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Abstract
In this paper, we introduce the notion of a complete hypertetrahedral arrangement A in
P
n . We address two basic problems. First, we describe the local freeness of A in terms of

smaller complete hypertetrahedral arrangements and graph theory properties, specializing
the Mustaţă–Schenck criterion. As an application, we obtain that general complete hyperte-
trahedral arrangements are not locally free. In the second part of this paper, we bound the
initial degree of the first syzygy module of the Jacobian ideal of A.
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516 L. Colarte-Gómez et al.

1 Introduction

The study of the module Der(− log A) of logarithmic vector fields tangent to the reduced
divisor DA of a hyperplane arrangement A = {H1, . . . , Hm} began with Saito in [12] and
Terao in [13]. Since then this topic has been further developed, as it can be seen in [1,2,4,5,9,
10] or [14]. A great portion of these contributions seek to determine the algebraic structure of
Der(− log A). This is equivalent to describe the first syzygy module syz(JA) of the Jacobian
ideal JA associated to a defining equation of DA. In this direction, many efforts have been
focused on the freeness and local freeness of Der(− log A), and on the initial degree of
syz(JA).

In this paper, we tackle these questions for a new family of hyperplane arrangements that
we call hypertetrahedral. Denote by e0 = (1 : 0 : . . . : 0), . . . , en = (0 : 0 : . . . : 0 : 1) the
vertices of an-dimensional simplex.Ahypertetrahedral arrangementA ⊂ P

n is a hyperplane
arrangement consisting of hyperplanes passing through the

(n+1
2

)
linear subspacesLi, j ⊂ P

n

of codimension 2 defined by the vertices e0, . . . , êi , . . . , ê j , . . . , en with i < j . We say that
A is complete if all coordinate hyperplanes belong to A. We say that a hypertetrahedral
arrangement is general if any intersection outside the n-simplex has minimal dimension. For
n = 2, hypertetrahedral arrangements coincide with the family of triangular arrangements
introduced in [9]. Graphic arrangements and the Fermat arrangement are other examples of
hypertetrahedral arrangements.

In [12] it was proved that for any hyperplane arrangement A, its module of derivations
Der(− log A) is reflexive. This grants the freeness of hyperplane arrangements in P

1, and the
local freeness of line arrangements in P

2. In general, locally free hyperplane arrangements
were studied in [10], where the authors provided a nice characterization of them. We spe-
cialize this result to our family of hypertetrahedral arrangements. We obtain a local freeness
criterion involving only smaller dimensional hypertetrahedral arrangements and graph the-
ory properties. As a remarkable consequence of this result, we prove that complete general
hypertetrahedral arrangements are not locally free. Our second goal is to study the genera-
tors of the first syzygy module syz(JA) of the Jacobian ideal associated to a hypertetrahedral
arrangement. We provide upper and lower bounds for the initial degree of syz(JA), which
are sharp for triangular arrangements. Moreover, the lower bound we give turns out to be
sharp for large families of hypertetrahedral arrangements in any dimension.

Let us outline how this work is organized. Section 2 contains the basic definitions and
results about hyperplane arrangements needed in the rest of this paper. The main body of
this article is divided in the remaining two sections. In Sect. 3, we define hypertetrahedral
arrangements and we study the local freeness of its module of derivations. Let A ⊂ P

n be a
complete hypertetrahedral arrangement with intersection lattice L(A). We associate to any
X ∈ L(A) a graphic arrangementA�X and a smaller dimensional complete hypertetrahedral
arrangementAWX . The main result Theorem 3.8 proves thatA is locally free at X if and only
ifAWX is free and the graph �X is chordal. By means of this criterion, we prove that general
complete hypertetrahedral arrangements are not locally free.

The last section is devoted to the generators of the first syzygy module syz(JA). We
give lower and upper bounds for the initial degree of syz(JA) and we present families of
hypertetrahedral arrangements reaching these bounds. The lower bound is found in Theo-
rem 4.5, altogether with a set of linear equations describing the generators of syz(JA). In the
last part of this section, we further develop these equations for triangular arrangements. In
Theorem 4.10, we apply them to determine the initial degree for syz(JA) for any triangular
arrangement.
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Hypertetrahedral arrangements 517

2 Preliminaries

We fix k an algebraically closed field of characteristic zero, R = k[x0, . . . , xn] and P
n =

Proj(R). We set ei = (0 : . . . : 1 : . . . : 0) and Li the hyperplane defined by xi = 0, for
0 ≤ i ≤ n. For any homogeneous polynomial f ∈ Rd of degree d , we denote by J f the
Jacobian ideal generated by the partial derivatives ∂x j f of f with respect to x j , j = 0, . . . , n.
For any graded R-module M , we denote by indeg(M) the initial degree of M , that is, the
minimum degree of a nonzero element in M . By Derk(R) we denote the free R-module of
rank n + 1 generated by the partial derivatives ∂xi , i = 0, . . . , n.

Next we recall some basic notions about hyperplane arrangements, for further details see
for example [11]. A hyperplane arrangement A = {H1, . . . , Hm} in P

n is a collection of
m distinct hyperplanes of P

n . Any subcollection B ⊂ A is called a subarrangement. In
particular we denote by En = ∅ the empty arrangement in P

n . The hyperplane arrangement
divisor DA is defined as DA = ⋃m

i=1 Hi . If we denote by fi a linear form defining the
hyperplane Hi , then fA = ∏m

i=1 fi is an equation of DA, which we call a defining equation
for A. We set fEn := 1 for the empty arrangement.

Given a hyperplane arrangementA in P
n , we define the intersection lattice L(A) ofA as

follows:

L(A) = {Hi0 ∩ · · · ∩ His | i1 ≤ · · · ≤ is, 1 ≤ s ≤ m}.
Notice that L(A) is partially ordered by reverse inclusion. For X ∈ L(A) we define the
localized arrangement of A at X to be AX := {H ∈ A | X ⊂ H}.
Definition 2.1 With the above notation, the module Der(− logA) of logarithmic derivations
of A is the set of R-linear derivations θ ∈ Derk(R) such that θ( fA) ⊂ ( fA). A derivation
θ ∈ Der(− logA) has degree d if θ = ∑n

i=0 θi∂xi with θi ∈ Rd . The Euler derivation
θE := ∑n

i=0 xi∂xi generates a free submodule R · θE of Der(− logA) of rank one. The
quotient of Der(− logA) by R · θE is denoted by Der(− logA)0. The sheaf of logarithmic
vector fields TPn (− log DA), which we will also denote by TA, is defined as the sheafification
of Der(− logA)0.

Definition 2.2 A hyperplane arrangementA in P
n is free if Der(− logA) is a free R-module

of rank n + 1. In this case, the degrees 1, d1, . . . , dn of the generators θE , θ1, . . . , θn of
Der(− logA) are called the exponents of the arrangement.

By [13, Proposition 2.4], we have

Der(− logA) = R · θE ⊕ syz(JA),

where JA := J fA is the Jacobian ideal of fA, and syz(JA) denotes themodule of syzygies on
JA, i.e. the polynomial relations on the generators of JA. Notice that syz(JA) is isomorphic
to Der(− logA)0.

Theorem 2.3 The hyperplane arrangementA is free if and only if there exist n+1 logarithmic
derivations

θi =
n∑

j=0

fi j∂xi ∈ Der(− logA)

such that det([ fi j ]) = c · f A for some c �= 0.

Proof See [12, Theorem 1.8]. 	
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518 L. Colarte-Gómez et al.

Example 2.4 (i) The boolean arrangement A = {x0, x1, . . . , xn} is free with exponents
(1, . . . , 1). Its Jacobian ideal JA has the following free R-resolution

0 −→ R(−1)n −→ Rn+1 −→ JA(n) −→ 0.

(ii) The braid arrangementA3 inP
3 with defining equation fA = (x0−x1)(x0−x2)(x0−

x3)(x1 − x2)(x1 − x3)(x2 − x3) is free with exponents (0, 1, 2, 3). The Jacobian ideal JA3

has the free R-resolution:

0 −→ R ⊕ R(−2) ⊕ R(−3) −→ R4 −→ JA3(5) −→ 0.

(iii) The Jacobian ideal JA of the line arrangement A in P
2 with defining equation fA =

x0x1x2(x0 + x1 + x2) has a minimal free R-resolution:

0 −→ R(−3) −→ R(−2)3 −→ R3 −→ JA(3) −→ 0.

Therefore, A is not free.

Generalizing Example 2.4(ii), the braid arrangement An in P
n is defined by the equation

fAn = ∏
0≤i< j≤n(xi − x j ). In particular,An is free with exponents (0, 1, . . . , n). Moreover,

let � = (V , E) be a graph with set of vertices V = {0, . . . , n} and E its set of edges.
We define the graphic arrangement A� associated to �, as the subarrangement of An with
equation

f� =
∏

(i, j)∈E
(xi − x j ).

The freeness of graphic arrangements is characterized using the chordality of the associated
graph. More precisely, we have the following definition.

