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A B S T R A C T

Labor productivity differences between developing and developed countries are much larger in agriculture than
in non-agriculture. We show that differences in agricultural composition across countries explain a substantial
part of these labor productivity differences. To this end, we group agricultural products into two sectors:
capital-intensive and labor-intensive agriculture. As the economy develops and capital accumulates, the price
of labor-intensive agricultural goods relative to capital-intensive agricultural goods increases. This price change
drives a process of structural change that moves land and farmers to the capital-intensive sector, increasing
labor productivity in agriculture. We illustrate this mechanism using a multisector growth model that generates
transitional dynamics consistent with patterns of structural change observed in Brazil and also differences in
agricultural composition and labor productivity consistent with cross-country data.
1. Introduction

A recent branch of the growth literature claims that a substantial
part of cross-country income differences can be explained by differ-
ences in agricultural labor productivity across countries.2 This claim
is based on two observations. First, employment in agriculture is large
in developing countries. Second, labor productivity differences between
developed and developing countries are much larger in agriculture than
in non-agriculture. In particular, Caselli (2005) finds that agricultural
labor productivity in countries in the 90th percentile of the world
income distribution is 45 times larger than that of countries in the
10th percentile of the distribution. In contrast, non-agricultural labor
productivity is only 4 times larger in advanced countries. This implies
that agricultural labor productivity relative to non-agricultural labor
productivity increases along the development process.

A central issue to understand economic growth is, therefore, to
explain the increase of relative productivity between agriculture and
non-agriculture along the development path. In this paper, we iden-
tify a process of substitution of crops associated with development,
which we denote as structural change within agriculture, and show
that this process explains a significant fraction of the rise in relative
productivity. Consequently, we show that crop diversity is a key ele-
ment to consider in explaining the relationship between agricultural
productivity and development.
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1 The two authors have the same contributions and roles in the elaboration of this paper.
2 See Cao and Birchenall (2013), Chanda and Dalgaard (2008), Caselli (2005), Gollin et al. (2002, 2014a,b), Restuccia et al. (2008) and Vollrath (2009).
3 The increase of capital intensity in agriculture relative to non-agriculture, along the process of economic development, is consistent with evidence provided by

Chen (2020) and Alvarez-Cuadrado et al. (2017). In particular, Chen (2020) indicates that the capital–output ratio in agriculture is 2.9 times larger in developed
countries than in developing countries, whereas it is only 2.1 times larger in non-agriculture.

We use data from the US Census of Agriculture and the Food
and Agriculture Organization (FAO) to group crops into two different
sectors: a capital-intensive and a labor-intensive agricultural sector.
Using this classification of crops, we document two novel facts. First,
countries with a high share of land in capital-intensive agriculture
have higher relative productivity. Second, developed countries have
more land allocated to capital-intensive agriculture. These facts sug-
gest a relationship between economic development, changes in the
composition of agriculture and agricultural productivity. We propose
the following mechanism to explain this relationship. As the economy
develops, capital becomes more abundant and less expensive, which
reduces the production cost in the capital-intensive agricultural sec-
tor more than in the labor-intensive agricultural sector. As a result,
the price of labor-intensive crops relative to capital-intensive crops
increases. If the two crops are imperfect substitutes in preferences,
the consumption and, hence, the production of labor-intensive crops
relative to capital-intensive crops declines. As a consequence, the com-
position of agriculture shifts towards the capital-intensive sector, which
increases capital intensity in agriculture and, therefore, capital intensity
in agriculture increases relative to non-agriculture.3 This contributes
to explain the increase in labor productivity in agriculture relative
to labor productivity in non-agriculture. Therefore, according to our
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mechanism, relative labor productivity increases due to changes in
the composition of the agricultural sector that occur along economic
development.

We introduce this mechanism in a multisector overlapping gener-
ations model, in which a continuum of individuals is born in each
period. These individuals have heterogeneous agricultural abilities and
homogeneous ability for non-agricultural work. As in Lucas (1978),
individuals with low abilities choose to become workers, whereas in-
dividuals with high abilities become entrepreneurs. In our framework,
workers are employed in non-agriculture, while entrepreneurs are farm-
ers specialized in the production of either labor or capital-intensive
crops. Since technologies exhibit complementarity between ability and
capital, only farmers endowed with high abilities choose to produce
capital-intensive crops. Individuals consume both an agricultural and
a non-agricultural good. To introduce substitution in consumption be-
tween agricultural sectors, we define the agricultural good as a constant
elasticity of substitution aggregate of the goods produced in the two
agricultural sectors.

In the model, exogenous technological progress causes economic
development and drives two different processes of structural change:
between sectors and within agriculture. Structural change between
sectors depends on a minimum consumption requirement in the agri-
cultural good. This minimum consumption introduces an income effect
that reduces the number of farmers as the economy grows. The remain-
ing farmers have larger farms and higher abilities. This is consistent
with evidence provided by Adamopoulos and Restuccia (2014), who
report that the average farm size in the poorest 20% of countries
is 34 times smaller than in the richest 20% of countries. It is also
consistent with Lagakos and Waugh (2013), who argue that selection
amplifies labor productivity differences between sectors. On the other
hand, structural change within agriculture depends on the elasticity
of substitution between the two types of agricultural goods. When it
is larger than one, the two types of agricultural goods are imperfect
substitutes. In this case, as the economy develops and capital becomes
more abundant, the price of labor-intensive crops relative to capital-
intensive crops increases, which causes a process of structural change
that turns aggregate agriculture more capital intensive. This increases
labor productivity in the agricultural sector. This second process of
structural change and its relation with labor productivity in agriculture
are the main contributions of this paper.

The model is calibrated to match data from Brazil and we simulate
the dynamic transition. Along the transition, which is driven by ex-
ogenous sector-specific technological progress, the economy develops,
capital accumulates and this results in the following patterns: (i) a
reduction in the number of farmers; (ii) an increase in the average farm
size; (iii) a reduction in the fraction of harvested land in the labor-
intensive sector; (iv) an increase in the capital intensity of agriculture
relative to non-agriculture; and (v) an increase in the productivity of
agriculture relative to non-agriculture. We show that these develop-
ment patterns are consistent with patterns observed in Brazil during
the period 1960–2018. Moreover, we show that the model accounts for
66.2% of the increase in the relative productivity of Brazil, measured
at constant prices, observed during this period.

Relative productivity increases due to different mechanisms: (i)
sector-specific technological progress that can be faster in agriculture,
(ii) the reduction in the number of farmers that increases average farm
size and increases the ability of the average farmer, and (iii) structural
change within agriculture that increases capital intensity in agriculture
relative to non-agriculture. This third mechanism is the focus of this
paper and to determine its significance we measure the fraction of the
increase in relative productivity that is explained by structural change
within agriculture. To this end, we simulate a counterfactual economy
in which the elasticity of substitution between crops is set equal to
one and, hence, there is no structural change within the agricultural
sector and capital intensity in agriculture relative to non-agriculture re-
2

mains constant even though the relative price between labor-intensive
agriculture and capital-intensive agriculture increases. From the com-
parison between the benchmark and the counterfactual economies, we
conclude that structural change within agriculture explains 24.8% of
the increase in relative productivity observed in Brazil.

We also provide cross-country evidence, for a large sample including
developing and developed countries, that supports the patterns of
development implied by our model. The cross-country data shows a
positive correlation between (i) GDP per worker and the fraction of
harvested land in capital-intensive agriculture, and (ii) between this
fraction and relative productivity. We calibrate the model to match the
cross-country correlation between GDP per worker and the fraction of
harvested land in capital-intensive agriculture. More precisely, we use
the calibration of Brazil and adjust sectoral TFPs to match cross-country
differences in income, land in the capital-intensive sector and also
employment in agriculture. We show that the model can generate these
differences and can also explain the positive correlation between GDP
per worker and relative productivity. In particular, the data shows that
relative productivity between agriculture and non-agriculture of coun-
tries in the top quartile of the world income distribution is 7.05 times
larger than relative productivity of countries in the bottom quartile. We
show that the model generates a 6.36-fold gap in relative productivity
between rich and poor countries and that structural change within
agriculture accounts for 27.5% of this gap.

This paper is related to three branches of the literature. First, it is
related to the structural change literature that introduces income and
price effects to explain changes in the sectoral composition of an econ-
omy (see Kongsamut et al., 2001; Ngai and Pissarides, 2007; Acemoglu
and Guerrieri, 2008). We consider price and income effects to account
for structural change among broad sectors and within agriculture.

Second, it is related to the literature on agricultural productivity
differences across countries. This literature has considered misallo-
cations of production factors (Chen, 2017; Gottlieb and Grobovsek,
2019; Hayashi and Prescott, 2008; Restuccia et al., 2008; Restuccia and
Santaeulalia-Llopis, 2017), differences in farm sizes (Adamopoulos and
Restuccia, 2014), differences in technology (Chen, 2020; Gollin et al.,
2007; Manuelli and Seshadri, 2014; Yang and Zhu, 2013), selection
(Lagakos and Waugh, 2013), uninsurable risk and incomplete capital
markets (Donovan, 2020), and differences in the quality of capital
(Caunedo and Keller, 2021). This literature considers an aggregate
agricultural sector producing a single commodity. However, agricul-
tural products are in fact diverse, they can be produced with different
technologies and the consumption composition of these products can
change along economic development. Recent papers examine agricul-
tural product diversity. For example, Sotelo (2020) considers a model
of regional specialization, Adamopoulos and Restuccia (2020) study
how land reforms affect farmers’ decisions between producing cash or
food crops, and Rivera-Padilla (2020) shows that the crop choice is
affected by subsistence requirements and trade costs. We contribute
to this literature by studying how crop diversity affects agricultural
productivity.

Third, it is also related to the literature that studies the increase in
the capital intensity of agriculture relative to non-agriculture driven by
technological change (see Gollin et al., 2007; Alvarez-Cuadrado et al.,
2017). In particular, it is closely related to Chen (2020), who links the
increase in both capital intensity and average farm size in agriculture
to technology adoption. In Chen (2020), there is a single agricultural
product and, as the cost to adopt technology declines, farmers switch
to a more capital-intensive technology. This explains the increase of
capital per worker in agriculture. As in our paper, the increase of
agricultural capital-intensity is behind the increase in relative produc-
tivity. Our paper provides a different, but complementary, explanation
for the increase in capital intensity. In our framework, agricultural
capital-intensity increases, not as consequence of technology adoption
but because of substitution between different crops. Capital-intensity
of agriculture grows because the share of agriculture produced in the

more capital-intensive sector expands. This is an important difference
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Table 1
Capital intensity for main crop categories.

Capital/Value added 1978 1982 1992 1997 2002 2012

Oilseed and grain 1.52 1.62 1.62 1.53 1.73 1.43
Other crop 1.28 1.19 1.10 1.21 3.92 2.55
Vegetable and melon 0.50 0.47 0.48 0.44 0.53 0.58
Fruit and tree nut 0.55 0.59 0.49 0.44 0.53 0.44

Note:
[1] We use data from the US Census of Agriculture for the following years: 1978, 1982, 1992, 1997, 2002, and 2012. The last three censuses
classify crops according to the North American Industry Classification System (NAICS). The first 3 censuses use the Standard Industrial
Classification System (SIC), however, we reclassify crops in these censuses according to categories in NAICS. We exclude hay, greenhouse
and floriculture production, which are not considered in the FAO dataset.
[2] Capital intensity is defined as capital over value added. We compute the value added as the market value of crops excluding government
payments and expenditures in fertilizers, chemicals, seeds, gasoline, utilities, supplies, maintenance and all other production expenses. Capital
is defined as the value of equipment and machinery.
a
i
i

a

Table 2
Capital intensity by crop.

Oilseed and grain farming 0.93 Vegetable and melon farming 0.35
Soybean 1.16 Potato 0.41
Oilseed (ex soybean) 1.15 Other vegetable and melon 0.34
Dry pea and bean 0.95 Fruit and tree nut farming 0.29
Wheat 1.16 Orange groves 0.23
Corn 0.86 Citrus (ex. orange) groves 0.25
Rice 0.66 Noncitrus fruit and tree nut 0.44
Other grain 0.93 Apple orchards 0.29

Other crop farming 1.44 Grape vineyards 0.24
Tobacco 0.73 Strawberry 0.11
Cotton 0.89 Berry (except strawberry) 0.53
Sugarcane 0.40 Tree nut 0.32
All other crop 1.33 Other non-citrus fruit farming 0.44

Note: Data is from the 2012 US Census of Agriculture. This census provides data on
production and capital at crop-level. For this reason, we compare the ratio between
capital and production, instead of capital and value added.

that affects not only the model, but also the calibration targets. In
the technological change literature, the model is calibrated to match a
technological adoption curve or a measure of capital intensity. Instead,
we calibrate the model to account for the change in the sectoral
composition of agriculture observed in the data and documented in
this paper. We see both explanations as complementary, since we could
consider a single model including substitution between agricultural
goods and technological adoption within each agricultural sector to
account for the increase in agricultural capital-intensity.

The rest of the paper is organized as follows. Section 2 shows the
empirical strategy followed to construct the two agricultural subsectors
and introduces the main facts. Section 3 introduces the model. Section 4
characterizes the equilibrium. Section 5 describes the quantitative anal-
ysis and shows that the model explains a sizable part of the increase in
relative productivity observed in Brazil and that it also accounts for a
large part of cross-country differences in relative productivity observed
in the data. Finally, Section 6 concludes.

