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ON THE APÉRY SETS OF MONOMIAL CURVES

TERESA CORTADELLAS BENÍTEZ, RAHELEH JAFARI,
AND SANTIAGO ZARZUELA ARMENGOU

Abstract. In this paper, we use the Apéry table of the numerical semigroup
associated to an affine monomial curve in order to characterize arithmetic
properties and invariants of its tangent cone. In particular, we precise the
shape of the Apéry table of a numerical semigroup of embedding dimension 3,
when the tangent cone of its monomial curve is Buchsbaum or 2–Buchsbaum,
and give new proofs for two conjectures raised by V. Sapko (Commun. Al-
gebra 29:4759–4773, 2001) and Y. H. Shen (Commun. Algebra 39:1922–1940,
2001). We also provide a new simple proof in the case of monomial curves
for Sally’s conjecture (Numbers of Generators of Ideals in Local Rings, 1978)
that the Hilbert function of a one-dimensional Cohen-Macaulay ring with em-
bedding dimension three is non–decreasing. Finally, we obtain that monomial
curves of embedding dimension 4 whose tangent cones are Buchsbaum, and also
monomial curves of any embedding dimensions whose numerical semigroups
are balanced, have non–decreasing Hilbert functions. Numerous examples are
provided to illustrate the results, most of them computed by using the Nu-
mericalSgps package of GAP (Delgado et al., NumericalSgps-a GAP package,
2006).

1. Introduction

A numerical semigroup S is a subset of the non-negative integers N, closed
under addition, that contains 0 and has finite complement in N. The condition
#N\S < ∞ is equivalent to impose that gcd(A) = 1 for every system of generators
A of S. Every numerical semigroup S is finitely generated and has a unique minimal
system of generators n1, . . . , nb; that is

S = 〈n1, . . . , nb〉 := {r1n1 + · · ·+ rbnb; ri ∈ N}

with n1 < · · · < nb and ni /∈ 〈n1, . . . , n̂i, . . . , nb〉. Then we will say that S is
minimally generated by {n1, . . . , nb}. The values n1 and b are known respectively
as the multiplicity and the embedding dimension of S.

Let S be a numerical semigroup minimally generated by {n1, . . . , nb} and k be
a field. The ring

k[[S]] := k[[ts; s ∈ S]] = k[[tn1 , . . . , tnb ]] ⊂ k[[t]],
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is called the numerical semigroup ring associated to S which is a one-dimensional
local domain with maximal ideal m = (tn1 , . . . , tnb), quotient field k((t)) and its
integral closure is the discrete valuation ring k[[t]]. So, k[[S]] is an analytically
irreducible and residually rational ring (i.e. the completion of the ring is an inte-
gral domain and the residue fields of the ring and of its integral closure coincide).
This ring is indeed the coordinate ring of a monomial curve in the affine space Ab

k

defined parametrically by X0 = tn1 , . . . , Xb−1 = tnb . We will denote by v the t-adic
valuation in k[[t]]. We will also consider the tangent cone associated to k[[S]]; that
is the graded ring

G(S) :=
⊕

n≥0

m
n/mn+1.

The main goal of this paper is to study arithmetic properties and invariants of
the tangent cones of numerical semigroup rings. For that, we will use some Apéry
sets associated to S, specifically, the Apéry sets with respect to n1 of the ideals
nM , where M = S \ {0} is the maximal ideal of S and n is a non-negative integer.
In fact, only a finite number of such sets are needed, those corresponding to nM
with 0 ≤ n ≤ r, where r is the reduction number of S. By using a result of V.
Barucci and R. Fröberg [4] about the existence of Apéry basis, we may organize
these Apéry sets in a table that we call the Apéry table of M .

It has been shown by two of the authors of the present paper in [7] that this Apéry
table provides precise information about the structure of G(S) as a graded module
over the fiber cone of the ideal generated by the minimal reduction x = tn1 , which
is a polynomial ring in one variable over k. This structure is in principle weaker
than the structure of G(S) as a ring itself, but as it was observed in the more
general context of the study of the fiber cone of ideals with analytic spread one [6],
it provides enough information to determine several invariants and properties of the
tangent cone, such as the regularity or the Cohen-Macaulay property. Moreover,
in [8] the family of invariants given by this structure was explicitly related to other
families of invariants of one-dimensional local rings like the microinvariants defined
by J. Elias [15], or the Apéry invariants defined by Barucci-Fröberg in [3], see also
[4]. One of the advantages of the Apéry table consists in its easy computation,
avoiding for instance the study of explicit presentations of the tangent cone.

In this paper we go further in the applications of the Apéry table to determine
new properties of tangent cones of numerical semigroup rings. They are mainly
related to the k-Buchsbaum property and the behavior of the Hilbert function, and
on the way, we also get simpler proofs of several known results concerning these
properties. Of course, the use of Apéry sets to study the tangent cones of numerical
semigroup rings is not new and it is explicit or implicitly contained in several papers
of the extensive literature on the subject. Maybe one of the most well known results
was first obtained by A. Garćıa [17, pag. 403] concerning the Cohen-Macaulayness
of the tangent cone.