Definition 2.5 A graph is called chordal if any cycle has a chord, that is, an edge not in the
cycle which connects two vertices.

In particular, a complete star is a graph in which all of its vertices are only connected to
a fixed one. Notice that, not having cycles of length greater or equal than three, a complete
star is chordal.

Remark 2.6 In terms of the defining equations of the hyperplanes of a graphic arrangement
A� , we can characterize them as follows:

(i) A� is chordal if, for any set {i1, . . . , ik}, with 4 ≤ k ≤ n, such that

(xi1 − xik )
k−1∏

j=1

(xi j − xi j+1) | fA� ,

we have at least another hyperplane in the arrangement defined by xih − xis , with h < s,
{h, s} �= {1, k} and s − h ≥ 2;

(ii) A� corresponds to a complete star � if it is defined, up to change of coordinates, by

fA� =
m∏

i=1

(x0 − xi ), with m < n.

Example 2.7 (i) The graphic arrangement A defined by

fA = (x0 − x1)(x1 − x2)(x2 − x3)(x3 − x4)(x0 − x4)
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Hypertetrahedral arrangements 519

Fig. 1 �A

Fig. 2 �A′

is not chordal. Indeed, the graph �A associated to A is a cycle (0, 1, 2, 3, 4) of length 5
having no chord (see Fig. 1). On the other hand, adding two hyperplanes and considering

fA′ = (x0 − x1)(x1 − x2)(x2 − x3)(x3 − x4)(x0 − x4)(x1 − x3)(x1 − x4)

makesA′ a chordal graphic arrangement. Indeed, in the associated graphic �A′ , any cycle of
length 4, ((0, 1, 3, 4) and (1, 2, 3, 4), and of length 5, (0, 1, 2, 3, 4), has a chord (see Fig. 2).

(ii) The graphic arrangement A′′ obtained from A′ by removing the hyperplanes defined
by the equations x2 − x3 = 0, x0 − x4 = 0 and x3 − x4 = 0 is a complete star graphic
arrangement. Indeed, in the associated graph �A′′ all the vertices are only connected to the
vertex 1 (see Fig. 3).

Proposition 2.8 Let A� be the graphic arrangement associated to a graph �. Then, A� is
free if and only if � is chordal.

Proof See [5, Theorem 3.3]. 	

Next we define the product of two hyperplane arrangements and characterize its freeness.

Definition 2.9 Let A1 and A2 be two hyperplane arrangements in P
n and P

m , respectively.
Let fA1 ∈ k[x0, . . . , xn] and fA2 ∈ k[y0, . . . , ym] be their equations. We define the product
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520 L. Colarte-Gómez et al.

Fig. 3 �A′′

arrangement A1 × A2 as the hyperplane arrangement in P
n+m+1 with equation fA1 fA2 ∈

k[x0, . . . , xn, y0, . . . , ym].
Proposition 2.10 LetA1 andA2 be two hyperplane arrangements inP

n andP
m, respectively.

The product arrangement A1 × A2 is free if and only if both A1 and A2 are free.

Proof See [11, Proposition 4.28]. 	

We end this preliminary section with a lemma which will play an important role later.

Lemma 2.11 Let A = {H1, . . . , Hr }, r ≥ 2, be a hyperplane arrangement in P
n with

equation fA. Let A′ = A
⋃{Hr+1, . . . , Hr+s}, s ≥ 1, be another hyperplane arrangement

in P
n with equation fA′ = fA

∏s
j=1 hr+ j being hi the linear equation of Hi . In particular,

(
⋃r

i=1 Hi )
⋂

(
⋃s

j=1 Hr+ j ) has codimension 2 in P
n . Set gs = ∏s

j=1 hr+ j . Then, there is an
injection

0 −→ TA(−s)
gs−→ TA′ .

Proof Let us consider an open subset U ⊂ P
n and the local description of the logarithmic

tangent sheaves involved, see for example [3] for more details. Denote also by fA and fA′
the equations which define locally the hyperplanes. Consider a derivation θ ∈ (TA(−s))|U ,
i.e. θ( fA) ∈ ( fA). We have that gsθ( fA′) = gsθ( fA)gs + gs fAθ(gs) ∈ (gs fA) = ( fA′).
Therefore gsθ ∈ (TA′)|U and this concludes the proof. 	


3 The local freeness of hypertetrahedral arrangements

This section is entirely devoted to study the local freeness of hypertetrahedral arrange-
ments. Let us introduce their definition and fix the notation we will use in the sequel.
We denote by Li, j ⊂ P

n the codimension 2 linear subspace passing through the vertices
e0, . . . , êi , . . . , ê j , . . . , en with i < j .

Definition 3.1 A hypertetrahedral arrangement is a hyperplane arrangementA such that any
of its hyperplanes passes through at least one linear subspace Li, j ⊂ P

n , 0 ≤ i < j ≤ n.
In particular, when n = 2, we will call it a triangular arrangement of lines in P

2. The
hypertetrahedral arrangement A is complete if it contains the hyperplanes Li := {xi =
0}, i = 0, . . . , n.
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Hypertetrahedral arrangements 521

We will denote

H(si, j )0≤i< j≤n

(or, simplyH(si, j )) the set of all complete hypertetrahedral arrangementsA inP
n with si, j+2

different hyperplanes passing through Li, j . We will assume that, for all 0 ≤ i < j ≤ n,
si, j ≥ 1 and without loss of generality, we can always assume that sn−1,n ≥ si, j , for all
0 ≤ i < j ≤ n.

For any 0 ≤ i < j ≤ n, we denote by

Lr
i, j = a(r;i, j)

i xi + a(r;i, j)
j x j , for 1 ≤ r ≤ si, j ,

where we always assume that the coefficients a(r;i, j)
i and a(r;i, j)

j are different from zero. We
call them the inner hyperplanes of A. We denote by Li, j = {Lr

i, j = 0}1≤r≤si, j the family of
inner hyperplanes passing through Li, j . According to this notation our arrangement is given
by

A = {x0, x1, . . . , xn, L1
0,1, . . . , L

s0,1
0,1 , . . . , L1

n−1,n, . . . , L
sn−1,n
n−1,n}.

Observe that any of these arrangements A ∈ H(si, j ) has n + 1 + ∑
0≤i< j≤n si, j hyper-

planes.

Example 3.2 Fix an integer a ≥ 2. The Fermat arrangement A in P
n , defined by∏

0≤i< j≤n(x
a
i − xaj ), is free with exponents (1, a + 1, 2a + 1, . . . , (n − 1)a + 1, na + 1).

In this case, for all 0 ≤ i < j ≤ n and 1 ≤ r ≤ a, we have Lr
i, j = xi − ηr−1x j where η is a

primitive a-th root of 1. Therefore, we have: a(r;i, j)
i = 1 and a(r;i, j)

j = −ηr−1.

Despite the above examples, complete hypertetrahedral arrangements are in general not
free and the next goal is to characterize whether they are locally free. For any hyperplane
arrangement in P

n , the local freeness was characterized by Mustaţă and Schenck in [10,
Theorem3.3].We specialize this criterion for complete hypertetrahedral arrangements.Wefix
A ∈ H(si, j ). For any inner hyperplane H ∈ Awith equation xi −λx j , with λ �= 0, we define
supp(H) := {xi , x j } the support of H . Furthermore, if H is the coordinate hyperplane with
equation xi , we define supp(H) := {xi }. Similarly, givenA′ a subarrangement ofA, we define
supp(A′) := ⋃

H∈A′ supp(H). In particular, for X ∈ L(A)we define supp(X) := supp(AX )

the support of X . Finally, for a subarrangementA′ ofA, we denote by n−k−1 the cardinality
of the linear system L := 〈{x j | x j /∈ supp(A′)}〉 and by π : P

n → P
k the projection

associated to L.
We begin associating to each X ∈ L(A) a pair of arrangements (AWX ,A�X ), whereAWX

is a complete hypertetrahedral arrangement and A�X is a graphic arrangement.

Remark 3.3 Let A′ be a subarrangement of A. Assume that supp(A′) = {xi0 , . . . , xik } with
k < n. Then (T ′

A)|Pk is isomorphic to Tπ(A′) ⊕On−k−1
Pk

. HenceA′ is free if and only if π(A′)
is free.

Definition 3.4 Let X ∈ L(A) be a linear subspace. DefineWX as the intersection, of minimal
dimension, of coordinate hyperplanes containing X . If X is not contained in any coordinate
hyperplane, then we set WX := ∅ and we say that X is inner.

Since WX ∈ L(A), we can consider the localized arrangement AWX . Assuming that
WX is the intersection of j coordinate hyperplanes, we have that π(AWX ) is a complete
hypertetrahedral arrangement in P

j−1. The following lemma shows that it is a component of
π(AX ).
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522 L. Colarte-Gómez et al.

Lemma 3.5 π(AX ) ∼= π(AWX ) × π(AX − AWX ).

