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Abstract 25 

The ability to detect human fecal pollution in water is of great importance when 26 

assessing the associated health risks. Many microbial source tracking (MST) markers 27 

have been proposed to determine the origin of fecal pollution, but their application 28 

remains challenging. A range of factors, not yet sufficiently analyzed, may affect MST 29 

markers in the environment, such as dilution and inactivation processes. In this work, a 30 

statistical framework based on Monte Carlo simulations and non-linear regression was 31 

used to develop a classification procedure for use in MST studies. The predictive model 32 

tested uses only two parameters: somatic coliphages (SOMCPH), as an index of general 33 

fecal pollution, and human host-specific bacteriophages that infect Bacteroides 34 

thetaiotaomicron strain GA17 (GA17PH). Taking into account bacteriophage dilution 35 

and differential inactivation, the threshold concentration of SOMCPH was calculated to 36 

be around 500 PFU/100 mL for a limit of detection of 10 PFU/100 mL. However, this 37 

threshold can be lowered by increasing the analyzed volume sample, which in turn 38 

lowers the limit of detection. The resulting model is sufficiently accurate for application 39 

in practical cases involving MST and could be easily used with markers other than those 40 

tested here. 41 
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Highlights  53 

 54 

• A model to predict the content of human fecal pollution in water was developed. 55 

• Human pollution can be predicted using only two microbiological parameters 56 

(SOMCPH and GA17PH). 57 

• The effect of natural and artificial inactivation was considered in the predictions. 58 

• The model can be used in MST studies with other markers.  59 

  60 



1. Introduction 61 

Waterborne pathogens originating from fecal pollution are major contributors to 62 

infectious disease outbreaks around the world.  Fecal pollution can reach water bodies 63 

from various sources, including wildlife and a direct discharge of human fecal waste 64 

during rainfall events (Garcia-Aljaro et al. 2017). The risk to human health depends on 65 

the pathogen type and the fecal load. Microbial source tracking (MST) is an emerging 66 

area of applied environmental microbiology that describes a suite of methods and 67 

investigative strategies that can be used to detect fecal water pollution from different 68 

hosts, such as humans, livestock, and wildlife. 69 

Relatively successful MST approaches have been based on the detection of microbial 70 

markers (host-specific pathogens or commensal microorganisms) (Harwood et al., 71 

2011; Jofre et al., 2014; Lee et al., 2011; Lee et al., 2009; McMinn et al., 2014; Noble 72 

et al., 2003; Stapleton et al., 2007), using phenotypic and molecular-based methods 73 

(Caldwell et al., 2007; Dubinsky et al., 2012; Gomez-Donate et al., 2012; Mauffret et 74 

al., 2013; Gomez-Donate et al., 2016; Blanch et al., 2016; Shanks et al., 2016; 75 

Harwood et al., 2017; Jebri et al., 2017). However, a better discrimination is achieved 76 

when MST markers are used in combination rather than individually. Predictive models 77 

recently developed with inductive machine learning systems accurately predicted the 78 

source of fecal water contamination over a wide European geographical area; 4 main 79 

pollution inputs were considered (human, porcine, bovine and poultry), not only at point 80 

source but also after dilution, and the environmental decay of the markers was also 81 

taken into account (Balleste et al. 2020). As these prediction models involve a variable 82 

number of parameters, the laboratory and computing resources may be unaffordable for 83 

the end-user. However, a previous multi-laboratory study of several chemical and 84 

microbiological markers identified a set of only two variables that allowed a correct 85 



classification of wastewaters and slurries of human and non-human fecal origin at point 86 

source. This set, comprising the ratio between the logarithmic values of somatic 87 

coliphages (SOMCPH) and bacteriophages infecting strain GA17 of Bacteroides 88 

thetaiotaomicron (GA17PH), has been proposed as a discriminate marker of human or 89 

animal pollution (Blanch et al., 2006, Muniesa et al., 2012).  90 

Bacteriophages infecting certain strains of Bacteroides spp. are mostly detected in fecal 91 

pollution of human origin (Ebdon et al., 2007; Jofre et al., 2014; McMinn et al., 2014; 92 

Puig et al., 1999; Tartera et al., 1989). As well as host-specificity, these bacteriophages 93 

have other characteristics of a practicable fecal marker, such as feasible numerical 94 

detection and temporal stability. Previous studies have shown that the prevalence of 95 

phages in human-specific bacterial strains of Bacteroides might vary among human 96 

populations, so the bacterial strain should be chosen on the criteria of human-specificity 97 

and the highest bacteriophage count. Bacteroides thethaiotaomicron GA17 has been 98 

tested for human specificity in several locations and has given an excellent performance 99 

in some countries of Europe (Payán et al., 2005; Ballesté et al. 2021), South America 100 

and Northern Africa (Venegas et al., 2015; Yahya et al., 2015). Other Bacteroides host 101 

strains such as B. fragilis GB124 have proved suitable for determining human-specific 102 

phages in other regions (Edbon et al., 2011). 103 

The aim of the current study was to assess whether it is possible to predict the fraction 104 

of human fecal pollution in a water body using only two variables, SOMCPH and 105 

GA17PH, which have already been successfully used to predict human versus non-106 

human fecal pollution at point source. The effects of dilution and environmental decay 107 

in the receiving waters on both selected indicators were evaluated. Advantages and 108 

limitations are discussed, including the sampling size, consequences of indicator 109 

inactivation, and the dilution effects. 110 



 111 

2. Material and methods 112 

2.1. Bacteriophage enumeration 113 

Bacteriophage enumeration was carried out according to ISO standards 10705-2 (ISO, 114 

2000) and 10705-4 (ISO, 2001). Briefly, wastewater samples were filtered through low 115 

protein-binding polysulfone membrane filters with a 0.22 µm pore size. Filtered 116 

samples were diluted 100-, 1,000- and 10,000-fold. Phages in each diluted sample were 117 

enumerated using a double-layer agar plaque assay procedure as described in the ISO 118 

standards (ISO, 2000, 2001). For somatic coliphages, the host was Escherichia coli 119 

strain WG5 whereas for the GA17PH titration the strain GA17 of Bacteroides 120 

thethaiotaomicron was used.  Briefly, DAL procedure was carried out by pouring 2.5 121 

mL of a complete semisolid agar + 1 mL of the sample + 1 mL of a culture of the host 122 

strain. After adding the host bacteria, each tube was mixed carefully avoiding bubble 123 

formation and the content was poured onto an appropriate agar plate. For somatic 124 

coliphages the composition of the agar plates was Modified Scholtens’ Agar (MSA) and 125 

the semisolid (ssMSA) was made using the half mass agar of the MSA. ssMSA can be 126 

supplemented with nalidíxic acid to a final concentration of 250 µg/mL when a high 127 

background microbiota is expected. 128 

For titration of GA17PH, the media used for the agar plates was Bacteroides Phage 129 

Recovery Medium Agar (BPRMA) and the overlay was performed using ssBPRMA. 130 

Once the semisolid was poured, agar plates were allowed to solidify and incubated 131 

upside-down at (36 ± 2) °C for (18 ± 2) hours. Plates for GA17PH titration were 132 

incubated in anaerobiosis. After incubation plaques were counted. 133 



Quantification of GA17PH in non-human sewage was carried out by titrating 10 134 

replicates of 1 mL of undiluted wastewater. Although the limit of detection in these 135 

conditions was 1 PFU/10 mL, it was assumed to be 10 PFU/100 mL. 136 

 137 

2.2. Sampling 138 

2.2.1 Samples used to build the models 139 

Human SOMCPH and GA17PH were measured in 53 samples collected from raw 140 

influents of four municipal wastewater treatment plants (41°16'36.0"N, 2°02'30.9"E; 141 

