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Abstract: Common methods for hold-up time and volume determination in Reversed-Phase Liquid
Chromatography (RPLC) have been tested for Hydrophilic Interaction Liquid Chromatography
(HILIC). A zwitterionic ZIC-HILIC column has been used for the testing. The pycnometric determi-
nation method, based on differences in column weight when filled with water or organic solvent,
provides the overall volume of solvent inside the column. This includes the volume of eluent semi-
sorbed on the packing of the column, which acts as the main stationary phase. The homologous
series approach, based on the retention behavior of homologues in relation to their molecular volume,
allows the determination of accurate hold-up volumes. However, the application of this method
is time-consuming. In some cases, large neutral markers with poor dipolarity/polarizability and
hydrogen bonding interactions can be used as hold-up volume markers. This is the case of dode-
cylbenzene and nonadecane-2-one in clearly HILIC behaving chromatographic systems, the use of
decanophenone as a marker can be even extended to the boundary between HILIC and RPLC. The
elution volume of the marker remains nearly unaffected by the concentration of ammonium acetate in
the mobile phase up to 20 mM. The injection of pure solvents to produce minor base-line disturbance
as hold-up markers is strongly discouraged, since solvent peaks are complex to interpret and depend
on the ionic strength of the eluent.

Keywords: HILIC; homologous series; hold-up volume; hold-up time; retention volume

1. Introduction

It is well known that an appropriate measurement of the hold-up volume (VM) in a
HPLC column is essential for an accurate determination of the retention factor (k), defined in
Equation (1) from the retention volume of the analyte (VR). The determination of retention
factor is crucial for the description and prediction of analyte retention (system suitability,
retention modelling . . . ) and the derivation of thermodynamic quantities implied in the
chromatographic process [1].

k =
VR −VM

VM
(1)

There are different definitions of the hold-up volume and related terms, such as dead
volume, void volume, solvent volume, and mobile phase volume. Much of the controversy
comes from the fact that the stationary phase is usually preferentially solvated by some of
the components in the eluent, more or less strongly sorbed on the surface of the packing
material, and the presence of transition layers to the flowing mobile phase, which are
difficult to assign to stationary or mobile phases due to the absence of a clear boundary
between them. Different definitions come from the distinct assignment of the volume of
these layers to stationary or mobile phase, and the different methods may give different
values depending on the extent of the measurement of the volume of these layers. This
problem is particularly important in Hydrophilic Interaction Liquid Chromatography
(HILIC), as compared to Reversed-Phase Liquid Chromatography (RPLC), because of the
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complex nature of the intermediate transition layers between the column packing and the
mobile phase created by partially, but preferentially, sorption or semi-sorption of water
responsible of the HILIC retention mechanism.

HILIC is a complementary technique to RPLC for the analysis of polar and ionic
compounds that are poorly retained in RPLC and tend to elute very close to the hold-
up volume [2–4]. HILIC uses a polar stationary phase, such as in Normal-Phase Liquid
Chromatography (NPLC), but the mobile phase consists of a mixture of water and an
organic solvent (acetonitrile commonly), as in RPLC. HILIC mobile phases have a high
content in the organic solvent (more than 70% of acetonitrile), and thus they are less polar
than the stationary phase, favoring the retention of polar analytes by the stationary phase.
In fact, the main HILIC retention mechanism is the partition of the analyte between the
flowing mobile phase and the different sorbed or semi-sorbed solvent layers between
the mobile phase and the surface of the column packing, being this latter doubtfully
denominated stationary phase. This packing stationary phase (generally silica alone or
functionalized with a polar group), rather than be involved in the partition process, may
only show additional interactions with analyte by adsorption, ion exchange, or hydrogen
bonding [2–7].

The polar nature of the HILIC packing stationary phases determines a high affinity for
the most polar components of the hydroorganic eluent. Thus, in the organic solvent/water
mixtures used as mobile phases in HILIC, water is preferentially sorbed on the surface of the
polar packing stationary phase. Some authors [8,9] propose the existence of three solvent
regions of different composition inside the HILIC column: (I) a rigid quasi-immobilized
water layer at the packing surface; (II) a diffuse hydroorganic interface region, enriched in
water, of reduced translational mobility between the water layer and the bulk mobile phase;
and (III) the nominal flowing mobile phase. Since sorbed water is in dynamic equilibrium,
there is not a clear separation between the three regions and most likely a gradient of water-
rich solvent concentration and mobility is formed between the sorbent surface and the bulk
mobile phase [2,8–12]. The layer in the surface of the packing stationary phase is mostly
strongly sorbed water with a very reduced mobility, but water sorption decreases, and
mobility increases in the consecutive transition layers approximating the composition and
mobility of the flowing mobile phase. All these layers are labile and in dynamic equilibrium
with the flowing mobile phase, but they have a variable reduced mobility in reference to
the one of mobile phase. Thus, they act as stationary phase because a solute in these layers
is delayed in reference to the flowing mobile phase. The behavior is comparable to the one
of the charged micelles or microemulsions used as pseudo-stationary phases in micellar or
microemulsion electrokinetic chromatography.