Now we describe the contents of this work. In Section 2, we first review some
notions of numerical semigroup rings and Apéry sets, and recall how to recover from
the Apéry set of S with respect to the multiplicity most of the basic invariants of
the ring. Then we introduce our main tool in this paper, the Apéry table, and
show how to read from it many properties of the tangent cone, in particular the
Cohen-Macaulay and Gorenstein properties, or the Hilbert function of k[[S]] and its
behavior. Then we apply this method to study systematically the case of embedding
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dimension 2 (plane monomial curves) and easily recover most of the known results
in this case. We finish by studying the recent case considered by P. A Garćıa
Sánchez, I. Ojeda, and J. C. Rosales [19] of numerical semigroups with a unique
Betti element, proving among other things that their tangent cone is Gorenstein.

The property for G(S) to be Cohen-Macaulay has been studied extensively by
many authors, whereas the concept of a Buchsbaum ring as the most important
generalization of Cohen-Macaulay rings, has not yet been so well characterized (or
more in general, the k-Buchsbaum property). Some results for the Buchsbaum case
by using Apéry sets may be found, for instance, in the paper by M. D’Anna, V.
Micale and A. Sammartano [9]. On the other hand, in [28], V. Sapko, gave sufficient
conditions for G(S) to be Buchsbaum in embedding dimension 3 and made two
conjectures for equivalent conditions. These conjectures have been solved by Y.
H. Shen [29] and also by D’Anna-Micale-Sammartano [10] independently and by
different methods. In Section 3, we first analyze in detail the case of embedding
dimension 3 with multiplicity 4. Then, for the general case of embedding dimension
three, we use the information given by Apéry table to describe completely the
structure of G(S) when it is Buchsbaum, providing as a consequence a new and
simpler proof of Sapko’s conjectures. We also do the same in the more difficult 2-
Buchsbaum case, recovering also a result by Shen [29] in this connection. We finish
by showing that the above results cannot be extended to higher k-Buchsbaum and
making an estimation of how this could be done.

In Section 4 we study the Hilbert function of k[[S]]. The problem of the behavior
of the Hilbert function of a monomial curve, or more in general, of Cohen-Macaulay
local rings of dimension one, has been studied by many authors from different points
of view, in particular when it is non-decreasing. J. Sally [27, page 40] stated that
loc. cit. it seems reasonable that the Hilbert function of a one-dimensional Cohen-
Macaulay local ring with small enough (say, at most three?) embedding dimension,
is non-decreasing (what is commonly known as Sally’s conjecture). When the
tangent cone is Cohen-Macaulay it is well known that the Hilbert function is non-
decreasing, and so the result holds when the embedding dimension is 2 (although
the first proof of this fact was stated by E. Matlis [23]). In [14], Elias proved that
Sally’s statement is true in the equicharacteristic case of embedding dimension 3,
see also J. Elias and J. Mart́ınez-Borruel [16] for a recent extension of this result to
the non-equicharacteristic case. For higher embedding dimension the result is not
true in general. For instance, for any d ≥ 5, there are examples by F. Orecchia [24]
of reduced one-dimensional local rings of embedding dimension d with decreasing
Hilbert function, and for embedding dimension d = 4 there are examples by S. K.
Gupta and L. G. Roberts [20]. But all these rings are not numerical semigroup
rings. For this special case, there are examples of embedding dimension 10 with
decreasing Hilbert functions by J. Herzog and R. Waldi in [21], and of embedding
dimension 12 by P. Eakin and A. Sathaye in [13]. As far as we know, there are
no examples of numerical semigroup rings of embedding dimension 4 ≤ d ≤ 9 with
decreasing Hilbert function. On the other hand, among the variety of positive
results for numerical semigroup rings, we mention the recent paper by F. Arsalan,
P. Mete and M. Şahin [1] where some new cases are provided in order to support a
conjecture by M. Rossi that the Hilbert function of a one-dimensional Gorenstein
local ring of embedding dimension 4 is non-decreasing. Their technique is based
on the gluing of numerical semigroups. Our main result in this section is that the
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Hilbert function of a numerical semigroup ring of embedding dimension 4 whose
tangent cone is Buchsbaum is non-decreasing. We also get a very easy proof of
Sally’s conjecture for monomial curves in embedding dimensions 3, and close this
section by extending a recent result of D. P. Patil and G. Tamone [25] on the
non-decreasing of Hilbert functions of balanced numerical semigroups.

We provide many explicit examples along the paper. Most of the computations
have done by using the NumericalSgps package of GAP [12].

2. The Apéry table of a monomial curve

Throughout S is a numerical semigroup minimally generated by {n1, . . . , nb}
with n1 < · · · < nb and k is a field. For the general notations and results about
numerical semigroups and numerical semigroup rings we shall use the books by P.
A. Garćıa Sánchez and J. C. Rosales [18] and by V. Barucci, D. E. Dobbs, and
M. Fontana [2]. A relative ideal of S is a nonempty set H of integers such that
H +S ⊂ H and d+H ⊆ S for some d ∈ S. An ideal of S is then a relative ideal of
S contained in S. We denote by M the maximal ideal of S, that is, M = S \ {0}.
If L and H are relative ideals of S then L + H = {l + h; l ∈ L, h ∈ H} is also a
relative ideal of S. If z ∈ Z, then z + S = {z + s; s ∈ S} is the principal relative
ideal of S generated by {z} and if z1, . . . , zn ∈ Z, the relative ideal generated by
{z1, . . . , zn} ⊂ Z is (z1+S)∪· · ·∪(zn+S) that we will denote by (z1, . . . , zn)+S. M
is then the ideal generated by a system of generators of S. If I is a fractional ideal
of k[[S]] then v(I) is a relative ideal of S and for J ⊂ I fractional ideals of k[[S]],
then λ(I/J) = #v(I) \ v(J), where λ denotes the length. Thus, v(k[[S]]) = S,

v(mn) = nM = M+
n
· · · +M for any positive integer n, and if I = (ti1 , . . . , tik) ⊂

k[[S]] then v(ti1 , . . . , tik) = (i1, . . . , ik) + S.