41°31'29.9"N, 2°25'30.7"E; 41°48'29.2"N, 3°01'47.0"E; 42°14'39.5"N, 3°06'13.1"E). 142 

Non-human bacteriophages were measured in 33 samples collected from sewage of six 143 

abattoirs dealing exclusively with pigs, poultry and cattle, in which GA17PH was not 144 

detected. The human and non-human SOMCPH and GA17PH distribution functions 145 

were determined in these sets of samples.  146 

To determine the degree of variability in a replica, the relative standard deviation (RSD) 147 

of human GA17PH was assayed from 43 counts of the same 1,000-fold diluted sample 148 

from urban raw wastewater.  149 

The effect of bacteriophage inactivation due to wastewater treatment was determined 150 

from two secondary effluents of two wastewater treatment plants ((41°16'36.0"N, 151 

2°02'30.9"E ; 41°31'29.9"N,  2°25'30.7"E; 108 samples) and from one tertiary effluent 152 

(41°31'29.9"N, 2°25'30.7"E; 65 samples: 12 chlorinated effluents, 40 UV-treated 153 

effluents and 13 samples submitted to both treatments). To model the natural decay of 154 

bacteriophages in fresh waters, data were extracted from Durán et al. 2002.  155 

Briefly, natural inactivation of somatic coliphages and Bacteroides sp host phages was 156 

measured in summer and winter seasons. A settled urban raw wastewater was diluted in 157 

proportion 1/50 with river water, which content of bacteriophages between 3 and 4 158 



decimal logarithmic units lower than counts in wastewater. That was to avoid 159 

interference in the detection of the added bacteriophages and minimized the probability 160 

of occurrence of bacteriophage replication. The inactivation study was carried out in the 161 

site where samples were collected. Samples to measure inactivation, were prepared by 162 

placing the spiked water river samples into dialysis tubes (cut-off 14 kDa) which, were 163 

conveniently sealed and placed 20–25 cm deep in the river water in the same area where 164 

it had been collected. Inactivation was followed by taking samples and titrating them at 165 

various time intervals. 166 

2.2.2 Samples used to test the models 167 

The effect of artificial inactivation in treated wastewaters was evaluated using 54 168 

samples from secondary and 36 from tertiary effluents. 169 

In addition, 102 samples were collected from two rivers in Spain receiving pollution 170 

from different sources (urban and rural). The Llobregat River (41°17'07.8"N, 171 

2°03'09.9"E ; 14 samples), which in its lower transect flows through a highly populated 172 

zone, served as a model of an anthropogenically contaminated river (Köck et al., 2011). 173 

Its fecal pollution comes mainly from secondary treated wastewaters directly discharged 174 

into the river, as well as from diffuse pollution and run-off, mostly in its upper course. 175 

In contrast, the Riudaura Stream (42°11'53.5"N, 2°21'44.5"E ; 88 samples) was used as 176 

a model of a water course with a low level of human pollution, the main fecal source 177 

being reclaimed water, farming and potentially some septic overload from scarcely 178 

populated areas.  179 

 180 

2.3 Probability distribution fitting 181 



The Monte Carlo method (MC) involves the use of probability distribution functions 182 

(PDF). Therefore, selecting the most appropriate distributions to characterize the 183 

probability is one of the most important steps in MC.  184 

Statistical analyses and modeling were carried out using the statistical software package 185 

R version 3.5.3 (R Core Team, 2019). Distribution fitting, distribution simulation and 186 

correlation bootstrapping were performed using the R packages fitdistrplus (Delignette-187 

Muller & Dutang, 2015), ExtDist (Wu et al., 2015), mc2d (Pouillot & Delignette-188 

Muller, 2010), RVAideMemoire (Hervé, 2019) and Matching (Sekhon, 2011). 189 

Distribution functions were selected according to their Akaike information criterion and 190 

their goodness-of-fit using a bootstrap version of the Kolmogorov-Smirnov (KS) test. 191 

 192 

2.4. Development of the predictive model 193 

Four predictive models were developed. The ratios between the log-values of SOMCPH 194 

and GA17PH and the Spearman’s correlation coefficient (rho value) of both parameters 195 

were used as predictor variables (covariables).  196 

As already mentioned, the ratio between the logarithms of SOMCPH and GA17PH has 197 

been proposed as a tool for correctly classifying wastewaters and slurries of human and 198 

non-human origin at point source (Belanche-Muñoz &  Blanch, 2008). In the case of a 199 

simple mixture of two wastewater samples, one from a human and the other from a non-200 

human source, the ratio of logarithms of both bacteriophages can be defined as 201 

Ratio=log10((Fractionhuman·SOMCPHhuman) + (Fractionnon-human·SOMCPHnon-202 

human))/log10((Fractionhuman·GA17PHhuman)+(Fractionnon-human·GA17PHnon-human); where 203 

Fractionnon-human = 1 - Fractionhuman. 204 



To develop the models (Figure 1), the first step was to determine the PDF for each 205 

marker (SOMCPH and GA17PH) in urban raw wastewater and abattoir sewage, which 206 

were considered as the respective point sources of human and non-human pollution.  207 

 208 

Figure 1. Diagram of the steps used to obtain the simulated mixture matrix.  209 

 210 

 211 

Four PDFs were defined: a function for GA17PH in human polluted water samples, 212 

which was defined under a normal distribution; a function for GA17PH in non-human 213 

polluted water samples, which was defined as a constant value; and two gamma 214 

distribution functions for SOMCPH in human and non-human polluted water samples. 215 

Distribution functions were truncated at the minimum value, which was set to 10 PFU/ 216 

100 mL. When necessary, values were discretized by rounding. As selecting the most 217 

appropriate PDF is the most important step in developing the predictive model, outlier 218 

and extreme values were removed using Grubb’s test (Grubbs, 1950).  219 



The goodness of the bacteriophage distribution fitting was assessed using a bootstrap 220 

version of the Kolmogorov-Smirnov test. When several functions fitted the data, 221 

Akaike’s information criterion (AIC) was used. AIC, which is based on information 222 

theory, provides a “measure” of the relative quality of a statistical model. When several 223 

candidate functions can be satisfactorily implemented with the same dataset, the model 224 

with the lowest AIC best explains the data. 225 

The resulting PDFs were used in a MC simulation of 101 mixtures of wastewaters, 226 

containing a range of human pollution from 0 % to 100 % with a step of 1 %. For each 227 

mixture, 100 runs were simulated and a bootstrapping of 5,000 replicas was carried out 228 

in each run. Each replica was calculated by resampling each bacteriophage from its own 229 