The term “hold-up volume” (VM) is preferred in this work to “void volume” (V0)
to prevent confusion. According to IUPAC [13], “hold-up volume” is the volume of
eluent required to elute a component, the concentration of which in the stationary phase
is negligible compared to that in the mobile phase; whereas “void volume” (also called
“interstitial volume”), is equivalent to “the interparticle volume of the column”, defined as
“the volume occupied by the mobile phase between the particles in the packed section of a
column. In liquid chromatography, the interparticle volume is equal to the mobile-phase
hold-up volume (VM) in the ideal case, neglecting any extra-column volume”. Although
this definition might be convenient in RPLC, in HILIC a portion of the eluent flowing inside
the column is preferentially adsorbed on the surface of the packed section and, in fact, acts
as HILIC stationary phase and not as mobile phase. Thus, in HILIC part of the interstitial
volume is mobile phase, and part stationary phase.

Pycnometry, homologous series, unretained neutral markers (organic and inorganic
compounds), and minor disturbance (solvent peak) are the main methods proposed for
hold-up volume measurement. However, these different approaches usually lead to dif-
ferent hold-up volume values [1,14–17]. In a recent publication [18], McCalley compared
the hold-up times obtained in several HILIC columns by pycnometry, homologous series,
and toluene as hold-up time marker. He concluded that toluene, although it is soluble
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to some extent in the HILIC stationary phase, can be used as an approximate measure of
the hold-up time for most routine measurements. However, it provides hold-up volumes
slightly larger than those obtained by the homologous series method, which could be a
more accurate method for detailed kinetic or thermodynamic studies. Pycnometry was
not recommended at all, since it also includes the amount of solvent associated with the
stationary phase.

The purpose of the present study is to discern the information provided by the different
approaches to obtain the hold-up volume and related quantities in a HILIC column with
acetonitrile/water and methanol/water mobile phases, and proposing the most rigorous
and simple methods and markers to measure the hold-up volume (or time) in HILIC [17].

2. Results and Discussion
2.1. Pycnometry

Pycnometry, or weight difference method, is a popular technique for determining the
hold-up volume of the column [1]. In the pycnometric method, the mass of the column is
measured when it is sequentially filled with two solvents of sufficiently different densities.
The weight of the column filled with the solvent (wcolumn) is the sum of a constant contri-
bution due to the weight of the column cylinder, endfittings, and the bonded phase and
support (wconstant), and the weight of the filling solvent, which depends on the volume of
solvent (Vsolvent) inside the column and its density (ρsolvent) according to Equation (2):

wcolumn = wconstant + Vsolvent · ρsolvent (2)

If the column is purged with two solvents of quite different densities (for instance,
water and an organic solvent), the volume of the filling solvent can be determined from the
difference in density and weight using Equation (3):

Vsolvent =
wcolumn,water − wcolumn,organic

ρwater − ρorganic
(3)

where wcolumn,water and wcolumn,organic are the weights of the same column after being con-
secutively equilibrated with water and organic solvent, and their corresponding densities
are ρwater and ρorganic, respectively.

Pycnometry provides the overall volume of solvent inside the column, which some
authors consider as a measure of the hold-up volume. However, this method may be
inadequate in case of significant preferential solvation of the stationary phase by one
or more of the mobile phase components [1,19–21]. This concern seems to be especially
pertinent in HILIC because of the preferential absorption of water by the column packing.

To test the method in HILIC, the volume of the filling solvent in a ZIC-HILIC column
was determined using water and acetonitrile in the one hand, and water and methanol
in the other. The Vsolvent values obtained were 1.950 ± 0.016 mL for acetonitrile/water
solvents pair and 1.946 ± 0.009 mL for methanol/water pair using the tabulated densities
at 25 ◦C of 0.9971 g mL−1, 0.7766 g mL−1, and 0.7866 g mL−1 for water, acetonitrile, and
methanol, respectively [22,23]. Practically the same volume was found for both solvent
pairs in the zwitterionic functionalized silica column, in a similar way that the one measured
by McCalley and Neue for their underivatized silica column [5].

2.2. Homologous Series LFER Method

The common homologous series method consists of plotting the log of the retention
volume of the series members versus the homologue number [1] and extrapolating the
linear plot obtained to the zeroth homologue. Alternatively, the hold-up volume can be
estimated from the intercept of the linear regression.