2. Agricultural sectors

In this section, we classify crops according to capital intensity. Using
this classification, we first show that, in a cross-section of countries,
using more land in capital-intensive agriculture correlates with capital
intensity in agriculture relative to non-agriculture and with relative
productivity. We then focus on development patterns of Brazil during
the period 1960–2018 and show that both the fraction of land in
capital-intensive agriculture and relative productivity increase in this
country.

We use the US Census of Agriculture to obtain the ratio between
capital and value added by crop, which is a standard measure of capital
intensity. Table 1 shows the value of this ratio for different years in
which the census is available and for the main crop categories under the
North American Industry Classification System (NAICS). Although there
3

are some important changes in capital intensity among censuses, a clear c
pattern emerges: the first two categories, Oilseed and grain farming and
Other crop farming, have a capital intensity, on average, larger than
1.5, whereas the last two categories, Vegetable and melon farming and
Fruit and tree nut farming, have an average capital intensity of 0.5.
Therefore, there is a large and persistent gap in the capital intensities
across different categories of crops.

This gap remains if we consider crops within categories. Table 2
shows that capital intensity, defined as the ratio between capital and
production, of crops in the first two categories is in general larger
than capital intensity of any crop in the last two categories.4 Given
these findings, we distinguish between two agricultural sectors. We
group crops in the first two categories of Table 1 in the capital-
intensive agricultural sector, whereas crops in the other two categories
are grouped in the labor-intensive agricultural sector.5 We assume that
this classification remains stable through time and across countries.

Next, we use the Food and Agriculture Organization (FAO) dataset,
that provides crop-level data on production, prices and area harvested
for a large number of countries. We consider the period 1961–2018.
Using the classification of crops obtained from the US Census of Agri-
culture, we classify all crops in the FAO dataset in order to construct
the two agricultural sectors. This gives us the value of production, the
price index and the fraction of total harvested land in both capital
and labor-intensive agriculture, for each country and time period. The
classification of all crops is shown in detail in the supplementary
appendix.

In Fig. 1 we show cross-country evidence that supports the mecha-
nism in our model. In particular, Panel (a) of Fig. 1 shows a positive
correlation between the fraction of harvested land in capital-intensive
agriculture and relative capital intensity between agriculture and non-
agriculture. Relative capital intensity is defined as capital per worker
in agriculture divided by capital per worker in non-agriculture. We
combine data on capital by sector from Larson et al. (2000) with data
on employment by sector from the Groningen Growth and Development
Centre (GGDC) 10-Sector Database. This results in a sample of 25
countries. Although data is limited, we obtain a positive correlation that
is statistically significant. This positive correlation provides support
to our classification of crops: economies with more land in capital-
intensive agriculture, according to our classification, are also the ones
with higher capital intensity in agriculture relative to non-agriculture.

The mechanism in our model implies that the fraction of har-
vested land in capital-intensive agriculture increases as the economy
develops. It also implies that agricultural productivity relative to non-
agricultural productivity increases as the fraction of harvested land

4 The US Census of Agriculture provides crop-level data on production
nd capital. Therefore, we compare the ratio between capital and production,
nstead of capital and value added, which is the standard measure of capital
ntensity.

5 Using Table 1, we distinguish between a more capital-intensive sector
nd a less capital-intensive sector. In the model of Section 3, the less

apital-intensive sector is also the labor-intensive sector.
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Fig. 1. Cross-country comparisons. Note: [1] This figure shows correlations between: (a) Relative capital intensity between agriculture and non-agriculture and the fraction of land
n capital-intensive agriculture (𝐿𝑘∕𝐿), (b) Relative productivity between agriculture and non-agriculture and 𝐿𝑘∕𝐿, (c) GDP per worker and 𝐿𝑘∕𝐿, and (d) Relative productivity

between agriculture and non-agriculture and GDP per worker. Relative productivity and GDP per worker are PPP-adjusted. [2] Data for relative productivity between agriculture
and non-agriculture and GDP per worker is obtained from Restuccia et al. (2008). Relative capital intensity between agriculture and non-agriculture is from Larson et al. (2000)
and the GGDC 10-Sector Database. The fraction of land in capital-intensive agriculture is computed from FAO. All data is for year 1985.
Fig. 2. Development patterns. Note: [1] Panel (a) shows the increase in the fraction of land in capital-intensive agriculture (𝐿𝑘∕𝐿) and Panel (b) shows the increase in relative
productivity between agriculture and non-agriculture (𝑌𝑎∕𝑁𝑎)∕(𝑌𝑚∕𝑁𝑚) in 6 developing countries. [2] Data for 𝐿𝑘∕𝐿 is computed from FAO and relative productivity at 2005
onstant prices is obtained from the GGDC 10-Sector Database. We include all developing countries for which we have relative productivity data from GGDC 10-Sector Database
ince the 1960s and for which both 𝐿𝑘∕𝐿 and (𝑌𝑎∕𝑁𝑎)∕(𝑌𝑚∕𝑁𝑚) increase. Countries included are: Argentina, Bolivia, Kenya, Brazil, Tanzania, Senegal.
i
p
(
i

n capital-intensive agriculture increases. Therefore, this mechanism
nvolves a positive correlation between: (i) the fraction of harvested
and in capital-intensive agriculture and relative labor productivity; (ii)
etween this fraction and GDP per worker; and (iii) between GDP per
orker and relative labor productivity. Panels (b), (c) and (d) of Fig. 1
4

p

llustrate these three positive correlations, using the cross-country com-
arable measure of relative productivity provided by Restuccia et al.
2008). These authors provide GDP per worker and labor productivity
n each sector, measured at Purchasing Power Parity (PPP) adjusted

rices, for a large sample of countries for the year 1985. Using this
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Table 3
Relative productivity across countries.

Dependent variable: Relative productivity
(1) (2) (3)

Constant −0.0589
(0.0675)

−0.6733
(0.1170)

*** 0.0264
(0.0414)

Fraction of land in capital-intensive agriculture 0.2791
(0.0931)

*** – 0.2305
(0.0490)

***

Log real GDP per worker – 0.0920
(0.0131)

*** –

Country fixed effects – – Yes
Time fixed effects – – Yes
Countries 80 80 37
Observations 80 80 1802
R2 0.103 0.385 0.388

Note:
[1] Standard errors in parenthesis.
[2] This table shows that relative productivity (𝑌𝑎∕𝑁𝑎∕𝑌𝑚∕𝑁𝑚) is correlated with the
fraction of land in capital-intensive agriculture (𝐿𝑘∕𝐿) and with real GDP per worker
(𝑌 ∕𝑁). Regressions in columns (1) and (2) use cross-section data, while the regression
in column (3) uses a panel of 37 countries. Data on relative productivity and real GDP
per worker in columns (1) and (2) is from Restuccia et al. (2008) and is PPP-adjusted,
the fraction of land in capital-intensive agriculture is constructed from FAO data, and
relative productivity at constant prices in column (3) is from GGDC 10-Sector Database.
***Indicates 𝑝-value < 0.01.

Table 4
Agricultural composition across countries.

Dependent variable: Land in capital-intensive agriculture
(1) (2)

Constant 0.3575
(0.1673)

** 0.5170
(0.0216)

***

Log real GDP per worker 0.0392
(0.0188)

** 0.0181
(0.0024)

***

Countries 80 82
Observations 80 4897
R2 0.053 0.012

Note:
[1] Standard errors in parenthesis
[2] This table shows that the fraction of land in capital-intensive agriculture (𝐿𝑘∕𝐿)
s correlated with real GDP per worker (𝑌 ∕𝑁). The regression in column (1) uses
ross-section data and the one in column (2) uses panel data from 82 countries. Data
n the fraction of land in capital-intensive agriculture is constructed from FAO. Real
DP per worker in column (1) is from Restuccia et al. (2008) and is PPP-adjusted.
eal GDP per capita in columns (2) is from Penn World Table 10.0.
*Indicates 𝑝-value < 0.05.
**Indicates 𝑝-value < 0.01.

ata, in the first two columns of Table 3 and in the first column of
able 4 we show that the three positive correlations in Panels (b), (c)
nd (d) of Fig. 1 are statistically significant.

We complement the previous cross-country analysis with two addi-
ional linear regressions using panel data. First, we run a regression
etween relative productivity and the fraction of harvested land in
apital-intensive crops, using a panel of 37 countries during the period
961–2011. Data on relative productivity is from the GGDC 10-Sector
atabase and is not PPP-adjusted; therefore, it is not directly compa-

able across countries.6 This justifies the introduction of country and
time fixed effects in the regression. The results from this regression are
in the third column of Table 3 and show a positive and statistically
significant correlation. Second, in the second column of Table 4, we run
a regression between the fraction of land in capital-intensive agriculture
and real GDP per capita. This regression includes 82 countries during
the period 1960–2020. The results from this regression also show a
positive and statistically significant correlation.

From this evidence, it can be argued that as countries move to
higher income levels, land shifts towards capital-intensive crops, and
this shift involves an increase in relative productivity. Therefore, we
find evidence that supports the mechanism proposed in this paper.

6 We exclude the following 5 countries for which data is unavailable during
he entire period: Germany, Hong-Kong, Ethiopia, Mauritius and Singapore.
5

In Fig. 2, we provide time series evidence for selected developing
countries. This figure shows countries that exhibit a process of develop-
ment in which both the fraction of land in capital-intensive agriculture
and relative productivity increase over time. Among these countries, we
select Brazil to calibrate the model and perform numerical simulations.

We choose Brazil because it is a large country with a diversified
agricultural sector that exhibits the classical patterns of development,
including structural change and a large increase in relative productiv-
ity. These patterns are documented in Fig. 3 for the period 1960–2018.
Panels (a) and (b) of this figure show that Brazil has experienced
two important patterns of structural change. First, there is structural
change across broad sectors, which is measured by the fraction of total
employment in agriculture. This fraction, obtained from the GGDC 10-
Sector Database for 1960–2011 and the GGDC/UNU-WIDER Economic
Transformation Database for 2012–2018, exhibits a major decline dur-
ing this period, from 59% to 12%. Second, there is structural change
within agriculture, which is measured by the fraction of total land
in the labor-intensive sector. This fraction also exhibits a pronounced
decline, from 30% to 8.2%.

In Panel (c), we report a steep increase in relative capital intensity
between agriculture and non-agriculture. Data on relative capital inten-
sity for Brazil is obtained from the 2012 World Input–Output Database
and it is available for the period 1995–2009.

Panel (d) shows the increase of agricultural productivity relative to
non-agricultural productivity in Brazil from 7.9% in 1960 to 53.8% in
2018. This is a considerable increase of 45.9 percentage points. Relative
productivity is measured at 2015 constant prices and is obtained from
the GGDC 10-Sector Database for the period 1960–2011 and from the
GGDC-UNU/WIDER Economic Transformation database for the period
2012–2018. In Section 5.2, we study how much of the increase ob-
served in this variable is due to the process of structural change within
agriculture reported in Panel (b).

In Fig. 4, we calculate the price index and the value of produc-
tion for both agricultural sectors using data from FAO and show that
the relative price between labor and capital-intensive agriculture ex-
hibits a rising trend (despite large fluctuations), whereas the relative
value of production between these two sectors declines. This evidence
suggests imperfect substitution in consumption between agricultural
goods, which is a feature implied by the mechanism in our paper. At
this point, we clarify that production is not measured in value added
terms, hence, it cannot be used to calibrate the model.

In the analysis that follows, we assume that the driver of struc-
tural change within agriculture is domestic consumption demand. The
substitution of consumption from labor to capital-intensive agricultural
products changes the composition of agriculture. Cockx et al. (2018),
Huang and David (1993), Kearney (2019) and Rae (1998) provide
evidence on this substitution. They document that, as economies de-
velop, diets shift from traditional staples such as cassava, potatoes,
bananas and other starchy foods to consumption of rice, bread, pasta,
cereals and prepared foods. This is consistent with our classification
of crops, in which the first group is considered labor-intensive and
the second is considered capital-intensive. In the supplementary ap-
pendix, we provide further evidence on this substitution based on
findings in the literature and on data from FAO. An alternative potential
driver of structural change within agriculture, not considered in our
analysis, could be exports of agricultural products. However, in the
supplementary appendix, we show that exports are not the main driver
of structural change within agriculture in Brazil. Therefore, in the
following sections we present a multisector growth model of a closed
economy and analyze the effect of structural change within agriculture
on relative productivity in Brazil.
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Fig. 3. Development patterns of Brazil. Note: Panel (a) shows the fraction of employment in agriculture using data from GGDC 10-Sector Database (1960–2011) and GGDC/UNU-
WIDER Economic Transformation Database (2012–2018). Panel (b) shows the fraction of land in labor-intensive agriculture during 1961–2018, using data from FAO. Panel (c) shows
capital intensity in agriculture relative to non-agriculture using data from the World Input–Output Database 2012, available for 1995–2009. Panel (d) shows agricultural productivity
relative to non-agricultural productivity at 2015 constant prices using data from GGDC 10-Sector Database (1960–2011) and GGDC/UNU-WIDER Economic Transformation Database
(2012–2018). All data is for Brazil.
Fig. 4. Relative price and value of production in Brazil. Note: [1] This figure shows evidence on crop substitution. Panel (a) shows an increase in the linear trend of the relative
price. Panel (b) shows a decline in the linear trend of the relative value of production. [2] Data for the relative price of labor-intensive agriculture to capital-intensive agriculture
(𝑃𝑛∕𝑃𝑘) and for the relative value of production in labor-intensive agriculture to capital-intensive agriculture (𝑃𝑛𝑌𝑛∕𝑃𝑘𝑌𝑘) are computed from FAO.
s
c

. The model

.1. Individuals

The economy is populated by a continuum of individuals of mass
𝑡. Individuals live for two periods. In the first period, they are young,

hey choose the sector of activity, they work and save buying capital
nd land. Therefore, young individuals supply the capital that will be
6

roductive next period. We assume that capital and land are perfect
ubstitute assets and, therefore, the return of land equals the return of
apital, 𝑅𝑡+1. In the second period of life, individuals are old, they do

not work and consume the accumulated savings. As in Laitner (2000),
individuals consume only when they are old. As a result, young indi-
viduals save all their income and, therefore, consumption expenditures
of old individuals in period 𝑡 + 1 are given by 𝐸𝑖

𝑡+1 = 𝑅𝑡+1𝐼 𝑖𝑡 , where
𝑅𝑡+1 is the return of savings and 𝐼 𝑖𝑡 is the income obtained by young

individual 𝑖 at period 𝑡.
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Young individuals are differentiated by their ability in agriculture,
which we denote by 𝑎𝑖. In every generation, these abilities follow the
same Pareto distribution with density function 𝑓

(

𝑎𝑖
)

= 𝜆𝜂𝜆
(

𝑎𝑖
)−(1+𝜆)

and cumulative function 𝐹
(

𝑎𝑖
)

= 1−
(

𝜂∕𝑎𝑖
)𝜆, with 𝜂 > 0 and 𝜆 > 1. The

arameter 𝜂 is the minimum ability and 𝜆 determines the shape of the
istribution. We assume that all individuals have the same ability for
on-farm work.