For s ∈ S we consider the order of s, that we will denote by ord(s), as the
integer k such that s ∈ kM \ (k + 1)M . In particular s may be represented as

s = r1n1 + · · ·+ rbnb (ri ≥ 0) with
∑b

i=1 ri = k maximum over all representations
of s in S. We call this representation a maximal expression of s.

Remark 2.1. Note that if s = r1n1 + · · · + rbnb is a maximal expression of s then
any subrepresentation of s of the form s′ = r′1n1 + · · · + r′bnb with r′i ≤ ri for all
i = 1, . . . , b is also a maximal expression of s′. We shall use this fact frequently
throughout this paper.

If s ∈ S has order k then ts ∈ m
k \ m

k+1 and we will denote by (ts)∗ ∈
m

k/mk+1 →֒ G(S) its initial form. Thus, we have a map

(1)
S −→ G(S)
s 7→ (ts)∗

Note that for two elements s, s′ ∈ S, (ts)∗(ts
′

)∗ = (ts+s′)∗ if and only if the sum
of two respective maximal expressions of s and s′ is a maximal expression of s+ s′.

The element x = tn1 generates a minimal reduction of m (equivalently x is a
superficial element of degree one. See [26] for the definitions of minimal reduction
and superficial element.) and the following equalities hold for the local ring A =
k[[S]]:
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e = n1 = λ(A/xA) = #S \ (n1 + S),
b = λ(m/m2) = #M \ 2M,
r = min{r ∈ N | mr+1 = xmr} = min{r | (r + 1)M = n1 + rM},
ρ = λ(A[mx ]/A) = #〈n1, n2 − n1, . . . , nb − n1〉 \ S,
c = min{c ∈ N | c+ n ∈ S for all n ∈ N},
δ = λ(A/A) = #N \ S,
τ = λ((xm : m)/xA) = λ(m−1/A) = #{n ∈ Z | n+M ∈ S} \ S,

where e is the multiplicity of A, b the embedding dimension, r the reduction number,
A[mx ] is the blow up ring of m in A, ρ the N -reduction number, A is the integral
closure of A, c is the conductor of S and such that C = tck[[t]] is the conductor of
A in A, δ is the degree of singularity of A and τ is the Cohen-Macaulay type of A.
The following relations are known for one dimensional Cohen-Macaulay rings

b = e− λ(m2/xm) ≤ e
r ≤ e− 1

ρ = e− 1 +
∑r−1

i=1 λ(mi+1/xmi) ≥ e− 1
r ≤ 1 ⇔ b = e ⇔ ρ = e − 1

and, since A is analytically irreducible and residually rational, also

2(c− δ) ≤ c ≤ (τ + 1)(c− δ)
τ = 1 ⇔ c = 2δ

(and recall that A is Gorenstein exactly when τ = 1).

We will denote by

H(n) = µ(mn) = λ(mn/mn+1) = #nM \ (n+ 1)M

the Hilbert function of k[[S]]. We also recall that H(n) = e−λ(mn+1/xmn) and, in
particular, e = µ(mn) for n ≥ r.

Let H be a relative ideal of S and n ∈ S. We will denote by Apn(H) the Apéry
set of H with respect to n; that is the set of the smallest elements in H in each
congruence class module n, equivalently, the set of elements s in H such s−n /∈ H .
In particular, H = Apn(H)+rn, r ∈ N. Then, the greatest integer not in S (known
as the Frobenius number) is

maxApn(S)− n

and so the conductor is c = maxApn(S)−n+1. It can also be deduced easily that
the degree of singularity of S (also called the genus) can be calculated as

δ =
1

n




∑

ω∈Apn(S)

ω


−

n− 1

2
,

see [18, Proposition 2.12].

Remark 2.2. Observe that if s = r1n1 + · · · + rbnb is an element of Apn(S) then
any element of the form s′ = r′1n1 + · · · + r′bnb with r′i ≤ ri for all i = 1, . . . , b is
also an element of Apn(S).

For the particular value n = e = n1 we will write Apn(H) = Ap(H). Note that
in this case {n2, . . . , nb} ⊂ Ap(S). Also that for any element ω ∈ Ap(S) there is a

maximal expression of the form ω =
∑b

i=2 rini.
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Put W = k[[x]] = k[[te]] ⊂ A. The following fact proved by Barucci-Fröberg
[3, Lemma 2.1] in the more general setting of one-dimensional equicharacteris-
tic analytically irreducible and residually rational domains, will be crucial for
our results (see also [7, Lemma 2.1] for a proof in the case of numerical semi-
group rings): let I be a fractional ideal of A and f0, . . . , fe−1 elements in I such
that {v(f0), . . . , v(fe−1)} = Ap(v(I)). Then I is a free W -module with basis
f0, . . . , fe−1.

Apéry sets allow to compute most of the invariants introduced above as the
following example shows.