A variation of the method derived from Linear Free Energy Relationships (LFER)
models was proposed in an earlier study [24]. In the Abraham LFER model [25], the
LFER variable (log k in chromatography [26–37]), is given as a linear combination of the
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solute-solvent interactions modeled by the solute descriptors accounting for dispersion
forces (E), dipolarity/polarizability (S), hydrogen bond acidity (A), hydrogen bond basicity
(B) and molecular volume (V) according to Equation (4):

log k = c + e · E + s · S + a · A + b · B + v ·V (4)

where c is a non-solute dependent term accounting mainly for the chromatographic phase
ratio, and e, s, a, b, and v the complimentary descriptors of the chromatographic system,
all of them obtained by linear regression of the retention of a series of solutes against their
solute descriptors. The Abraham descriptors E, S, A, and B for individual homologues
in a series are almost constant and only V changes sequentially (linearly in fact) with the
member number (number of -CH2- groups in the side alkyl chain). Given the constancy of
some of the descriptors of the homologous members, combination of Equations (1) and (4)
leads to Equation (5) [38]:

VR = VM

(
1 + r0 · 10v·V

)
(5)

being the fitted r0 a constant value giving a joint measure of the difference in dipolarity,
polarizability, and hydrogen bond acidity and basicity of both mobile and stationary phases
(r0 = 10c+e·E+s·S+a·A+b·B). Equation (5) allows the determination of hold-up volume (VM) by
non-linear regression of the retention volumes (VR) of the homologous series members
against their LFER descriptor volumes (V).

Since VM and v values are expected to be independent of the specific homologous
series used for the chromatographic system characterization, several homologous series
can be altogether analyzed in the same fitting equation [35]:

VR = VM(1 +
n

∑
i=1

(r0
i · fi)·10v ·V) (6)

where n is the number of homologous series included in the model, and fi are binary flag
descriptors (1 or 0) used as independent variables in the fitting (i.e., for homologues of i-th
series, fi = 1 and fi 6=1 = 0). More precise and reliable results should be obtained from fittings
to Equation (6), since homologues from different series cover a broader chemical space in
terms of solute-solvent interactions.

We have selected for the present study a HILIC column with probably the most
popular bonded phase, a permanent zwitterion (sulfobetaine) grafted on porous silica.
ZIC-HILIC columns are being used in applications involving carbohydrates, metabolites,
acids and bases, organic and inorganic ions, metal complexes, amino acids, peptides, and
protein digests.

Homologous series candidates for the determination of hold-up volume should exhibit
a wide range of molecular volumes and low retention. Therefore, since hydrogen bonding
interactions favor partition into the water-rich stationary phase, homologues should have
small A and B descriptors, the closer to zero, the better. Additionally, for the sake of instru-
mental simplicity and economy, homologues should also be detected by UV absorbance.
According to these criteria, the series selected for the study were n-alkyl benzenes, n-alkyl
phenones and n-alkyl ketones. All of them lack hydrogen bond donor capabilities, phe-
nones, and ketones show similar B values and benzenes the lowest ones (Table 1). Ketones,
although their lower UV absorbance, provide the two smallest homologues of the three
series, which might be an additional benefit in order to define the curvature (v coefficient)
of the fitting.

The hold-up volumes obtained from fittings to Equation (6) are presented in Table 2.
Hold-up volume decreases when increasing the water content in acetonitrile/water mobile
phases probably because the more water in the mobile phase, the thicker the water-rich
transition layers that act as stationary phase and thus the lower mobile phase volume.
However, for methanol/water mobile phases, the hold-up volume is quite constant, likely
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because the high similarity between methanol and water keeps the volume of the water
adsorbed more constant.

Table 1. Molecular descriptors of the homologous series (mean values for E, S, A, and B; ± standard
deviation; range for V) considered in this work [39].

E S A B V

Homologous series
n-Alkyl benzenes 0.59 ± 0.01 0.50 ± 0.02 0.00 ± 0.00 0.15 ± 0.00 0.72–2.41
n-Alkyl phenones 0.78 ± 0.02 0.96 ± 0.02 0.00 ± 0.00 0.50 ± 0.01 1.01–2.14
n-Alkyl ketones 0.12 ± 0.03 0.68 ± 0.01 0.00 ± 0.01 0.51 ± 0.01 0.55–2.80

Molecular descriptors for individual homologues can be found in Supplementary Materials: Table S1.

Table 2. Hold-up volumes and v coefficients (±standard deviation) of the ZIC-HILIC column at
the different mobile phase compositions (HILIC behavior) obtained from the fittings of retention to
Equation (6).

φorg (v/v) VM (mL) v N R2
adj RMSE

Acetonitrile
100% 1.835 ± 0.004 −0.56 ± 0.05 31 0.982 0.004
90% 1.713 ± 0.003 −0.67 ± 0.04 31 0.985 0.004
80% 1.617 ± 0.002 −0.83 ± 0.03 31 0.993 0.004
70% 1.547 ± 0.002 −0.82 ± 0.03 29 0.996 0.003

Methanol
100% 1.820 ± 0.004 −0.59 ± 0.04 31 0.985 0.004
90% 1.830 ± 0.003 −0.62 ± 0.04 31 0.987 0.004
80% 1.834 ± 0.003 −0.75 ± 0.04 29 0.993 0.003

r0 values, together with fittings to mixed HILIC-RPLC behavior, can be found in Table S2.

