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Abstract: We provide an introduction to quantum annealing and its application to graph par-
titioning. Simulations of small problems are performed, as well as an implementation in an actual
quantum annealer through the idea of minor-embedding. The quality of the annealing results is
examined by comparison to a current classical state-of-the-art method.

I. INTRODUCTION

Across multiple disciplines, graphs are frequently used
as abstractions when modeling problems. Even if the fi-
nal application concerns other methods, it is often useful
to partition large graphs into smaller subgraphs in order
to reduce graph complexity or allow parallel computing.
Graph partitioning (GP) methods arose to enable this
in applications such as bioinformatics, social networks,
VLSI design, transportation networks, and image pro-
cessing [1].

Proved to be an NP-hard problem, a wide spectrum of
GP algorithms has been developed over the years. The
possibility of reducing the problem to that of finding the
ground state of a system of interacting spins [2] has been
studied in recent years. Quantum annealing (QA) has
proved to be an effective method to find the solution
when the dimension of the system is large and direct
computation is no longer an option.

D-Wave Systems [3] launched in 2011 the first commer-
cial quantum annealer to the market and, since then, QA
has been growing in importance. Though still far from
becoming a practical technology, results are promising
and QA is expected to bring many valuable applications
to society in fields such as finance, life sciences and com-
munications.

In this work, we focus on understanding how QA works
implementing it to solve the GP problem. We begin in
section II by defining the balanced GP problem. Then,
in section III, we introduce adiabatic quantum compu-
tation (AQC) and its heuristic implementation QA and
explain the Ising and QUBO models. We additionally
formulate a reduced version of the GP problem using the
QUBO formulation and perform a numerical simulation
to solve a particular small problem. Section IV intro-
duces D-Wave’s annealers and explains how problems are
implemented using the example of the previous simula-
tion. It also explores GP problems for which a classical
simulation is no longer possible and evaluates the qual-
ity of the solutions by comparison with a multilevel GP
classical software. Finally, in section V we summarize
the results and give the conclusions of this work.
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II. GRAPH PARTITIONING

Consider an undirected graph G = (V,E), with vertex
set V and edge set E, such that n = |V | is the number of
vertices and m = |E| is the number of edges. Consider
also c(u) and w({u, v}) to be the weights of a vertex and
an edge respectively.

A solution for the GP problem is a partition of the
set of vertices of the graph. This means that we have
to divide the vertex set into k disjoint subsets such that
their union is equal to the total set. Two partitions are
equivalent if for every subset in one partition there ex-
ists a subset in the other that is composed of the same
vertices. If two partitions are not equivalent, they are
different solutions.

To define the problem in a more formal way, let P =
{P1, ..., Pk} be a partition of the vertex set V for a fixed
integer k. We can define the set of cut edges as

C = {{u, v} ∈ E|u ∈ Pi, v ∈ Pj , 1 ≤ i < j ≤ k}, (1)

and the cut size as

Θ(P) =
∑

{u,v}∈C

w({u, v}). (2)

Note that the cut size is equal to the number of cut edges
if the edge weights are equal to one but different oth-
erwise. Consider also the balance 1 ≤ ϵ ≤ k. Then,
the balanced k-GP problem consists on minimizing Θ(P)
subject to the constraints

0 <
∑
u∈Pi

c(u) ≤ ϵ

k

∑
v∈V

c(v), (3)

⋃
1≤i≤k

Pi = V, (4)

and

Pi ∩ Pj = ∅, ∀i, j ∈ [1, k], i ̸= j. (5)

The first condition ensures that Pi does not exceed the
size limit imposed by the balance ϵ and the other two
conditions ensure that P is a partition of V .
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III. ADIABATIC QUANTUM COMPUTATION
AND QUANTUM ANNEALING

As mentioned in [2], there has been recently much in-
terest in solving NP-complete and NP-hard problems,
such as the GP problem, making use of adiabatic quan-
tum computation (AQC) algorithms [4, 5]. They are
based on the following idea: consider an initial Hamil-
tonian HI , whose ground state is easy to find, and a
problem Hamiltonian HP , whose ground state encodes
the solution to a problem of interest. Then, prepare the
system to be in the ground state of HI and adiabatically
change the Hamiltonian to HP . For instance, one could
follow the evolution

H(t) = A(t/tf )HI +B(t/tf )HP , (6)

for a total time tf , where A,B : [0, 1] → R are annealing
functions such that A(0) ≫ B(0) and A(1) ≪ B(1). The
evolution of the wave function of the system |ψ(t)⟩ is
governed by the time-dependent Schrödinger equation

iℏ
∂ |ψ(t)⟩
∂t

= H(t) |ψ(t)⟩ . (7)

If tf is large enough, and HI and HP do not commute,
the system will remain with high probability in its ground
state throughout the evolution as long as the conditions
of the adiabatic theorem [6] are satisfied. Therefore, mea-
suring the quantum state at time tf will return the solu-
tion to the problem.