Example 2.3. Let S = 〈4, 11, 29〉. For this semigroup we have multiplicity e = 4
and embedding dimension b = 3. Then:

Ap(M) = {4, 11, 22, 29}
Ap(2M) = {8, 15, 22, 33}
Ap(3M) = {12, 19, 26, 33}
Ap(4M) = {16, 23, 30, 37}

We have 4M = 4 + 3M and r = 3. Moreover

M \ 2M = {4, 11, 29}
2M \ 3M = {8, 15, 22}
3M \ 4M = {12, 19, 26, 33}

and hence the Hilbert function is H(n) = {1, 3, 3, 4→}.
The numerical semigroup associated to the ring obtained by blowing up m in A

is S′ = 〈4, 7, 25〉 = 〈4, 7〉 and

Ap(S) = {0, 11, 22, 29}
Ap(S′) = {0, 7, 14, 21};

therefore S′ \ S = {7, 14, 18, 21, 25} and ρ = 5.
The conductor is c = maxAp(S)− e+ 1 = 29− 4 + 1 = 26.
On the other hand, N \ S = {1, 5, 9, 13, 17, 21, 25, 2, 6, 10, 14, 18, 3, 7} and so δ =

14.
Since

A = W ⊕Wt11 ⊕Wt22 ⊕Wt29,
xA = Wt4 ⊕Wt15 ⊕Wt26 ⊕Wt33

m = Wt4 ⊕Wt11 ⊕Wt22 ⊕Wt29

we have that (0 : m)A/xA

= (Wt22 ⊕Wt29 ⊕Wt4 ⊕Wt15 ⊕Wt26 ⊕Wt33)/(Wt4 ⊕Wt15 ⊕Wt26 ⊕Wt33)

∼= W/t4W ⊕W/t4W

and so τ = 2.

Apéry sets also allow to detect when S is symmetric, and so A is Gorenstein.
Recall that, following E. Kunz [22], a numerical semigroup is said to be symmetric if
there is an integer k /∈ S such that s ∈ S if and only if k−s /∈ S. Then, it was shown
in [22, Theorem] that a one-dimensional analytically irreducible Noetherian local
ring is Gorenstein if and only if its value semigroup is symmetric. Now, if for a given
n ∈ S we write the corresponding Apéry set as Apn(S) = {0 < a1 < · · · < an−1},
then S is symmetric if and only if ai + an−i−1 = an−1 for all i = 0, . . . , n− 1. This
is equivalent to the existence of a unique maximal element in Ap(S) with respect
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to the natural order in S: x ≤ y if and only if y = x + x′ for some x′ ∈ S. For
instance, note that among the two numerical semigroups appearing in the above
example, only S′ is symmetric.

We are now going to introduce the main device we shall use in this paper. See
[6] for the same construction in the more general setting of the fiber cone of ideals
with analytic spread one. Since teA ⊂ m is a minimal reduction, the graded ring

F (te) :=
⊕

n≥0

(te)nA/(te)nm ∼=
⊕

n≥0

(te)nW/(te)n+1W

is a polynomial ring in one variable over k. Moreover, the extension

F (te) →֒ G(S)

is finite. As a consequence, since F (te) is a graded principal ideal domain and
G(S) is a finite F (te)-module, we have a decomposition of G(S) as a direct sum
of a graded finite free F (te)-module and a finite number of modules of the form
(F (te)/((te)∗)cF (te))(k), where k is an integer.

As it was noted in [6], although the structure of G(S) as a ring is richer than its
structure as F (te)-module, it holds that H0

G(S)+
(G(S)) = T (G(S)), the torsion of

G(S) as F (te)-module. As a consequence, G(S) is Cohen-Macaulay ring if and only
if G(S) is free as F (te)-module. On the other hand, an element of G(S) belongs
to the torsion T (G(S)) if and only if it is annihilated by a power of (te)∗. Thus in
particular, (ts)∗ is an element of torsion if and only if there exists an integer c > 0
such that ord(s+ ce) > ord(s) + c. Then, if we define the subset of S

T := {s ∈ S; ∃ c > 0 with ord(s+ cn1) > ord(s) + c}

the map in (1) sends

T 7→ T (G(S)).

We also define, for s ∈ T , the torsion order of s as

tord(s) = min{c > 0; ord(s+ cn1) > ord(s) + c}.

Remark 2.4. Note that if an element of S of the form s + cn1 belongs to T , then
any element of the form s+ c′n1 also belongs to T , for any 0 ≤ c′ ≤ c. Also that if
ord(s+ cn1) > ord(s) + c then ord(s+ c′n1) > ord(s) + c′ for any c′ ≥ c.

Remark 2.5. It is clear that the elements of the form kn1, with k ≥ 1 are never
torsion. It is also very easy to see that the elements of the form kn2, with k ≥ 1
are never torsion.

Remark 2.6. Let s be an element in T with c = tord(s) and let s+cn1 =
∑b

i=1 sini

be a maximal expression of s+ cn1. Then it holds that s1 = 0: otherwise we may
write s + (c − 1)n1 = (s1 − 1)n1 + s2n2 + · · · + sbnb, and ord(s + (c − 1)n1) ≥
(s1 − 1) + s2 + · · ·+ sb > ord(s) + (c− 1) which contradicts the minimality of c.

