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Abstract: Quantum Game Theory is the merging of Quantum Mechanics and Game Theory.
In this article we are going to study the modeling of the struggle to survive against several agents,
known as duels. We will present the classical version of the problem and we will formalize the
quantum version for two players, studying the best strategies that can be adopted depending on
the desired result. Since quantum entanglement allows players to revive, we will also analyze the
suitability of different counter-intuitive strategies for players, such as shooting into the air or even
shooting themselves. Finally we will see how to generalize this formalism for three players.

I. INTRODUCTION

In many situations, it is not easy to make the opti-
mal decision, and it can be important when money is
involved. During the 1930’s, this motivated some mathe-
maticians to model strategic decision making, and it was
finally formalized by J. von Neumann and O. Morgen-
stern in [1]. Game Theory was born, and in the 1950’s
it would be extensively developed and applied in many
different areas, such as economy, social sciences and bi-
ology.

The birth of quantum information theory and quan-
tum computing at the end of the 20th century led David
Meyer in 1999 to mix quantum physics and game the-
ory. He proposed in [2] a quantum version of the penny
flipover game: Two players, Alice and Bob, have a coin
in a box that is heads up. For three consecutive turns
starting with Alice, they have to flip the coin (or not),
without the other player seeing it. Alice wins if the coin
is still heads up after her second turn. In the classic ver-
sion of the game, Alice has a 50% chance of winning. In
the quantum version proposed by Meyer, the coin can be
modeled as the spin of an electron, where heads and tails
would equal the spin pointing up/down in the z-axis, and
flipping the coin is equivalent to rotating the spin on the
x-axis. If Alice can point the spin wherever she wants,
she will always have a winning strategy. Indeed, if she
points it on the x-axis on her first move, Bob’s coin flip
will have no effect on the state, and Alice will only have to
reverse her first move to keep the coin heads up. Giving
players access to the set of quantum strategies increases
their chances of winning against classical players.

In the same year, Eisert et al. published in [3] a quan-
tum version of the famous prisoner’s dilemma, formal-
izing a general protocol for two-player quantum games.
From then on, many articles proliferated, describing the
most popular games in game theory from a quantum per-
spective, such as the Monty Hall Problem, the battle of
the sexes or the game of chicken, among others. An ex-
haustive review of several of these games was made by
Adrian Flitney and Derek Abbott in [4], where they con-
clude that a quantum player always has an advantage
over a classical one.

These authors also formalized the quantum two and
three person duels in [5]. In this dangerous game, play-
ers will shoot each other in turns, where quantum shoot-
ing means flipping the spin of a 1/2−spin particle. This
game is richer, since both players have access to quan-
tum strategies, and they also study the quantum entan-
glement and decoherence of the states. Some years later,
Alexandre Schmidt and Milena Paiva revisited quantum
duels in [6], and expand on some of the results found by
Flitney and Abbott.

In this article we are going to study quantum duels,
replicating the formulation of [5] and [6] and extending
some results for different strategies. But first we are go-
ing to study duels from the perspective of classical game
theory.

II. CLASSICAL DUELS & TRUELS

Two gunfighters, Alice and Bob, duel for honor. What
strategy should they use to maximize their chances of
victory? From a game theory point of view the answer
is trivial: The best strategy is to shoot their opponent.
Suppose our duelists have one shot per turn, starting with
Alice. We will define marksmanship as the probability of
hitting the shot, and suppose that Alice’s is ā = 1/3
and Bob’s is b̄ = 1/2. After one round, both have a 1/3
chance to be dead. In fact, if we consider that the game
ends when one dies, the chances of victory are the same
for both. Alice makes up for her poorer marksmanship
by being the first person to shoot.