Following [5, 7, 8], quantum annealing (QA) pursues
the same idea, but restricts HP to represent a classi-
cal objective function. QA algorithms may be physically
implemented in open systems susceptible to noise. This
may interfere with the computation, increasing the prob-
ability of not finishing in the desired ground state. Thus,
QA provides a heuristic method for solving combinatorial
optimization problems.

We restrict ourselves to QA in the transverse Ising
model. The problem Hamiltonian for a system of n spins
is written as the quantum version of an Ising spin glass,
i.e.

HP =

n∑
i

hiσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j , (8)

where σz
i is a Pauli matrix acting on the ith spin and

hi and Jij are real numbers. We call Eq. (8) an Ising
Hamiltonian. Then, we choose the non-commuting initial
Hamiltonian to consist of a transverse field

HI = −
n∑
i

σx
i , (9)

where σx
i is again a Pauli matrix acting on the ith spin.

The ground state of HI is an equal probability super-
position of all possible states in the eigenbasis of HP .
Note that in such basis the Hamiltonian HP is diagonal

and, thus, for a small number of spins, its ground state
can be computed by simple means. However, the dimen-
sion of the Hilbert space of such system is 2n for n spins.
Therefore, for a system of n greater than about 50, the
problem of finding the ground state of HP becomes in-
tractable for classical computers. This is when QA has
proved to become useful.

The quadratic unconstrained binary optimization
(QUBO) model is an alternative formulation to the Ising
Hamiltonian. We present it as it will be used further on
to implement the GP problem. In this model, the prob-
lem Hamiltonian for a system of n particles is defined
using an n×n upper-triangular matrix Q and a vector x
of n binary variables

HP (x) =

n∑
i

Qiixi +
∑
i<j

Qijxixj , xi ∈ {0, 1} (10)

or, more concisely, it can be represented as

HP (x) = xTQx. (11)

The Ising and the QUBO formulations are related
through the identity σ 7→ 2x− 1.

A. QUBO formulation of the GP problem

We focus on finding the solution of the balanced GP
problem for unweighted graphs, i.e. c(u) = 1 and
w({u, v}) = 1, with k = 2 and ϵ = 1. We impose also the
additional condition that the number of vertices must be
even. In this way, finding a solution to the GP problem
consists in dividing the vertex set of a graph into two
disjoint subsets such that the number of edges between
them is minimized.

In order to be able to write the problem in the QUBO
formulation, consider an undirected graph G = (V,E)
with n vertices and m edges. The ground state of HP

(a) (b)

FIG. 1: (a) Unweighted complete graph with 4 vertices. (b)
Unweighted graph with 40 vertices and 147 edges. For both
(a) and (b) a solution of the GP problem for k = 2 and ϵ = 1
is indicated, with filled vertices belonging to one set of the
partition and empty vertices to the other set.
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should encode the solution to the problem. Moreover, it
should minimize the number of cut edges. This can be
done as explained in [9]: label each vertex i with xi ∈
{0, 1} depending on the set of the partition they belong
to. Then, the number of cut edges is given by

NC =
∑

(i,j)∈E

(xi + xj − 2xixj), (12)

subject to the balancing constraint
∑

i∈V xi = n/2. The
constraint needs to be removed, leading to a relaxation
of the problem as follows

min
x

[
β
∑

(i,j)∈E

(xi+xj−2xixj)+α

(∑
i∈V

xi−
n

2

)2]
, (13)

where xi ∈ {0, 1}, i = 1, ..., n. Here, α and β are weight
parameters chosen according to [2]:

α

β
≥ min(2∆, n)

8
, (14)

where ∆ is the maximal degree of G. The second term in
Eq. (13) can be simplified by removing the constant terms
and replacing any squared term with a linear term. Doing
so, the problem Hamiltonian in the QUBO formulation
is given by

HP = β
∑

(i,j)∈E

(xi + xj − 2xixj)

+ α

(∑
i∈V

(1− n)xi +
∑
i∈V

∑
i<j

2xixj

)
, (15)

where xi ∈ {0, 1}, i = 1, ..., n. This can be more concisely
expressed with the matrix

Qij =


2(α− β), (i, j) ∈ E

2α, (i, j) /∈ E, i ̸= j

βδi − α(n− 1), i = j

(16)

where δi is the degree of the vertex i.