In order to study the structure of G(S) more in detail we recall the considerations
made in [7], coming from an idea in [3]. If we put, for n ≥ 0,

Ap(nM) = {ωn,0 = ne, . . . , ωn,i, . . . , ωn,e−1},

with ωn,i congruent to i module e, then

m
n = Wtωn,0 ⊕ · · · ⊕Wtωn,i ⊕ · · · ⊕Wtωn,e−1 ,
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and fixed i, 1 ≤ i ≤ e − 1 one has ωn+1,i = ωn,i + ǫ · e where ǫ ∈ {0, 1} and
ωn+1,i = ωn,i + e for n ≥ r. That is, {tωn,0, . . . , tωn,e−1}n≥0 is a family of stacked
bases for the free W -modules mn ⊂ A. The table

Ap(S) ω0,0 ω0,1 · · · ω0,i · · · ω0,e−1

Ap(M) ω1,0 ω1,1 · · · ω1,i · · · ω1,e−1

...
...

...
...

...
...

...
Ap(nM) ωn,0 ωn,1 · · · ωn,i · · · ωn,e−1

...
...

...
...

...
...

...
Ap(rM) ωr,0 ωr,1 · · · ωr,i · · · ωr,e−1

is defined as the Apéry table of M [7].

Before showing how to read the structure of G(S) as F (te)-module in the Apéry
table, we recall the following notation introduced in [7].

Let E = {w0, . . . , wm} be a set of integers. We call it a stair if w0 ≤ · · · ≤ wm.
Given a stair, we say that a subset L = {wi, . . . , wi+k} with k ≥ 1 is a landing of
length k if wi−1 < wi = · · · = wi+k < wi+k+1 (where w−1 = −∞ and wm+1 = ∞).
In this case, the index i is the beginning of the landing: s(L) and the index i+ k is
the end of the landing: e(L). A landing L is said to be a true landing if s(L) ≥ 1.
Given two landings L and L′, we set L < L′ if s(L) < s(L′). Let l(E) + 1 be the
number of landings and assume that L0 < · · · < Ll(E) is the set of landings. Then,
we define following numbers:

sj(E) = s(Lj), ej(E) = e(Lj), for each 0 ≤ j ≤ l(E);
cj(E) = sj − ej−1, for each 1 ≤ j ≤ l(E).
kj(E) = ej − sj , for each 1 ≤ j ≤ l(E).
With this notation, for any 1 ≤ i ≤ e− 1, consider the stairs Ωi = {ωn,i}0≤n≤r,

that is, the stairs defined by the columns of the Apéry table of M , and the following
integers:

• li = l(Ωi) the number of true landings of the column Ωi;
• di = eli(Ω

i) the end of the last landing;
• bij = ej−1(Ω

i) and cij = cj(Ω
i), for 1 ≤ j ≤ li.

Observe that
ord(ω0,i) = e0(Ω

i) = bi1
is the place where the first landing ends and

di = bi1 + (ci1 + ki1) + · · ·+ (cili + kili)

(in fact, bi1 is the invariant bi defined in [3] in the more general context of one-
dimensional equicharacteristic analytically irreducible and residually rational do-
mains, see also [4], and [8] for their interpretation in the case of one-dimensional
Cohen-Macaulay rings).

It was proven in [7] that the torsion submodule of G(S) is minimally generated
by {

(tω0,i)∗, (tω0,i+ci1e)∗, . . . , (tω0,i+(ci1+···+cili−1)e)∗
}
{1≤i≤e−1; li≥1}

so tord(ω0,i + cije) = cij+1, and the free submodule of G(S) admits the basis
{
(tω0,i+(ci1+···+cili

)e)∗
}
1≤i≤e−1

.
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In particular, we have

G(S) ∼=

(
F (te)⊕

e−1⊕

i=1

F (te)(−di)

)
⊕




e−1⊕

i=1

li⊕

j=1

F (te)

((te)∗)c
i
jF (te)

(−bij)


 .

Remark 2.7. Note that as a consequence of the above description, any s ∈ T must
come out as one of the elements in the Apéry table of M .

Example 2.8. Let S = 〈4, 11, 29〉 be the semigroup in 2.3 and set the Apéry table
of M

Ap(S) 0 29 22 11
Ap(M) 4 29 22 11
Ap(2M) 8 33 22 15
Ap(3M) 12 33 26 19

In this case

G(S) = F (t4)⊕ F (t4) · (t33)∗ ⊕ F (t4) · (t22)∗ ⊕ F (t4) · (t11)∗ ⊕ F (t4) · (t29)∗

∼= F (t4)⊕ F (t4)(−3)⊕ F (t4)(−2)⊕ F (t4)(−1)⊕ F (t4)/(t4)∗F (−1)

and H(n) = {1, 3, 3, 4→}.

Example 2.9. The Apéry table for S = 〈5, 6, 14〉 is

Ap(S) 0 6 12 18 14
Ap(M) 5 6 12 18 14
Ap(2M) 10 11 12 18 19
Ap(3M) 15 16 17 18 24
Ap(4M) 20 21 22 23 24

For this semigroup the tangent cone (we will put F = F (t5)) is

G(S) = F ⊕ F · (t6)∗ ⊕ F · (t12)∗ ⊕ F · (t18)∗ ⊕ F · (t24)∗ ⊕ F · (t14)∗

∼= F ⊕ F (−1)⊕ F (−2)⊕ F (−3)⊕ F (−4)⊕ F/((t5)∗)2F (−1)

and H(n) = {1, 3, 4, 4, 5→}.