An individual 𝑖 born at period 𝑡 derives utility from consumption in
he second period of his life according to the following non-homothetic
tility function:
𝑖
𝑡 = 𝜔 ln

(

𝑐𝑖𝑎,𝑡+1 − 𝑐
)

+ (1 − 𝜔) ln 𝑐𝑖𝑚,𝑡+1, (1)

where 𝑐𝑖𝑎,𝑡+1 is the consumption of agricultural goods, 𝑐𝑖𝑚,𝑡+1 is the
consumption of non-agricultural goods, 𝑐 is a subsistence level of
agricultural consumption, and 𝜔 ∈ (0, 1) is the weight of agricul-
tural consumption in the utility function. The agricultural good is
defined as the following aggregate of goods produced in the capital
and labor-intensive sectors:

𝑐𝑖𝑎,𝑡+1 =

[

𝜇
(

𝑐𝑖𝑛,𝑡+1
)

𝜀−1
𝜀 + (1 − 𝜇)

(

𝑐𝑖𝑘,𝑡+1
)

𝜀−1
𝜀

]
𝜀

𝜀−1

, (2)

here 𝜇 ∈ (0, 1) is the weight of labor-intensive goods, and 𝜀 > 0 is the
lasticity of substitution between the consumption of labor-intensive
gricultural goods, 𝑐𝑖𝑛, and capital-intensive agricultural goods, 𝑐𝑖𝑘.

Let total consumption expenditure be defined as
𝑖
𝑡+1 = 𝑃𝑛,𝑡+1𝑐

𝑖
𝑛,𝑡+1 + 𝑃𝑘,𝑡+1𝑐

𝑖
𝑘,𝑡+1 + 𝑃𝑚,𝑡+1𝑐

𝑖
𝑚,𝑡+1, (3)

here 𝑃𝑛,𝑡+1 is the price of the labor-intensive goods, 𝑃𝑘,𝑡+1 is the
rice of the capital-intensive goods and 𝑃𝑚,𝑡+1 = 1 for all 𝑡, since the
utput of the non-agricultural sector is assumed to be the numeraire.
n Appendix A, we obtain the individuals’ consumption demands from
aximizing utility subject to (3).

.2. Technology

We distinguish between three production sectors: two agricultural
ectors that produce consumption goods and one non-agricultural sec-
or that produces both a consumption good and productive capital.
irms in the non-agricultural sector produce combining capital and
abor according to the following constant returns to scale production
unction:

𝑚,𝑡 = 𝐴𝑚,𝑡𝐾
𝛼𝑚
𝑚,𝑡𝑁

1−𝛼𝑚
𝑚,𝑡 , (4)

here 𝑌𝑚,𝑡 is output in non-agriculture, 𝐴𝑚,𝑡 is total factor productivity
TFP) in the non-agricultural sector, 𝐾𝑚,𝑡 is the capital stock employed
n this sector, 𝑁𝑚,𝑡 is the total amount of workers employed in this
ector and 𝛼𝑚 ∈ (0, 1) is the capital–output elasticity. We assume that
apital completely depreciates after one period. We also assume perfect
ompetition and, hence, the wage and the rental price of capital satisfy

𝑡 =
(

1 − 𝛼𝑚
)

𝐴𝑚,𝑡𝐾
𝛼𝑚
𝑚,𝑡𝑁

−𝛼𝑚
𝑚,𝑡 , (5)

nd

𝑡 = 𝛼𝑚𝐴𝑚,𝑡𝐾
𝛼𝑚−1
𝑚,𝑡 𝑁1−𝛼𝑚

𝑚,𝑡 . (6)

Individuals working in agriculture are the owners of farms. Farmers
an produce either labor or capital-intensive crops using the following
echnology:

𝑖
𝑠,𝑡 = 𝐴𝑠,𝑡𝑎

𝑖
(

𝐿𝑖
𝑠,𝑡

)𝛽𝑠 (
𝐾 𝑖

𝑠,𝑡

)𝛼𝑠
, 𝑠 = {𝑘, 𝑛} ,

here 𝑦𝑖𝑠,𝑡 is the output produced in the agricultural sector 𝑠 by a farmer
ith ability 𝑎𝑖, 𝐴𝑠,𝑡 is the TFP in sector 𝑠, 𝐿𝑖

𝑠,𝑡 and 𝐾 𝑖
𝑠,𝑡 are the amount of

and and capital that a farmer with ability 𝑎𝑖 rents, 𝛽𝑠 ∈ (0, 1) measures
he land output elasticity and 𝛼 ∈ 0, 1 measures the capital–output
7

𝑠 ( )
lasticity. The subindex 𝑠 equals 𝑛 for labor-intensive agriculture and 𝑘
or capital-intensive agriculture. We assume that 𝛼𝑘 > 𝛼𝑛, 𝛽𝑠+𝛼𝑠 < 1 for
ll 𝑠 and 𝛽𝑘 + 𝛼𝑘 > 𝛽𝑛 + 𝛼𝑛. The first inequality is consistent with sector
being capital intensive. The second one implies that both production

unctions exhibit decreasing returns to scale. In what follows, we show
hat the third inequality implies that sector 𝑛 is labor intensive.

Since the production functions exhibit decreasing returns to scale,
armers make positive profits that can be interpreted as the labor
ncome of the farmer. Profit is given by
𝑖
𝑠,𝑡 = (1 − 𝜏)𝑃𝑠,𝑡𝑦

𝑖
𝑠,𝑡 − 𝑥𝑡𝐿

𝑖
𝑠,𝑡 − 𝑅𝑡𝐾

𝑖
𝑠,𝑡, (7)

here 𝑥𝑡 is the rental cost of land and 𝜏 ∈ (0, 1) is a tax on agricultural
roduction. This tax introduces a wedge between the marginal product
f capital in agriculture and in non-agriculture, that we use in the
alibration to match the level of relative capital intensity between agri-
ulture and non-agriculture in Brazil. The farmers’ optimal demands of
and and capital are

𝐿𝑖
𝑠,𝑡 =

[

(

𝛼𝑠
𝑅𝑡

)𝛼𝑠 ( 𝛽𝑠
𝑥𝑡

)1−𝛼𝑠
(1 − 𝜏)𝑃𝑠,𝑡𝐴𝑠,𝑡𝑎

𝑖

]
1

1−𝛽𝑠−𝛼𝑠
, (8)

𝐾 𝑖
𝑠,𝑡 =

[

(

𝛼𝑠
𝑅𝑡

)1−𝛽𝑠 ( 𝛽𝑠
𝑥𝑡

)𝛽𝑠
(1 − 𝜏)𝑃𝑠,𝑡𝐴𝑠,𝑡𝑎

𝑖

]
1

1−𝛽𝑠−𝛼𝑠
, (9)

and the amount produced is

𝑦𝑖𝑠,𝑡 = 𝐴𝑠,𝑡𝑎
𝑖

[

(

𝛼𝑠
𝑅𝑡

)𝛼𝑠 ( 𝛽𝑠
𝑥𝑡

)𝛽𝑠
[

(1 − 𝜏)𝑃𝑠,𝑡𝐴𝑠,𝑡𝑎
𝑖]𝛼𝑠+𝛽𝑠

]
1

1−𝛽𝑠−𝛼𝑠
. (10)

Note that the size of a farm, measured by 𝐿𝑖
𝑠,𝑡, increases with

armer’s ability, but decreases with the rental cost of land and capital.
inally, we replace (8), (9) and (10) in the profit function to obtain

𝑖
𝑠,𝑡
(

𝑎𝑖
)

=
(

1 − 𝛽𝑠 − 𝛼𝑠
)

[

(

𝛼𝑠
𝑅𝑡

)𝛼𝑠 ( 𝛽𝑠
𝑥𝑡

)𝛽𝑠
(1 − 𝜏)𝑃𝑠,𝑡𝐴𝑠,𝑡𝑎

𝑖

]
1

1−𝛽𝑠−𝛼𝑠
. (11)

Using (11), we observe that profits are an increasing function of abil-
ities. Using the same equation, it is immediate to show that the as-
sumption 𝛽𝑘 + 𝛼𝑘 > 𝛽𝑛 + 𝛼𝑛 implies that the fraction of the after tax
alue of production that the farmer obtains as labor income is larger in
abor-intensive agriculture.

.3. Individuals’ decisions

Young individuals’ decision regarding the sector of activity depends
n their abilities. To understand this decision, we first obtain the ability
f the two marginal individuals that are indifferent between two sectors
f activity. We denote by 𝑎𝑡 the ability of the first marginal individual,

who is indifferent between working in non-agriculture and in labor-
intensive agriculture. Therefore, this ability is obtained from solving
the following equation: 𝜋𝑖

𝑛,𝑡
(

𝑎𝑡
)

= (1 − 𝜙)𝑤𝑡, where 𝜙 ∈ (0, 1) is a
abor income tax that workers in the non-agricultural sector must pay.
his tax introduces a wedge between agricultural and non-agricultural

abor income that we use in the calibration to match the difference in
abor productivity between agriculture and non-agriculture, when labor
roductivity is measured at current prices. We find that

𝑡 =
(

1
(1 − 𝜏)𝑃𝑛,𝑡𝐴𝑛,𝑡

)(

(1 − 𝜙)𝑤𝑡
1 − 𝛽𝑛 − 𝛼𝑛

)1−𝛽𝑛−𝛼𝑛 ( 𝑥𝑡
𝛽𝑛

)𝛽𝑛 (𝑅𝑡
𝛼𝑛

)𝛼𝑛
. (12)

We denote by 𝑎𝑡 the ability of the second marginal individual,
who is indifferent between being a farmer in labor and in capital-
intensive agriculture. Therefore, this ability is obtained from solving
the following equation: 𝜋𝑖

𝑛,𝑡
(

𝑎𝑡
)

= 𝜋𝑖
𝑘,𝑡

(

𝑎𝑡
)

. We obtain

𝑎𝑡 = 𝛹

[

(

𝛼𝑛
𝑅𝑡

)𝛼𝑛 ( 𝛽𝑛
𝑥𝑡

)𝛽𝑛
(1 − 𝜏)𝑃𝑛,𝑡𝐴𝑛,𝑡

]

1−𝛽𝑘−𝛼𝑘
𝛽𝑘+𝛼𝑘−𝛽𝑛−𝛼𝑛

[

(

𝛼𝑘
)𝛼𝑘 ( 𝛽𝑘

)𝛽𝑘
(1 − 𝜏)𝑃𝑘,𝑡𝐴𝑘,𝑡

]

1−𝛽𝑛−𝛼𝑛
𝛽𝑘+𝛼𝑘−𝛽𝑛−𝛼𝑛

, (13)
𝑅𝑡 𝑥𝑡
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where 𝛹 =
[(

1 − 𝛽𝑛 − 𝛼𝑛
)

∕
(

1 − 𝛽𝑘 − 𝛼𝑘
)](1−𝛽𝑛−𝛼𝑛)(1−𝛽𝑘−𝛼𝑘)∕(𝛽𝑘+𝛼𝑘−𝛽𝑛−𝛼𝑛).