B. Numerical simulation

To exemplify how the formulation of section IIIA can
be used to solve a problem, we now present simulation
results for the complete 4-vertex graph of Fig. 1a, with
α = 1.25 and β = 1. The code used in the simulations
is available at [10]. Following Eq. (6), the simulation of
the evolution is performed by numerically solving Eq. (7)
using the Crank-Nicolson algorithm. Therefore, we set

|ψ(t+∆t)⟩ =
(
1 + i

∆t

2ℏ
H(t)

)−1(
1− i

∆t

2ℏ
H(t)

)
|ψ(t)⟩

(17)

FIG. 2: Overlap of the instantaneous ground state,
parametrised by s = t/tf , with the target states for the graph
of Fig. 1a as explained in section III B. Values of tf range
from 2.5 ns to 10 ns. Annealing functions A(s) and B(s)
implemented in the DW 2000Q 6 annealer are used in the
evolution.

and iterate.

We are able to study the evolution of the overlap with
the target ground states for different values of anneal-
ing time tf ranging from 2.5 ns to 10 ns. The overlap
is defined as

∑
|φ⟩ |⟨ψ(s)|φ⟩|2, where |ψ(s)⟩ is the instan-

taneous ground state parametrized by s = t/tf , and |φ⟩
ranges over all six ground states of HP . Results are pre-
sented in Fig. 2. It can be seen that larger tf values give
better overlap results at the end of the evolution. Ac-
tual annealing functions A(s) and B(s) implemented in
the DW 2000Q 6 annealer are used to perform the evo-
lution.

IV. EXPERIMENTAL QUANTUM ANNEALING

In this section we implement the GP problem on D-
Wave’s DW 2000Q 6 annealer [3]. We use the example
of section III B to understand how problems are imple-
mented in the system. Then, we explore GP for larger
problems.

It is useful to understand D-Wave’s quantum hard-
ware architecture as an undirected graph U = (VU , EU ),
often called working graph, with weighted vertices and
weighted edges. Each vertex i ∈ VU corresponds to a
physical qubit and each edge (i, j) ∈ EU corresponds to
a coupler between qubits i and j. We can distinguish
between two available annealers, for which we are offered
one minute of computational time: the DW 2000Q 6 an-
nealer, with the Chimera graph (∼ 2000 qubits); and
the Advantage systems, with the Pegasus graph (∼ 5000
qubits).
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A. Minor-embedding

One can also understand Eq. (8) as an undirected
graph G = (VG, EG). Then, each spin corresponds to
a vertex (or a logical qubit) with weight hi and each
edge has a weight Jij associated. Similarly, for Eq. (10)
weights are stored as coefficients in Q. A problem can
only be solved using D-Wave’s annealers if G can be em-
bedded as a subgraph of the working graph U . This is
referred to as the minor-embedding problem [11, 12].

The basic idea is to find a subgraph Gem of U such
that G can be obtained from Gem by contracting edges.
More precisely, let U = (VU , EU ) be a fixed graph. Given
a graph G = (VG, EG), the minor-embedding of G in U
is a map ϕ : VG → P(VU ) such that:

• ϕ(u) is a connected subgraph for u ∈ VG;

• ϕ(u) and ϕ(v) are disjoint for u ̸= v; and

• if (u, v) ∈ EG there is at least one edge between
ϕ(u) and ϕ(v) in U .

If ϕ exists we say that G is embeddable in U and G is
called a minor of U .
Logical qubits in G can be modeled by any collection

of physical qubits in U provided they form a connected
subgraph called a chain. In a chain, physical qubits are
coupled such that they function as a single qubit. This
can be achieved by setting the coupler weights between
them to a reasonably large negative value, whose absolute
value is known as chain strength. This value should be
chosen carefully: if it is too strong it may slow down the
adiabatic process but if it is not large enough it may not
make the linked qubits act as a single one. Then, logical
weights are distributed among the remaining available
physical components.