The fitted Abraham’s system coefficient v is negative (Table 2), since creation of a
cavity in the more structured stationary phase (water-rich layers) will be easier for the
smaller solutes, whereas largest solutes will tend to be solvated by the less structured
mobile phase (hydroorganic eluent). Consequently, homologues retention in HILIC will
decrease when the volume of the solute increases, as shown in Figure 1a,d. The contrary is
expected for a RPLC mode, where the non-polar stationary phase is less structured than the
hydroorganic mobile phase. This behavior is reflected with a positive value of v. Therefore,
the sign of this coefficient allows us to distinguish between HILIC and RPLC behaviors in a
particular system.

Figure 1 shows representative plots obtained with ZIC-HILIC column for some of the
studied acetonitrile/water and methanol/water mobile phases. Retention of the members
of the three homologous series decreases for mobile phases with a high content of organic
solvent, acetonitrile (Figure 1a) or methanol (Figure 1d), which is typical of HILIC retention.
By increasing the water content in the mobile phase, 70% of acetonitrile (Figure 1b) and
80% of methanol (Figure 1e), the HILIC column starts to show a mixed retention mecha-
nism: mainly HILIC for the smallest homologues and mainly RPLC for the largest ones [35].
When the water content in the mobile phase is high enough, for instance 50% of acetonitrile
(Figure 1c) and 50% of methanol (Figure 1f), both retention trends can be clearly observed
and U-shape curves are obtained. In this work, we fill focus on mobile phase compositions
with a typical HILIC behavior (readers are kindly referred to Supplementary Materials for
a model adapted to the mixed HILIC-RPLC behavior).

The lowest retention in Figure 1 corresponds to the n-alkyl benzenes series for acetoni-
trile, but n-alkyl benzenes and n-alkyl ketones for methanol. Equation (5) relates retention
to solute volume through system (VM and v) and series (r0) parameters. r0 is the only term
in Equation (5) depending on the chosen homologous series, since it includes the E, S, A,
and B molecular descriptors that are common for all homologues belonging to the same
series (Table 1). The least retained homologous series would be the one with the lowest r0



Molecules 2023, 28, 1372 6 of 16

value. In fact, if r0 = 0 the series members would be not retained at all by the stationary
phase (VR = VM in Equation (5)).
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(c,f) solid lines represent fittings to Supplementary Materials: Equation (S1), dashed and dotted lines
show the contributions to the mixed mode of HILIC and RPLC, respectively. The dashed straight line
shows the solvent volume inside the column pycnometrically measured (Vsolvent).

In HILIC systems with acetonitrile/water mixtures as eluents the main solute-solvent
interactions responsible for retention are hydrogen-bonding related [34], since water-rich
stationary phases have more significant hydrogen bonding features than acetonitrile-rich
mobile phases. The three studied homologous series share a lack of hydrogen bond
acidity (A = 0) and this interaction will not be further considered, but basicity needs to
be evaluated. Actually, solute hydrogen bond acceptor capacity (B) is responsible for an
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increase in retention, and consequently the chromatographic retention of benzenes (B = 0.15)
is lower than that of phenones and ketones (0.50 and 0.51, respectively). In fact, the fitted
r0 values (Table S2) confirm that in general benzenes are less retained than phenones and
ketones in HILIC mode with acetonitrile/water mobile phases. When methanol is used
as organic modifier in the eluent in the ZIC-HILIC column studied in the present work,
benzenes and ketones show similar r0 values and lower than those obtained for phenones.
However, these results are more complex to interpret. To the best of our knowledge, only a
few chromatographic systems using methanol have been characterized by means of the
Abraham’s solvation parameter model [34,38], concluding that solute-solvent polarizability
and dipolarity interactions (positive e and s) play a relevant role besides hydrogen-bonding
(negative b). Thus, an increase in solutes E and S favors retention, whereas the contrary is
observed for B (in contrast to acetonitrile/water which increase retention). The large E and
S values of phenones (Table 1) leads to a larger retention of this series. Nevertheless, these
results might be not representative of a general HILIC behavior using methanol as eluent.

2.3. Hold-Up Volume Markers

The injection of an “unretained” solute as a hold-up volume marker is the preferred
and most widespread method among chromatographers because of its simplicity. The
challenge is to find a truly unretained solute in HILIC, if it exists. The ideal marker must be
small enough to access all the available mobile phase volume (interstitial + mesopores) and
hydrophobic enough to stay out of the water-rich stationary phase. Here comes the first
apparent contradiction, since in HILIC the smallest solutes are the most retained due to the
higher cohesive nature of the stationary phase in relation to the hydroorganic mobile phase.