The assumption 𝛽𝑛 + 𝛼𝑛 < 𝛽𝑘 + 𝛼𝑘 implies that the profit of capital-
ntensive farms as a function of abilities is steeper than the profit
unction of labor-intensive farms at 𝑎𝑖 = 𝑎𝑡. Given that individuals

choose the sector to maximize their labor income, it follows that we
can only have both types of farms if 𝑎𝑡 > 𝑎𝑡. Therefore, as shown
in Fig. 5, individuals with 𝑎𝑖 ∈

[

𝜂, 𝑎𝑡
]

will be workers in the non-
agricultural sector, individuals with 𝑎𝑖 ∈

[

𝑎𝑡, 𝑎𝑡
]

will be farmers in
the labor-intensive sector and individuals with 𝑎𝑖 ∈

[

𝑎𝑡,∞
]

will be
farmers in the capital-intensive sector. Note that since the distribution
of abilities is unbounded, there are always capital-intensive farmers. In
contrast, if 𝑎𝑡 < 𝑎𝑡 then all farmers will produce capital-intensive crops.
n our simulations, the condition 𝑎𝑡 > 𝑎𝑡 will always be satisfied along

the dynamic equilibrium.
The abilities of the marginal farmers determine structural change

along economic development. Eq. (12) sets the value of 𝑎𝑡, which deter-
mines the number of non-agricultural workers. This number increases
with the wage and decreases with profits of the labor-intensive sector.
In fact, Eq. (12) shows that the number of non-agricultural workers
increases (𝑎𝑡 increases) when the rental cost of land or capital increases,
r when either the price or the TFP of the labor-intensive agriculture
ecline. These changes reduce profits in labor-intensive agriculture,
aking it more attractive to become a worker in the non-agricultural

ector. Finally, the wage and rental cost of land increase with economic
evelopment, which explains the shift of workers from agriculture to
on-agriculture.

Eq. (13) sets the value of 𝑎𝑡, which determines the fraction of agri-
cultural workers in the labor-intensive sector. This fraction increases
when profits in labor-intensive agriculture increase and decreases when
profits in capital-intensive agriculture increase. Eq. (13) shows that this
fraction increases (𝑎𝑡 increases) if the price or the TFP of the labor-
intensive sector increase and declines if the price or the TFP of the
capital-intensive sector increase. The fraction also increases with the
rental cost of capital, 𝑅𝑡. When 𝑅𝑡 increases, profits in capital-intensive
agriculture suffer a larger reduction than in labor-intensive agriculture
and, as a result, more individuals prefer to be labor-intensive farmers.
The effect of an increase in the rental cost of land, 𝑥𝑡, depends on the
relationship between 𝛽𝑘 and 𝛽𝑛. If 𝛽𝑘 > 𝛽𝑛 then the capital-intensive
ector is also land-intensive and, as a result, an increase in the rental
ost of land reduces to a larger extend profits of this sector, which
ncreases the number of labor-intensive farmers.

Finally, the assumption 𝛽𝑛 + 𝛼𝑛 < 𝛽𝑘 + 𝛼𝑘 implies that the marginal
ndividual with ability 𝑎𝑡 satisfies 𝑃𝑛,𝑡𝑦𝑖𝑛,𝑡

(

𝑎𝑡
)

< 𝑃𝑘,𝑡𝑦𝑖𝑘,𝑡
(

𝑎𝑡
)

. Thus,
here is a productivity gain when the marginal farmer moves from the
abor to the capital-intensive sector. This productivity gain is mainly
xplained by the increase in the stock of capital that occurs when
he farmer chooses to produce capital-intensive crops. The existence
f a productivity gain implies that the sectoral composition that results
rom individuals decisions is not the one that maximizes the value of
gricultural production. In fact, given that 𝛽𝑛 + 𝛼𝑛 < 𝛽𝑘 + 𝛼𝑘, the size of
he labor-intensive agricultural sector is larger than the size that would
aximize the value of agricultural production.

. Equilibrium

In this section, we characterize the equilibrium of the model. To this
nd, we first obtain aggregate factor demands, aggregate production
nd aggregate consumption demands for each sector.

Using (8) and (9), in Appendix B we obtain the following aggregate
emands of land and capital in each agricultural sector:

𝑠,𝑡 = 𝑁𝑡

[

(

𝛼𝑠
𝑅𝑡

)𝛼𝑠 ( 𝛽𝑠
𝑥𝑡

)1−𝛼𝑠
(1 − 𝜏)𝑃𝑠,𝑡𝐴𝑠,𝑡

]
1

1−𝛽𝑠−𝛼𝑠
𝛥𝑠,𝑡, (14)

and

𝐾𝑠,𝑡 = 𝑁𝑡

[

(

𝛼𝑠
)1−𝛽𝑠 ( 𝛽𝑠

)𝛽𝑠
(1 − 𝜏)𝑃𝑠,𝑡𝐴𝑠,𝑡

]
1

1−𝛽𝑠−𝛼𝑠
𝛥𝑠,𝑡, (15)
8

𝑅𝑡 𝑥𝑡
for 𝑠 = {𝑛, 𝑘}, where 𝛥𝑛,𝑡 and 𝛥𝑘,𝑡, defined in Appendix B, are both
positive when 𝜆 > 1∕

(

1 − 𝛽𝑘 − 𝛼𝑘
)

. This condition is satisfied in the
numerical exercises of Section 5.

We use (6) to obtain the demand of capital in the non-agricultural
sector

𝐾𝑚,𝑡 =
(𝛼𝑚𝐴𝑚,𝑡

𝑅𝑡

)

1
1−𝛼𝑚

𝑁𝑚,𝑡, (16)

here the amount of workers in this sector is given by 𝑁𝑚,𝑡 = 𝐹
(

𝑎𝑡
)

𝑁𝑡 =
(

1 − 𝜂𝜆𝑎−𝜆𝑡
)

𝑁𝑡.
In equilibrium, the total amount of agricultural land, 𝐿𝑡, equals the

sum of the aggregate demands of land of each sector. Therefore, the
following equation is satisfied: 𝐿𝑘,𝑡 + 𝐿𝑛,𝑡 = 𝐿𝑡. Regarding the market
for capital, young individuals supply the capital that will be productive
next period. In equilibrium, the aggregate supply of capital, 𝐾𝑡, equals
the sum of the aggregate demands of capital of each sector. Therefore,
the following equation is satisfied:

𝐾𝑡 = 𝐾𝑛,𝑡 +𝐾𝑘,𝑡 +𝐾𝑚,𝑡. (17)

Next, using (10), in Appendix B we obtain that the aggregate
production of agricultural goods in each sector is

𝑌𝑠,𝑡 = 𝐴𝑠,𝑡𝑁𝑡

[

(

𝛼𝑠
𝑅𝑡

)𝛼𝑠 ( 𝛽𝑠
𝑥𝑡

)𝛽𝑠
[

(1 − 𝜏)𝑃𝑠,𝑡𝐴𝑠,𝑡
]𝛽𝑠+𝛼𝑠

]
1

1−𝛽𝑠−𝛼𝑠
𝛥𝑠,𝑡. (18)

Finally, we obtain aggregate consumption demands, which depend
on consumption expenditure. As noted above, young individuals do not
consume and save all their income. Therefore, consumption expendi-
ture of an old individual is 𝐸𝑖

𝑡+1 = 𝑅𝑡+1𝐼 𝑖𝑡 , where 𝐼 𝑖𝑡 is the income
obtained by young individual 𝑖 in period 𝑡 that depends on ability
and the sector of activity. Consequently, the consumption expenditure
of an old individual that was a non-agricultural worker in period
𝑡 is 𝐸𝑚,𝑖

𝑡+1 = 𝑅𝑡+1
[

(1 − 𝜙)𝑤𝑡 + 𝑇 𝑖
𝑡
]

, where 𝑇 𝑖
𝑡 is a transfer from the

government. The consumption expenditure of an old individual that
was a labor-intensive farmer is 𝐸𝑛,𝑖

𝑡+1 = 𝑅𝑡+1

[

𝜋𝑖
𝑛,𝑡

(

𝑎𝑖
)

+ 𝑇 𝑖
𝑡

]

. Similarly,

the consumption expenditure of an old individual that was a capital-
intensive farmer is 𝐸𝑘,𝑖

𝑡+1 = 𝑅𝑡+1

[

𝜋𝑖
𝑘,𝑡

(

𝑎𝑖
)

+ 𝑇 𝑖
𝑡

]

. Aggregate consumption
expenditure is then given by

𝐸𝑡+1 = 𝑁𝑡

(

∫

𝑎𝑡

𝜂
𝐸𝑚,𝑖
𝑡+1𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖 + ∫

𝑎𝑡

𝑎𝑡
𝐸𝑛,𝑖
𝑡+1𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖

+ ∫

∞

𝑎𝑡
𝐸𝑘,𝑖
𝑡+1𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖
)

. (19)

We assume that tax revenues are returned to individuals as a
transfer and that the government budget constraint is balanced in
each period. Using the balanced government budget constraint and
(19), in Appendix C we obtain the following equation for aggregate
consumption expenditure:

𝐸𝑡+1 = 𝑅𝑡+1

{(

1 − 𝛼𝑚
)

𝑌𝑚,𝑡 +
[

1 − (1 − 𝜏)
(

𝛼𝑛 + 𝛽𝑛
)]

𝑃𝑛,𝑡𝑌𝑛,𝑡
+
[

1 − (1 − 𝜏)
(

𝛼𝑘 + 𝛽𝑘
)]

𝑃𝑘,𝑡𝑌𝑘,𝑡

}

. (20)

Given that the utility function in the model belongs to the class
of Gorman preferences, the aggregate demand of the different con-
sumption goods does not depend on the distribution of consumption
expenditures, but on aggregate consumption expenditure only. Using
the individuals’ consumption demands obtained in Appendix A, we ob-
tain the aggregate consumption demands of labor and capital-intensive
agricultural goods and of non-agricultural goods that, respectively, are
given by

𝐶𝑛,𝑡+1 = 𝜔𝜇𝜀
(𝑃𝑛,𝑡+1

𝑃𝑎,𝑡+1

)1−𝜀 𝐸𝑡+1
𝑃𝑛,𝑡+1

+ (1 − 𝜔)𝜇𝜀
(𝑃𝑎,𝑡+1

𝑃𝑛,𝑡+1

)𝜀

𝑐𝑁𝑡, (21)

𝐶𝑘,𝑡+1 = 𝜔 (1 − 𝜇)𝜀
(𝑃𝑘,𝑡+1

𝑃𝑎,𝑡+1

)1−𝜀 𝐸𝑡+1
𝑃𝑘,𝑡+1

+ (1 − 𝜔) (1 − 𝜇)𝜀
(𝑃𝑎,𝑡+1

𝑃𝑘,𝑡+1

)𝜀

𝑐𝑁𝑡,
(22)
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Fig. 5. Income profile of individuals. Note: This figure shows that the profits of farmers
are increasing in abilities. It also shows that for farmers with 𝑎𝑖 ∈ [𝜂, a𝑡] the non-
agricultural wage is larger than profits in agriculture, for 𝑎𝑖 ∈ [a𝑡 , a𝑡] profits are larger
in labor-intensive agriculture, and for 𝑎𝑖 ∈ [a𝑡 ,∞] profits are larger in capital-intensive
agriculture.

𝐶𝑚,𝑡+1 = (1 − 𝜔)𝐸𝑡+1 − (1 − 𝜔)𝑃𝑎,𝑡+1𝑐𝑁𝑡, (23)

where 𝑃𝑎,𝑡+1 is the price of the agricultural good. In Appendix A, it is
shown to be equal to

𝑃𝑎,𝑡+1 =
[

𝜇𝜀𝑃 1−𝜀
𝑛,𝑡+1 + (1 − 𝜇)𝜀 𝑃 1−𝜀

𝑘,𝑡+1

]
1

1−𝜀 . (24)

Definition 1. Given an initial level of capital, 𝐾0, and a path of
{

𝐴𝑚,𝑡, 𝐴𝑘,𝑡, 𝐴𝑛,𝑡, 𝑁𝑡, 𝐿𝑡
}∞
𝑡=0, an equilibrium in this economy is a path

of ability thresholds
{

𝑎𝑡, 𝑎𝑡
}∞
𝑡=0 that satisfies (12) and (13), a path of

aggregate demands of land
{

𝐿𝑛,𝑡, 𝐿𝑘,𝑡
}∞
𝑡=0 that satisfies (14), a path of

aggregate demands of capital
{

𝐾𝑛,𝑡, 𝐾𝑘,𝑡, 𝐾𝑚,𝑡
}∞
𝑡=0 that satisfies (15) and

(16), a path of aggregate consumption demands
{

𝐶𝑛,𝑡, 𝐶𝑘,𝑡, 𝐶𝑚,𝑡
}∞
𝑡=0 that

satisfies (21), (22) and (23), a path of sectoral outputs
{

𝑌𝑛,𝑡, 𝑌𝑘,𝑡, 𝑌𝑚,𝑡
}∞
𝑡=0

that satisfies (4) and (18), a path of aggregate consumption expenditure
and capital

{

𝐸𝑡, 𝐾𝑡
}∞
𝑡=0 that satisfies (17) and (20), and a path of prices

{

𝑃𝑎,𝑡, 𝑅𝑡, 𝑃𝑛,𝑡, 𝑃𝑘,𝑡, 𝑥𝑡
}∞
𝑡=0 that satisfies (24), and market clearing condi-

tions for labor-intensive agriculture, 𝐶𝑛,𝑡 = 𝑌𝑛,𝑡, for capital-intensive
agriculture, 𝐶𝑘,𝑡 = 𝑌𝑘,𝑡, for non-agricultural products, 𝑌𝑚,𝑡 = 𝐶𝑚,𝑡 +𝐾𝑡+1,
and for land holdings 𝐿𝑡 = 𝐿𝑛,𝑡 + 𝐿𝑘,𝑡.

At this point, we discuss some remarks on the equilibrium. First,
capital is obtained from the market clearing condition in the non-
agricultural sector and, since capital fully depreciates after one period,
it is equal to 𝐾𝑡+1 = 𝑌𝑚,𝑡 − 𝐶𝑚,𝑡.