PDF.  230 

The values of rho and the ratios between the two bacteriophages were obtained from the 231 

simulated cases. To avoid outliers in the simulations, only those values that lay within 232 

the 97.5% confidence interval of the PDF were allowed. 233 

Spearman’s correlation was determined in human samples. The confidence interval for 234 

the rho parameter was calculated by bootstrapping (1,000 replicas) from the original 235 

human data set. This confidence interval was used as a control step, only allowing 236 

simulated mixtures into the simulation if the correlation of the simulated human portion 237 

lay within the bootstrapped confidence interval of the original human set. 238 

Moreover, the human GA17PH RSD was used as an additional control step to prevent 239 

overdispersion in the bootstrap replicas. In the bootstrapping step with 5,000 replicas, 240 

only simulated GA17PH samples with an RSD up to 1.5 times the 97.5th percentile of 241 

the previously assessed RSD were allowed. 242 

After the simulation, a matrix containing 10,100 rows of human content percentage, 243 

bacteriophage ratios and correlations (101 simulated mixture sets, with each mixture 244 



containing 100 values) was obtained. This simulated matrix of mixtures was used to 245 

classify and predict the percentage of human content. The four models were developed 246 

as follows. First, a machine learning classifier algorithm was used with only the 247 

bacteriophage ratio as a predictor variable (1); the impact of correlation on classification 248 

was then taken into account (2). A classification model based only on regression 249 

analysis (3) was developed to compare the results with those of the two machine 250 

learning classification models. This comparison would serve as a control of the 251 

synthetic generation of samples, as an incorrect generation and sample selection would 252 

result in an overfitted classification. Finally, a regression machine learning model was 253 

trained (4) to predict the numeric percentage of the human content of the samples based 254 

on the bacteriophage ratio and correlation. All models were evaluated using independent 255 

samples of known pollution source. 256 

 257 

2.4.1 Classification of the samples by machine learning 258 

Machine learning classification was carried out using the R package caret (Kuhn et al., 259 

2019). Three classification groups were arbitrarily defined: a “non-human class” for 260 

samples containing ≤ 33 % of human content; a “mixed class” for samples containing 261 

from 33 % to 66 % of human content; and a “human class” for samples containing ≥ 66 262 

% of human content. 263 

Briefly, the simulated matrix of mixtures was randomly split into two sets: a training set 264 

(70 % of the samples), which was used to train the learning algorithm; and a validation 265 

set (the remaining 30 %), which was used to validate the predictions. One classification 266 

model was developed using the bacteriophage ratio as a predictor variable, whereas in 267 

the second classification model the predictor variables were the bacteriophage ratio and 268 

Spearman’s correlations.  269 



The training was carried out with the KNN classifier, using the three groups against 270 

their corresponding predictor variables with a 10-fold cross-validation. The accuracy of 271 

the classification was evaluated with a confusion matrix using the validation set. 272 

 273 

2.4.2 Classification of the samples by regression analysis 274 

A classification model based on regression was developed using a non-linear mixed 275 

effects model of regression analysis based on a linear-quadratic rational model ((a + 276 

b·x)/(1 + c·x + d·x2)) . Values of the human content of the simulated matrix of mixtures 277 

were fitted against the simulated ratio values.  278 

As in a usual regression, the values of the four parameters (a, b, c, and d) were 279 

determined. In addition, two parameters (a and b, specified as random effects) were 280 

allowed to vary in order to adapt the curve for the values of each run.  281 

The starting values for the regression were obtained using the library minpack.lm 282 

(Elzhov et al., 2016) and the mixed effects analysis was carried out using the library 283 

nlme (Pinheiro et al., 2019). 284 

To verify the goodness of the regression model, a linear regression between the 285 

predicted human content values versus the simulated human content values was carried 286 

out. 287 

The same three classification groups were defined and used to determine the accuracy 288 

of the predicted classification groups. Notably, this model involved all the data from the 289 

matrix mixture.  290 

 291 

2.4.3 Regression with machine learning 292 

As in the machine learning classification, the simulated matrix of mixtures was 293 

randomly split into training (70 %) and validation (30 %) sets. Training was carried out 294 



against the percentage of human content in the samples. The bacteriophage ratio and 295 

correlation were used as predictor variables. 296 

The KNN learning algorithm was trained with a 10-fold cross-validation. Finally, after 297 

the training, the goodness of fit was assessed using the validation set. 298 

 299 

2.4.4 Performance metrics used to evaluate machine learning models 300 

To evaluate the performance of this models several metrics were used. 301 

For classification models, the value of the sensitivity, specificity, accuracy and the 302 

Cohen’s Kappa were determined using a confusion matrix. The three first parameters 303 

score between 0 to 1. Sensitivity refers to the true positive rate that is a measure of the 304 

proportion of positives that are correctly identified. Specificity refers to the true 305 

negative rate, which is a measure of the proportion of negatives that are correctly 306 

identified. Accuracy is a measure of how well a binary classification test correctly 307 

identifies. In general, if the value gets higher, the better model is. 308 

Concerning to Cohen’s Kappa, the Kappa value provides a measure of the degree of 309 

agreement. That parameter is based on the accuracy and it varies between -1 to 1. When 310 

it scores 1 indicates a perfect agreement in the classification, a score of 0 indicates an 311 

agreement not better than chance; and a negative Kappa means that there is less 312 

agreement than would be expected by chance.  313 

For classification and regression models, another parameter to determine the 314 

performance is the area under the ROC curve (AUC). Although AUC values can be 315 

between 0 and 1, usually, it lies between 0.5 to 1. An AUC > 0.75 indicates a good 316 

performance, an AUC > 0.90 implies that the performance of model is excellent and an 317 

AUC = 1 means that the performance of the model is perfect 318 



Besides AUC, for regression were used the coefficient of determination (R2), the mean 319 

absolute error (MAE) and root mean squared error (RMSE). The coefficient of 320 

determination scores between 0 and 1 and how well performances the regression model. 321 

MAE and RMSE are two metrics to measure the difference between the real values and 322 

the predicted ones. 323 

 324 

2.4.5 Non-parametric tests used for comparing two or more samples. 325 

Non-parametric test are used when the data cannot be assumed to be normally 326 

distributed. Two samples comparison has been carried out using the Wilcoxon signed 327 

rank test with continuity correction, which is a non-parametric alternative to two-sample 328 

t-test to determine whether the medians of the samples are equal. 329 

When more than two samples were compared, the Kruskal-Wallis test was used. This 330 

test is an alternative to one-way ANOVA test by extending the two-samples Wilcoxon 331 

test to more than two groups.  332 

 333 

2.5 Evaluation of the models with real samples 334 

Although the machine learning models included a set of samples for their validation, the 335 

four models were evaluated using several sets of real samples of different origins.  336 

The variability of bacteriophage counts in the environmental samples was simulated by 337 

taking into account different sample sizes (3 to 16 samples). 338 

 339 

2.5.1 Estimation of minimum sample size 340 

Regarding phage variability, an important issue arises related to it, and it is how 341 

determine the minimum sample size to make appropriate inferences about these 342 

bacteriophage populations. Two approaches were used to estimate the minimum sample 343 



size. The first one assumed that the bacteriophage ratios can be defined under a normal 344 

distribution; and the sample size for the mean is estimated as N = (z2· σ2)/e2, where N is 345 

the sample size, z is the abscissa of the normal curve that cuts off an area α at the tails 346 

(≈1.96 for an α = 0.05, which corresponds to a confidence interval of 95%), e is the 347 

desired level of precision and σ2 is the variance of the population. 348 

In the second approach, which also assumes a normal distribution of the phage ratios, 349 

the minimum sample size was determined using library biotools (da Silva et al., 2017). 350 