As already mentioned in the introduction, compounds such as benzene or toluene are
commonly used as HILIC hold-up volume marker [5,11,18,40–43]. However, in a previous
work it was found that these particular solutes are partially retained and larger solutes
of the same type, such as octylbenzene and dodecylbenzene, should be more appropriate
hold-up markers [24,35]. Figure 2a (acetonitrile) and Figure 2b (methanol) report the
variation of the retention volumes of these markers with the mobile phase composition for
acetonitrile/water and methanol/water mixtures, respectively, in the ZIC-HILIC column.
Notice that in the plots are represented the mobile phase compositions corresponding to
a HILIC behavior (down to 70% acetonitrile or 80% methanol) and the first percentage
when mixed HILIC-RPLC starts to take place, which can be easily identified for an abrupt
increase in the dodecylbenzene retention volume. For both organic solvents and eluent
compositions typically used in HILIC applications, benzene and toluene are more retained
than larger compounds, such as octylbenzene, dodecylbenzene, decanophenone, and
nonadecan-2-one, which show similar retention volumes and in good agreement with
the hold-up volume determined by the homologous series approach. These results are
consistent with a HILIC retention mechanism based on the partition of solutes between the
mobile phase and a hydroorganic stationary phase enriched in water partially immobilized
on the chromatographic support. Benzene and toluene, although hydrophobic, are slightly
soluble in water (1.8 and 0.5 g L−1 at 25 ◦C, respectively [44]), whereas the expected
solubility of octylbenzene and dodecylbenzene is in the tens of µg L−1 range [45]. For any
compound, since breaking water-water hydrogen bonding interactions to generate a cavity
large enough to hold the solute is energy consuming, the higher the molecular volume,
the lower the water solubility. Decanophenone and nonadecan-2-one are also insoluble in
water, despite the contribution to polar surface area from oxygen atoms, with estimated
solubilities not higher than 5 mg L−1 [45]. The tested compounds have molecular masses
below 250 g mol−1 and roughly calculated volumes not exceeding 500 Å3. For instance,
in the case of dodecylbenzene, a molecular volume of about 400 Å3 is compatible with a
sphere of a diameter of about 9 Å or a more realistic cylinder with a length of 20 Å and a
diameter of 5 Å [46]. These solute dimensions seem small enough to discard size exclusion
effects in a column such the one used in this work with a porosity of 200 Å. However, the
smallest benzenes due to their solubility in water might partition to some extent into the
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water-rich transition layers and therefore be retained by the stationary phase. Consequently,
larger hydrophobic compounds appear to be a more convenient election for a hold-up
volume marker in HILIC.
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When the fraction of water is high enough to compromise the HILIC behavior of
the system (<70% of acetonitrile and <80% of methanol) the retention of all the markers
starts to significantly increase, especially dodecylbenzene. This is consistent with a RPLC
behavior, in which the less cohesive bonded phase plays a relevant role in the partition
process. Accordingly, large hydrophobic hold-up markers should be only used when the
behave of the chromatographic system is clearly HILIC.

2.4. Minor Disturbance (Solvent Peak) Method

The injection of a pure solvent of a binary mobile phase produces a disturbance peak
in the chromatogram that might be interpreted as the hold-up volume. However, this
method is not straightforward since the selection of the injected pure eluent of the binary
eluent (or even the injection solvent mixture) leads to significantly different disturbance
peaks [1,47]. The application of the method in HILIC seems even trickier than in reversed-
or normal-phase chromatography, since the injection of pure solvents surely affects in a
complex way the diffuse hydroorganic interface of reduced mobility between the water
layer sorbed on the bonded phase/support and the mobile phase.

In this work, pure water or acetonitrile were injected in acetonitrile/water (unbuffered)
mobile phases in the HILIC range, leading to a first baseline disturbance at eluent volumes
significantly lower than VM measured by homologous series (about 1 mL), and a good
number of diverse peaks around the total solvent volume pycnometrically determined.
Insets in Figure 3c,d show representative peak disturbances obtained at 80% acetonitrile
for the strong and weak solvent, water and acetonitrile, respectively. The volume of the
first base line disturbance is clearly too low to be an accurate measure of the hold-up
volume, and both solvents seem to be affected by some kind of exclusion from the total
column porosity. This volume represents about the 50% of the total exchangeable solvent
volume inside the column (Vsolvent, pycnometrically measured) and around the 60% of
the expected mobile-phase volume (VM, determined by homologous series). These results
might be consistent with the contribution of particle external porosity to the total column
one reported in the literature for HILIC columns [48,49].
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Figure 3. Effect of mobile phase ammonium acetate concentration (80% acetonitrile, MeCN) on the
retention of hold-up marker candidates in the ZIC-HILIC column: (a) decanophenone, (b) potassium
bromide, (c) water, and (d) acetonitrile. Dotted straight line corresponds to the hold-up volume from
the homologous series approach (VM) and dashed straight line to the solvent volume pycnometrically
measured (Vsolvent). Insets in (c,d) show the chromatograms corresponding to the injection of water
and acetonitrile, respectively, in the unbuffered mobile phase.