Second, since capital and land are perfectly substitute assets, the
price of land is not required in the definition of equilibrium. In fact,
this price is obtained from arbitrage. To see this, we define the price of
land as 𝑃𝑡. Since the income of young individuals is used to purchase
land and capital, aggregate income of the young is equal to 𝑃𝑡𝐿𝑡+𝐾𝑡+1.
The old consume the return from these assets. Therefore, aggregate
consumption expenditures can be written as 𝐸𝑡+1 =

(

𝑃𝑡+1 + 𝑥𝑡+1
)

𝐿𝑡 +
𝑅𝑡+1𝐾𝑡+1. Non-arbitrage between the two assets implies equal return in
period 𝑡 + 1, that is 𝑅𝑡+1 =

(

𝑃𝑡+1 + 𝑥𝑡+1
)

∕𝑃𝑡. Using this condition and
the aggregate consumption expenditure equation, we obtain the price
of land as 𝑃𝑡 = (𝐸𝑡+1∕𝑅𝑡+1 −𝐾𝑡+1)∕𝐿𝑡.

Third, the novelty in this paper is the process of structural change
within agriculture. Therefore, it is important to clarify what drives this
process in equilibrium. To this end, we combine Eqs. (21) and (22) with
the market clearing conditions for labor and capital-intensive agricul-
ture to obtain the sectoral composition of agricultural production

𝑃𝑛,𝑡𝑌𝑛,𝑡 =
(

𝜇
)𝜀 (𝑃𝑛,𝑡

)1−𝜀
.

9

𝑃𝑘,𝑡𝑌𝑘,𝑡 1 − 𝜇 𝑃𝑘,𝑡
Combining the equation above with expressions (14), (15) and (18), we
obtain the sectoral composition of both land and capital in agriculture,
which are, respectively:

𝐿𝑛,𝑡

𝐿𝑘,𝑡
=

𝛽𝑛
𝛽𝑘

(

𝜇
1 − 𝜇

)𝜀 (𝑃𝑛,𝑡

𝑃𝑘,𝑡

)1−𝜀
, (25)

𝐾𝑛,𝑡

𝐾𝑘,𝑡
=

𝛼𝑛
𝛼𝑘

(

𝜇
1 − 𝜇

)𝜀 (𝑃𝑛,𝑡

𝑃𝑘,𝑡

)1−𝜀
.

Finally, in the supplementary appendix, we obtain that the fraction of
farmers in capital-intensive agriculture, 𝑛𝑘, is

𝑛𝑘 =

[

1 +
(

𝜇
1 − 𝜇

)𝜀 (𝑃𝑛,𝑡

𝑃𝑘,𝑡

)1−𝜀
(

𝜆
(

1 − 𝛽𝑛 − 𝛼𝑛
)

− 1

𝜆
(

1 − 𝛽𝑘 − 𝛼𝑘
)

− 1

)]

𝜆(1−𝛽𝑛−𝛼𝑛)
1−𝜆(1−𝛽𝑛−𝛼𝑛)

.

These equations show that the sectoral composition of agriculture
depends on the term

(

𝑃𝑛,𝑡∕𝑃𝑘,𝑡
)1−𝜀. If this term decreases, then the

value of production, capital and land shift towards the capital-intensive
agricultural sector and the fraction of farmers in capital-intensive agri-
culture increases. The value of the elasticity of substitution between
the agricultural goods, 𝜀, is crucial. In fact, when 𝜀 = 1, sectoral
composition within agriculture remains constant even under the pres-
ence of biased technological progress. Therefore, if 𝜀 = 1, there is no
reallocation of production factors towards capital-intensive agriculture.

Finally, when population, land and the sectoral TFPs converge to a
constant value, the long run equilibrium is a steady state in which the
sectoral composition and the variables characterizing the equilibrium
are constant. In the numerical analysis of the following section, we
study the process of structural change along the transition to this steady
state.

5. Quantitative analysis

The goal of this section is to quantify the effect of structural change
within agriculture on relative productivity. We perform two different
analyzes. First, we quantify this effect for Brazil during the period
1960–2018. In Section 5.1, we calibrate the model assuming that the
equilibrium is in a transition driven by permanent shocks in sectoral
TFPs, and by the increase in the amount of land and in the total number
of workers in the economy. In Section 5.2, we show that along this
transition the productivity of agriculture relative to non-agriculture
increases. We quantify the effect of structural change within agriculture
by comparing the calibrated economy with a counterfactual economy in
which the elasticity of substitution between the two agricultural goods
is unitary and, as a consequence, there is no structural change within
agriculture.

Second, in Section 5.3 we quantify the effect of agricultural com-
position on relative productivity in a cross-section of economies. In the
simulation, we assume that these economies are in the steady state.
We also assume that all cross-country differences are generated by
differences in sectoral TFPs, which are calibrated to match observed
differences in GDP per worker, in the fraction of workers in agriculture,
and in the fraction of land used in capital-intensive agriculture. We
show that the model generates cross-country differences in sectoral
productivities that are consistent with observed data. Finally, we com-
pare these results with those of a counterfactual economy in which
the elasticity of substitution between agricultural goods equals one to
quantify the effect of differences in agricultural composition on relative
productivity.

5.1. Calibration

We distinguish between two sets of parameters. The first set consists
of capital and land–output elasticities in each sector that are calibrated
using data for the US. The remaining parameters are calibrated using
data for Brazil. In particular, we match the process of structural change,
both between broad sectors and within agriculture, observed in this
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Table 5
Calibration.

Parameter Value Target Data

Technology
𝛼𝑚 0.33 Capital income share in non-agriculturea 0.33
𝛽𝑛 0.03 Relative land–output ratio between the two agricultural sectorsb 0.15
𝛽𝑘 0.22 Land income share in agriculturea 0.18
𝛼𝑘 0.42 Relative capital–output ratio between the two agricultural sectorsb 0.313
𝛼𝑛 0.13 Capital income share in agriculturea 0.36
Preferences
𝑐 0.04682 Employment share in agriculture in Brazil in 1960c 59%
𝜔 0.0146 Employment share in agriculture in Brazil in 2018d 12%
𝜇 0.5255 Fraction of land in labor-intensive agriculture in Brazil in 1961e 30%
𝜀 12.9 Fraction of land in labor-intensive agriculture in Brazil in 2018e 8.2%
Abilities
𝜆 8.3 Fraction of farms smaller than 10 ha. in Brazil in 1960f 44.8%
𝜂 1 Normalization -.-
Taxes
𝜏 0.32 Relative cap. intensity btw. agr. and non-agr. in Brazil, avg. 1995–2009g 0.545
𝜙 0.832 Relative nom. prod. btw. agr. and non-agr. in Brazil, avg. 2000–2018d 35.2%
Exogenous processes
𝐴𝑚,1960 1 Normalization. -.-
𝐴𝑛,1960 0.1912 Price of agriculture relative to non-agriculture in 1965 1
𝐴𝑘,1960 0.2734 Relative real. prod. btw. agr. and non-agr. in Brazil in 1960 c 7.9%
𝐴𝑚,2020 1.38 Annual growth of GDP per worker between 1960–2018h 1.7%
𝐴𝑛,2020 0.6883 Relative price of agriculture relative to non-agriculture in 2019i 0.327
𝐴𝑘,2020 1.5855 Fraction of farms smaller than 10 ha. in Brazil in 2017f 50.1%
𝑁1960 1 Normalization -.-
𝑁2020 4.01 Increase in the number of workers in Brazil between 1960 and 2018h 4.01
𝐿1960 5.074 Average farm size in Brazil in 1960 (hectares)f 8.6
𝐿2020 5.9 Average farm size in Brazil in 2017 (hectares)f 12.5

Note:
[1] The model is calibrated to fit the values in the data exactly.
[2] Relative productivity in agriculture and non-agriculture is measured at 2015 constant prices. Relative land–output (capital–output) between the two agricultural sectors is
land–output (capital–output) ratio in labor-intensive agriculture divided by the same ratio in capital-intensive agriculture. Relative capital intensity is the ratio between capital
intensity in agriculture and in non-agriculture.
[3] All exogenous processes increase gradually from 1960 to 2020 and remain constant after year 2020.
Source:
aValentinyi and Herrendorf (2008).
b2012 US Census of Agriculture.
cGGDC 10-Sector Database.
dGGDC/UNU-WIDER Economic Transformation Database.
eCalculated from FAO.
fIBGE, Agricultural Census of Brazil for 1960 and 2017.
gWorld Input–Output Database 2012.
hPenn World Table 10.0.
iCalculated from World Development Indicators.
o
w

i
w
t

country during the period 1960–2018. We also match the change in
the distribution of farm sizes, the growth of real GDP per worker, and
the decline of prices in agriculture observed during this period. The
calibration matches all the targets in the data, specified below, exactly.
The parameter values and the targets of the calibration are summarized
in Table 5. The calibration strategy is as follows.

First, we assume that capital and land–output elasticities for Brazil
re the same as for the US and, hence, we set their values using data
or the US. The value of 𝛼𝑚 is obtained from the capital income share
n the non-agricultural sector as reported by Valentinyi and Herrendorf
2008). The technological parameters of the agricultural sector, 𝛼𝑛, 𝛼𝑘,
𝛽𝑛 and 𝛽𝑘, are set jointly to match the following four targets of the US
economy: (i) capital–output ratio of labor-intensive agriculture relative
to capital–output ratio of capital-intensive agriculture, which gives us
𝛼𝑛∕𝛼𝑘 = 0.313; (ii) land–output ratio of labor-intensive agriculture rel-
tive to land–output ratio of capital-intensive agriculture, which gives
s 𝛽𝑛∕𝛽𝑘 = 0.15; (iii) capital income share in agriculture, which gives

us
(

𝛼𝑛𝑃𝑛𝑌𝑛 + 𝛼𝑘𝑃𝑘𝑌𝑘
)

∕
(

𝑃𝑘𝑌𝑘 + 𝑃𝑛𝑌𝑛
)

= 0.36; and (iv) land income share
in agriculture, which gives us

(

𝛽𝑛𝑃𝑛𝑌𝑛 + 𝛽𝑘𝑃𝑘𝑌𝑘
)

∕
(

𝑃𝑘𝑌𝑘 + 𝑃𝑛𝑌𝑛
)

= 0.18.
The capital–output ratio and the land–output ratio of the two agricul-
tural sectors are obtained from the US Census of Agriculture in 2012,
while capital and land income shares in agriculture are obtained from
10

Valentinyi and Herrendorf (2008).
Second, preference parameters 𝜇 and 𝜀 are set to match the fraction
f harvested land in labor-intensive agriculture in 1961 and 2018,
hile preference parameters 𝑐 and 𝜔 are set to match the values of

the share of employment in agriculture in 1960 and 2018. Therefore,
preference parameters are jointly calibrated to explain the process of
structural change in Brazil. Note that the calibrated value of 𝜀 is larger
than one, which implies that the two agricultural sectors are imperfect
substitutes.

Third, sectoral TFPs are assumed to grow at a constant rate during
the period 1960–2020 and remain at a constant value after that. Table 5
reports the values of sectoral TFPs in 1960 and 2020. The initial value
of TFP in labor-intensive agriculture, 𝐴𝑛,𝑡, is set to match the value of
the agricultural price index in 1965, whereas the initial value of TFP
in capital-intensive agriculture, 𝐴𝑘,𝑡, is set such that productivity in
agriculture relative to non-agriculture in 1960, measured at constant
prices, is 7.9%.7 The initial value of the sectoral TFP in non-agriculture,
𝐴𝑚,𝑡, is normalized to 1. We set the path of 𝐴𝑛,𝑡 to match the decline
n the price index of agriculture observed in Brazil during 1965–2019,
hich is obtained from the World Development Indicators database of

he World Bank. The path of 𝐴𝑚,𝑡 is set to match the growth rate of real

7 The base year in the data is 2015 and in the simulation is 2020.
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GDP per worker observed in Brazil during 1960–2018 of 1.7%, obtained
using data from the Penn World Table 10.0. As explained below, we set
the path of 𝐴𝑘,𝑡 to match the farm size distribution in Brazil.

Fourth, we set jointly the parameter 𝜆 of the Pareto distribution,
he path of 𝐴𝑘,𝑡, and the path of agricultural land, 𝐿𝑡, to match the

change in the distribution of farm sizes observed in Brazil between
1960 and 2017. More specifically, we match (i) the 1.45-fold increase
in average farm size from 8.6 hectares in 1960 to 12.5 hectares in
2017, and (ii) the percentage of small farms in agriculture in both
1960 and 2017 which are, respectively, 44.8% and 50.1%. We compute
average farm sizes using data from the IBGE Agricultural Census of
Brazil for years 1960, 1970, 1975, 1980, 1985, 1996, 2006, and 2017.
A small farm is defined as a farm with less than 10 hectares. To
calculate averages, we consider only cultivated land, which includes
land in permanent and temporal crops. We exclude land used for other
purposes or non-cultivated land.8

Fifth, the number of workers, 𝑁𝑡, is set to match the 4.01-fold
ncrease in the number of persons engaged in Brazil during the period
960–2018, as reported in the Penn World Table 10.0.