The confidence interval of the relative standard deviation of GA17PH in the human 351 

samples and a bootstrap of 10,000 replicas was used. 352 

 353 

2.5.2 Minimum bacteriophage concentrations required for predictions 354 

In this study, the minimum bacteriophage concentrations were calculated to ensure the 355 

predictions of the machine learning regression model were valid. The following three 356 

premises were assumed: 1) SOMCPH and GA17PH are randomly distributed in 357 

wastewater matrices. 2) The dilution process equally affects both bacteriophages. 358 

As the concentration of GA17PH in wastewater samples was lower, it was used to 359 

calculate the dilution limit. 3) The maximum admissible dilution fold provides less than 360 

5 % of GA17PH-negative samples.  361 

Briefly, 100 bootstrapped simulations were run, performing a dilution process with 362 

1,000 replicas. Thus, water matrices contained different concentrations of GA17PH (its 363 

distribution function previously calculated), which were randomly sampled and diluted 364 

from 100- to 500,000-fold, and for each dilution fold the probability of 365 

presence/absence was calculated according to a Poisson likelihood.  366 

 367 

2.5.3 Artificial inactivation of SOMCPH and GA17PH in wastewater treatments 368 



Differential inactivation or survival of the two bacteriophages in water matrices may 369 

significantly affect the ratio and correlation, thereby altering the model prediction.  370 

One way to correct the bias caused by artificial treatments would be to study their effect 371 

on the selected bacteriophages and adjust the prediction models according to the level of 372 

inactivation. The main drawback of this approach is that it requires knowing the 373 

inactivation at one particular point. As the efficiency of different treatments may vary 374 

according to the physicochemical properties of the water matrix, an approximation may 375 

be achieved by using empirical or probability distribution functions related to the 376 

inactivation of each bacteriophage, a strategy used in microbial risk assessment. 377 

Briefly, a model with and without taking into account artificial inactivation was 378 

evaluated by replacement sampling, in which groups of 3 to 16 samples were randomly 379 

assembled to mimic different levels of replicas. The human content was determined 380 

twice for each group, once using the data as is, and then by adding the possible 381 

inactivated bacteriophages according to their own inactivation distribution function. 382 

This evaluation involved 100 replicas, in which the results comprised the effect of the 383 

different number of replicas (from 3 to 16) and the effect of the differential inactivation 384 

on the prediction of the human pollution content. 385 

 386 

2.5.4 Natural inactivation of SOMCPH and GA17PH in river water matrices 387 

To determine the effect of environmental decay on both bacteriophages, data were used 388 

from Durán et al. (2002), who assessed the natural decay of SOMCPH and GA17PH in 389 

river waters during the winter and summer seasons. Using these data, the bacteriophage 390 

decay was adjusted to two models, which were selected according the Akaike 391 

Information Criterion (AIC). One of the models was based on a power function 392 

(a·timeb), which was used for SOMCPH, and the other based on the Gompertz relation 393 



(a·exp(-exp(b – c·time))), which was used for GA17PH. As the environmental decay of 394 

both bacteriophages differs according to season, a nonlinear mixed effect regression 395 

model was assayed for each one. For the sake of simplicity, in both cases only one 396 

variable was selected as a random parameter, based on the criteria of overall R2 397 

achieved in the regression, the homoscedasticity and the normality of the residual 398 

distribution. 399 

 400 

This evaluation involved 100 replicas, in which the results comprised the effect of 401 

natural decay at 0, 72, 120, 160 and 360 hours, and the sampling size (from 3 to 16). For 402 

each bacteriophages, two models of prediction were used (summer and winter seasons), 403 

which were used to rectify the bacteriophage counts and calculate bacteriophage ratios 404 

and correlations. The human pollution content was predicted using the machine learning 405 

regression model.  406 

 407 

2.5.5 Evaluation procedure 408 

Models were evaluated using water samples of known origins: secondary and tertiary 409 

treated effluents and river water. The limited number of samples was artificially 410 

increased by resampling with replacement. Samples were randomly assembled in 411 

groups of 3 to 16 to mimic different levels of replicas, and the human content was 412 

determined for each group. This step was carried out 100 times. The goodness of 413 

prediction of the classification models (mixed effect regression, and the two machine 414 

learning classifiers) was measured using accuracy, and R2 was used for the machine 415 

learning regression. Additionally, the effects of artificial inactivation by wastewater 416 

treatments and natural decay were taken into account. 417 

 418 



3. Results 419 

3.1. Bacteriophage concentration in the analyzed water samples 420 

After the removal of outlier and extreme values, a total of 245 water samples were 421 

selected: 41 from urban sewage to determine human fecal pollution and 31 from abattoir 422 

sewages for non-human contamination were used to obtain the bacteriophage PDF 423 

(Table 1) and, 108 samples from secondary and 65 from tertiary treated urban sewage 424 

were assessed to determine the differential inactivation of both bacteriophages in 425 

wastewater treatments. 426 

To evaluate the models, a total of 185 water samples of known sources (Table 2) were 427 

submitted to resampling with replacement. These samples were used to determine the 428 

feasibility of prediction and how this was affected by taking into account 429 

inactivation/decay.  430 

To analyze natural decay, 14 samples from an urban human-polluted river (Llobregat 431 

River), and 81 samples from a water course considered to be without human pollution 432 

(Riudaura Stream) were used. 433 

In all samples, bacteriophage counts ranged from 100 to 104 PFU/100 mL for GA17PH 434 

and from 103 to 106 PFU/100 mL for SOMCPH. 435 

 436 

3.2. Definition of the probability distribution functions of the bacteriophages 437 

Almost all the bacteriophage distributions in the various water types were satisfactorily 438 

adjusted to a gamma (SOMCPH) or normal (GA17PH) function, The shape and rate of 439 

the adjusted gamma functions, were respectively, of  2.817 and 7.021·10-7 in human 440 

samples and 0.959 and 1.105·10-7 in non-human samples. GA17PH in human samples 441 

displayed a mean of 8.335·104 and a standard deviation of 4.818·104. GA17PH in non-442 

human fecal samples had to be defined as constant (Table 3), because, in contrast with 443 



other studies (Gomez-Donate et al., 2011; Payán et al., 2005), no GA17PH 444 

bacteriophages were detected in non-human samples. It was consequently adjusted to 10 445 

PFU/100 mL, which is very close to the value obtained by Gómez-Doñate et al. (2011), 446 

who detected five GA17PH-positive samples in a non-human set of 125 sewage 447 

samples (sampling volume of 10 mL), with an average value of GA17PH in non-human 448 

samples of 12 PFU/100 mL. 449 

SOMCPH and GA17PH were also tested for correlation and dependency. In non-human 450 

wastewater samples, the GA17PH and SOMCPH variables were independent and non-451 

correlated, as GA17PH was adjusted to constant as stated above. 452 

SOMCPH and GA17PH from human fecal wastewater samples showed a statistically 453 

significant dependency (p-value ≤ 0.05) with a Spearman’s correlation coefficient of 454 

0.514. 455 

 456 

3.3 Classification with the machine learning models 457 

Two classifications were carried out with the KNN algorithm and three classes were 458 

defined according to the origin of the pollution. The classification based exclusively on 459 

the ratio achieved an accuracy of 82.00% with a Kappa-value of 72.98 % for the 460 

validation set. The sensitivity and specificity for each class of pollution were, 461 

respectively, 86.74 % and 92.17 % for human, 72.06 % and 86.62 % for mixed, and 462 

86.50 % and 94.36 % for non-human. The balanced accuracy for the three classes was, 463 

respectively, 89.45 %, 79.34 % and 90.43%; and their 95 % confidence intervals of the 464 