Proof Wemay assume thatWX �= ∅ and X � WX , otherwise there is nothing to prove. Let j
be the codimensionofWX .Without loss of generalitywe assume that supp(X) = {x0, . . . , xk}
with j ≤ k and WX = H0 ∩ · · · ∩ Hj−1. Since AX = AWX

⋃
(AX − AWX ), it is enough

to prove that if H ∈ AX − AWX , then supp(H) ⊂ {x j , . . . , xk}. Notice that supp(H) �

{x0, . . . , x j−1}, otherwise H ∈ AWX . By contradiction, let us assume that H has equation
xl − λxm with 0 ≤ l < j ≤ m ≤ k. There exists p = (a0 : · · · : ak : ak+1 : · · · : an) ∈ X ,
such that a0 = · · · = a j−1 = 0 and am �= 0. Otherwise X is contained in Hm and WX is not
of minimal dimension. Since p ∈ H , then λ = 0 and H = Hl which is a contradiction. 	

Remark 3.6 Let Y be the intersection of all hyperplanes inAX −AWX . Then X = Y ∩WX and
π(Y ) is inner in L(π(AX − AWX )). Therefore AX − AWX contains at most one hyperplane
passing through each Li, j .

Now we attach a graphic arrangementA�X toAX using the subarrangementAX −AWX .
Next, we prove that the pair (AWX ,A�X ) determines completely the freeness of AX .

Definition 3.7 Let X ∈ L(A) be a linear subspace such that X � WX and assume that
supp(AX−AWX ) = {xi0 , . . . , xik }.We define�X = (VX , EX ) the graph associated to X with
vertices VX = {i0, . . . , ik} and EX the set of edges (il , im) such that there is H ∈ AX −AW

with supp(H) = {xil , xim }. We define A�X the graphic arrangement associated to �X .
If X = WX we set �X := ∅.

Theorem 3.8 Let X ∈ L(A) be a linear subspace.

(i) π(AX ) ∼= π(AWX ) × A�X .

(ii) AX is free if and only if π(AWX ) is free and �X is chordal.

Proof Weassume that X � WX , otherwise the result follows directly from [10, Theorem2.3].
(i) Without loss of generality, we suppose that supp(AX − AWX ) = {x0, . . . , xk}. By

Lemma 3.5, it is enough to see that π(AX − AWX ) is isomorphic to A�X . Let π(Y ) be as in
Remark 3.6. Sinceπ(Y ) is inner in L(π(AX−AWX )), there exists p = (a0 : · · · : ak) ∈ π(Y )

with ai �= 0, for all i . We consider the projectivity φ that fixes the coordinate points and
sends the point p to the unit point (1 : · · · : 1). We claim that φ is the desired isomorphism.
Indeed, we have at most one hyperplane Hi j in π(AX − AWX ) containing Li j ⊂ P

k . Since
φ(Hi j ) passes through the unit point, then up to scalar multiplication φ(Hi j ) is defined by
xi − x j .

(ii) The freeness of AX is equivalent to the freeness of π(AX ). Then, by (i) AX is free if
and only if both π(AWX ) and A�X are free. Finally, by Proposition 2.8, A�X is free if and
only if �X is chordal, which completes the proof. 	

Example 3.9 Let A be the complete hypertetrahedral arrangement in P

5 with equation

fA = x0x1x2x3x4x5

(
x0 − 1

2
x1

)(
x0 − 1

3
x1

)
(x0 + x2)(x0 − x3)

(
x0 + 1

3
x4

)

×
(
x0 − 1

2
x5

)
(x1 + x2)(x1 + 3x3)(x1 + x4)(x1 + x5)(x

2
2 − x23 )(x

2
2 − x24 )(x

2
2 − x25 )

×(x23 − x24 )

(
x3 − 1

3
x4

)
(x3 + 2x4)(x

2
3 − x25 )(x

2
4 − x25 ).
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Hypertetrahedral arrangements 523

Fig. 4 �X1

Fig. 5 �X3

Consider X1 = {(1 : 2 : −1 : 1 : −2 : 2)}, X2 := {x2 = x3 = x4 = x5 = 0} and
X3 = {(1 : 3 : 0 : −1 : −3 : 0)} three elements of L(A). The localized arrangements at Xi

have equations:

fX1 =
(
x0 − 1

2
x1

)
(x0 + x2)(x0 − x3)

(
x0 − 1

2
x5

)
(x1 + x4)(x2 + x3)(x4 + x5).

fX2 = x2x3x4x5(x
2
2 − x23 )(x

2
2 − x24 )(x

2
2 − x25 )(x

2
3 − x24 )

(
x3 − 1

3
x4

)
(x3 + 2x4)(x

2
3

−x25 )(x
2
4 − x25 ).

fX3 = x2x5

(
x0 − 1

3
x1

)(
x0 + 1

3
x4

)
(x1 + 3x3)

(
x3 − 1

3
x4

)
(x22 − x25 ).

X1 is inner with the graph in Fig. 4. Notice that the cycle (0, 1, 4, 5) has no chords, so �X1 is
not chordal and hence,AX1 is not free. On the other hand, X2 is an intersection of coordinate
hyperplanes and by Proposition 4.7, AX2 is free. Finally, WX3 = {x2 = x5 = 0} and �X3 is
the graph in Fig. 5. Since π(AWX3

) is an arrangement in P
1, it is free. However, AX3 is not

free because the cycle (0, 1, 3, 4) in �X3 has no chord.

As a direct consequence of Theorem 3.8 we obtain a characterization of the local free-
ness of complete hypertetrahedral arrangements. Namely, we express it using only smaller
dimensional complete hypertetrahedral arrangements and a graph theory property.
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524 L. Colarte-Gómez et al.

Corollary 3.10 A is locally free if and only if for each X ∈ L(A), the complete hypertetra-
hedral arrangement AWX is free and �X is chordal.

We end this section with two applications of Theorem 3.8.

Proposition 3.11 Let X ∈ L(A) be inner with supp(X) = {xi0 , . . . , xik }. Assume that there
are H1, . . . , Hk ∈ L(AX ) linearly independent hyperplanes such that

⋂k
l=1 supp(Hl) =

{xi j } for some xi j ∈ supp(X). Then AX is free.

Proof Without loss of generality, we can assume that supp(X) = {x0, . . . , xk} and⋂k
l=1 supp(Hl) = {x0}. By Theorem 3.8, AX is free if and only if �X is chordal. The

hypothesis implies that we can consider H1, . . . , Hk such that supp(Hi ) = {x0, xi }. Hence
{(0, 1), . . . , (0, k)} ⊂ EX , which is a complete star (see Definition 2.5) and then the graph
is chordal. 	

Proposition 3.12 Let n ≥ 3 and A ∈ H(si, j ). If A is general, then A is not locally free.

Proof We proceed by induction on n. For n = 3, we set X = {(0 : 0 : 0 : 1)}. Then
π(AX ) = π(AWX ) ∈ H(s0,1, s0,2, s1,2) is a complete triangular arrangement in P

2, which
is also general. By [9, Proposition 2.2], we have the following exact sequence:

0 −→ Tπ(AX ) −→
⊕

0≤i< j≤2

O(−si, j − 1) −→ IG(−1) −→ 0,

where G is the set of inner triple points of π(AX ). Since π(AX ) is also general, G = ∅. If
Tπ(AX ) is free, then necessarily some si, j equals to 0, which is a contradiction. Therefore by
Theorem 3.8, A is not locally free.

Now we assume that the result holds in P
n−1 for n ≥ 4. We localize A at X = {(0 : . . . :

0 : 1)}, as before π(AX ) = π(AWX ) is a generic complete hypertetrahedral arrangement in
P
n−1 with si, j ≥ 1 for 0 ≤ i < j ≤ n − 1. By induction, π(AX ) is not locally free, hence

not free and the result follows from Theorem 3.8. 	

We remark that not all locally free complete hypertetrahedral arrangements are free, as

the following example shows.

Example 3.13 LetA be the complete hypertetrahedral arrangement in P
3 with defining equa-

tion

fA = x0x1x2x3(x0 − x1)(x0 − 2x1)(x0 − x2)(x0 − x3)(x1 − x2)(x1 − x3)(x
2
2 − x23 ).

Applying Theorem 3.8, it is straightforward to check thatA is locally free. Using the software
Macaulay2 [8], we compute a minimal free resolution of JA:

0 → R(−7) → R(−5) ⊕ R(−6)3 → R(−4)3 ⊕ R(−5)3 → R4 → JA(11) → 0,

which shows that A is not free.

4 Jacobian ideal of hypertetrahedral arrangements

The goal of this section is to establish lower and upper bounds for the initial degree of the
syzygy module associated to any complete hypertetrahedral arrangement in terms of the
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values si, j . Given A ∈ H(si, j ), we define 0 ≤ i0 ≤ n to be an integer such that

n∑

j=0
j �=i0

si0, j = min

⎧
⎪⎪⎨

⎪⎪⎩

n∑

j=0
j �=i

si, j , 0 ≤ i ≤ n

⎫
⎪⎪⎬

⎪⎪⎭
.