Example 2.10. The Apéry table for S = 〈7, 8, 17〉 is

Ap(S) 0 8 16 17 25 33 34
Ap(M) 7 8 16 17 25 33 34
Ap(2M) 14 15 16 24 25 33 34
Ap(3M) 21 22 23 24 32 33 41
Ap(4M) 28 29 30 31 32 40 41
Ap(5M) 35 36 37 38 39 40 48
Ap(6M) 42 43 44 45 46 47 48

So, the tangent cone (we will put F = F (t7)) is

G(S) = F ⊕ F · (t8)∗ ⊕ F · (t16)∗ ⊕ F · (t24)∗ ⊕ F · (t32)∗ ⊕ F · (t40)∗ ⊕ F · (t48)∗

⊕ F · (t17)∗ ⊕ F · (t25)∗ ⊕ F · (t33)∗ ⊕ F · (t34)∗ ⊕ F · (t41)∗

∼= F ⊕ F (−1)⊕ F (−2)⊕ F (−3)⊕ F (−4)⊕ F (−5)⊕ F (−6)
⊕ F/(t7)∗(−1)⊕ F/(t7)∗(−2)⊕ F/(t7)∗(−3)⊕ F/(t7)∗(−2)⊕ F/(t7)∗(−4)

and the Hilbert function is H(n) = {1, 3, 5, 5, 6, 6, 7→}.
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For k ≤ r, the differences H(k)−H(k − 1) can be read in the table as

#{y | ord(y) = k and y is the end of a landing }

−#{x | ord(x) = k − 1 and ord(x+ n1) > k}

As noted before, the ring G(S) is a Cohen-Macaulay ring if and only if G(S) is
free as F (te)-module or equivalently, T = 0. The translation of this condition in
the Apéry table of M is that there are no true landings in their columns (that is
li = 0 and di = bi for 1 ≤ i ≤ e − 1).

Remark 2.11. Observe that for any ω ∈ Ap(S) we have that tord(w) < r− 1. Thus
the ring G(S) is Cohen-Macaulay if and only if for any element ω ∈ Ap(S) one has

ord(ω + ce) = ord(ω) + c

for all 0 < c < r−1. See also Garćıa [17, Theorem 7, Remark 8]. As a consequence,
G(S) is Cohen-Macaulay for any numerical semigroup S with reduction number at
most two.

If G(S) is a Cohen-Macaulay ring, then we can rewrite the structure of G(S) as
F (te)-module in the form

G(S) ∼= F (te)⊕
r⊕

k=1

F (te)(−k)γk

with γk := #{i; bi = k}. Moreover, if we order the Apéry set in the form

Ap(S) = {ω0 = 0, ω1
1 , . . . , ω

1
γ1
, . . . , ωr

1, . . . , ω
r
γr
}

with ord(ωk
i ) = k the Apéry table has the form

Ap(S) 0 ω1
1 · · · ω1

γ1
· · · ωr

1 · · · ωr
γr

Ap(M) e ω1
1 · · · ω1

γ1
· · · ωr

1 · · · ωr
γr

Ap(2M) 2e ω1
1 + e · · · ω1

γ1
+ e · · · ωr

1 · · · ωr
γr

...
...

...
...

...
...

...
...

...
Ap(kM) ke ω1

1 + (k − 1)e · · · ω1
γ1

+ (k − 1)e · · · ωr
1 · · · ωr

γr

...
...

...
...

...
...

...
...

...
Ap(rM) re ω1

1 + (r − 1)e · · · ω1
γ1

+ (r − 1)e · · · ωr
1 · · · ωr

γr

and it is clear that for k ≤ r

µ(mk) = µ(mk−1) + γk

and so, the Hilbert function is non-decreasing since

HS(n) = {1, 1 + γ1 = b, 1 + γ1 + γ2, · · · , 1 + γ1 + · · ·+ γr = e →}.

Remark 2.12. The numbers γk were studied in [8] in a more general context. Con-
cretely

γk = λ
(
m

k/(mk+1 +m
k ∩ xA)

)

and if G(S) is a Cohen-Macaulay ring then

γk = µ(mk)− µ(mk−1) = λ
(
m

k/(mk+1 + xmk−1)
)
;

so, in this case γk > 0 for k ≤ r and the Hilbert function

1 < µ(m) < µ(m2) < · · · < µ(mr) = µ(mn)
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is strictly increasing until r and stabilizes for n ≥ r.

Remark 2.13. Observe that if G(S) is Cohen-Macaulay then the reduction number
of A equals to the highest order among the elements in Ap(S).

The Gorenstein property of the tangent cone can also be detected in terms of
the Apéry table. According to L. Bryant [5, Corollary 3.20], G(S) is Gorenstein
if and only if G(S) is Cohen-Macaulay and S is symmetric and M -pure. Let us
write the Apéry set of S in the form Ap(S) = {0 = ω0 < ω1 < · · · < ωe−1} and
assume S is symmetric. Then, by [5, Proposition 3.7] S is M -pure if and only if
ord(ωi) + ord(ωe−i−1) = ord(ωe−1) for all i = 0, . . . , e − 1. In terms of the Apéry
table this is equivalent to the condition bi + be−i−1 = be−1 for all i = 0, . . . , e − 1,
which is a kind of symmetry for the ends of the first landings in the Apéry table.

Next we show how to apply the above techniques to systematically study the
already known case of embedding dimension two, that is, plane monomial curves.
Let S = 〈n1, n2〉 be the numerical semigroup minimally generated by {n1, n2}. We
have multiplicity e = n1 and the embedding dimension is b = 2.