AUC values were 96.95 % to 97.98 %, 91.85 % to 93.85 % and 97.68 to 98.66 %, 465 

respectively. 466 

The classification using the ratio and Spearman’s correlation achieved an accuracy of 467 

94.00% for the validation set, with a Kappa-value of 90.99 %. The respective sensitivity 468 



and specificity for each class were 97.70 % and 98.42 % for human, 90.79 % and 95.50 469 

% for mixed, and 93.21 % and 97.15 % for non-human. The balanced accuracy was, 470 

respectively, 98.06 %, 93.15 % and 95.18%; and their 95 % confidence intervals of the 471 

AUC values were 99.32 % to 99.79 %, 96.87 % to 98.03 % and 98.34 % to 99.10 %, 472 

respectively. 473 

 474 

3.4. Classification with the non-linear regression model  475 

A non-linear mixed effects regression model was developed. To select the equation that 476 

best defines the regression curve, several non-linear models were previously assayed, as 477 

shown in Supplementary-Table 1 (only non-linear models that achieved an R2 > 80 % 478 

are depicted). The best model was selected according to the AIC, and a linear/quadratic 479 

rational model ((a + b·x)/(1 + c·x + d·x2)) was selected for building the mixed effect 480 

regression. 481 

The fixed parameters were estimated as a = 6.0459, b = -2.2491, c = -1.4788 and d = 482 

0.5615 and the values of the random effects for the a-parameter fluctuated from -9.3183 483 

to 8.3102 and for the b-parameter from -5.6966 to 6.7682. The results of the regression 484 

are shown in Supplementary-Figure 1.  485 

 486 

Supplementary-Figure 1. In the top left linear regression plot, the simulated values are 487 

plotted against the fitted values, the diagonal line representing a perfect fit. In the 488 

bottom left, the standardized residuals are plotted against the percentage of human 489 

content in the mixture, and the variability of the random effects that impact parameters 490 

a and b is depicted. 491 

 492 



 493 

In Supplementary-Figure 1, noteworthy the relationship between both random effects 494 

(Pearson’s correlation of -0.9937, p-value ≤ 0.05). The classification model indicated 495 

that samples with a bacteriophage ratio expressed as log(SOMCPH):log(GA17PH) ≤ 496 

1.487 should be classified as “human”, whereas samples with a ratio ≥ 1.640 should be 497 

classified as “non-human” (human content ≤ 33.3 %), with the remaining samples 498 

belonging to the “mixed class”. 499 

The overall accuracy of the classification was 82.83 %, with a Kappa-value of 74.24 %. 500 

When considering the three pollution classes separately, their respective sensitivity and 501 

specificity were 87.36 % and 93.17 % for human, 70.49 % and 89.83 % for mixed, and, 502 



92.82 % and 91.23 % for non-human. The balanced accuracy for the three classes 503 

(human, mixed and non-human) was 90.27 %, 80.16 % and 92.03%, respectively. 504 

The similarity of these results to those obtained with machine learning suggests that 505 

overfitting did not occur in the machine learning classifications. 506 

The model developed with real samples of known origin (Table 2) achieved an optimal 507 

classification of the treated secondary effluents, with a mean accuracy of 97.43 %. This 508 

value increased slightly to 99.57 % when bacteriophage inactivation was included. 509 

However, the regression model failed when it was applied to tertiary effluents, 510 

providing a mean accuracy of 0.64 %, which increased to 3.29 % when inactivation was 511 

considered. Significant differences were observed between the accuracies when 512 

inactivation was taken into account (Wilcoxon test, p-value ≤ 0.05). Individual accuracy 513 

for every group of samples is shown in Table 4. 514 

 515 

3.5 Machine learning regression model 516 

The selection criterion used for the machine learning regression was the root-mean-517 

square error (RMSE), the optimal model having smallest RMSE value. The best result 518 

was obtained with 9 neighbors, providing an RMSE of 3.69, an MAE of 2.64 and an R2 519 

of 98.37 %.  520 

To evaluate the performance of the model, a linear regression (Figure 2) was carried 521 

out, plotting the predicted human content (using the validation dataset) against the 522 

simulated human content. An RMSE of 3.73, an MAE of 2.68 and an adjusted R2 of 523 

98.29 % were obtained. The AUC was calculated by taking into account the 524 

probabilities of the predictions, the mean AUC was 98.46 % with a 95 % confidence 525 

interval of 95.53 % to 100%. 526 

 527 



Figure 2. Linear regression of the predicted human content against the simulated human 528 

content of the training and validation sets calculated by the machine learning method. 529 

 530 

3.6 Minimum sample size  531 

The bacteriophage ratio of the human samples in this study could be fitted to a normal 532 

distribution (KS-test, p-value > 0.05), which was defined by a mean of 1.3635 and a 533 

standard deviation of 0.0982. Assuming a relative error of 5%, the minimum sample 534 

size was approximately 15 samples. Additionally, the sample size calculated using the 535 

library biotools provided a similar sample size, 15 to 16 samples.  536 

 537 

3.7 Minimum bacteriophage concentrations required for predictions 538 

The maximum dilution fold allowed had a mean value of 19,475, with a minimum of 539 

12,897 and a maximum of 41,481. The 97.5th percentiles for the concentrations of 540 

SOMCPH and GA17PH were of ≈ 510 PFU/100 mL (13.85 to 835.22) and ≈ 10 541 

PFU/100 mL (0.174 to 14.896), respectively. 542 

It should be noted that the 97.5th percentile for GA17PH coincides with the limit of 543 

detection for this bacteriophage, which could change according to its geographical 544 

distribution. The percentiles for both bacteriophages can be lowered by increasing the 545 



analyzed volume (e.g. by increasing the number of plates or using concentration 546 

methods). 547 

 548 

3.8. Effect of differential inactivation of the markers  549 

3.8.1 Artificial inactivation in wastewater treatments 550 

In this work, the inactivation of each bacteriophage in the secondary and tertiary 551 

effluents (54 and 36 samples, respectively) from an urban wastewater treatment plant 552 

was fitted to a triangular function (KS-test, p-value > 0.05).  553 

For SOMCPH the parameters of the triangular function were for the secondary a 554 

minimum of -5.251, a mode of -1.836 and a maximum of -0.509; and for the tertiary a 555 

minimum of -6.350, a mode of -2.176 and a maximum of 0.162. 556 

For GA17PH the parameters of the triangular function were for the secondary a 557 

minimum of -4.809, a mode of -1.818 and a maximum of -0.900; and for the tertiary, a 558 

minimum of -4.384, a mode of -0.720 and a maximum of -0.103. 559 

Differences in inactivation between the two phages were only apparent in tertiary 560 

effluents (Wilcoxon test, p-value ≤ 0.05). Statistically significant differences were 561 

observed for chlorination and UV treatments (Wilcoxon test, p-value ≤ 0.05) but not 562 

when both were applied together (Wilcoxon test, p-value > 0.05). The boxplots in 563 