FIG. 3: Success rate vs RCS for the embedding of the graph
of Fig. 1a in the Chimera graph as explained in section IVA.
Values of tf range from 2.5 ns to 10 ns.

FIG. 4: Success rate vs RCS on DW 2000Q 6 annealer for the
embedding of the graph of Fig. 1a in the Chimera graph as
explained in section IVA. Simulation results with tf = 40 ns
are fitted with actual annealing results with tf = 20 µs and
500 repetitions.

Following [13], we can define chain strength in terms
of a relative chain strength RCS ∈ [0, 1] according to

chain strength = RCS× max strength, (18)

where max strength = max({|hi|}∪{|Jij |}) for the Ising
model and max strength = |max(Q)| for the QUBO
model. When defining these variables, one should take
into account that D-Wave’s annealers do not accept ar-
bitrary values of hi, Jij and Q (see [3]).
To study which value of RCS should be used, we em-

bed the graph of Fig. 1a in the Chimera graph for differ-
ent values of RCS and perform the evolution of Eq. (6).
Results are given in Fig. 3, where the success rate corre-
sponds to the value of the overlap, as defined in section
III B, at the end of the evolution [10]. We observe that
an optimal RCS value should be greater than 0.2.
Actual annealing results on the DW 2000Q 6 annealer

with annealing time tf = 20 µs and 500 repetitions are
presented in Fig. 4. These are shown together with sim-
ulation results for tf = 40 ns, α = 1.25 and β = 1 [10].
Despite the huge difference in time, the simulation fits
the points remarkably well. This phenomenon can be ex-
plained, following [14], by taking into account that the
simulations are of an ideal closed system, while the quan-
tum annealer is open and susceptible to noise. However,
one thing that still holds is the behavior of the success
rate vs the RCS value as simulated in Fig. 3.

B. Quantum and classical approach

As a final application, we explore the GP problem as
defined in section IIIA on the DW 2000Q 6 annealer for
graphs with sizes ranging from 20 to 60 vertices [10]. All
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FIG. 5: Comparison of the solutions found by the
DW 2000Q 6 annealer and METIS for graphs of different sizes
and connectivity. The number of cut edges (NC) and the
energies of the solutions (E) obtained by both methods are
studied.

graphs are randomly generated according to Erdös-Rényi
model [15] with probabilities p ∈ {0.2, 0.5, 0.8}, corre-
sponding to sparse, balanced and dense graphs, respec-
tively. An example of a graph with n = 40 and p = 0.2
is shown in Fig. 1b. We fix RCS = 0.25 and tf = 200 µs
and repeat the annealing 500 times.

The quality of GP solutions is evaluated by comparison
to METIS, a multilevel GP classical framework [16]. We
compute the number of cut edges for each partition and
the energy of the solutions, corresponding to the energy
of the ground state of HP . For every (n, p) value, we
study two different graphs and plot the average results
in Fig. 5. We are able to obtain comparable results in the
number of cut edges for all graphs of 20 and 30 vertices.

For dense graphs (p = 0.8), results are of similar quality
for all studied graphs as the ratios are close to one. The
tendency of the energy plot confirms that, for balanced
partitions, less number of cut edges implies more negative
ground state energy values.

V. SUMMARY AND CONCLUSIONS

In this work, we solved the graph partitioning prob-
lem by making use of quantum annealing. We were able
first to obtain simulation results of the DW 2000Q 6 an-
nealer for the 4-vertex graph of Fig. 1a with high overlaps
(> 0.95) for annealing times tf >∼ 6.25 ns. To phys-
ically implement the problem, we computed a minor-
embedding in the Chimera graph and simulated the em-
bedded problem. We were able to fit simulation results
with tf = 40 ns with results from an actual quantum
annealer with tf = 20 µs and 500 repetitions. We could
also simulate how the success rate varies with the RCS
value, obtaining maximum success rates for RCS ≥ 0.2.
Finally, we studied the quality of the solutions obtained
by the DW 2000Q 6 annealer by comparison to the solu-
tions given by METIS. The performance of the quantum
annealer for dense graphs was of particularly good qual-
ity as compared to existing classical algorithms. In a
future work, having more computational time, we would
extend the analysis to larger graphs.

Acknowledgments

I would like to thank Dr. Bruno Juliá Dı́az and Abel
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