From a classical perspective, the game is much more
interesting if we add a third contender, whom we will
call Charlie. Suppose that in this three-person duel, also
known as truel, players can shoot each other sequentially
in alphabetical order, and that they have the option of
shooting into the air. If all of them were perfect shooters,
they would all end up shooting into the air. Indeed, if
one player shoots another player, the third will always
eliminate him. More generally, if the marksmanships of
Alice, Bob and Charlie are 0 < ā ≤ b̄ < c̄ ≤ 1, respec-
tively, the best strategy for Alice is always to shoot into
the air, since if she hit another player she would auto-
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matically be the target. However, the strategies for both
Bob and Charlie is to shoot each other as both want to
take out the best shooter.

An exhaustive analysis of this problem was made by
Kilgour in [7]. It can be seen that if the marksmanships
are ā = 1/3, b̄ = 2/3 and c̄ = 1, the probability that
Charlie is the only survivor is less than Alice’s. Again,
being the first to shoot and employing the best strategy
gives you a better chance of winning than just having a
good aim.

III. QUANTUM GAMES

Before formalizing the quantum version of the duel,
we have to define some general concepts about quantum
games. In analogy with quantum computing, the states
are represented by qubits, a linear combination of the ba-
sis states |0〉 and |1〉 of a two-dimensional Hilbert space.
Suppose we have two players, and each one is capable of
manipulating his own qubit. A pure quantum strategy
is a unitary quantum operator Û acting on the qubit.
Eisert et al. showed in [3] that pure quantum strategies
gave the same results as mixed classical strategies (i.e.,
assigning a probability to each pure classical strategy)
in two-player games. To unleash the full potential of
quantum mechanics, they decided to produce quantum
entanglement between the states of both players. Thus,
if the initial state is |0〉 ⊗ |0〉 = |00〉, after both players
make their moves we will have a final state

|ψf 〉 = Ĵ†
(
Û1 ⊗ Û2

)
Ĵ |00〉 , (1)

where Û1 and Û2 represent players 1 and 2 moves, respec-
tively; Ĵ is an entangling operator and Ĵ† the correspond-
ing disentangling operator in order to take a measure on
the final state. Maximum entanglement can be obtained
by choosing Ĵ such that Ĵ |00〉 = 1√

2
(|00〉+ |11〉).

When taking a measurement, the final state will be
one of four possible states |00〉 , |01〉 , |10〉 , |11〉. If each
player assigns a numerical value (payoff) Pij to the utility
of each of the possible states, the expected value of the
payoff for that player will be

〈$〉 =
∑

i,j=0,1

Pij |〈ij|ψf 〉|2 . (2)

Pure quantum strategies Û are elements of SU(2) and
can be written as

Û (θ, α, β) =

(
eiα cos (θ/2) ieiβ sin (θ/2)
ie−iβ sin (θ/2) e−iα cos (θ/2)

)
, (3)

where θ ∈ [0, π] and α, β ∈ [−π, π]. In particular, any
strategy of the form Û(θ, 0, 0) is equivalent to a mixed
classical move.

If both players have access to the quantum move
set and are aware of the other’s strategy, any move

Û1(θ, α, β) can be undone by playing the so-called mir-
acle move Û2(θ,−α, π2 − β). Thus, two-player quantum
games only make sense to be played if the other player’s
moves are unknown. Based on this model, we are going
to define quantum duels.

IV. QUANTUM DUELS

Alice and Bob duel again for honor, but now they de-
cide to apply the rules of quantum mechanics. There
are several ways to formalize the protocol of a two-player
quantum duel based on the principles described in sec-
tion III, and we will follow the formulation proposed by
Flitney and Abbott in [5].

A. Quantum Duel Rules

To make the game realistic, we will state the rules as
follows: Each player has control on the spin of an elec-
tron that is initially in state |1〉. A referee will operate on
the system formed by both electrons, applying the strate-
gies that the players had previously defined. Finally, the
referee will take a measurement of the final state, which
may be one of the four base states {|00〉 , |01〉 , |10〉 , |11〉}
of the 4-dimensional Hilbert space, where the first qubit
is the state of Alice’s electron and the second is Bob’s,
and will kill the player whose final state is |0〉. For sim-
plicity, we will say that players are alive or dead if their
state is |1〉 or |0〉, respectively; and that one player kills
(or revives) the other by flipping their qubit. Neither
player will have information about the strategies applied
by the other and, unlike the classical duel, the final state
will not be known until it is measured, so players could
continue playing even if they are dead.