Supplementary-Figure 2 depict the inactivation of the two bacteriophages induced by 564 

different tertiary treatments. 565 

 566 

Supplementary-Figure 2.-Boxplot on the left depicts the inactivation of somatic 567 

coliphages (SOMCPH) and on the right, the human host-specific bacteriophages that 568 

infect Bacteroides thetaiotaomicron strain GA17 (GA17PH). 569 

 570 



 571 

The accuracy of the machine learning classification models using only the 572 

bacteriophage ratio as a predictor variable was negligible for secondary (6.36 %) and 573 

tertiary effluent (2.43 %) samples. When inactivation was also included, accuracy 574 

increased to 16.79 % for secondary and 6.93 % for tertiary effluents. However, when 575 

both correlation and ratio were used as predictor variables, the accuracy increased 576 

dramatically to 95.36 % and 87.14 % for secondary and tertiary effluents, respectively, 577 

and increased still further to 97.71 % and 90.29 % when inactivation was included. 578 

Classification accuracy differed significantly between secondary and tertiary effluents 579 

(Wilcoxon test, p-value ≤ 0.05). The results of each classification model with the 580 

numbers of all tested samples are shown in Table 4.  581 

Similar results to those of the machine learning classification model were obtained 582 

when using the mixed effect regression model, which provided a mean accuracy of 583 

97.43 % for real samples from the treated secondary effluents. However, the regression 584 

model failed when applied to tertiary effluents, providing a mean accuracy of 0.64 %. 585 

When bacteriophage inactivation was taken into account, accuracy increased slightly to 586 

99.57 % for secondary effluents and 3.29 % for tertiary effluents. 587 



The machine learning regression model predicted a mean percentage of human pollution 588 

in secondary effluents of 93.02 %, with a 95% confidence interval (defined as the 589 

interval between the 2.5th % and 97.5th % percentiles obtained in the simulation) from 590 

46.33 % to 98.11 %. It should be noted that the fecal pollution in all urban wastewater 591 

effluent samples was considered to be 100 % of human origin, and under this 592 

assumption neither R2 nor a statistical test were carried out to compare both results.  593 

When inactivation was taken into account, the mean content of human pollution 594 

increased to 94.38 % (ranging from 62.11 % to 98.11 %). The correction did not 595 

produce any significant differences in predictions for secondary effluents or in the 596 

results associated with the sample number within each group (Kruskal-Wallis test, p-597 

value > 0.05, df = 13).  598 

When the prediction model was applied to tertiary effluents, the mean value of human 599 

pollution content was 81.23 % (9.00 % to 98.00 %), which underwent a slight but 600 

significant increase to 87.53 % (17.15 % to 98.11 %) when inactivation was included 601 

(Wilcoxon test, p-value ≤ 0.05). However, when the simulated samples with different 602 

samples sizes were compared, no significant differences were observed (Kruskal-Wallis 603 

test, p-value ≥ 0.05, df = 13). 604 

For secondary and tertiary effluents, the fraction of misclassified or poorly predicted 605 

samples decreased as the number of replicas increased. In tertiary effluents, statistical 606 

differences were observed between fractions containing ≤ 9 replicas and those 607 

containing 16 replicas (p-value ≤ 0.05, test of equal or given proportions). The results 608 

are shown in Figure 3 as boxplots. 609 

 610 

Figure 3. Boxplots of the 100 simulations for each number of samples. A and C show 611 

the predictions of human content for secondary and tertiary effluents, respectively. B 612 



and D show the predictions of human content for secondary and tertiary effluents, 613 

respectively, taking into account inactivation. Dots state for outlier predictions, blue line 614 

refers to the lineal regression of the human content vs the number of samples for which 615 

the confidence interval is represented in gray. 616 

 617 

 618 

3.8.2 Natural inactivation in river water matrices 619 

Models not using correlation as a predictor variable were excluded because of their poor 620 

classification performance. The remaining models were applied to the Llobregat River 621 

and Riudaura Stream. The values of SOMCPH and GA17PH detected in the human-622 

polluted Llobregat River were at least 18-fold higher than those of secondary treated 623 

wastewaters; this suggests that the main source of microbial pollution may be 624 

incompletely treated urban wastewaters with a minimal contribution of farming. For 625 

contrast, three transects of the Riudaura Stream were used as models of a river with a 626 

low level of human fecal pollution.  627 



For SOMCPH, the parameters a and b of the power function have respective values of -628 

0.0227 and 0.6320 for winter and 0.0227 and 0.8443 for summer. Parameter b was 629 

defined as the random parameter. The adjusted R2 for the overall model was 81.03 %, 630 

with an MAE of 0.68 and an RMSE of 0.82. For GA17PH, the parameters a, b and c of 631 

the Gompertz relation were, respectively, -0.8485, 1.2490 and 0.0280 for winter and -632 

2.4136, 1.2490 and 0.0280 for summer. Parameter a was defined as the random 633 

parameter. The adjusted R2 for the overall model was 96.31 % with an MAE of 0.12 and 634 

an RMSE of 0.15. 635 

When the machine learning model was applied, a mean classification accuracy of 63.89 636 

% (minimum of 51 % and maximum of 76 %) was achieved for the Llobregat River 637 

samples, whereas for the Riudaura Stream the values increased to 96.27 % (79 % to 100 638 

%).  639 

In the prediction for the Llobregat River, it was observed that the percentage of samples 640 

classified within the human-class was unaffected by the number of samples, but a 641 

higher percentage were misclassified. The percentage of samples identified as non-642 

human decreased as the number of grouped samples increased, falling below 6 % when 643 

the sample number was greater than 14.  644 

When the machine learning regression model was applied, statistically significant 645 

differences were observed in accuracy for both rivers according to the number of 646 

samples considered in the resampling (Supplementary-Table 2), whether or not the 647 

correction was applied (Kruskal-Wallis test, p-value ≤ 0.05, df = 13). The application of 648 

the environmental decay factor did not significantly alter the results for the Llobregat 649 

River (Wilcoxon test, p-value > 0.05), whereas differences were observed in the 650 

Riudaura Stream at aging times beyond 120 hours (Wilcoxon test, p-value ≤ 0.05). 651 

When the regression model was applied without inactivation, the Llobregat River 652 



showed a mean human content of 73.70 % (23.78 % to 99.22 %), which increased to 653 

73.96 % (23.78 % to 99.22 %) after taking into account natural decay (residence time of 654 

360 hours). The equivalent values for the Riudaura Stream were 5.48 % (1.00 % to 7.12 655 

%), which decreased to 5.43 % (1.00 % to 7.00 %). The results obtained when 656 

correcting for natural inactivation during the summer season are shown in Figure 4. 657 

 658 

Figure 4. Boxplots of the 100 simulations for each number of replicas. A and B 659 

respectively show the predictions of human content for the Llobregat River and the 660 

Riudaura Stream with the summer corrections. Dots state for outlier predictions, blue 661 

line refers to the lineal regression of the human content vs the number of samples for 662 

which the confidence interval is represented in gray. 663 



 664 

 665 

4. Discussion 666 

Among the four models evaluated in this study, those including correlations were more 667 

robust in predicting the human pollution content in real samples from water matrices 668 

where markers may be submitted to artificial or natural decay. This result attests to the 669 

importance of taking into account parameters often missed in MST studies: the 670 

minimum sampling size of the water body necessary to obtain a statistically significant 671 

result, the dilution effect and natural or artificial differential inactivation of the MST 672 

markers.  673 



The use of a reduced set of MST markers clearly has some limitations, i.e., the presence 674 

of GA17PH in water samples is an indicator of human fecal pollution, but its absence 675 

does not imply an animal source, especially when the concentration of SOMCPH is low. 676 