Anionic analytes are expected to be exposed to repulsive electrostatic interactions
with the sulfonic group of the sulfobetaine bonded phase, and the positively charged
quaternary ammonium group of the ligand is supposed to compensate the silanol activ-
ity [50]. Accordingly, the injection of an anionic analyte, such as bromide, in the ZIC-HILIC
chromatographic system with an unbuffered eluent (with no salts) should lead to elution
volumes lower than hold-up volume. Actually, the first solvent base line disturbance
unexpectedly coincides with the elution volume of KBr (Figure 3b), suggesting that pure
water or acetonitrile follow a similar path than bromide inside the column, probably in
the frame of intraparticle porosity. In the last section of this paper, the effect of the salt
concentration (ammonium acetate) in the eluent on KBr and solvent peaks is discussed.

2.5. Comparison of the Different Methods for the Hold-Up Volume Estimation

Figure 2 shows that hold-up volumes from the homologous series approach are clearly
lower than the pycnometric Vsolvent values because part of the solvent inside the column
is acting as stationary phase sorbed on the column packing surface. The pycnometrically
calculated Vsolvent value of 1.950 ± 0.016 mL for acetonitrile and 1.946 ± 0.009 mL for
methanol must contain the volume of mobile phase (VM) plus the stationary phase average
volume of the water-rich layers semi-sorbed on the packing material. The results are
similar to the ones previously obtained for different HILIC columns [35,51]. These findings
show that the pycnometric method is useful to determine the volume of solvent inside the
column, but it does not take into account the issue of a significant sorption of the mobile
phase eluent on the column packing to become stationary phase. For acetonitrile/water
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mobile phases (Figure 2a) the difference between Vsolvent and VM is quite large, 0.2–0.4 mL
with a maximum for 50% acetonitrile, but for methanol/water mixtures (Figure 2b) the
difference is much smaller, only about 0.1 mL.

As shown in previous sections, the homologous series approach can provide better
estimations of the hold-up volume than pycnometry. Conjoint analysis of retention of di-
verse homologous series by Equation (6) should be the most precise method for estimation
of HILIC hold-up volumes, but it may be a long and tedious method. In routine work, it
would be desirable to find an unretained marker with a retention volume as similar as
possible to the hold-up volume from the homologous series approach. The performance
of a marker to determine the hold-up volume (or time) can be directly measured from its
retention factor, which is a direct measure of the relative error in VM (Equation (1), being
VR the estimation of VM). The closer the k value to zero (VR = VM), the better the candidate
to unretained marker. The retention factors of the hold-up volume marker candidates have
been measured using the VM values determined from the homologous series approach
(Table 2). Table 3 shows the retention factors of the three largest studied homologues of
each series found for the ZIC-HILIC column for mobile phase compositions range exhibit-
ing a clear HILIC behavior. Within each series the largest homologue shows the lowest
retention factor, being those of dodecylbenzene and nonadecan-2-one the closest to zero,
and therefore the recommended markers for hold-up volume estimation. Among these
two compounds, dodecylbenzene has the additional benefit of a higher UV absorbance.
Nevertheless, dodecylbenzene and nonadecan-2-one are more sensitive to the RPLC behav-
ior when increasing the amount of water in the mobile phase, and at 70% acetonitrile or
80% methanol they are more retained than decanophenone.

Table 3. Measured retention factors (k) of hold-up volume marker candidates for the ZIC-HILIC column.

Marker Candidate
Acetonitrile Methanol

100% 90% 80% 70% 100% 90% 80%

n-Alkyl benzenes
Hexylbenzene 0.017 0.010 0.007 0.009 0.020 0.018 0.015
Octylbenzene 0.011 0.005 0.003 0.004 0.014 0.013 0.011
Dodecylbenzene 0.002 −0.003 −0.001 0.013 0.004 0.005 0.021

n-Alkyl phenones
Octanophenone 0.021 0.013 0.010 0.014 0.024 0.018 0.012
Nonanophenone 0.017 0.009 0.006 0.009 0.020 0.015 0.009
Decanophenone 0.014 0.007 0.003 0.005 0.017 0.012 0.007

n-Alkyl ketones
Tridecan-2-one 0.016 0.013 0.011 0.014 0.012 0.010 0.005
Pentadecan-2-one 0.010 0.008 0.006 0.009 0.007 0.006 0.002
Nonadecan-2-one 0.000 0.001 0.004 0.018 −0.003 −0.003 0.010

2.6. Effects of the Salt Concentration on the Eluent

In HILIC, the concentration and nature of salts in the mobile phase play a significant
role in the retention of ionic compounds [43,50,52,53]. Using ammonium formate and
ammonium acetate in the 5–20 mM range in silica, zwitterionic, diol, and amide columns,
McCalley and coworkers [52] described a general reduction in the retention of cations with
the eluent ionic strength, but higher retention for anions. Interestingly, it was also reported
this latter behavior for some neutral compounds, due to the effect of salt in the increment
of the thickness of the water-rich stationary phase. In a different work conducted by Lucy
and collaborators [43] exploring the effect of the electrolyte nature, similar conclusions
were obtained from cations and anions, but the retention of the studied neutral analytes
remained unaffected by salt concentration in the 1–20 mM range.