Players will fire in turns starting with Alice, where in
this case firing means applying a unitary quantum oper-
ator on the state, as we have defined in Eq. (3). With
maximum generality, we will define the operator Alice-
shoots-Bob ÂB = ÂB(θ1, α1, β1) as

ÂB =
[
e−iα1 cos (θ1/2) |11〉+ ieiβ1 sin (θ1/2) |10〉

]
〈11|

+
[
eiα1 cos (θ1/2) |10〉+ ie−iβ1 sin (θ1/2) |11〉

]
〈10|

+ |00〉 〈00|+ |01〉 〈01| ,
(4)

where θ1 ∈ [0, π] is related with her shooting skills, and
α1, β1 ∈ [−π, π] are arbitrary phase factors. The opera-
tor Bob-shoots-Alice B̂A = B̂A(θ2, α2, β2) is constructed
by permuting the position of the qubits, and changing
the respective subscripts. By analogy with the classical
duel, the terms |00〉 〈00| and |01〉 〈01| indicate that Alice
cannot alter the state if her qubit is |0〉 (she cannot shoot
if she is dead). However, note that the term |11〉 〈10| is
counter-intuitive from a classical point of view, since it
implies that Alice can revive Bob.

Treball de Fi de Grau 2 Barcelona, January 20, 2023



Quantum Duels Ángel Prieto de la Cruz

The game starts with both players alive in the state
|11〉. Alice shoots first, bringing the state to ÂB |11〉,
and then is Bob’s turn, ending the first round with the
entangled state |ψ1〉 = B̂AÂB |11〉 equals to

|ψ1〉 =e−i(α1+α2)c1c2 |11〉+ iei(β2−α1)c1s2 |01〉
+ ieiβ1s1 |10〉 ;

(5)

where, from now on, we will write si = sin (θi/2) and
ci = cos (θi/2), for i = 1, 2.

The probability that Alice is the only survivor is given
by |〈10|ψ1〉|2 = s21, which has to be equivalent to the
probability that she hits her shot. Thus, we will define
Alice’s (Bob’s) marksmanship as ā = s21 (b̄ = s22), so the
probability that she (he) misses the shot is a = 1− ā = c21
(b = 1− b̄ = c22).

Note that the αi, βi phase factors do not affect these
probabilities. In particular, any strategy ÂB(θ1, α1, β1) is
equivalent to ÂB(θ1, 0, 0) which, as we saw in section III,
corresponds to a classical mixed strategy. The result of
this quantum duel does not differ at all from the classical
one after only one round.

After n rounds, the final state is obtained by repeatedly
applying these operators, |ψn〉 = (B̂AÂB)

n |11〉. If the
initial state is |11〉, the final state can never be |00〉, since
a dead person cannot shoot. Therefore, after two rounds
the final state will be

|ψ2〉 = (B̂AÂB)
2 |11〉 = K1 |11〉+K2 |10〉+K3 |01〉 . (6)

Explicit expressions of theseKj(θi, αi, βi) can be found in
Eq. (8), (9), (10) and (11) of [6]. It can be seen that, for
a two rounds duel, quantum entanglement takes effect,
making players able to flip back (revive) a qubit that
was already in state |0〉. The probabilities |〈jk|ψ2〉|2 of
each potential final state are calculated in Eq. (10) of [5],
and they are a function of θi and αi, but not of βi.