GA17PH is the limiting parameter in the tested models, as its concentration is always 677 

lower than that of SOMCPH (Moce-Llivina et al., 2005; Muniesa et al., 2012). In such 678 

cases, it may therefore be necessary to use additional bacteriophages for predicting 679 

specific animal fecal pollution, which would help to accurately determine the human 680 

content of the samples. 681 

Concerning the dilution of MST markers, a priori the dilution of wastewaters 682 

containing human- and non-human-associated phages should not lead to differences in 683 

the logarithm ratio, as long as the post-dilution values of GA17PH are higher than its 684 

detection limit. However, the use of predictive models in samples that have received a 685 

highly effective treatment might be affected by the low values of SOMCPH and 686 

GA17PH and the inversion of the log10 inactivation between bacteriophages, as 687 

occurred in the tertiary effluents. In such a case, the inferred model would result in a 688 

distorted “humanization” of the fecal pollution. This was observed in the classification 689 

by a machine learning predictive model trained with the ratio and correlation when 690 

applied to a river with negligible human pollution and low levels of both MST markers. 691 

In fact, tertiary effluents and samples from the Riudaura Stream presented 692 

dilution/inactivation levels beyond the maximum dilution fold threshold calculated 693 

according to the distribution function of GA17PH in urban raw wastewaters. 694 

Under these circumstances, it would be important to lower the limit of detection of the 695 

method by using a concentration methodology prior to bacteriophage detection and to 696 

amend the results according to the efficiency of the concentration method. 697 



An interesting point is that the machine learning regression model was the only model 698 

able to deal with this limitation, satisfactorily predicting all real samples, although the 699 

predictions improved as the number of replicas increased. This result supports the need 700 

to determine the minimum sample size according to the variability of the MST markers. 701 

It also shows that the sample size could be reduced depending on the prediction method, 702 

potentially a significant factor when several time-consuming or expensive MST markers 703 

are being used. 704 

In summary, the development of predictive models for MST can be influenced by the 705 

choice of markers. To ensure an optimum model performance, when two or more 706 

markers are selected, they should ideally exhibit similar characteristics and 707 

environmental behavior. The concentration of the marker should also be taken into 708 

account in order to assess the dilution threshold below which the marker can no longer 709 

be detected due to method limitations, environmental decay and inactivation by 710 

disinfection treatments. Furthermore, the degree of certainty of the method used to 711 

quantify the different markers should be assessed. In this study, the main limitation of 712 

the bacteriophage quantification method (double-agar layer plaque assay) concerns the 713 

analyzed samples, which represent only part of the water matrix. Moreover, the 714 

distribution of the markers in the matrix is likely to be irregular, due to processes such 715 

as adsorption and particularization. 716 

 717 

5. Conclusions 718 

In this work, the fraction of human fecal pollution in two Mediterranean rivers in north-719 

eastern Spain, which are subjected to different sources of pollution, was predicted using 720 

a set of only two microbial parameters and their correlation. Based on the results, the 721 



minimum advisable concentrations of SOMCPH and GA17PH are ≥ 500 PFU/100 mL 722 

and 10 PFU/100 mL, respectively. 723 

Although the selection of an appropriate marker is important to correctly predict the 724 

human contribution in a fecal point source pollution event, this study reveals the 725 

importance of other parameters missed in the majority of MST studies: the minimum 726 

sampling size of the water body necessary to obtain a statistically significant result, and 727 

marker dilution and inactivation.  728 

The proposed classification procedure involves the following steps: 729 

a) Characterization of marker variability in the point source fecal pollution. This 730 

was achieved by fitting the variables to their probability distribution functions, but 731 

elementary factors should be taken into account, such as the number of samples 732 

according to marker variability, accuracy of the detection method, and any concerns 733 

about recovery and imperfect detection procedures used in the quantification of MST 734 

variables. 735 

b) Generation of several wastewater mixing models under potential scenarios 736 

arising from the possible MST probability distribution functions and different mixes of 737 

point source fecal pollution. The best models should be selected based on their 738 

goodness-of-fit criterion. 739 

c) Taking into account effects such as dilution and differential/natural inactivation 740 

that could modify the results of the classification procedure. 741 

d) Establishment of a sampling plan for the target water body, which depends on 742 

the variability of the markers it contains. 743 

e) Additional assessments of the dilution effects or differential inactivation of the 744 

markers in the water body should be considered.  745 



We believe this approach to model construction could be used with other markers 746 

reported in the literature, and that the model might be improved by including animal-747 

specific markers (e.g. from housed animals). 748 
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Table 1. Descriptive statistics of the samples used to obtain probability function 917 

distributions applied in Monte Carlo modeling and to determine bacteriophage 918 

inactivation by wastewater treatments. Values expressed as PFU / 100 mL.  919 

 920 

 Urban wastewaters Abattoir sewages  Secondary effluents Tertiary effluents 

 SOMCPH GA17PH SOMCPH GA17PH SOMCPH GA17PH SOMCPH GA17PH 
n 41 41 31 31 108 108 65 65 

Mean 4.01·106 8.33·104 8.68·106 0 1.31·106 8.76·103 2.68·104 5.96·102 

Median 4.25·106 8.95·104 5.50·106 0 5.00·105 2.16·103 3.80·102 1.70·101 

Sd 2.42·106 4.88·104 9.01·106 - 3.01·106 1.39·104 9.20·104 1.83·103 

2.5th perc. 1.00·106 8.00·103 6.70·104 0 2.35·103 5.84·101 2.45·100 2.11·100 

97.5th perc. 9.00·106 1.59·105 2.77·107 0 4.44·106 4.86·104 1.61·105 5.08·103 
rho 0.51 - 0.75 0.82 

  921 



Table 2. Descriptive statistics of the samples of known origin used to evaluate the 922 

predictive models. Values expressed as PFU / 100 mL. 923 

 924 

 Secondary effluents Tertiary effluents Llobregat River Riudaura Stream 

 SOMCPH GA17PH SOMCPH GA17PH SOMCPH GA17PH SOMCPH GA17PH 
n 54 54 36 36 14 14 81 81 

Mean 2.29·106 1.67·104 2.79·103 1.63·102 7.88·103 6.65·102 9.75·103 5.76·101 

Median 1.30·106 1.19·104 6.75·102 4.35·101 6.35·103 5.90·102 9.45·103 3.60·101 

Sd 4.01·106 1.76·104 3.94·103 3.51·102 4.60·103 5.03·102 7.07·103 7.46·101 

2.5th perc. 2.93·104 1.83·102 5.40·101 1.00·101 3.53·103 1.78·102 2.10·103 4.00·100 

97.5th perc. 1.59·107 6.15·104 1.36·104 1.42·103 1.79·104 1.74·103 3.10·104 3.20·102 
rho 0.75 0.66 0.34 0.15 

 925 
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Table 3. Best parameters for the probability distribution function fitting. SOMCPH: 927 

somatic coliphages. GA17PH: human-host specific bacteriophages that infect 928 

Bacteroides thetaiotaomicron strain GA17 929 

  Function Parameters AIC 

Human 
SOMCPH Gamma shape = 2.816·100; rate = 7.021·10-7 1322.11 
GA17PH Normal mean = 8.334·104; sd = 4.848·104 1005.00 

Non-
human 

SOMCPH Gamma shape = 9.587·10-1; rate = 1.105·10-7 1055.74 
GA17PH Constant value = 10  - 

  930 



Table 4. Classification accuracy after testing models with secondary and tertiary 931 

effluents. Regression states for the mixed effect regression model. KNN (ratio) denotes 932 

classification with the KNN algorithm using the ratio. KNN (ratio + cor.) states for 933 

classification with the KNN algorithm using the ratio and correlation as predictor 934 

variables. Samples represent the number of samples used in the analysis. Raw and Inac. 935 

respectively represent the classification of samples not including and including the 936 

effect of bacteriophage inactivation.  937 

 Secondary Tertiary 

 
KNN 

(ratio) 
KNN 

(ratio + cor.) Regression 
KNN 

(ratio) 
KNN 

(ratio + cor.) Regression 
Samples Raw Inac. Raw Inac. Raw Inac. Raw Inac. Raw Inac. Raw Inac. 