Since the ionic strength of the eluent can play a role in the phase ratios of stationary
and mobile phase, the following section of this work is devoted to the impact of the con-
centration of ammonium acetate buffer on the hold-up volume. To this purpose, retention
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volumes of the HILIC marker decanophenone were examined in acetonitrile/water mobile
phases containing variable amounts of salt, in the range of concentrations in the eluent
between 5 and 20 mM. As shown in Figure 2a, retention volumes of decanophenone are
similar to the reference hold-up volumes determined by the homologous series approach
in the boundary between HILIC and RPLC behavior, and thus it is a more reliable marker
when it is intended to cover a wide range of mobile phase compositions. Potassium bro-
mide was also injected as a positive control of the effect of ionic strength on the retention of
ions. Figure 4 shows a nearly constant retention volume for dodecanophenone throughout
the tested range, consistent with the hold-up volume determined by the homologous series
approach in the absence of salt in the mobile phase. Therefore, hold-up volumes measured
from neutral markers (including homologous series) seem to remain nearly unaffected by
the concentration of ammonium acetate in the eluent.
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In unbuffered acetonitrile/water mobile phases it has already shown that elution
volumes of inorganic salts are lower than VM and Vsolvent, and this was attributed to
electrostatic repulsion between the inorganic salt anion and the sulfonate group of the
zwitterionic bonded phase. Thus, the presence of buffer ions in the mobile phase might
hinder this repulsion and lead to higher elution volumes. The positively charged quaternary
ammonium of the zwitterion might be internally compensated by the acidic silanols of the
support, making predominant the electrostatic effects of the negatively charged sulfonate
group and allowing the stationary phase to behave as a weak cation exchanger [43,50]. In
fact, Figure 4 shows that the retention volume of bromide ion increases with the ammonium
acetate concentration in the mobile phase, and just a 5 mM concentration is enough to obtain
retention volumes above VM and Vsolvent. The increase in retention is especially relevant
at 90% acetonitrile (Figure 4a), probably due to the accumulation of ions at the interface
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between mobile and stationary phases, reducing the electrostatic repulsion between with
the sulphonate, and becomes less pronounced with the increase of the water proportion in
the eluent.

As presented in Figure 3 and discussed in Section 2.4., the peak disturbance created
upon the injection of a pure solvent (water or acetonitrile) is not a reliable measure of
hold-up volume. Nevertheless, in the absence of salts in the eluent, the elution volume of
bromide was similar to the first solvent peak of water and acetonitrile. Since the retention
of bromide depends on the ionic strength of the mobile phase, we decided to investigate
the effect of ammonium acetate on the solvent peaks. Now, the first peak is observed just
after Vsolvent (positive in the case of water, Figure 3c; negative for acetonitrile, Figure 3d)
and a second peak beyond 5.5 mL (negative and positive, respectively). Whereas retention
volumes of the first peak are nearly constant, the second one shifts to higher volumes with
the concentration of buffer in the eluent. Interestingly, the peak areas corresponding to
5 and 10 mM are similar, and then the area is progressively reduced at 15 and 20 mM. This
might be possibly related to the ion exchange properties of the zwitterionic bonded phase
employed in this study [54]. In any case, in the presence of buffer in the mobile phase, the
first disturbance peak appears beyond the Vsolvent, and therefore this method is definitely
not suitable for the estimation of hold-up volumes.

3. Materials and Methods
3.1. Instrumentation

The HPLC system consisted of two LC-20AD pumps, an SIL-10AC autosampler, an
SPD-10AVvp UV-Vis detector, and a CTO-10ASvp oven set at 25 ◦C, all from Shimadzu (Ky-
oto, Japan). The system was controlled by LC Solutions software from Shimadzu. The over-
all extra-column volume was subtracted from all the measured gross retention volumes.

The column employed was a ZIC-HILIC from Merck (Darmstadt, Germany), 5 µm,
150 mm × 4.6 mm, 200 Å pore size. The ZIC-HILIC column has a zwitterionic bonded
phase (sulfobetaine) covalently attached to porous silica.

For pycnometric measurements an AT 261 DR analytical balance from Mettler-Toledo
(Columbus, OH, USA) was used. The balance was located in a climatized room (22 ± 2 ◦C,
50 ± 5% humidity) and yearly calibrated by an accredited calibration laboratory (Mettler-
Toledo, Barcelona, Spain).

3.2. Methods and Chromatographic Conditions

Pycnometric measurements were performed equilibrating the column with water,
acetonitrile, and methanol during one hour at a flow rate of 0.5 mL min−1. After purging,
the column was immediately capped with its corresponding endfittings and weighed in
the calibrated analytical balance. All measurements were performed in triplicate.

The injection volume and the mobile phase flow rate were 1 µL and 0.5 mL min−1,
respectively. Mobile phases consist of acetonitrile/water and methanol/water mixtures
wherein the % in volume of organic solvent was varied between 100%, 90%, 80%, 70%,
60%, and 50%. The column was equilibrated for at least 20 min when changing the eluent
composition. All injections were performed at least in duplicate. The three homologous
series (n-alkyl benzenes, n-alkyl phenones, and n-alkyl ketones) were injected sequentially.