The Apéry table of M is completely determined. In fact, after reordering the
elements in Ap(S) in increasing form, we have

S 0 n2 · · · kn2 · · · (n1 − 1)n2

M n1 n2 · · · kn2 · · · (n1 − 1)n2

2M 2n1 n2 + n1 · · · kn2 · · · (n1 − 1)n2

...
...

...
...

...
...

...
kM kn1 n2 + (k − 1)n1 · · · kn2 · · · (n1 − 1)n2

(k + 1)M (k + 1)n1 n2 + kn1 · · · kn2 + n1 · · · (n1 − 1)n2

...
...

...
...

...
...

...
(n1 − 1)M (n1 − 1)n1 n2 + (n1 − 2)n1 · · · kn2 + (n1 − k − 1)n1 · · · (n1 − 1)n2

Observe that n1M = n1 + (n1 − 1)M and so the reduction number is r = n1 − 1
(the Apéry table is an square box).

Considering now Ap(S) and Apn1
(S′) for S′ = 〈n1, n2 − n1〉 the semigroup

obtained by blowing up m at S; that is

S′ 0 n2 − n1 2(n2 − n1) · · · (n1 − 1)(n2 − n1)
S 0 n2 2n2 · · · (n1 − 1)n2

we obtain that the N-reduction number is in this case ρ = 1+ 2 + · · ·+ (n1 − 1) =
n1(n1−1)

2 .
As (n1 − 1)n2 is the greatest element in Ap(S), the conductor is in this case

c = (n1 − 1)n2 − n1 + 1 = n1n2 − n1 − n2 + 1.

In order to calculate the degree of singularity of k[[S]] we consider the table of

Ap(S) and Apn1
(N) or equivalently the formula δ = 1

n

(∑
ω∈Apn(S) ω

)
− n−1

2 =
n1n2−n1−n2+1

2 . Thus, since c = 2δ the ring k[[S]] is Gorenstein. In fact S is clearly
symmetric by just checking the Apéry set of S.
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The Apéry table of M shows that the tangent cone G(S) is a free F (tn1)-module
and so a Cohen-Macaulay ring; we can read in the Apéry table that

G(S) = F (tn1)⊕ F (tn1) · (tn2)∗ ⊕ F (tn1) · (t2n2)∗ ⊕ · · · ⊕ F (tn1) · (t(n1−1)n2)∗

∼= F (tn1)⊕ F (tn1)(−1)⊕ F (tn1)(−2)⊕ · · · ⊕ F (tn1) · (−(n1 − 1))

Also from the Apéry table it is clear that S isM -pure. So we restate the following
fact.

Corollary 2.14. If the embedding dimension of S is 2, then G(S) is Gorenstein.

We finish this section by considering numerical semigroups with a unique Betti
element. Recently, Garćıa Sánchez-Ojeda-Rosales [19] have studied affine semi-
groups having a unique Betti element. In particular, they have characterized this
property for numerical semigroups in the following way [19, Example 12]: let S be
a numerical semigroup minimally generated by {n1, . . . , nb}. Then, S has a unique
Betti element if and only if there exist k1 > · · · > kb pairwise relatively prime
integers greater than one such that ni =

∏
j 6=i kj .

Proposition 2.15. Let S be a numerical semigroup with a unique Betti element.
Then:

(1) Ap(S) = {λ2n2 + · · ·+ λbnb | 0 ≤ λi ≤ ki − 1}.
(2) S is M -pure symmetric.
(3) G(S) is Gorenstein.

(4) The reduction number r is equal to
∑b

i=2(ki − 1).

Proof. (1) First we show that sni ∈ Ap(S) if and only if 0 ≤ s ≤ ki − 1. In fact,
if s ≥ ki then sni = kini + (s − ki)ni = k1n1 + (s − ki)ni and so sni /∈ Ap(S).

Conversely, let l = min{s | sni /∈ Ap(S)}. Then, lni =
∑b

i=1 rini with r1 6= 0 and
ri = 0. Since ri = 0, then ki|l and so ki ≤ l.

Now, since any subrepresentation of a representation of an element in Ap(S) also
belongs to Ap(S), it suffices to proof that the element (k2−1)n2+ · · ·+(kb−1)nb ∈

Ap(S). Assume the contrary and let (k2−1)n2+ · · ·+(kb−1)nb =
∑b

i=1 sini, with

s1 6= 0 and
∑b

i=2 sini ∈ Ap(S). Then, by the previous considerations, 0 ≤ si ≤

ki − 1 for 2 ≤ i ≤ b. Thus we may write s1n1 =
∑b

i=2(ki − 1− si)ni. Let 2 ≤ j ≤ b
be such that kj − 1− sj 6= 0. Then kj |(kj − 1− sj) because kj |ni for all i 6= j, but
this is impossible.

(2) From (1) we have that there is exactly one maximal element in the Apéry
set, so we get that S is symmetric. Hence to prove that S is M -pure it is enough

to show that
∑b

i=2(ki − 1)ni is a maximal expression. Assume the contrary and

let
∑b

i=2(ki − 1)ni =
∑b

i=2 sini with
∑b

i=2 si >
∑b

i=2(ki − 1). Then, there exists
2 ≤ j ≤ b such that sj > kj − 1. Thus sjnj /∈ Ap(S) as we have seen in (1), which
is a contradiction.