3 0.24 0.29 0.90 0.94 0.90 0.96 0.08 0.27 0.77 0.77 0.07 0.16 
4 0.12 0.28 0.88 0.90 0.89 1.00 0.08 0.19 0.76 0.77 0.01 0.13 
5 0.20 0.21 0.86 0.95 0.98 0.99 0.06 0.12 0.82 0.79 0.01 0.07 
6 0.07 0.28 0.93 0.97 0.95 0.99 0.00 0.09 0.80 0.91 0.00 0.02 
7 0.07 0.16 0.94 0.97 0.96 1.00 0.05 0.06 0.81 0.85 0.00 0.01 
8 0.03 0.16 0.93 0.97 0.96 1.00 0.03 0.03 0.81 0.90 0.00 0.03 
9 0.06 0.20 0.96 1.00 1.00 1.00 0.00 0.08 0.88 0.91 0.00 0.04 

10 0.01 0.19 0.98 1.00 1.00 1.00 0.03 0.05 0.86 0.95 0.00 0.00 
11 0.01 0.12 0.99 0.98 1.00 1.00 0.01 0.03 0.94 0.93 0.00 0.00 
12 0.01 0.15 0.99 1.00 1.00 1.00 0.00 0.01 0.92 0.95 0.00 0.00 
13 0.03 0.10 1.00 1.00 1.00 1.00 0.00 0.01 0.95 0.95 0.00 0.00 
14 0.02 0.09 1.00 1.00 1.00 1.00 0.00 0.01 0.96 0.96 0.00 0.00 
15 0.02 0.08 0.99 1.00 1.00 1.00 0.00 0.02 0.93 1.00 0.00 0.00 
16 0.00 0.04 1.00 1.00 1.00 1.00 0.00 0.00 0.99 1.00 0.00 0.00 

p-value ≤ 0.05 ≤ 0.05 ≤ 0.05 ≤ 0.05 ≤ 0.05 ≤ 0.05 
 938 
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Supplementary-Table 1. Functions, R2 and AIC of the tested regression models between 940 

somatic coliphages and human-host specific bacteriophages infecting B. 941 

thetaiotaomicron strain GA17. The first row shows a linear regression, exp denotes the 942 

exponential function and log denotes the natural logarithm function.  943 

Function R2 AIC 
a·x + b 0.675 84404.71 

(a + b·x)/(1 + c·x + d·x2) 0.858 76099.87 
(a·b + c·xd)/(b + xd) 0.857 76188.44 

1/(a + b·xc) 0.856 76242.76 
exp(a + b/x + c·log(x)) 0.856 76260.06 

a+(b - a)·(1 - exp(-exp(c·(log(x)-log(d))))) 0.855 76332.41 
a·exp(-(x - b)2/(2·c2)) 0.854 76383.94 
(a·x3 + b·x2 + c·x + d) 0.851 76579.72 

a + b·x + c/x2 0.849 76743.56 
a·x(b·x) 0.848 76827.12 

a + (b - c)·(1 - exp(-x/d)) 0.846 76912.27 
a·exp(b·x) 0.843 77106.57 
a·exp(b/x) 0.843 77106.57 

(a + b·x)(-1/c) 0.843 77108.65 
a·bx·xc 0.839 77369.88 

a·x2 + b·x + c 0.837 77487.28 
a·(x - b)c 0.837 77499.57 

a·xb 0.835 77641.62 
 944 
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Supplementary-Table 2. Classification accuracy after testing models with river matrices 946 

with an estimated aging from 0 to 360 hours. Only the classification achieved with the 947 

KNN algorithm using the ratio and correlation as predictor variables is shown. (A) (top) 948 

shows the results for the Llobregat River and (B) (bottom) the results for the Riudaura 949 

Stream. Samples represent the number of samples used in the analysis.  950 

A Winter Summer 
Samples 0 72 120 168 360 0 72 120 168 360 

3 0.72 0.64 0.70 0.72 0.73 0.70 0.67 0.69 0.64 0.65 
4 0.65 0.66 0.64 0.65 0.60 0.64 0.61 0.58 0.65 0.62 
5 0.62 0.58 0.56 0.69 0.66 0.60 0.61 0.57 0.63 0.51 
6 0.61 0.64 0.65 0.71 0.59 0.60 0.52 0.57 0.62 0.63 
7 0.56 0.65 0.62 0.56 0.59 0.53 0.66 0.57 0.68 0.58 
8 0.59 0.57 0.57 0.66 0.65 0.72 0.62 0.63 0.58 0.55 
9 0.62 0.73 0.54 0.69 0.63 0.59 0.64 0.67 0.61 0.62 

10 0.57 0.64 0.69 0.60 0.58 0.60 0.68 0.63 0.62 0.69 
11 0.62 0.59 0.61 0.64 0.56 0.68 0.56 0.68 0.62 0.62 
12 0.64 0.67 0.59 0.65 0.59 0.69 0.67 0.64 0.63 0.66 
13 0.64 0.62 0.62 0.57 0.67 0.64 0.60 0.67 0.60 0.70 
14 0.70 0.70 0.68 0.54 0.71 0.71 0.66 0.64 0.72 0.67 
15 0.74 0.71 0.68 0.62 0.63 0.72 0.74 0.61 0.72 0.70 
16 0.76 0.67 0.69 0.73 0.66 0.63 0.67 0.69 0.66 0.64 

 951 

B Winter Summer 
Samples 0 72 120 168 360 0 72 120 168 360 

3 0.79 0.87 0.81 0.93 0.91 0.81 0.84 0.79 0.80 0.84 
4 0.94 0.87 0.84 0.89 0.91 0.92 0.88 0.89 0.87 0.87 
5 0.90 0.94 0.92 0.96 0.92 0.90 0.91 0.92 0.92 0.95 
6 0.95 0.94 0.95 0.90 0.92 0.97 0.97 0.94 0.95 0.97 
7 0.99 0.97 0.96 0.96 0.96 0.96 0.97 0.99 0.97 0.98 
8 0.96 0.99 0.96 0.97 0.98 0.98 0.99 0.94 0.95 1.00 
9 0.96 1.00 0.99 1.00 1.00 1.00 1.00 0.98 0.98 0.99 

10 1.00 0.96 0.98 1.00 0.98 0.98 0.98 1.00 0.99 0.98 
11 0.99 0.98 0.99 0.97 1.00 1.00 0.97 1.00 0.98 0.98 
12 1.00 0.99 0.99 0.99 1.00 1.00 1.00 0.99 1.00 1.00 
13 0.99 0.99 1.00 1.00 1.00 0.98 0.99 0.99 1.00 0.99 
14 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.98 1.00 
15 0.98 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 
16 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 

 952 