We have the following result.

Proposition 4.1 With the above notation, the Jacobian ideal JA of any complete hypertetra-
hedral arrangement A ∈ H(si, j ) has a syzygy of degree

∑n
j=0
j �=i0

si0, j + 1. In particular,

indeg(syz(JA)) ≤
n∑

j=0
j �=i0

si0, j + 1.

Proof To simplify the notation, we assume that i0 = 0. Set d = n + 1 + ∑
0<i≤n s0,i and

take

A = {x0, x1, . . . , xn, L1
0,1, . . . , L

s0,1
0,1 , . . . , L1

n−1,n, . . . , L
sn−1,n
n−1,n}.

Wewrite the defining equation ofA as fA=gh,where g= x1 · · · xn ∏0<i< j≤n
∏

1≤t≤si, j L
t
i, j

is a polynomial of degree n + ∑
0<i< j≤n si, j and h = x0

∏
0<i≤n

∏
1≤t≤s0,i L

t
0,i is a

polynomial of degree 1 + ∑
0<i≤n s0,i . To simplify, we write h = ∏α

i=1 Li where α =
1 +∑

0<i≤n s0,i and we denote by aLi the coefficient of x0 in Li . On has

∂x0 fA = g∂x0h = gh
α∑

i=1

aLi

Li
= fA

α∑

i=1

aLi

Li
= fA

P

h
,

where P is a polynomial of degree
∑

0<i≤n s0,i such that gcd(P, h) = 1. Therefore we
obtain

dh∂x0 fA = dP fA = P

(
n∑

i=0

xi∂xi fA

)

or equivalently,

(x0P − dh)∂x0 fA + P

(
n∑

i=1

xi∂xi fA

)

= 0

as we wanted to prove. 	

The following result shows that the above upper bound for the initial degree of the first

syzygy module of the Jacobian ideal is sharp for complete triangular arrangements.

Proposition 4.2 Let A ∈ H(si, j ) be a complete general triangular arrangement with s0,1 ≤
s0,2 ≤ s0,3. Then indeg(JA) = s0,1 + s0,2 + 1.

Proof To simplify the notation we set s0,1 = s1, s0,2 = s2 and s1,2 = s3. We proceed by
induction on s1. The initial case s1 = 0 follows directly from Theorem 4.8(i).

Let s1 ≥ 1 and we assume that the result is true in H(s1 − 1, s2, s3), for any integers
s1 − 1 ≤ s2 ≤ s3. Let A ∈ H(s1, s2, s3) be a complete general triangular arrangement and
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let l be any non coordinate line passing through L0,1. Since l has no multiple points except
from the vertex, we dualize the exact sequence 0 → TA → TA−l → Ol(−s1) → 0 (see [6,
Proposition 5.1 and 5.2]) and then we obtain

0 → (TA−l)
∨ → (TA)∨ → Ol(s1 + 1) → 0.

Given that TA−l and TA have both rank 2, we get equivalently

0 → TA−l(s1 + s2 + s3 + 1) → TA(s1 + s2 + s3 + 2) → Ol(s1 + 1) → 0.

After applying ⊗OP2(−s3 − 2), we obtain

0 → TA−l(s1 + s2 − 1) → TA(s1 + s2) → Ol(s1 − s3 − 1) → 0.

Notice that H0(Ol(s1 − s3 − 1)) = 0, indeed s1 ≤ s3. Since A \ {l} is also general, by
induction we have H0(TA−l(s1 + s2 − 1)) = 0, which implies that H0(TA(s1 + s2)) = 0.
Therefore, indeg(JA) ≥ s1 + s2 + 1 and by Proposition 4.1, the result follows. 	


Let us see a couple of examples that illustrate Proposition 4.1.

Example 4.3 (i) With the above notation, assume s1 + s2 ≤ s3 and set ρ a primitive root
of unity of order s3. The complete triangular arrangement A ∈ H(s1, s2, s3) with defining
equation

x0x1x2

s1−1∏

j=0

(x0 − ρ j x1)
s2−1∏

j=0

(x0 − ρ j x2)
s3−1∏

j=0

(x1 − ρ j x2)

is free with exponents (1, s1 + s2 + 1, s3) (see [9, Remark 2.7]).
(ii) The extended Fermat arrangement has defining equation x0x1 · · · xn ∏0≤i< j≤n(x

a
i −

xaj ) and it is free with exponents (1, a + 1, 2a + 1, . . . , na + 1). Since all si, j = a, we can
take i0 = 0 and we have

∑
0<i≤n s0,i + 1 = na + 1.

Next we establish a lower bound for the initial degree of syz(JA). It turns out to be a
sharp lower bound for a large families of complete hypertetrahedral arrangements and for
any triangular arrangement. We need to introduce some new notations.

Fix integers i0, q0 with 0 ≤ i0 < q0 ≤ n. We denote by T i0,q0 the set of all possibles (n−
1)-tuples ((i0, j0, q0), (i1, j1, q1), . . . , (in−2, jn−2, qn−2)) of triples (im, jm, qm) of integers
with 0 ≤ im, jm, qm ≤ n such that j0 /∈ {i0, q0} and, for each 1 ≤ m ≤ n − 2, the following
two conditions are satisfied:

(i) jm /∈ {i0, . . . , im−1, j0, . . . , jm−1, q0, . . . , qm−1},
(ii) im < qm and im, qm ∈ {i0, . . . , im−1, j0, . . . , jm−1, q0, . . . , qm−1}.
Each (n − 1)-tuple v ∈ T i0,q0 uniquely determines a set

Si0,q0v := {si0,q0 , si0, j0 + s j0,q0 , si1, j1 + s j1,q1 , . . . , sin−2, jn−2 + s jn−2,qn−2},
and we define mi0,q0

v := min Si0,q0v and Mi0,q0 := maxv∈T i0,q0 {mi0,q0
v }.

Before presenting our result, let us illustrate the above notation with a couple of examples.

Example 4.4 (i) Let us fix n = 2 and A a complete triangular arrangement in P
2. For i0 = 1

and q0 = 2, T 1,2 = {(1, 0, 2)} and M1,2 = min{s1,2, s1,0 + s0,2}.
(ii) In P

3 consider the complete hypertetrahedral arrangement A with defining equation
xyzt(x−y)(x−2z)(x2−t2)(y3−z3)(y2−t2)(z3−t3). Then s0,1 = s0,2 = 1, s0,3 = s1,3 = 2
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and s1,2 = s2,3 = 3. It follows directly that M0,1 = M0,2 = 1 and M0,3 = M1,3 = 2. We
focus on determining M1,2 and M2,3. For i0 = 1 and q0 = 2, we have

T 1,2 = {((1, 0, 2), (1, 3, 2)), ((1, 0, 2), (0, 3, 1)), ((1, 0, 2), (0, 3, 2)), ((1, 3, 2),
(1, 0, 3)), ((1, 3, 2), (2, 0, 3))},

m1,2
v =

{
2, v ∈ T 1,2 − {(((1, 3, 2), (1, 0, 3)), ((1, 3, 2), (2, 0, 3))}
3, otherwise.

Thus M1,2 = 3. Analogously we compute M2,3.

T 2,3 = {((2, 0, 3), (2, 1, 3)), ((2, 0, 3), (0, 1, 2)), ((2, 0, 3), (0, 1, 3)), ((2, 1, 3),
(1, 0, 2)), ((2, 1, 3), (1, 0, 3))}.

m2,3
v =

{
2, v = ((2, 1, 3), (1, 0, 2))

3, otherwise.

Hence M2,3 = 3.

Theorem 4.5 Fix an integer n ≥ 2 and A ∈ H(si, j ). Let D := max0≤i0<q0≤n{Mi0,q0}. Then
for all 1 ≤ d ≤ D

Der(− logA)d ⊂ Rd−1θE .

Proof First of all, we observe that a derivation θ = f̃0∂x0 + · · · + f̃n∂xn ∈ Der(− logA)d if
and only if for each k with 0 ≤ k ≤ n there is fk ∈ Rd−1 such that f̃k = fk xk and, for each
i, j with 0 ≤ i < j ≤ n and each r with 1 ≤ r ≤ si, j there is f (r;i, j) ∈ Rd−1 such that

f (r;i, j)Lr
i, j = θ(Lr

i, j ) = a(r;i, j)
i xi fi + a(r;i, j)

j x j f j . (1)

Let us write

ft =
∑

i0+···+in=d−1

αt
(i0,...,in)

xi00 xi11 · · · xinn , 0 ≤ t ≤ n

and, for each i, j with 0 ≤ i < j ≤ n and each r with 1 ≤ r ≤ si, j ,

f (r;i, j) =
∑

i0+···+in=d−1

α
(r;i, j)
(i0,...,in)

xi00 xi11 · · · xinn .