Now the strategy of the players is not only probabilis-
tic, because although the marksmanships (θi) are fixed,
they can decide a strategy by choosing the parameters
αi and βi. For this reason, it is worth asking what is the
best strategy that a player, let’s say Alice, can take to
maximize their chances of victory. However, first of all
we have to define what ”victory” means, that is, we have
to assign a payoff to each possible final state.

B. Best Strategy for a Variable Payoff

We can assign, without loss of generality, a payoff of
1 if Alice is the only survivor, P10 = 1; and a payoff
of 0 if Alice dies, P01 = 0. In articles [5] and [6], they
assign a payoff of 1/2 to both players ending up alive,
considering that it is not the ideal result for Alice, but
that she prefers it rather than dying. Since assigning
an average value seems arbitrary, in this section we will
study if the best strategy may be different when choosing
a variable payoff P11 = λ1 ∈ [0, 1], where the extreme

value λ1 = 0 means that Alice’s priority is to kill Bob;
and λ1 = 1 means that her priority is just to survive.

Substituting these values into Eq. (2), we can write the
expectation value for Alice’s payoff after two rounds as

〈$A〉 = |〈10|ψ2〉|2 + λ1 |〈11|ψ2〉|2 . (7)
This expected value for the payoff is a function of five

variables, 〈$A〉 = 〈$A〉 (θ1, θ2, α1, α2, λ1), so studying its
maximums is a very complicated task. However, since
the marksmanships are fixed and the players can know
each other’s, we can study some particular cases.

In [5], the authors showed that for ā = 1/3 and b̄ = 1/2
(and λ1 = 1/2, as stated), Alice’s Payoff will reach
a global maximum for (α1, α2) = (±π/3,∓2π/3) and
(α1, α2) = (±π, 0). We are going to study the particular
case α2 = 0, that is, if Bob is restricted to B̂A(θ2, 0, β2)
strategies. Since the probabilities do not depend on βi,
we can write the payoff as a function of α1, λ1, a = 1− ā
and b = 1− b̄,

〈$A〉 = λ1 + (1− λ1)a(1− a)
[
1 + b+ 2

√
b cos(2α1)

]
− λ1(1− b)

[
(1− a)2 − 2a(1− a)

√
b cos(2α1)

+ab(1 + a)− 2
√
a cos(α1)

(
ab− (1− a)

√
ab
)]
.

(8)

FIG. 1: Plot of the expectation value of Alice’s payoff in a 2
round quantum duel for ā = 1/3, b̄ = 1/2 and α2 = 0 , as a
function of α1 and λ1.

For example, for ā = 1/3 and b̄ = 1/2 we obtain that
α1 = ±π is a strategy that maximizes Alice’s payoff, for
all λ1 ∈ [0, 1]. So, the maximum found in [5] for α2 = 0
does not depend on λ1. However, for λ1 = 0 the global
maximum is also reached at α1 = 0, as we can see in
Fig. 1. That is, if Bob plays α2 = 0, it is better for Alice
to play α1 = 0 the more she prioritizes killing Bob than
surviving (λ1 → 0).

C. Different Strategies

Until now, we have only considered as a strategy to
choose the parameters of the shot. However, since in the
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quantum version a player can be revived, or can revive
another unintentionally, it might be a good strategy not
to shoot the other.

In [5] it is suggested that if Alice has a bad marks-
manship, her best strategy is to shoot into the air on her
second shot. This strategy is studied in a more general
way in [6], where some of the formulas and conclusions
of [5] are revised. We are going to do the calculations for
the α2 = 0 case and we will see if the results are different
for a variable payoff λ1.

Shooting into the air is equivalent to not shooting, so
the unitary operator is the identity. If Alice avoids firing
on the second turn, the final state after two rounds will
thus be

∣∣ψair
2

〉
= B̂AB̂AÂB |11〉,∣∣ψair

2

〉
=ieiβ1s1 |10〉+ e−iα1c1

(
e−2iα2c22 + s22

)
|11〉

+ 2ic1c2s2 cos(α2)e
i(β2−α1) |01〉 .