Sixth, the tax 𝜏 is set to match, jointly with the sectoral factor
ncome shares, the relative capital intensity between agriculture and
on-agriculture, which is given by

𝑅𝑡
(

𝐾𝑘,𝑡 +𝐾𝑛,𝑡
)

𝑃𝑘,𝑡𝑌𝑘,𝑡 + 𝑃𝑛,𝑡𝑌𝑛,𝑡
⟋
𝑅𝑡𝐾𝑚,𝑡

𝑌𝑚,𝑡
= (1 − 𝜏)

(

𝛼𝑘
𝛼𝑚

𝑃𝑘,𝑡𝑌𝑘,𝑡
𝑃𝑘,𝑡𝑌𝑘,𝑡 + 𝑃𝑛,𝑡𝑌𝑛,𝑡

+
𝛼𝑛
𝛼𝑚

𝑃𝑛,𝑡𝑌𝑛,𝑡
𝑃𝑘,𝑡𝑌𝑘,𝑡 + 𝑃𝑛,𝑡𝑌𝑛,𝑡

)

. (26)

Since the sectoral factor income shares are set using data for the US,
we must set 𝜏 = 0.32 to match the average value of relative capital
intensity in Brazil during the period 1995–2009. Note that 𝜏, calibrated
n this way, reduces relative capital intensity between agriculture and
on-agriculture. If 𝜏 = 0, the value of relative capital intensity would
e close to the US level, which is much larger than in Brazil. However,
his parameter has no effect on relative capital intensity between labor
nd capital-intensive agriculture, which is determined by 𝛼𝑛∕𝛼𝑘. This
elative capital intensity remains constant at the level of the US. This
s a caveat of our calibration, since the value of this relative capital
ntensity influences the effect of structural change within agriculture
n relative productivity.

Finally, using data from the GGDC/UNU-WIDER Economic Trans-
ormation Database, we obtain that the average value during the pe-
iod 2000–2018 of relative productivity between agriculture and non-
griculture in Brazil is 35%, when productivities are measured at
urrent prices. We set the tax 𝜙 to match this value.

In the following subsection, we use this calibration to measure the
ffect of structural change within agriculture on relative productivity
n Brazil.

.2. Structural change and labor productivity

Fig. 6 compares the time path of the main variables implied by
he simulation of the calibrated economy with actual data. Taking into
ccount that each period is 20 years, the simulation is reported for the
eriod 1960–2020 and matches the data for Brazil during 1960–2018.

The first two panels in Fig. 6 show the process of structural change
etween broad sectors and within agriculture. Panel (a) shows the
ecline in the fraction of employment in agriculture. In the model, this
ecline is mainly driven by income growth and an income effect due to
minimum requirement of agricultural consumption. The model is cal-

brated to match the fall in agricultural employment of 47 percentage
oints.

8 In Brazil, there are large differences between cultivated and total
and. The latter also includes forestry, pastures and other land such as
akes, degraded land, idle land, and land unsuitable for exploitation. During
960–2018, cultivated land grew faster than total land.
11

e

In Panel (b), we show the process of structural change within
agriculture in terms of land shares.9 Although the simulation is unable
to explain the large drop of the fraction of land in labor-intensive
agriculture during the sixties and early seventies, it matches the re-
duction of 21.8 percentage points observed during the entire period.
This process of structural change is driven by the change in the rela-
tive price between the two agricultural sectors. The accumulation of
capital, associated with economic development, benefits the capital-
intensive agricultural sector more and, as a consequence, the price of
labor-intensive crops relative to capital-intensive crops increases. This
relative price increase generates a process of structural change from
labor to capital-intensive agriculture when these sectors are imperfect
substitutes; that is, when the elasticity of substitution is larger than one.
In fact, to match the observed change in land shares, the calibrated
value of the elasticity is greater than one.

As shown in Panel (c), data on capital intensity in agriculture
relative to non-agriculture is available for the period 1995–2009. Al-
though the data spans for only 14 years, it shows a clearly increasing
path. In the simulation, while the average value of relative capital
intensity is targeted, the increase in relative capital intensity is not.
This increase is entirely driven by structural change within agriculture.
Too see this, we can use Eq. (26), where relative capital intensity
between agriculture and non-agriculture is expressed as the weighted
average of relative capital intensities between each agricultural sector
and non-agriculture, with weights being the fraction of value added
in each agricultural sector. Given that technologies are Cobb–Douglas,
the relative capital intensity between each agricultural sector and non-
agriculture are constant and equal to 𝛼𝑘∕𝛼𝑚 and 𝛼𝑛∕𝛼𝑚. Therefore, the
increase in the capital intensity of aggregate agriculture relative to
non-agriculture is driven entirely by the increase in the fraction of
agricultural value added generated in the capital-intensive sector.

Notice that the novelty of our calibration is to use 𝜇 and 𝜀 to
match changes in the sectoral composition in agriculture. Instead, the
technological change literature, and Chen (2020) in particular, utilizes
technological parameters to match a technological adoption curve. In
Chen (2020), there is a single agricultural product and the share of
farmers producing with the more capital-intensive technology increases
as the technology becomes less expensive. Our contribution to this
literature is to relate the rise in capital intensity to observed changes
in the composition of the agricultural sector.

The average farm size increases as a result of the reduction in
agricultural employment and the increase in cultivated land. This is
shown in Panel (d), where we decompose the average farm size in
average size of small and large farms. As we can observe, the rise in
average farm size is driven by the rise in average size of large farms.
As before, small farms are defined as those with less than 10 hectares.
In the data, the average size of small farms slightly declines, while the
average size of large farms shows a 1.86-fold increase between 1960
and 2017. The simulation matches these very different patterns and,
in particular, explains the considerable increase in the average size
of large farms. Notice that we target the average farm size, not the
average farm size of small and large farms. In the simulation of the
calibrated economy, the average size of large farms increases because
this segment of farms includes all capital-intensive farms, which are the
ones benefiting the most from economic development in Brazil.

In panel (e), we show the relative price of agriculture, which
is a target of our calibration. The data shows a clearly decreasing
trend, despite large initial fluctuations. The simulation matches the
reduction in this relative price. In the calibrated economy, this decline
results from an increase in the productivity of agriculture relative to
non-agriculture.

9 The process of structural change within agriculture could also be illus-
rated in terms of the fraction of farmers or the fraction of value added in
ach agricultural sector. We use land shares due to data availability.
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Fig. 6. Quantitative results. Note: [1] This figure compares the results of the benchmark simulation with the data for Brazil. Continuous lines indicate data, dashed lines indicate
odel simulation. In Panel (d) lines with crosses show average size of large farms, triangles show average farm size of all farms, and circles show average size of small farms.

2] The fraction of employment in agriculture is obtained from GGDC 10-Sector Database (1960–2011) and GGDC/UNU-WIDER Economic Transformation Database (2012–2018).
he fraction of land in labor-intensive agriculture is computed from FAO. Capital intensity in agriculture relative to non-agriculture is obtained from the World Input–Output
atabase 2012. The average farm size and the average size of small and large farms is elaborated from the IBGE Agricultural Census of Brazil for years 1960, 1970, 1975, 1980,
985, 1996, 2006, and 2017. To compute averages we consider only cultivated farmland, which includes land in permanent and temporal crops. We exclude land used for other
urposes or non-cultivated. The price of agriculture relative to non-agriculture is calculated from World Development Indicators. Agricultural productivity relative to non-agricultural
roductivity at 2015 constant prices is obtained from GGDC 10-Sector Database (1960–2011) and GGDC/UNU-WIDER Economic Transformation Database (2012–2018).
Panel (f) in Fig. 6 shows the increase of agricultural labor pro-
uctivity relative to non-agricultural labor productivity. Note that the
ncrease of this ratio is not a target of the calibration. It increases from
.9% to 53.8% in the data and from 7.9% to 38.3% in the simulation,
uring the period 1960–2018. Therefore, our model explains 66.2% of
he observed increase in relative productivity. This increase is the result
f the combination of different mechanisms: an increase in TFP that
s larger in the agricultural sectors, selection, the increase in average
arm size and the increase of agricultural capital intensity relative
o non-agricultural capital intensity. On the one hand, the reduction
n the number of farmers implies that the farmers who remain in
griculture have higher abilities and manage more land. As in Lagakos
nd Waugh (2013) and Adamopoulos and Restuccia (2014) both effects
ncrease productivity in agriculture. On the other hand, the increase in
12
productivity is also explained by the increase in capital intensity that, in
our model, results entirely from the process of structural change within
agriculture. In the following subsection, we measure the importance of
this mechanism.

5.2.1. The role of structural change within agriculture
To measure the effect of structural change within agriculture on

relative productivity, in Fig. 7 we compare the calibrated economy with
a counterfactual economy in which the elasticity of substitution is set
to one. In the counterfactual, we set 𝑐 = 0.0533 and 𝜇 = 0.761 to match
the initial sectoral composition, given by the fraction of employment
in agriculture (59%) and by the fraction of harvested land in labor-

𝑐 and 𝜇 are set so
intensive agriculture (30%). Therefore, the parameters
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Fig. 7. Counterfactual simulation. Note: This figure compares the results of the counterfactual simulation with the benchmark simulation and the data for Brazil. Continuous lines
indicate data, dashed lines indicate model simulation, and dotted lines indicate counterfactual simulation. In Panel (d) lines with crosses show average size of large farms, triangles
show average farm size of all farms, and circles show average size of small farms. Data sources are the same as in Fig. 6.
that the two economies are initially identical, with the same initial sec-
toral composition, relative capital intensity and farm size distribution,
and all differences along the transition are due to different processes of
structural change that result from different elasticities of substitution.
More precisely, in both economies, the price of labor-intensive crops
relative to capital-intensive crops increases. However, as shown in (25),
while the relative price increase reduces the fraction of harvested land
in labor-intensive agriculture under imperfect substitution, it has no
effect on sectoral composition when the elasticity of substitution is
equal to one. These different patterns are illustrated in Panel (b) of
Fig. 7.

The process of structural change within agriculture determines the
dynamics of relative capital intensity in Panel (c). It remains constant
in the absence of structural change within agriculture and it increases
in the benchmark economy as farmers move to the capital-intensive
sector. Obviously, these different dynamics of capital intensity affect
agricultural labor productivity negatively in the counterfactual econ-
13

omy. As a consequence, the reduction in the number of farmers and
the increase in the average farm size are limited in the counterfactual
economy, as shown in Panels (a) and (d) of Fig. 7. Note also that
the counterfactual economy generates only a small increase in the
average size of large farms and does not explain the reduction in the
average size of small farms. The failure of the counterfactual economy
to explain the change in the distribution of farms is a consequence of
the absence of structural change within agriculture.

Since average farm size and relative capital intensity are negatively
affected by the absence of structural change in the counterfactual
economy, the increase in relative productivity is smaller than in the
benchmark economy. In fact, relative productivity in the counterfactual
economy increases from 7.9% to 26.9% only. This counterfactual econ-
omy without structural change explains only 41.4% of the observed
increase in relative productivity in the data. Since the benchmark
economy explains 66.2%, we conclude that structural change in the
agricultural sector accounts for 24.8% of the observed increase in

relative productivity of Brazil during the period 1960–2018.
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Table 6
Cross-country quantitative results.

Targeted moments Non-targeted moments

𝑌 ∕𝑁 𝐿𝑘∕𝐿 𝑁𝑎∕𝑁 𝑌𝑎∕𝑁𝑎 𝑌𝑚∕𝑁𝑚
𝑌𝑎∕𝑁𝑎

𝑌𝑚∕𝑁𝑚

Data 16.0 0.83/0.67 0.06/0.82 27.3 3.87 7.05
Benchmark 16.0 0.83/0.67 0.06/0.82 22.9 3.61 6.36
Counterfactual 13.1 0.67/0.67 0.26/0.82 15.9 3.59 4.42

Note:
[1] Data on GDP per worker (𝑌 ∕𝑁), labor productivity in agriculture (𝑌𝑎∕𝑁𝑎), labor
productivity in non-agriculture (𝑌𝑚∕𝑁𝑚) and agricultural productivity relative to non-
agricultural productivity (𝑌𝑎∕𝑁𝑎∕𝑌𝑚∕𝑁𝑚) is obtained from Restuccia et al. (2008) and
is PPP-adjusted. Data on agricultural employment (𝑁𝑎∕𝑁) is obtained from Restuccia
et al. (2008) and the fraction of land in capital-intensive agriculture (𝐿𝑘∕𝐿) is calculated
from FAO. All data refers to the year 1985. In the simulation, we use prices of the
high-income country to value the sectoral outputs of each country.
[2] For 𝑌 ∕𝑁 , 𝑌𝑎∕𝑁𝑎, 𝑌𝑚∕𝑁𝑚 and 𝑌𝑎∕𝑁𝑎∕𝑌𝑚∕𝑁𝑚 we compute the ratio between the
median value of the 25% richest countries and the median value of the 25% poorest
countries of the world income distribution. For 𝐿𝑘∕𝐿 and 𝑁𝑎∕𝑁 we report both rich
and poor country median values. Median values are computed to minimize the effect
of outliers.

5.2.2. Nominal labor productivity
In the previous subsection, we have analyzed relative productivity

measured at constant prices. More precisely, relative productivity is
defined as the ratio between agricultural labor productivity and non-
agricultural labor productivity when these productivities are valued at
constant prices.10 Alternatively, other authors have studied the agricul-
tural productivity gap, as defined by Gollin et al. (2014a). This gap is
defined as the ratio of nominal productivity in agriculture relative to
nominal productivity in non-agriculture. That is, output is measured at
current prices.