Our goal is to see that θ is a multiple of the Euler derivation θE ∈ Der(− log(A))1, that is
to prove the equality f0 = · · · = fn or, equivalently, to see that for any partition (i0, . . . , in)
of d − 1, and any i, j with 0 ≤ i < j ≤ n,

αi
(i0,...,in)

= α
j
(i0,...,in).

(2)

To achieve this goal, we construct polynomials P�(X) ∈ k[X ] of certain degree � (see
for instance (7)) having as coefficients the differences αi

(i0,...,in)
− α

j
(i0,...,in)

. We show that
such polynomials P�(X) have more than � roots, thus obtaining the vanishing of all their
coefficients, and so the desired equalities (2) follow.

First, notice that Eq. (1) hold if and only if for any partition (k0, . . . , kn) of d and for all
i, j, r , with 0 ≤ i < j ≤ n and 1 ≤ r ≤ si, j ,

0 = a(r;i, j)
i

(
α

(r;i, j)
(k0,...,ki−1,...,kn)

− αi
(k0,...,ki−1,...,kn)

)
+ a(r;i, j)

j

(
α

(r;i, j)
(k0,...,k j−1,...,kn)
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−α
j
(k0,...,k j−1,...,kn)

)
,

with the convention that α
(r;i, j)
(r0,...,ri ,...,rn)

= 0 and αt
(r0,...,ri ,...,rn)

= 0 if some rl < 0. For any
partition (k0, . . . , kn) of d and any pair i < j , we will write

k j = d − ki −
∑

p �=i, j

k p = d − ki − k
i
j .

According to this notation, Eq. (1) hold if and only if for any partition (k0, . . . , kn) of d and
all i, j, r with 0 ≤ i < j ≤ n and 1 ≤ r ≤ si, j ,

0 = a(r;i, j)
i

(
α

(r;i, j)
(k0,...,ki−1,...,kn)

− αi
(k0,...,ki−1,...,kn)

)

+a(r;i, j)
j

(
α

(r;i, j)
(k0,...,d−ki−k

i
j−1,...,kn)

− α
j

(k0,...,d−ki−k
i
j−1,...,kn)

)
. (3)

Since a(r;i, j)
j �= 0, for all partitions with ki = 0 we have

α
(r;i, j)
(k0,...,0,...,d−k

i
j−1,...,kn)

= α
j

(k0,...,0,...,d−k
i
j−1,...,kn)

. (4)

For any partition with ki = 1, and combining (3) and (4), we get

a(r;i, j)
j α

(r;i, j)
(k0,...,1,...,d−2−k

i
j ,...,kn)

= a(r;i, j)
i

(
αi

(k0,...,0,...,d−1−k
i
j ,...,kn)

− α
j

(k0,...,0,...,d−1−k
i
j ,...,kn)

)

+a(r;i, j)
j α

j

(k0,...,1,...,d−2−k
i
j ,...,kn)

. (5)

Continuing with the same argument and using the fact that for any partition such that

ki = d − k
i
j we have α

(r;i, j)
(k0,...,d−k

i
j−1,...,0,...,kn)

= αi

(k0,...,d−k
i
j−1,...,0,...,kn)

, we can conclude

that

αi

(k0,...,d−k
i
j−1,...,0,...,kn)

=
d−k

i
j−2∑

l=0

(−1)l+1 (a(r;i, j)
i )d−k

i
j−1−l

(a(r;i, j)
j )d−k

i
j−l−1

(
αi

(k0,...,l,...,d−k
i
j−1−l,...,kn)

−α
j

(k0,...,l,...,d−k
i
j−1−l,...,kn)

)
+ α

j

(k0,...,d−k
i
j−1,...,0,...,kn)

.

Therefore,

d−k
i
j−1∑

l=0

(−1)l+1

⎛

⎝a(r;i, j)
i

a(r;i, j)
j

⎞

⎠

d−k
i
j−1−l (

αi

(k0,...,l,...,d−k
i
j−1−l,...,kn)

− α
j

(k0,...,l,...,d−k
i
j−1−l,...,kn)

)

= 0. (6)
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Expression (6) can be seen as the evaluation at
a(r;i, j)
i

a(r;i, j)
j

of the polynomial P�(X) ∈ k[X ] of
degree � = d − k

i
j − 1:

P�(X) =
d−k

i
j−1∑

l=0

(−1)l+1
(

αi

(k0,...,l,...,d−k
i
j−1−l,...,kn)

− α
j

(k0,...,l,...,d−k
i
j−1−l,...,kn)

)

Xd−k
i
j−1−l . (7)

Since the si, j hyperplanes defined by Lr
i, j = a(r;i, j)

i xi + a(r;i, j)
j x j , 1 ≤ r ≤ si, j , are

pairwise different in P
n , we obtain that P�(X) has si, j different roots. If si, j ≥ d − k

i
j , then

P�(X)would havemore roots than its degree �, implying that P� = 0. In particular, we obtain

that for any l with 0 ≤ l ≤ d − k
i
j − 1,

αi

(k0,...,l,...,d−k
i
j−1−l,...,kn)

= α
j

(k0,...,l,...,d−k
i
j−1−l,...,kn)

. (8)

On the contrary, if si, j ≤ d − k
i
j − 1, we get the following expression

α
j

(k0,...,d−k
i
j−1,...,0,...,kn)

=
d−k

i
j−2∑

l=0

(−1)l+1

⎛

⎝a(r;i, j)
i

a(r;i, j)
j

⎞

⎠

d−k
i
j−1−l (

αi

(k0,...,l,...,d−k
i
j−1−l,...,kn)

−α
j

(k0,...,l,...,d−k
i
j−1−l,...,kn)

)
+ αi

(k0,...,d−k
i
j−1,...,0,...,kn)

. (9)

Claim:Let k, j, i bepairwise different integerswith 0 ≤ k, j, i ≤ n.Assume that si,k+si, j ≥
d and that for any partition (w) := (w0, . . . , wn) of d − 1 we have αk

(w) = α
j
(w). Then, for

any partition (w) of d − 1 we get

αi
(w) = αk

(w) = α
j
(w).

Proof of the Claim To simplify the notation, we will assume that k = n − 1 and j = n. By
hypothesis, si,n−1 + si,n ≥ d and for any partition (w) of d − 1 we have αn−1

(w) = αn
(w). We

also can assume that si,n−1 ≤ si,n , otherwise we can permute the role of si,n−1 by the one of
si,n . Notice also that if d ≤ si,n−1 or d ≤ si,n , Eq. (8) would give us the desired equalities.
So, we assume that d > si,n−1 and d > si,n , we write si,n−1 = d − a and si,n = d − b with
a ≥ b > 0 and, we denote

γ (r;i,n−1) := a(r;i,n−1)
i

a(r;i,n−1)
n−1

and β(r;i,n) := a(r;i,n)
i

a(r;i,n)
n

.

From (9) we deduce that when a ≤ k
i
n−1, for any 0 ≤ l ≤ d − k

i
n−1 − 1

αi

(k0,...,d−k
i
n−1−1−l,...,l,kn)

= αn−1

(k0,...,d−k
i
n−1−1−l,...,l,kn)

. (10)

If a ≥ k
i
n−1 + 1, we have

d−k
i
n−1−1∑

l=0

(−1)l(γ (r;i,n−1))l
(

αi

(k0,...,d−k
i
n−1−1−l,...,l,kn)

− αn−1

(k0,...,d−k
i
n−1−1−l,...,l,kn)

)
= 0.
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Equivalently, when b ≤ k
i
n , for any 0 ≤ l ≤, d − k

i
n − 1

αi

(k0,...,d−k
i
n−1−l,...,l)

= αn

(k0,...,d−k
i
n−1−l,...,l)

(11)

and, if b ≥ k
i
n + 1, we obtain

d−k
i
n−1∑

l=0

(−1)l(β(r;i,n))l
(

αi

(k0,...,d−k
i
n−1−l,...,l)

− αn

(k0,...,d−k
i
n−1−l,...,l)

)
= 0.

The assumption si,n−1 + si,n ≥ d implies that a ≤ d − b. If k
i
n ≤ b − 1, then we have

t ≤ d − k
i
n − 1 and the last equality can be written as

a−1∑

l=0

(−1)l(β(r;i,n))l
(

αi

(k0,...,d−k
i
n−1−l,...,l)

− αn

(k0,...,d−k
i
n−1−l,...,l)

)

+
d−k

i
n−1∑

l=t

(−1)l(β(r;i, j))l
(

αi

(k0,...,d−k
i
n−1−l,...,l)

− αn

(k0,...,d−k
i
n−1−l,...,l)

)
= 0. (12)

All the partitions appearing in the second addend of (12) verify the conditions in (10). Hence,

for any l with t ≤ l ≤ d − k
i
n − 1, we have

αi

(k0,...,d−k
i
n−1−l,...,l)

= αn−1

(k0,...,d−k
i
n−1−l,...,l)

.