(9)

The probability that Alice dies is∣∣〈01∣∣ψair
2

〉∣∣2 = 4ab(1− b) cos2(α2), (10)

which is equivalent to Eq.(18) of [6] but is different to
Eq. (13) of [5], so we conclude that there is a misprint in
[5]. Calculating the other probabilities and substituting
into Eq. (7), the expected value of Alice’s payoff when
she shoots into the air is:〈

$air
A

〉
= 1 + (λ1 − 1)a− 4λ1ab(1− b) cos2(α2). (11)

As we can see, it does not depend on α1 or βi. However,
what interests us is not to maximize the function 〈$air

A 〉,
but to compare these maximums with those of 〈$A〉. In
other words, what we want is to maximize the difference
function 〈$dif

A 〉 = 〈$air
A 〉−〈$A〉. Indeed, the parameters for

which 〈$dif
A 〉 is positive will be those for which shooting

into the air is a better strategy.
This difference function, however, does depend on α1.

If we again restrict Bob to play α2 = 0 and we consider
him an intermediate shooter (b̄ = 1/2), we can explic-
itly calculate the function by subtracting Eq. (11) from
Eq. (8). In particular, if we study the values for which
the function 〈$A〉 is maximal, α1 = ±π, we obtain the
functional dependency represented in Fig. 2.

It can be seen in Fig. 2 that the function is positive for
low values of a and λ1, and that the global maximum is
reached for a = 0 and λ1 = 0. Therefore, only if Alice is
a good shooter and her priority is to kill Bob, should she
avoid the second shot. This makes sense, because with
the first shot it would be very likely that she would have
already killed Bob, so by shooting into the air she avoids
reviving him.

Motivated by the fact that a player can revive and
be revived, it might be interesting to study if shooting
yourself can be in some cases a good strategy to win a
quantum duel. To build an operator Alice-shoots-Alice,
ÂA, one can consider that it has to be equivalent to Bob
shooting her but with probability of success 1. Thus,
ÂA = B̂A(±π/2, α1, β1). However, letting Alice play

FIG. 2: Plot of 〈$dif
A 〉 in a 2 round quantum duel when Alice

fires into the air on his second turn, for b̄ = 1/2, α1 = ±π and
α2 = 0 , as a function of a and λ1.

such a quantum strategy violates one of the dueling rules:
that a player cannot shoot while dead. If we break this
rule, a player could revive himself and the game would
lose the analogy with the classical duel.

An Alice-shoots-Alice operator consistent with our
quantum duel will flip Alice’s spin if it is |1〉, and do
nothing if it is |0〉. Such operator is equivalent to suicide
in the classical duel, where it is an automatically losing
strategy. This is not the case in the quantum version, as
Bob can revive her.

Suppose that in the first round Alice shoots herself,
bringing the state to |01〉, then Bob shoots and we have

∣∣ψsui
1

〉
= B̂A |01〉 = eiα2c2 |01〉+ ie−iβ2s2 |11〉 . (12)

The probability that Alice will be revived after one round
is
∣∣〈11∣∣ψsui

1

〉∣∣2 = s22 = b̄. This implies that if Bob is a per-
fect shooter, Alice will always be revived. The function
〈$dif

A 〉 = 〈$sui
A 〉 − 〈$A〉 is

〈$dif
A 〉 =

[
b̄− (1− ā)(1− b̄)

]
λ1 − ā. (13)

This function is positive when Alice is not a good shooter
but Bob is, and is highest when λ1 → 1. For example,
for ā = 1/3 and b̄ = 2/3, we get 〈$dif

A 〉 > 0 if λ1 > 3/4.
Counter-intuitively, it is a good strategy for Alice to com-
mit quantum suicide the more she prioritizes surviving.