Detector wavelength was set at 210 nm for n-alkyl benzenes, 245 nm for n-alkyl
phenones, and 275 nm for n-alkyl ketones. The hold-up volume markers candidates
were measured at 254 nm and for the minor disturbance method the signal of water and
acetonitrile was detected at 200 nm.

Extra-column volume was measured by the injection of 0.5 mg mL−1 aqueous solu-
tion of potassium bromide (Baker, Sanford, ME, USA, >99%), removing the column and
connecting the injector directly to the detector, using water and different acetonitrile/water
and methanol/water mixtures as eluents.
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The flow rate (mL/min) was used to transform the elution times (min) recorded from
chromatograms into volumes (mL), in order to facilitate the comparison with the hold-up
volumes obtained from the different approaches considered in this work.

3.3. Chemicals and Solvents

The injected series of homologues (n-alkyl benzenes, n-alkyl phenones, and n-alkyl
ketones) and the hold-up volume markers candidates (acetone, urea, dimethyl sulfoxide
(DMSO), N,N-dimethylformamide (DMF), formamide, thiourea, uracil, potassium bromide,
and lithium nitrate) were purchased from Acros Organics (Geel, Belgium), Alfa Aesar (Ward
Hill, MA, USA), Baker, Carlo Erba (Emmendingen, Germany), Fluka (Buchs, Switzerland),
Merck, Prolabo (Sion, Switzerland), and Sigma-Aldrich (St. Louis, MO, USA), all of high
purity grade (≥97%). Stock solutions of the injected analytes were prepared in methanol at
a concentration of 5 mg mL−1 except for inorganic salts, which were dissolved in water.
n-Alkyl ketones were injected at stock solution concentration because of their low UV-Vis
absorbance, but the rest of the analytes were diluted to 0.5 mg mL−1 before injection.

Water was obtained from a Milli-Q plus system from Millipore (Billerica, MA, USA)
with a resistivity of 18.2 MΩ cm. Acetonitrile and methanol were HPLC gradient grade
and from Labkem (Dublin, Ireland) and Chem-Lab (Zedelgem, Belgium).

Ammonium acetate (Sigma-Aldrich, >98%) was used in the evaluation of the effect of
salt concentration in acetonitrile/water mobile phases, in a range between 5 and 20 mM.

3.4. Calculation

All calculations were done in MS Excel. Non-linear regressions were performed by
the Solver tool and the statistics of the fittings were calculated through the Excel macro
“Ref_GN_LM”, which is based on the Levenberg-Marquardt modification of the Gauss-
Newton non-linear least-squares iterative algorithm [55].

4. Conclusions

The application of the common hold-up volume (or time) determination methods to
HILIC columns is more problematic than to the classical RPLC columns and provides dif-
ferent information. Pycnometry with pure solvents (water, acetonitrile, methanol) provides
the overall amount of eluent inside the column (Vsolvent). In HILIC mobile phases, Vsolvent
volume includes the hold-up volume or volume of flowing mobile phase (VM) and the
volume of the water-rich transition layers adsorbed on the packing material, which in fact
is the volume of the main stationary phase.

The homologous series method provides the hold-up volume by extrapolation of
the retention of the homologues against their molecular volume. The extrapolated VM
values are significantly lower than the Vsolvent values in the acetonitrile-rich mobile phases,
because of the preferential sorption of water in the stationary phase, and slightly higher in
the water-rich mobile phases. In addition, the method allows to differentiate between two
different behaviors, HILIC or RPLC. In HILIC conditions, the retention of the homologues
decreases when their volume increases (small solutes are more retained than large solutes
in the water-rich stationary phase more polar than the mobile phase) showing a HILIC
type stationary phase more structured than the mobile phase. When the water content in
mobile phase increases (RPLC conditions) it is the contrary, retention increases with the
solute volume.

In some cases, neutral markers can be a good alternative to homologous series for
hold-up volume estimation, provided that they are carefully selected to exhibit negligible
partition into the stationary phase. Hold-up volume markers in HILIC must be large and
with poor dipolarity/polarizability and hydrogen bonding abilities, which is the case of do-
decylbenzene, nonadecane-2-one or decanophenone. The first two markers are particularly
suitable for pure HILIC behavior (e.g., >80% acetonitrile); the last one is recommendable
when working in the boundary between HILIC and RPLC. The retention volume of de-
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canophenone remains nearly unchanged in the range in mobile phases containing up to
20 mM of ammonium acetate.

The minor disturbance peaks produced by the injection of pure solvents are not
suitable for the hold-up volume estimation, since they are complex to interpret and depend
on the mobile phase buffer concentration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28031372/s1, Equations (S1) and (S2): Simultaneous
contribution of HILIC and RPLC retention mechanisms; Table S1: Molecular descriptors of the
homologues considered in this work; Table S2: VM, v, and r0 fitted values from homologous series
retention volumes.
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