By hypothesis, for any partition (w) of d−1, we have αn−1
(w) = αn

(w). Thus, Eq. (12) is reduced
to

0 =
t−1∑

l=0

(−1)l(β(r;i,n))l
(

αi

(k0,...,d−k
i
n−1−l,...,l)

− αn

(k0,...,d−k
i
n−1−l,...,l)

)
.

This can be seen as the evaluation at β(r;i,n) of the polynomial Pt−1(X)of degree t − 1:

Pt−1(X) =
t−1∑

l=0

(−1)l(αi

(k0,...,d−k
i
n−1−l,...,l)

− αn

(k0,...,d−k
i
n−1−l,...,l)

)Xl .

Given that t ≤ si,n , Pt−1(X) has more than t roots implying Pt−1 = 0. Then, for any l with
0 ≤ l ≤ t − 1, we get

αi

(k0,...,d−k
i
n−1−l,...,l)

= αn

(k0,...,d−k
i
n−1−l,...,l)

.

Putting altogether, we obtain that for any partition (w) of d − 1 we have

αi
(w) = αn−1

(w) = αn
(w),

which finishes the proof of the claim. 	

Fix v ∈ T n−1,n .Without loss of generality we can assume that d ≤ minmn−1,n

v , otherwise
we permute the indexes in the argument below. Thus d ≤ sn−1,n and

d ≤ min{sn−1, j1 + s j1,n, si2, j2 + s j2,q2 , . . . , sin−2, jn−2 + s jn−2,qn−2}.
Finally, using iteratively the Claim, we will see that for any partition (w) = (w0, . . . , wn)

of d − 1, we have α0
(w) = α1

(w) = · · · = αn
(w).
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Let us see the first steps of the iteration. Since d ≤ sn−1,n , from (8) it follows that
αn−1

(w) = αn
(w), for any partition (w). Moreover d ≤ sn−1, j1 + s j1,n and, hence, by the claim

we obtain equalities

α
j1
(w) = αn−1

(w) = αn
(w).

We also know that j2 /∈ { j1, n − 1, n} and i2, q2 ∈ { j1, n − 1, n}. Therefore, αi2
(w) = α

q2
(w) for

any partition (w) and, by assumption, d ≤ si2 j2 + s j2q2 . Also by the Claim

α
j2
(w) = α

j1
(w) = αn−1

(w) = αn
(w),

for any partition (w). Now, j3 /∈ {i2, j1, j2, q2, n−1, n} and i3, q3 ∈ {i2, j1, j2, q2, n−1, n}.
Thus, αi3

(w) = α
q3
(w) for any partition (w). Since d ≤ si3 j3 + s j3q3 , applying again the Claim

we obtain

α
j3
(w) = α

j2
(w) = α

j1
(w) = αn−1

(w) = αn
(w),

for any partition (w). Repeating the same argument for each summand sim , jm + s jm ,qm in
Sn−1,n
v , we obtain

α
jm
(w) = · · · = α

j2
(w) = α

j1
(w) = αn−1

(w) = αn
(w).

Given that we have n − 2 summands and at each step jm /∈ Sn−1,n
m−1 , after n − 2 iterations we

finally conclude that

α0
(w) = α1

(w) = · · · = αn−1
(w) = αn

(w),

for any partition (w). In particular this implies that Der(− logA)d ⊂ Rd−1θE . 	

Remark 4.6 (1) When n = 2, the bound in Theorem 4.5 simplifies to

M1,2 = min S1,2 = min{s1,2, s1,0 + s0,2}.
Indeed, S0,1 = min{s0,1, s0,2 + s1,2} ≤ s0,1 and S0,2 = min{s0,2, s0,1 + s1,2} ≤ s0,2. Both
are clearly smaller or equal than s1,2 and s1,0 + s0,2 anyway.

(2) Given integers 1 ≤ si, j , 0 ≤ i < j ≤ n such that D = sn−1,n , there existsA ∈ H(si, j )
with indeg(syz(JA)) = D+1. Consider the extended Fermat arrangementAsn−1,n with asso-
ciated equation x0 · · · xn ∏0≤i< j≤n(x

sn−1,n
i − x

sn−1,n
j ). For each i, j with 0 ≤ i < j ≤ n,

we set hi, j to be the product of the si, j different linear factors of (x
sn−1,n
i − x

sn−1,n
j ).

We claim that the arrangement A with associated equation x0 · · · xn ∏0≤i< j≤n hi, j has
indeg(syz(JA)) = D + 1. Indeed, by Theorem 4.5 we have that indeg(syz(JA)) ≥ D + 1.
Since indeg(syz(JAsn−1,n

)) = D + 1 and syz(JA) ⊂ syz(Asn−1,n ), the claim follows.

The following result collects examples of complete hypertetrahedral arrangements reach-
ing the bound in Theorem 4.5.

Proposition 4.7 For any integers n ≥ 2, a ≥ 2 and r ≥ 1 the hypertetrahedral arrangement
Ar

a,n with defining equation

x0x1 · · · xn
∏

0≤i< j≤n

(xai − xaj )g(r−1)a(xn−1, xn),

where g(r−1)a(xn−1, xn) ∈ k[xn−1, xn] is a general homogeneous polynomial of degree
(r − 1)a, is free with exponents (1, 2a + 1, . . . , na + 1, ra + 1).
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Proof By Example 4.3(ii), we know that the result is true for r = 1. Let us assume r > 1
and write the equation fAr

a,n
of the arrangement Ar

a,n as follows

fAr
a,n

= x0x1 · · · xn
∏

0≤i< j≤n

(xai − xaj )g(r−1)a(xn−1, xn)

= fAr−1
a,n

ga(xn−1, xn),

where ga(xn−1, xn) ∈ k[xn−1, xn] is a homogeneous polynomial of degree a. By
Lemma 2.11, any section 0 �= si ∈ H0(TA1

a,n
(−ia − 1)), 1 ≤ i ≤ n − 1, induces a section

0 �= σi = si ga(xn−1, xn) ∈ H0(TAr
a,n

(−(i + 1)a − 1)), being TAr
a,n

= ker(On+1
Pn

−→
JAr

a,n
(
(n+1

2

)
a + (r − 1)a + n)). Hence, we have two exact sequences to deal with:

0 −→ TAr
a,n

−→ On+1
Pn

−→ JAr
a,n

((
n + 1

2

)
a + (r − 1)a + n

)
−→ 0 (13)

where JAr
a,n

is the Jacobian ideal of fAr
a,n
, and

0 −→
n⊕

i=2

OPn (−ia − 1) −→ TAr
a,n

−→ IZ (−ra − 1) −→ 0 (14)

where Z is a codimension 2 subscheme of P
n .

Claim: Z = ∅. In order to prove that deg(Z) = 0 we will compute the second Chern class
of TAr

a,n
using two different approaches. Using the exact sequence (14), we get ct (TAr

a,n
) =

ct (
⊕n

i=2 OPn (−ia − 1))ct (IZ (−ra − 1)). Therefore, we have

c2(TAr
a,n

) = c2(IZ (−ra − 1)) + c2

(
n⊕

i=2

OPn (−ia − 1)

)

+c1(IZ (−ra − 1))c1

(
n⊕

i=2

OPn (−ia − 1)

)

= deg(Z) +
∑

2≤i< j≤n

(ia + 1)( ja + 1) +
n∑

i=2

(ia + 1)(ra + 1)

= deg(Z) +
(
n

2

)
+ a(n − 1)(

(
n − 1

2

)
+ r − 1) + a2

2

((
n + 1

3

)
3n + 2

2

+(r − 1)(n − 1)(n + 2)

)
. (15)

On the other hand, the second Chern class of TAr
a,n

can be computed using Jacobian map
(13) in addition to the codimension 2 part of the singular locus of Ar

a,n . The latter turns out
to be:

• (n+1
2

)− 1 linear subspaces of codimension 2 which are the intersection of a + 2 hyper-
planes. Indeed, they correspond to the a+2 hyperplanes passing through the codimension
2 linear subspace xi = x j = 0 with 0 ≤ i < j ≤ n and (i, j) �= (n − 1, n).

• 1 linear subspace of codimension 2 which is the intersection of ra + 2 hyperplanes.
Indeed, the arrangement contains ra + 2 hyperplanes containing the codimension 2
linear subspace xn = xn−1 = 0.
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• (n+1
3

)
a2 linear subspaces of codimension 2 which are the intersection of 3 hyperplanes.

Indeed, for 0 ≤ i1 < i2 < i3 ≤ n and ε1, ε2 a-th roots of 1, the 3 hyperplanes x11 −ε1xi2 ,
x12 − ε2xi3 and x11 − ε1ε2xi3 meet in a codimension 2 linear subspace.

• a2
2

(n+1
2

)(n−1
2

) + (
(n+1

2

) + r − 1)(n − 1)a + (
(n+1

2

) − 1)(r − 1)a2 linear subspaces of
codimension 2 which are the intersection of 2 hyperplanes.