Many other strategies can be analyzed, such as letting
players take measurements and vary their strategies be-
tween rounds, or introducing partial decoherence of the
system after each move. We will see what happens if we
add a third player to the game.
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V. QUANTUM TRUELS

Now Charlie joins the duel, and we will identify him
with the subscript 3. The new initial state will be |111〉,
and, as proposed in [5], the operator ÂB of Eq. (4) can
be generalized by adding Charlie as an observer,

ÂB =
∑
j=0,1

{[
e−iα1c1 |11j〉+ ieiβ1s1 |10j〉

]
〈11j|

+
[
eiα1c1 |10j〉+ ie−iβ1s1 |11j〉

]
〈10j|

}
+

∑
jk=0,1

|0jk〉 〈0jk| .

(14)

The other shooting operators ÂC , B̂A, B̂C , ĈA and ĈB

can be constructed by permuting the corresponding
qubits and changing the subscripts. For simplicity, in
this section we will study the case αi = βi = 0, for
i = 1, 2, 3. The rules are the same as those defined for
the classical truel in section II, but with the fundamental
difference that players cannot take measurements until
the game is over. Therefore, if their marksmanships are
0 ≤ ā ≤ b̄ < c̄ ≤ 1, Alice does not have any incentive
to shoot into the air in the first round because no one is
going to target her even if she kills another player. Thus,
the best strategy for all of them will be trying to elimi-
nate the best shooter, so after one round we will have

|ψ1〉 =ĈBB̂CÂC |111〉 = (c1s2 + c2s1) |110〉
+ (c1c2 − s1s2) (c3 |111〉+ s3 |101〉) .

(15)

We see that there are only three possible final states,
and that Charlie can only survive if Alice does. In
fact, the probability that Charlie survives this round is
|〈111|ψ1〉|2+ |〈101|ψ1〉|2 = (c1c2 − s1s2)

2. Note that this
probability can be zero if c1c2 = s1s2, which is equiva-
lent to the condition ā = 1 − b̄. This implies that if, for
example, Alice’s marksmanship is ā = 1/3 and Bob’s is
b̄ = 2/3, then Charlie will always die regardless of his
marksmanship, and the second round will be a Duel be-
tween Alice and Bob.

Duels can easily be generalized to an arbitrary number
of players by adding observers to the shooting operator
in Eq. (14). However, the number of different cases that
appear makes the study of these games very complex.

VI. CONCLUSIONS

The objective of this article was to introduce the for-
malization of quantum duels and see how players could
maximize their payoffs by applying different strategies.

First we have studied the duel of two players up to two
rounds, and we have seen that if ā = 1/3, b̄ = 1/2 and
Bob is restricted to play α2 = 0, Alice always maximizes
her payoff by playing α1 = ±π. Also, if the payoff of
surviving with Bob is 0, she also maximizes with α1 = 0.

Secondly we have seen that in some cases it is a good
strategy for Alice to shoot into the air. In particular, with
the mentioned marksmanships and α1 = ±π, α2 = 0,
Alice gets a bigger payoff by shooting into the air on her
second turn if she is a good shooter and prioritizes killing
Bob over surviving. We have also seen that Alice can
choose to shoot herself on her first turn for a one-round
duel, since if Bob has a good aim he will revive her. In
fact, if Alice does not have a good aim and her priority is
to survive, she gets a bigger payoff by committing suicide.

Finally we present a formalization of the truels for
αi = βi = 0 and, unlike the classical case, here Alice
has no incentive to shoot into the air, and both Alice
and Bob prefer to shoot Charlie. If Alice’s and Bob’s
marksmanships meet the condition ā = 1 − b̄, Charlie
always dies and his strategy is irrelevant.

A quantum duel is a paradigmatic game of quantum
game theory, since the shooting operators allow us to see
how quantum entanglement affects states, and counter-
intuitive results appear shortly after we start playing
with them. For all this, quantum duels are more in-
teresting than the classical ones. Moreover, playing with
electron spins is much safer than playing with guns.
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