Structural change within agriculture also contributes to explain the
change in the ratio of productivities when valued at current prices. To
see this, we use data from the GGDC/UNU-WIDER Economic Trans-
formation Database and find that the ratio of nominal productivities
between agriculture and non-agriculture increases by 31 percentage
points in Brazil during the period 1990–2018, for which data is avail-
able. In the calibrated economy, this ratio increases by 8 percentage
points during the same period. In contrast, in the counterfactual econ-
omy with an elasticity equal to one, this ratio is constant. Therefore,
the increase in nominal relative productivity of 8 percentage points
generated in the simulation is explained entirely by structural change
within the agricultural sector. We conclude that structural change
within agriculture contributes to explain the increase in both nominal
and real relative productivity.

5.3. Cross-country labor productivity differences

In this section, we ask how much of the difference in relative pro-
ductivity observed across countries can be explained by differences in
agricultural composition. The cross-country data is summarized in the
first row of Table 6.11 As shown in the table, the difference in real GDP
per worker between countries in the top and bottom quartiles of the
world income distribution is 16-fold. While employment in agriculture
is only 6% of total employment in advanced countries, it is 82% in low-
income countries. Regarding productivity, Table 6 shows that countries
in the top quartile are 27.3 times more productive in agriculture than

10 We make comparisons of real output, that is, we value sectoral production
long the transition using constant prices. Other authors have also used
eal sectoral output to compare sectoral productivity across countries. For
nstance, Restuccia et al. (2008) and Lagakos and Waugh (2013) use the same
nternational prices to value the sectoral outputs of each country.
11 For each variable, we report the ratio between the median country in the

op quartile of the world income distribution and the median country in the
ottom quartile. Results hold if instead we compare top and bottom quintiles
14

r deciles.
countries in the bottom quartile. In non-agriculture, the difference in
productivity between high and low-income countries is only 3.87-fold.
As a result, there is a 7.05-fold difference in the agricultural produc-
tivity relative to non-agricultural productivity ratio between high and
low-income countries. These facts have been documented by Caselli
(2005) and Restuccia et al. (2008). The novelty reported here is that
countries in the top quartile of the world income distribution allocate
more land to capital-intensive agriculture compared to countries in
the bottom. That is, while 83% of total harvested land is allocated
to capital-intensive agriculture in high-income countries, only 67% of
harvested land is allocated to this sector in low-income countries.

The second row in Table 6 shows how much of the difference in
relative productivity across countries can be explained by the model. To
do this, we assume countries are in the steady state and we set sectoral
TFPs, 𝐴𝑚, 𝐴𝑘 and 𝐴𝑛, to match differences in real GDP per worker,
gricultural employment and land in capital-intensive agriculture be-
ween countries in the top and bottom quartile of the world income
istribution.12 All other parameters are set as in the benchmark calibra-

tion for Brazil and the exogenous variables 𝐿𝑡 and 𝑁𝑡 are set at their
1960 values for Brazil. That is, we calibrate cross-country moments
using only the sectoral TFPs. For the country in the top quartile, we
set 𝐴𝑚, 𝐴𝑘 and 𝐴𝑛 so that GDP per worker equals the median value of
countries in the top quartile, employment in agriculture is 6% of total
employment and land in capital-intensive agriculture is 83%, as in the
data. Then, for the country in the bottom quartile, we reduce 𝐴𝑚, 𝐴𝑘
and 𝐴𝑛 to match that real GDP per worker is one-sixteenth of that in
high-income countries, employment in agriculture is 82% and land in
capital-intensive agriculture is 67%. More specifically, for countries in
the top quartile we set 𝐴𝑚 = 1.487, 𝐴𝑘 = 1.6485 and 𝐴𝑛 = 1.7189 and
for countries in the bottom quartile we set 𝐴𝑚 = 0.6320, 𝐴𝑘 = 0.2885
and 𝐴𝑛 = 0.1591. Notice that we match 100% of the difference in real

DP per worker, agricultural employment and land in capital-intensive
griculture between rich and poor countries observed in the data. With
his calibration, we can analyze moments not directly targeted such as
elative productivity.

The benchmark model generates a 6.36-fold difference between
ich and poor countries in agricultural productivity relative to non-
gricultural productivity, compared to a 7.05-fold difference in the
ata. That is, it accounts for 90.2% of differences observed in the
ata, which gives a sense of the good fit of the model. The model
enerates roughly the same non-agricultural productivity difference
etween rich and poor countries, 3.61 in the model and 3.87 in the
ata. It also accounts for a large fraction of the difference in agricultural
roductivity between rich and poor countries, 22.9 in the model and
7.3 in the data.

How much of the cross-country difference in agricultural productiv-
ty relative to non-agricultural productivity is explained by agricultural
omposition? To answer this, we compare the results of the benchmark
odel with a counterfactual simulation with unitary elasticity of sub-

titution between capital and labor-intensive agricultural products. In
he counterfactual simulation, we set 𝜀 = 1 to keep the composition

of agriculture constant and we set 𝑐 = 0.06492 and 𝜇 = 0.778 so that
he fraction of land in capital-intensive agriculture is fixed at 67%, as
n the bottom quartile, and the fraction of employment in agriculture
n poor countries is 82%. To keep comparability, the differences in
ectoral TFPs across countries are the same in both the benchmark and
he counterfactual simulation. Results are shown in the third row of
able 6.

The main result of this exercise is that, in the counterfactual sim-
lation, cross-country differences in sectoral TFPs have no effect on

12 Data on sectoral productivities and GDP per worker is from Restuccia
et al. (2008). In these data, the same international prices are used to value
the sectoral outputs of each country. To compare the result from the model
with these data, we use prices of the high-income country to value the sectoral
outputs of each country.
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Table 7
Quantitative results by quartiles.

Quartiles Targeted moments

𝑌 ∕𝑁 𝐿𝑘∕𝐿 𝑁𝑎∕𝑁

Data Model 𝜀 = 1 Data Model 𝜀 = 1 Data Model 𝜀 = 1

4 16.0 16.0 13.1 0.83 0.83 0.67 0.06 0.06 0.26
3 6.6 6.6 5.0 0.75 0.75 0.67 0.28 0.28 0.46
2 3.0 3.0 2.2 0.70 0.70 0.67 0.53 0.53 0.67
1 1.00 1.00 1.00 0.67 0.67 0.67 0.82 0.82 0.82

Quartiles Non-targeted moments

𝑌𝑎∕𝑁𝑎 𝑌𝑚∕𝑁𝑚
(

𝑌𝑎∕𝑁𝑎
)

∕
(

𝑌𝑚∕𝑁𝑚
)

Data Model 𝜀 = 1 Data Model 𝜀 = 1 Data Model 𝜀 = 1

4 27.3 22.9 15.9 3.87 3.61 3.59 7.05 6.36 4.42
3 5.41 3.25 2.86 2.06 1.89 1.89 2.62 1.72 1.52
2 2.68 1.60 1.52 1.51 1.26 1.26 1.78 1.27 1.21
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: This table shows cross-country quantitative results by quartile of the world
income distribution. For 𝑌 ∕𝑁 , 𝑌𝑎∕𝑁𝑎, 𝑌𝑚∕𝑁𝑚 and 𝑌𝑎∕𝑁𝑎∕𝑌𝑚∕𝑁𝑚 we compute the ratio
between the median value of countries in each quartile relative to the median value of
countries in the first quartile. For 𝐿𝑘∕𝐿 and 𝑁𝑎∕𝑁 we report median values for each
quartile. Median values are computed to minimize the effect of outliers. Data sources
are the same as in Table 6.

agricultural composition and, consequently, the counterfactual econ-
omy is less effective than the benchmark economy in explaining relative
productivity differences. Table 6 shows that the counterfactual simula-
tion, which excludes changes in the sectoral composition of agriculture,
generates a 4.42-fold gap in agricultural productivity relative to non-
agricultural productivity between rich and poor countries. Since the
benchmark model explains 90.2% (6.36/7.05) of the relative produc-
tivity differences observed in the data and the counterfactual model
explains 62.7% (4.42/7.05), we conclude that agricultural composition
accounts for 27.5% of cross-country differences in relative productivity.

Table 6 also shows cross-country differences in agricultural and
non-agricultural productivity. The counterfactual simulation generates
a 3.59-fold difference in non-agricultural productivity between rich and
poor countries, a value similar to that of the benchmark simulation.
However, the counterfactual model generates a much lower gap in
agricultural productivity between rich and poor countries. While the
benchmark model generates a 22.9-fold productivity gap in agriculture,
in the model with 𝜀 = 1 this gap is only 15.9-fold. This shows that the
mechanism in this model is driving agricultural productivity differences
between the rich and the poor.

The results in Table 6 hold for other quartiles of the world income
distribution, as shown in Table 7. The data shows that, as expected,
employment in agriculture declines with income in each quartile. More
interestingly, in the data, the fraction of land in capital-intensive agri-
culture increases with income, with countries in the first, second, third
and fourth quartile allocating, respectively, 67%, 70%, 75% and 83%
of land to this sector. To simulate the benchmark model, as before, we
set sectoral TFPs to match real GDP per worker, employment and land
composition in each quartile. More precisely, in the third quartile we
set 𝐴𝑚 = 0.974, 𝐴𝑘 = 0.5121 and 𝐴𝑛 = 0.3767, and in the second quartile
we set 𝐴𝑚 = 0.745, 𝐴𝑘 = 0.3631 and 𝐴𝑛 = 0.2249 (for quartiles one and
our, sectoral TFPs are the same as before).

Table 7 shows that the benchmark model explains the increase
n agricultural productivity relative to non-agricultural productivity
bserved in the data, as countries move to higher income quartiles.
oreover, for each quartile, the benchmark model explains more of

he relative productivity gap between rich and poor countries than the
ounterfactual model with fixed agricultural composition. For example,
or countries in the third quartile, the gap in relative productivity
ompared to countries in the bottom quartile is 2.62-fold in the data,
.72-fold in the benchmark simulation and only 1.52-fold in the coun-
15

erfactual. For countries in the second quartile, the gap is 1.78-fold in t
he data, 1.27 in the benchmark model and 1.21-fold in the counter-
actual. Clearly, differences in 𝐿𝑘∕𝐿 are larger across countries when
hey are further apart in the distribution of income. For this reason, the
erformance of our mechanism is better for countries further apart in
he distribution. However, we can conclude that our mechanism is still
ble to explain part of the relative productivity differences observed in
ach quartile.

Finally, in this section, we generate cross-country differences in the
odel by introducing differences in sectoral TFPs only. Alternatively,
e could introduce differences in the parameter 𝜆 that governs the

hape of the distribution function. This parameter affects the distri-
ution of abilities and, hence, affects the farm size distribution. In
articular, a higher value of 𝜆 increases the fraction of individuals
ith low agricultural abilities, which increases the number of small

arms. As a consequence, employment in agriculture increases, the
verage farm size declines and agricultural composition shifts towards
abor-intensive agriculture. The shift towards the labor-intensive sector
educes capital intensity of agriculture relative to non-agriculture. The
hange in the distribution of abilities combined with the reduction in
verage farm size and in relative capital intensity results in a reduction
f agricultural productivity relative to non-agricultural productivity.
he effect of an increase in 𝜆 is, therefore, similar to that of lower
ectoral productivities, both of them impoverish the economy. By com-
ining differences in 𝜆 and in sectoral TFPs, we could carry out more
pecific cross-country analysis such as the comparison of the relative
roductivity among economies with similar level of development but
ifferent distribution of farm sizes.

. Concluding remarks

Differences in labor productivity between developed and developing
ountries are substantially larger in agriculture than in non-agriculture.
ince agricultural employment is large in developing countries, the
evelopment literature has concluded that explaining these large differ-
nces in agricultural productivity is central to understand cross-country
ncome differences. We contribute to this literature by showing that
he composition of agriculture can explain a significant part of low
gricultural productivity relative to non-agricultural productivity in
eveloping countries.

We use data from the US Census of Agriculture and FAO to group
gricultural products into two agricultural sectors that differ in cap-
tal intensity. Using this data, we calibrate a model and show that,
s the economy develops and capital becomes abundant, the price
f labor-intensive agriculture relative to capital-intensive agriculture
ncreases. When the agricultural goods produced in both agricultural
ectors are imperfect substitutes in preferences, this change in relative
rices, along with economic development, drives a process of structural
hange that implies: (i) a reduction in the number of farmers; (ii) an
ncrease in the average farm size; (iii) a decrease in the fraction of
arvested land used in the labor-intensive sector; and (iv) an increase
n the capital intensity of the agricultural sector relative to the non-
gricultural sector. Since farms are larger and the agricultural sector
s more capital intensive, productivity in agriculture increases relative
o non-agriculture. We show that these development patterns, implied
y our model, are consistent with time series evidence for Brazil, and
ith a cross-country sample that includes developing and developed

ountries.
In order to quantify how much of the increase in relative produc-

ivity is explained by structural change within the agricultural sector,
e conducted counterfactual simulations in which the elasticity of

ubstitution between the two agricultural goods is unitary and, hence,
here is no structural change in the agricultural sector. We conclude
hat changes in the sectoral composition of agriculture explain 24.8% of
he observed increase in the relative productivity of Brazil in the period
960–2018 and 27.5% of the observed differences in relative produc-
ivity across countries. Therefore, structural change within agriculture
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explains roughly a quarter of the increase in relative productivity both
across countries and over time.