Therefore, using the exact sequence (13) and the properties of Chern classes (see [7,
Section 2.5]), we obtain:

c2(TAr
a,n

)

= −c1(TAr
a,n

)c1

(
JAr

a,n

((
n + 1

2

)
a + (r − 1)a + n

))

−c2

(
JAr

a,n

((
n + 1

2

)
a + (r − 1)a + n

))

=
((

n + 1

2

)
a + n + (r − 1)a

)2

−
((

n + 1

2

)
− 1

)
(a + 1)2 − (ra + 1)2

−4

(
n + 1

3

)
a2 − a2

2

(
n + 1

2

)(
n − 1

2

)
−
((

n + 1

2

)
+ r − 1

)
(n − 1)a

−
((

n + 1

2

)
− 1

)
(r − 1)a2

=
(
n

2

)
+ a(n − 1)

((
n − 1

2

)
+ r − 1

)
+ a2

2

((
n + 1

3

)
3n + 2

2

+(r − 1)(n − 1)(n + 2)

)
. (16)

Comparing the equalities (15) and (16), we get deg(Z) = 0. Hence, the exact sequence (14)
splits and we conclude that Ar

a,n is free with exponents 2a + 1, . . . , na + 1, ra + 1. 	

Triangular arrangements.

In the last part of this section, we apply the previous results to the particular case of
complete triangular arrangements. From now on, we set x = x0, y = x1 and z = x2 and
(s1, s2, s3) = (s0,1, s0,2, s1,2) with 0 < s1 ≤ s2 ≤ s3. Any complete triangular arrangement
A ∈ H(s1, s2, s3) of s1 + s2 + s3 + 3 lines in P

2 is given by x , y, z and the following
s1 + s2 + s3 linear forms:

li = x − ai y, 1 ≤ i ≤ s1

l j = b j x − z, 1 ≤ j ≤ s2

lt = y − ct z, 1 ≤ t ≤ s3.

By Remark 4.6, indeg(syz(JA)) ≥ min{s3, s1 + s2} + 1. Furthermore, we have the fol-
lowing result.

Theorem 4.8 For any A ∈ H(s1, s2, s3) we have the following.

(i) If s3 ≥ s1+s2, then indeg(syz(JA)) = s1+s2+1. In otherwords,Der(− logA)d ⊂ RθE
for all 1 ≤ d ≤ min(s1 + s2, s3).

(ii) If s3 + 1 ≤ s1 + s2, then s3 + 1 ≤ indeg(syz(JA)) ≤ s1 + s2 + 1. Moreover, if
indeg(syz(JA)) = s3 + 1, then A is free with exponents (1, s3 + 1, s1 + s2 + 1).

123



534 L. Colarte-Gómez et al.

Proof See [2, Theorem 1.2]. 	

LetA be a triangular arrangement inH(s1, s2, s3)with s3 +1 ≤ s1 + s2. By Theorem 4.8,

we know that there is an integer s3+1 ≤ dA ≤ s1+s2 such thatDer(− logA)dA � RdA−1θE ,
but Der(− logA)d ⊂ Rd−1θE for any d ≤ dA. Given an integer s3 + 1 ≤ d ≤ s1 + s2, we
study which conditions must be satisfied by a triangular arrangement A ∈ H(s1, s2, s3) in
order that dA = d .

Notation 4.9 Given a complete triangular arrangement A with 1 ≤ s1 ≤ s2 ≤ s3 and
s3 + 1 ≤ s1 + s2, we denote

f si jr := b−s
j − (ai cr )

s .

For any integer d in the range s3 + 1 ≤ d ≤ s1 + s2, we define the matrices Md
A as follows.

If 2d ≤ s1 + s2 + s3 − 1, Md
A will be the matrix with (d − s1)(2d − s2 − s3 − 1) columns

and s1s2s3 rows li jr given by

li jr = (gi jr |hi jr ), 1 ≤ i ≤ s1, 1 ≤ j ≤ s2, 1 ≤ r ≤ s3, where

gi jr = ( f s1i jr · · · f d−1
i jr cr f

s1−1
i jr · · · cr f d−2

i jr · · · cd−s2−1
r f s1+s2+1−d

i jr · · · cd−s2−1
r f s2i jr )

hi jr = ( fi jr c
s1−1
r · · · fi jr c

d−2
r f 2i jr c

s1−2
r · · · f 2i jr c

d−3
r · · · f d−s3−1

i jr cs1+s3+1−d
r

· · · f d−s3−1
i jr cs3r ).

If 2d ≥ s1 + s2 + s3, we set

m = 1

2
(s1(s1 − 1) − (s2 + s3)(s2 + s3 + 1 − 2d)).

In this case, Md
A will be the matrix with m columns and s1s2s3 rows li jr given by

li jr = (hi jr |pi jr |qi jr |ti jr ), 1 ≤ i ≤ s1, 1 ≤ j ≤ s2, 1 ≤ r ≤ s3, where

hi jr = ( fi jr c
s1−1
r · · · fi jr c

d−2
r f 2i jr c

s1−2
r · · · f 2i jr c

d−3
r · · · f d−s3−1

i jr cs1+s3+1−d
r

· · · f d−s3−1
i jr cs3r )

pi jr = (cs1+s3−d
r f d−s3

i jr · · · cs1+s3−d
r f 3d−s1−s2−2s3−1

i jr cs1+s3−d+1
r f d−s3

i jr · · ·
· · · − cs1+s2−d+1

r f 3d−s1−s2−2s3−2
i jr · · · cd−s2−1

r f d−s3
i jr )

qi jr = ( f s1i jr · · · f 2d−s2−s3−1
i jr cr f

s1−1
i jr · · · cr f

2d−s2−s3−2
i jr · · ·

cs1+s3−d−1
r f d−s3+1

i jr · · · · · · cs1+s3−d−1
r f 3d−s1−s2

i jr )

ti jr = ( f 2d−s2−s3
i jr · · · f d−1

i jr cr f
2d−s2−s3−1
i jr · · · cr f

d−2
i jr · · · cd−s2−1

r f d−s3+1
i jr

· · · cd−s2−1
r f s2i jr ).

Finally, let us define the expected rank of Md
A to be

exprk(Md
A) =

{
(d − s1)(2d − s2 − s3 − 1), if 2d ≤ s1 + s2 + s3 − 1
1
2 (s1(s1 − 1) − (s2 + s3)(s3 + s3 + 1 − 2d), if 2d ≥ s1 + s2 + s3.

Keeping this notation, we can determinewhen the arrangementA has a degree d derivation
in the range s3 + 1 ≤ d ≤ s1 + s2.
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Theorem 4.10 Let A be a complete triangular arrangement with 0 ≤ s1 ≤ s2 ≤ s3 and
assume that s3 + 1 ≤ s1 + s2. Let s3 + 1 ≤ d ≤ s1 + s2. Then, Der(− logA)d ⊆ Rd−1θE if
and only if Md

A has maximal rank.

Proof Let us recall the proof of Theorem 4.5 in the case n = 2. A derivation θ ∈
Der(− logA)d is identified with a triple ( f1, f2, f3) ∈ R3

d−1 such that, writing fi =
∑

w1+w2+w3=d−1 αi
(w1,w2,w3)

xw1 yw2 zw3 the following conditions are satisfied:

d−1−k∑

l=0

ali (α
1
(l,d−1−k−l,k) − α2

(l,d−1−k−l,k)) = 0 for 0 ≤ k ≤ d − 1 and 1 ≤ i ≤ s1,

d−1−k∑

l=0

blj (α
1
(d−1−k−l,k,l) − α3

(d−1−k−l,k,l)) = 0 for 0 ≤ k ≤ d − 1 and 1 ≤ j ≤ s2,

d−1−k∑

l=0

clr (α
2
(k,l,d−1−k−l) − α3

(k,l,d−1−k−l)) = 0 for 0 ≤ k ≤ d − 1, and 1 ≤ r ≤ s3,

α2
(k,l,d−1−k−l) = α3

(k,l,d−1−k−l) for all 0 ≤ k ≤ d − 1 and 0 ≤ l ≤ d − 1 − k,

α1
(l,d−1−k−l,k) = α2

(l,d−1−k−l,k) for all d − s1 ≤ k ≤ d − 1 and 0 ≤ l ≤ d − 1 − k, and

α1
(d−1−k−l,k,l) = α3

(d−1−k−l,k,l) for all d − s2 ≤ k ≤ d − 1 and 0 ≤ l ≤ d − 1 − k.

Let us now define, for any partition (w1, w2, w3) of d − 1,

X1,2
(w1,w2,w3)

= α1
(w1,w2,w3)

− α2
(w1,w2,w3)

,

X1,3
(w1,w2,w3)

= α1
(w1,w2,w3)

− α3
(w1,w2,w3)

and

X2,3
(w1,w2,w3)

= α2
(w1,w2,w3)

− α2
(w1,w2,w3)

.

