a− 1
.

Inserting (iii.2) from Lemma 1 yields

EX1 =
r

PD

[
1

λ1
− λ1(1 + βλ2θ2)e−λ2θ2

e−λ1θ1(1+βλ2θ2)

λ2
1(1 + βλ2θ2)

2 (1 + λ1θ1(1 + βλ2θ2))

]
+ (1− r)

aθ1

a− 1
,

from which the expected value formula is immediate. The moment of second order is

EX2
1 =

∫ ∞

0
x2

1 fX1(x1)dx1 =
r

PD

[
λ1

∫ ∞

0
x2

1e−λ1x1 dx1

−λ1(1 + βλ2θ2)e−λ2θ2

∫ ∞

θ1

x2
1e−λ1x1(1+βλ2θ2)dx1

]
+ (1− r)

∫ ∞

θ1

x2
1

aθa
1

xa+1
1

dx1

=
rλ1

PD

[
Γ(3, 0, ∞; λ1)− (1 + βλ2θ2)e−λ2θ2 Γ(3, θ1, ∞; λ1(1 + βλ2θ2))

]
+ (1− r)

aθ2
1

a− 2
.

Based on (iv.2) from Lemma 1, we obtain

EX2
1 =

rλ1

PD

[
2

λ3
1
− (1 + βλ2θ2)e−λ2θ2

e−λ1θ1(1+βλ2θ2)

λ3
1(1 + βλ2θ2)

3

(
1 + (λ1θ1(1 + βλ2θ2) + 1)2

)]

+(1− r)
aθ2

1
a− 2

.

The stated formula of EX2
1 easily results from here, which completes the proof.

Proof of Proposition 4. We write

E[X1X2] =
∫ ∞

0

∫ ∞

0
x1x2 f (x1, x2)dx1dx2

=
∫ ∫

D

rλ1λ2

PD
x1x2e−(λ1x1+λ2x2+βλ1λ2x1x2)[(1 + βλ1x1)(1 + βλ2x2)− β]dx1dx2

+
∫ ∫

D22

(1− r)a(a + 1)
(θ1θ2)

a+1x1x2

(θ2x1 + θ1x2 − θ1θ2)
a+2 dx1dx2

=
r

PD
I1 + (1− r)I2.
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We separately calculate the two integrals. We start with the second one, which from
Formula (5) is given by

I2 =
∫ ∞

θ1

∫ ∞

θ1

a(a + 1)
x1x2(θ1θ2)

a+1

(θ2x1 + θ1x2 − θ1θ2)
a+2 dx1dx2 = θ1θ2

a2 − a− 1
(a− 1)(a− 2)

.

In what concerns I1, we note that given the definition of the domain D with the notation
from Lemma 4, we have

I1 =
∫ ∫

D
λ1λ2x1x2e−(λ1x1+λ2x2+βλ1λ2x1x2)[(1 + βλ1x1)(1 + βλ2x2)− β]dx1dx2

= I(0, 0)− I(θ1, θ2).

Now using the formula in Lemma 4, we note that

I(0, 0) =
1

βλ1λ2
E1

(
1
β

)
e

1
β ,

and the stated formula of E[X1X2] results immediately.

Proof of Proposition 5. We recall that

fX2|X1=x1
(x2) =

f (x1, x2)

fX1(x1)
,

and according to Proposition 1, we note that we must consider three different cases:
(x1 ≤ θ1, x2 > 0); (x1 > θ1, x2 ≤ θ2) and (x1 > θ1, x2 > θ2).
Case I: x1 ≤ θ1 and x2 > 0. In this case,

FX2|X1=x1
(x2) =

∫ x2

0

r
PD

gY(x1, x)
r

PD
λ1e−λ1x1

dx,

and using Lemma 5, we obtain the first formula of FX2|X1=x1
.

Case II: x1 > θ1 and x2 ≤ θ2. Now, we have

FX2|X1=x1
(x2) =

∫ x2

0

r
PD

gY(x1, x)
r

PD
λ1e−λ1x1

[
1− (1 + βλ2θ2)e−λ2θ2(1+βλ1x1)

]
+ (1− r)a θa

1
xa+1

1

dx,

and, as in Case I, we easily get the second formula of FX2|X1=x1
(x2).

Case III: x1 > θ1 and x2 > θ2. In this case,

FX2|X1=x1
(x2) =

∫ θ2

0

r
PD

gY(x1, x)
r

PD
λ1e−λ1x1

[
1− (1 + βλ2θ2)e−λ2θ2(1+βλ1x1)

]
+ (1− r)a θa

1
xa+1

1

dx

+
∫ x2

θ2

(1− r)(a + 1)a (θ1θ2)
a+1

(θ2x1+θ1x−θ1θ2)
a+2

r
PD

λ1e−λ1x1
[
1− (1 + βλ2θ2)e−λ2θ2(1+βλ1x1)

]
+ (1− r)a θa

1
xa+1

1

dx.
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The first integral equals the formula obtained in Case II by taking x2 = θ2, while for the
second integral, we evaluate

J = (a + 1)a
∫ x2

θ2

(θ1θ2)
a+1(θ2x1 + θ1x− θ1θ2)

−a−2dx

= (a + 1)a(θ1θ2)
a+1 1

θ1

(θ2x1 + θ1x− θ1θ2)
−a−1

−(a + 1)

∣∣∣∣x2

θ2

= −aθa
1θa+1

2

[
(θ2x1 + θ1x2 − θ1θ2)

−a−1 − (θ2x1 + θ1θ2 − θ1θ2)
−a−1

]
= −a

θa
1θa+1

2

(θ2x1 + θ1x2 − θ1θ2)
a+1 + a

θa
1θa+1

2

θa+1
2 xa+1

1

.

Therefore,

FX2|X1=x1
(x2) =

r
PD

λ1e−λ1x1
1− e−λ2θ2(1+βλ1x1)(1 + βλ2θ2)

r
PD

λ1e−λ1x1
[
1− (1 + βλ2θ2)e−λ2θ2(1+βλ1x1)

]
+ (1− r)a θa

1
xa+1

1

+(1− r)

aθa
1

xa+1
1
− a θa

1θa+1
2

(θ2x1+θ1x2−θ1θ2)
a+1

r
PD

λ1e−λ1x1
[
1− (1 + βλ2θ2)e−λ2θ2(1+βλ1x1)

]
+ (1− r)a θa

1
xa+1

1

,

from which the last formula of FX2|X1=x1
is immediate.
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