We conclude this paper by discussing two avenues for future work.
First, this model can be used to study how misallocation associated
to taxes or regulations affect relative labor productivity. From the
development literature, we know that taxes that produce a direct wedge
between income in agriculture and non-agriculture affect relative labor
productivity. In this model, taxes could also affect relative labor pro-
ductivity by altering the composition of agriculture, even if they do not
generate a wedge between income in agriculture and non-agriculture.
Regarding regulations, a policy that limits the mobility of individ-
uals out of agriculture could shift agricultural composition towards
the labor-intensive sector and reduce the relative labor productivity.
Therefore, this model offers a benchmark to study how misallocations
of factors across agricultural sectors could have a negative impact on
relative labor productivity. Second, throughout this paper, we maintain
that the force that drives the process of structural change within agri-
culture is the change in domestic consumption of agricultural goods.
However, we acknowledge that exports of agricultural products could
be another potential source of structural change in some countries.
This suggests that the introduction of trade could be an interesting
extension.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

We thank seminar participants at the University of Vienna, the
University of Guanajuato, the 43rd Symposium of the Spanish Eco-
nomic Association, the 2018 Society for Economic Dynamics meeting,
and the XI Workshop on Public Policy Design in Girona. Financial
support from the Government of Spain and the European Union through
grants RTI2018-093543-B-I00 and PID2021-126549NB-I00, and from
the Central Bank of Paraguay is gratefully acknowledged.

Appendix A. Consumers’ problem

The consumer chooses 𝑐𝑖𝑛, 𝑐
𝑖
𝑘 and 𝑐𝑖𝑚 to maximize (1) subject to (2)

nd (3). We break down this problem into two steps. First, consumers
hoose 𝑐𝑖𝑛 and 𝑐𝑖𝑘 to maximize (2) subject to
𝑖
𝑎,𝑡+1 = 𝑃𝑛,𝑡+1𝑐

𝑖
𝑛,𝑡+1 + 𝑃𝑘,𝑡+1𝑐

𝑖
𝑘,𝑡+1,

here 𝐸𝑖
𝑎,𝑡+1 is the agricultural expenditure of individual 𝑖. Maximiza-

ion implies

𝑖
𝑛,𝑡+1 = 𝜇𝜀

(𝑃𝑛,𝑡+1

𝑃𝑎,𝑡+1

)1−𝜀 𝐸𝑖
𝑎,𝑡+1

𝑃𝑛,𝑡+1
, (27)

𝑐𝑖𝑘,𝑡+1 = (1 − 𝜇)𝜀
(𝑃𝑘,𝑡+1

𝑃𝑎,𝑡+1

)1−𝜀 𝐸𝑖
𝑎,𝑡+1

𝑃𝑘,𝑡+1
, (28)

here 𝑃𝑎,𝑡+1 is the price of the agricultural good and is equal to

𝑎,𝑡+1 =
[

𝜇𝜀𝑃 1−𝜀
𝑛,𝑡+1 + (1 − 𝜇)𝜀 𝑃 1−𝜀

𝑘,𝑡+1

]
1

1−𝜀 .

ote that this price satisfies

𝑐𝑖 ≡ 𝐸𝑖 = 𝑃 𝑐𝑖 + 𝑃 𝑐𝑖 .
16

𝑎,𝑡+1 𝑎,𝑡+1 𝑎,𝑡+1 𝑛,𝑡+1 𝑛,𝑡+1 𝑘,𝑡+1 𝑘,𝑡+1
Second, consumers choose 𝑐𝑖𝑎 and 𝑐𝑖𝑚 by maximizing (1) subject to
𝑖
𝑡+1 = 𝑐𝑖𝑚,𝑡+1 + 𝑃𝑎,𝑡+1𝑐

𝑖
𝑎,𝑡+1.

aximization implies
𝑖
𝑚,𝑡+1 = (1 − 𝜔)𝐸𝑖

𝑡+1 − (1 − 𝜔)𝑃𝑎,𝑡+1𝑐, (29)

and

𝑎,𝑡+1𝑐
𝑖
𝑎,𝑡+1 = 𝜔𝐸𝑖

𝑡+1 + (1 − 𝜔)𝑃𝑎,𝑡+1𝑐.

Combining this last equation with (27) and (28), we obtain

𝑐𝑖𝑛,𝑡+1 = 𝜔𝜇𝜀
(𝑃𝑛,𝑡+1

𝑃𝑎,𝑡+1

)1−𝜀 𝐸𝑖
𝑡+1

𝑃𝑛,𝑡+1
+ (1 − 𝜔)𝜇𝜀

(𝑃𝑛,𝑡+1

𝑃𝑎,𝑡+1

)−𝜀
𝑐, (30)

𝑐𝑖𝑘,𝑡+1 = 𝜔 (1 − 𝜇)𝜀
(𝑃𝑘,𝑡+1

𝑃𝑎,𝑡+1

)1−𝜀 𝐸𝑖
𝑡+1

𝑃𝑘,𝑡+1
+ (1 − 𝜔) (1 − 𝜇)𝜀

(𝑃𝑘,𝑡+1

𝑃𝑎,𝑡+1

)−𝜀
𝑐.

(31)

Eqs. (29)–(31) determine the individuals’ consumption demands.

Appendix B. Factors’ demands and aggregate production

To obtain Eqs. (14) and (15), we take into account that land in
labor-intensive agriculture is given by 𝐿𝑛,𝑡 = 𝑁𝑡 ∫

𝑎𝑡
𝑎𝑡

𝐿𝑖
𝑛,𝑡𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖 and in
capital-intensive agriculture it is given by 𝐿𝑘,𝑡 = 𝑁𝑡 ∫

∞
𝑎𝑡

𝐿𝑖
𝑘,𝑡𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖.
imilarly, capital in labor-intensive agriculture is given by 𝐾𝑛,𝑡 =

𝑡 ∫
𝑎𝑡
𝑎𝑡

𝐾 𝑖
𝑛,𝑡𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖 and in capital-intensive agriculture it is given by
𝐾𝑘,𝑡 = 𝑁𝑡 ∫

∞
𝑎𝑡

𝐾 𝑖
𝑘,𝑡𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖. Using these equations, (8), (9) and the
distribution of abilities, we obtain

𝐿𝑠,𝑡 = 𝑁𝑡

[

(

𝛼𝑠
𝑅𝑡

)𝛼𝑠 ( 𝛽𝑠
𝑥𝑡

)1−𝛼𝑠
(1 − 𝜏)𝑃𝑠,𝑡𝐴𝑠,𝑡

]
1

1−𝛽𝑠−𝛼𝑠
𝛥𝑠,𝑡

𝑠,𝑡 = 𝑁𝑡

[

(

𝛼𝑠
𝑅𝑡

)1−𝛽𝑠 ( 𝛽𝑠
𝑥𝑡

)𝛽𝑠
(1 − 𝜏)𝑃𝑠,𝑡𝐴𝑠,𝑡

]
1

1−𝛽𝑠−𝛼𝑠
𝛥𝑠,𝑡

for 𝑠 = {𝑘, 𝑛}, where

𝛥𝑛,𝑡 = ∫

𝑎𝑡

𝑎𝑡

(

𝑎𝑖
)

1
1−𝛽𝑛−𝛼𝑛 𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖 = 𝜆𝜂𝜆
⎛

⎜

⎜

⎝

(

𝑎𝑡
)

1
1−𝛽𝑛−𝛼𝑛

−𝜆 −
(

�̄�𝑡
)

1
1−𝛽𝑛−𝛼𝑛

−𝜆

𝜆 − 1
1−𝛽𝑛−𝛼𝑛

⎞

⎟

⎟

⎠

,

nd

𝑘,𝑡 = ∫

∞

𝑎𝑡

(

𝑎𝑖
)

1
1−𝛽𝑘−𝛼𝑘 𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖 = ∫

∞

𝑎𝑡
𝜆𝜂𝜆

(

𝑎𝑖
)

1
1−𝛽𝑘−𝛼𝑘

−(1+𝜆)
𝑑𝑎𝑖.

ote that only if 𝜆 > 1
1−𝛽𝑘−𝛼𝑘

then 𝛥𝑘,𝑡 is finite and equal to

𝛥𝑘,𝑡 = 𝜆𝜂𝜆
⎛

⎜

⎜

⎝

(

�̄�𝑡
)

1
1−𝛽𝑘−𝛼𝑘

−𝜆

𝜆 − 1
1−𝛽𝑘−𝛼𝑘

⎞

⎟

⎟

⎠

.

he inequality 𝜆 > 1
1−𝛽𝑘−𝛼𝑘

implies that 𝛥𝑘,𝑡 > 0. It also implies that
𝜆 > 1

1−𝛽𝑛−𝛼𝑛
and, hence, 𝛥𝑛,𝑡 is also positive when �̄�𝑡 > 𝑎𝑡. Therefore, we

assume that 𝜆 > 1
1−𝛽𝑘−𝛼𝑘

.
To obtain Eq. (18), we take into account that output in labor-

intensive agriculture is given by 𝑌𝑛,𝑡 = 𝑁𝑡 ∫
𝑎𝑡
𝑎𝑡

𝑌 𝑖
𝑛,𝑡𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖, whereas out-
put in capital-intensive agriculture is given by 𝑌𝑘,𝑡 =
𝑁𝑡 ∫

∞
𝑎𝑡

𝑌 𝑖
𝑘,𝑡𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖. Using these equations and (10), we obtain (18).

Appendix C. Aggregate consumption expenditures

We use (7) and (19) to obtain aggregate consumption expenditure
as

𝐸𝑡+1 = 𝑅𝑡+1𝑁𝑡

⎧

⎪

⎪

⎨

⎪

⎪

∫ 𝑎𝑡
𝜂 (1 − 𝜙)𝑤𝑡𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖

+ ∫ 𝑎𝑡
𝑎𝑡

[

(1 − 𝜏)𝑃𝑛,𝑡𝑦𝑖𝑛,𝑡 − 𝑥𝑡𝐿𝑖
𝑛,𝑡 − 𝑅𝑡𝐾 𝑖

𝑛,𝑡

]

𝑓
(

𝑎𝑖
)

𝑑𝑎𝑖

+ ∫ ∞
𝑎𝑡

[

(1 − 𝜏)𝑃𝑘,𝑡𝑦𝑖𝑘,𝑡 − 𝑥𝑡𝐿𝑖
𝑘,𝑡 − 𝑅𝑡𝐾 𝑖

𝑘,𝑡

]

𝑓
(

𝑎𝑖
)

𝑑𝑎𝑖
∞ 𝑖 ( 𝑖) 𝑖

⎫

⎪

⎪

⎬

⎪

⎪

.

⎩ + ∫𝜂 𝑇𝑡 𝑓 𝑎 𝑑𝑎 ⎭
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W

𝐸

a

𝐸

U
𝑌
(

A

a

R

A

A

A

A

C

C

C

C

We assume that tax revenues are returned to individuals as a trans-
fer and the government budget constraint is balanced in each period,
hence,

∫

∞

𝜂
𝑁𝑡𝑇

𝑖
𝑡 𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖 =

(

∫

𝑎𝑡

𝜂
𝜙𝑤𝑡𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖 + ∫

𝑎𝑡

𝑎𝑡
𝜏𝑃𝑛,𝑡𝑦

𝑖
𝑛,𝑡𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖

+∫

∞

𝑎𝑡
𝜏𝑃𝑘,𝑡𝑦

𝑖
𝑘,𝑡𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖
)

𝑁𝑡.

e use the government budget constraint to obtain

𝑡+1 = 𝑅𝑡+1𝑁𝑡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ 𝑎𝑡
𝜂 𝑤𝑡𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖 + ∫ 𝑎𝑡
𝑎𝑡

[

𝑃𝑛,𝑡𝑦𝑖𝑛,𝑡 − 𝑥𝑡𝐿𝑖
𝑛,𝑡

−𝑅𝑡𝐾 𝑖
𝑛,𝑡

]

𝑓
(

𝑎𝑖
)

𝑑𝑎𝑖

+ ∫ ∞
𝑎𝑡

[

𝑃𝑘,𝑡𝑦𝑖𝑘,𝑡 − 𝑥𝑡𝐿𝑖
𝑘,𝑡 − 𝑅𝑡𝐾 𝑖

𝑘,𝑡

]

𝑓
(

𝑎𝑖
)

𝑑𝑎𝑖

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

nd using (8)–(10) we get

𝑡+1 = 𝑅𝑡+1𝑁𝑡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤𝑡 ∫
𝑎𝑡
𝜂 𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖 +
[

1 − (1 − 𝜏) 𝛽𝑛 − (1 − 𝜏) 𝛼𝑛
]

𝑃𝑛,𝑡

× ∫ 𝑎𝑡
𝑎𝑡

𝑦𝑖𝑛,𝑡𝑓
(

𝑎𝑖
)

𝑑𝑎𝑖

+
[

1 − (1 − 𝜏) 𝛽𝑘 − (1 − 𝜏) 𝛼𝑘
]

𝑃𝑘,𝑡
× ∫ ∞

𝑎𝑡
𝑦𝑖𝑘,𝑡𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

sing the definition of aggregate output for each agricultural sector,
𝑛,𝑡 = 𝑁𝑡 ∫

𝑎𝑡
𝑎𝑡

𝑦𝑖𝑛,𝑡𝑓
(

𝑎𝑖
)

𝑑𝑎𝑖 and 𝑌𝑘,𝑡 = 𝑁𝑡 ∫
∞
𝑎𝑡

𝑦𝑖𝑘,𝑡𝑓
(

𝑎𝑖
)

𝑑𝑎𝑖, Eqs. (4) and
5) and 𝑁𝑚,𝑡 = 𝑁𝑡 ∫

𝑎𝑡
𝜂 𝑓

(

𝑎𝑖
)

𝑑𝑎𝑖, we obtain Eq. (20).

ppendix D. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.jdeveco.2022.102934.
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