Hence, any derivation θ ∈ Der(− logA)d corresponds bijectively with a solution of the
following homogeneous linear system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑d−1−k
l=0 ali X

12
(l,d−1−k−l,k) = 0, for 1 ≤ i ≤ s1

∑d−1−k
l=0 blj X

13
(d−1−k−l,k,l) = 0, for 1 ≤ j ≤ s2

∑d−1−k
l=0 clr X

23
(k,l,d−1−k−l) = 0, for 1 ≤ r ≤ s3

X12
(l,d−1−k−l,k) = 0 for d − s1 ≤ k ≤ d − 1 and 0 ≤ l ≤ d − 1 − k

X13
(d−1−k−l,k,l) = 0 for d − s2 ≤ k ≤ d − 1 and 0 ≤ l ≤ d − 1 − k

X23
(k,l,d−1−k−l) = 0 for d − s3 ≤ k ≤ d − 1 and 0 ≤ l ≤ d − 1 − k

X13
(w1,w2,w3)

= X12
(w1,w2,w3)

+ X23
(w1,w2,w3)

for w1 + w2 + w3 = d − 1.

(17)

Moreover, notice that Der(− logA)d � Rd−1θE if and only if (17) has some solution
different from zero. Our strategy will be to determine when the matrix associated to the
system (17) has maximal rank. First, from (17) we deduce the following equalities:
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X12
(0,d−1−k,k) = −

d−1−k∑

l=1

ali X
12
(l,d−1−k−l,k), for 1 ≤ i ≤ s1 and 0 ≤ k ≤ d − s1 − 1

(18)

X13
(0,k,d−1−k) = −

d−k−1∑

l=1

b−l
j X13

(l,k,d−1−k−l), for 1 ≤ j ≤ s2 and 0 ≤ k ≤ d − s2 − 1

(19)

X(k,0,d−1−k) = −
d−1−k∑

l=1

clr X
23
(k,l,d−1−k−l), for 1 ≤ r ≤ s3 and 0 ≤ k ≤ d − s3 − 1.

(20)

In addition, for any l with 0 ≤ l ≤ d − 1 − k,

X12
(l,d−1−k−l,k) = 0, X23

(l,d−1−k−l,k) = X13
(l,d−1−k−l,k) for d − s1 ≤ k ≤ d − 1 (21)

X13
(d−1−k−l,k,l) = 0, X23

(d−1−k−l,k,l) = −X12
(d−1−k−l,k,l) for d − s2 ≤ k ≤ d − 1 (22)

X23
(k,l,d−1−k−l) = 0, X12

(k,l,d−1−k−l) = X13
(k,l,d−1−k−l) for d − s3 ≤ k ≤ d − 1 (23)

and
d−2∑

l=0

bl−d+1
j X13

(d−1−l,0,l) =
d−1∑

l=1

clr X
23
(0,l,d−1−l), for 1 ≤ j ≤ s2 and 1 ≤ r ≤ s3. (24)

Therefore, a solution of equations from (18) to (23) corresponds to a derivation in
Der(− logA)d if and only if it satisfies the condition (24). In order to study this last equation
we need to distinguish two different cases:
Case 1: 2d ≤ s1 + s2 + s3 − 1.

First of all, we will analyze the left hand side of (24). To this end, we write it as

L :=
d−2∑

l=0

bl−d+1
j X13

(d−1−l,0,l) =
d−1∑

s=1

b−s
j X13

(s,0,d−1−s)

=
d−s3−1∑

s=1

b−s
j X13

(s,0,d−1−s) +
s1−1∑

s=d−s3

b−s
j X13

(s,0,d−1−s)

+
d−1∑

s=s1

b−s
j X13

(s,0,d−1−s)

=
d−s3−1∑

s=1

b−s
j X23

(s,0,d−1−s) +
d−1∑

s=s1

b−s
j X12

(s,0,d−1−s),

where the last equality follows from (22) and (23). Now using (20) and again equalities (21)
and (22) we get

L =
d−s3−1∑

s=1

b−s
j [−

d−s2−1∑

l=1

clr X
23
(s,l,d−1−s−l) −

d−s−1∑

l=s1−s

clr X
23
(s,l,d−1−s−l)]

+
d−1∑

s=s1

b−s
j X12

(s,0,d−1−s)
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= −
d−s3−1∑

s=1

d−s2−1∑

l=1

b−s
j clr X

13
(s,l,d−1−s−l) +

d−s3−1∑

s=1

d−s−1∑

l=s1−s

b−s
j clr X

12
(s,l,d−1−s−l)

+
d−1∑

s=s1

b−s
j X12

(s,0,d−1−s).

Now we will analyze the right hand side of (24). To this end, we write it as

R :=
d−1∑

l=1

clr X
23
(0,l,d−1−l) =

d−1∑

s=1

csr X
23
(0,s,d−1−s)

=
d−s2−1∑

s=1

csr X
13
(0,s,d−1−s) −

d−1∑

s=s1

csr X
12
(0,s,d−1−s)

=
d−s2−1∑

s=1

csr X
13
(0,s,d−1−s) −

d−s1−1∑

s=0

cd−1−s
r X12

(0,d−1−s,s),

where we have used equalities from (21) to (23) and we have performed a change of variables
in the last equality. Using (19) and (18) and having in mind the ranges where the variables
vanish (given by (21) to (23)), we get

R = −
d−s2−1∑

s=1

d−s3−1∑

l=1

csr b
−l
j X13

(l,s,d−1−s−l) −
d−s2−1∑

s=1

d−s−1∑

l=s1−s

csr b
−l
j X12

(l,s,d−1−s−l)

+
d−s1−1∑

s=0

d−s3−1∑

l=1

cd−1−s
r ali X

12
(l,d−1−s−l,s) +

d−s1−1∑

s=0

d−s−1∑

l=s2−s

cd−1−s
r ali X

12
(l,d−1−s−l,s).

Writing together both expressions, we obtain:

−∑d−s3−1
s=1

∑d−s2−1
l=1 b−s

j clr X
13
(s,l,d−1−s−l)

−∑d−s3−1
s=1

∑d−s−1
l=s1−s b

−s
j clr X

12
(s,l,d−1−s−l)

+∑d−1
s=s1 b

−s
j X12

(s,0,d−1−s)

= −∑d−s2−1
s=1

∑d−s3−1
l=1 csr b

−l
j X13

(l,s,d−1−s−l)

−∑d−s2−1
s=1

∑d−s−1
l=s1−s c

s
r b

−l
j X12

(l,s,d−1−s−l)

+∑d−s1−1
s=0

∑d−s3−1
l=1 cd−1−s

r ali X
12
(l,d−1−s−l,s)

+∑d−s1−1
s=0

∑d−s−1
l=s2−s c

d−1−s
r ali X

12
(l,d−1−s−l,s).

Reordering the equation and performing suitable changes of coordinates we get:

d−s3−1∑

s=1

d−s−1∑

l=s1−s

clr [b−s
j − (ai cr )

s]X12
(s,l,d−1−s−l)

+
d−s2−1∑

l=0

d−l−1∑

s=s1−l

clr [b−s
j − (ai cr )

s]X12
(s,l,d−1−s−l) = 0.
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Hence, Der(− logA) ⊂ Rd−1θE if and only if Md
A has maximal rank.

Case 2: 2d ≥ s1 + s2 + s3.
Reasoning analogously as in the above case,we deduce that the condition (24) is equivalent

to

d−s3−1∑

s=1

d−s−1∑

l=s1−s

clr [b−s
j − (ai cr )

s]X12
(s,l,d−1−s−l)

+
d−s2−1∑

l=s1+s3−d

2d−s2−s3−l−1∑

s=d−s3

clr [b−s
j − (ai cr )

s]X12
(s,l,d−1−s−l)

+
s1+s3−d−1∑

l=0

2d−s2−s3−l−1∑

s=s1−l

clr [b−s
j − (ai cr )

s]X12
(s,l,d−1−s−l)

+
d−s2−1∑

l=0

d−l−1∑

s=2d−s2−s3−l

clr [b−s
j − (ai cr )

s]X12
(s,l,d−1−s−l) = 0.

Thus, Der(− logA) ⊂ Rd−1θE if and only if Md
A has maximal rank. 	


We end this paper with a characterization of free triangular arrangements.

Corollary 4.11 Let A ∈ H(s1, s2, s3) be a triangular arrangement with s3 + 1 ≤ s1 + s2.
Then, A is free with exponents (1, s3 + 1+ k, s1 + s2 + 1− k) with k ≤ s1+s2−s3

2 if and only
if

rk(Md
A)

=
⎧
⎨

⎩

exprk(Md
A), if s3 + 1 ≤ d ≤ s3 + k

exprk(Md
A) − (2+d−(s3+1+k)

2

)
, if s3 + 1 + k ≤ d ≤ s1 + s2 − k

exprk(Md
A) − (2+d−(s3+1+k)

2

)− (2+d−(s1+s2+1−k)
2

)
, if s1 + s2 + 1 − k ≤ d ≤ s1 + s2 + 1.

Proof It follows directly from Theorem 4.10. 	
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