(3) First we show that G(S) is Cohen-Macauly. Assume that G(S) is not Cohen-
Macaulay and let w ∈ Ap(S) ∩ T \ (0) be the smallest possible torsion element in
Ap(S). Note that then w is also the smallest possible element in T \ (0). In fact,
let x ∈ T \ (0) and w′ ∈ Ap(S) such that x = w′ + kn1, k ≥ 0. Then, w′ is also
torsion and so w ≤ w′ ≤ x.

Assume that tord(w) = c and let w =
∑b

i=2 rini a maximal expression, and

w + cn1 =
∑b

i=2 sini a maximal expression too (by Remark 2.6 we know that
s1 = 0). Note that siri = 0 for all i = 2, . . . , b, since w is a minimal element of
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T (see Lemma 4.6). Let i ∈ {2, . . . , b}. If si 6= 0, then ri = 0 and so ki | w. If

si = 0, then ki |
∑b

i=2 sini = w + cn1. Since ki | n1 we have that ki | w. Hence∏b
i=2 ki | w, that is n1 | w which contradicts w ∈ Ap(S).
Finally, we get that G(S) is Gorenstein because it is Cohen-Macaulay and S is

M -pure symmetric by (2).
(4) By Remark 2.13 we have that r is equal to the highest order among the

elements in the Apéry set, which in this case is
∑b

i=2(ki − 1). �

Remark 2.16. By completely different methods it is proven in [19] that S is in fact
complete intersection. Also, following the notation in [11], we have that Ap(S) is
β-rectangular and then G(S) is complete intersection by [11, Corollary 2.10 and
Theorem 3.6].

3. k–Buschsbaum property in the three-generated case

Recall that G(S) is called k–Buchsbaum if and only if G(S)k+ ·H0
G(S)+

(G(S)) = 0.

In our case H0
G(S)+

(G(S)) coincides with T (G(S)), the torsion F (te)–submodule of

G(S). The 1–Buchsbaum condition is the Buchsbaum condition and G(S) is 0–
Buchsbaum precisely when it is Cohen-Macaulay.

Observe that because in this case H0
G(S)+

(G(S)) is of finite length, G(S) will

be always k-Buchsbaum for some k ≤ λ(H0
G(S)+

(G(S))). Thus in some sense, the

study of the k–Buchsbaum property in this case is a sort of classification of the
family of numerical semigroups, being the Cohen-Macaulay case the best possible
from this point of view.

In this section we use the Apéry table to provide the precise structure of G(S)
when S is three-generated and G(S) is Buchsbaum or 2-Buchsbaum. As a biproduct
we will have positive answers to conjectures raised by Sapko in [28] for the Buchs-
baum case and by Shen in [29] for the 2-Buchsbaum case. Both conjectures have
been solved positively by using different techniques by D’Anna-Micale-Sammartano
in [10], and Shen [29] for the Buchsbaum case, and by Shen [29] for the 2-Buchsbaum
case.

Remark 3.1. If G(S) is k–Buchsbaum and s ∈ T then the order of torsion of s is at
most k since otherwise ord(s+ ie) = ord(s) + i for 1 ≤ i ≤ k and (tke)∗ · (ts)∗ 6= 0.

In studying the k–Buchsbaum property the differences between the structure of
G(S) as a graded ring or as a graded module over F (te) appear. For instance, we
may have that F (te)+ · H0

G(S)+
(G(S)) = 0 (equivalently, the order of torsion of

any element in the torsion F (te)-submodule of G(S) is one) but G(S) may be not
Buchsbaum, see for instance [7, Example 4.6].

The following lemma which holds for any numerical semigroup S has a key role
in the proof of our main results.

Lemma 3.2. Let s =
∑b

i=1 rini be a maximal expression of s. If s ∈ T , then∑b
i=3 ri 6= 0.
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Proof. Let c = tord(s) and s + cn1 =
∑b

i=1 sini a maximal expression of s + cn1.
Then

b∑

i=1

si >

b∑

i=1

ri + c.

with s1 = 0 by Remark 2.6. Hence it holds that
∑b

i=3 ri 6= 0: otherwise s =
r1n1 + r2n2 and then

s+ cn1 = r1n1 + r2n2 + cn1 = (r1 + c)n1 + r2n2

< (r1 + r2 + c)n2

< (
∑b

i=2 si)n2

<
∑b

i=2 sini = s+ cn1,

a contradiction. �

In the three-generated case we can make more precise estimations:

Lemma 3.3. Let b = 3 and S minimally generated by n1 < n2 < n3. Let s =
r1n1 + r2n2 + r3n3 be a maximal expression of s. Assume that s ∈ T and let
c = tord(s) with s + cn1 = s1n1 + s2n2 + s3n3 a maximal expression of s + cn1.
Then

(1) s1 = 0.
(2) r3 6= 0.
(3) s2 > r2.

Proof. Items (1) and (2) are proved in Lemma 3.2.
If s2 ≤ r2 then r1n1+(r2−s2)n2+r3n3+cn1 = s3n3 with r3 < r1+(r2−s2)+r3+

c < s3. Consider the element x = r1n1+(r2−s2)n2. Then ord(x) = r1+(r2−s2) and
x+cn1 = (s3−r3)n3 with s3−r3 > r1+(r2−s2)+c. Hence r1n1+(r2−s2)n2 ∈ T ,
which contradicts condition (2) for x. �

From now on we will assume that b = 3, and S minimally generated by n1 <
n2 < n3. It is then easy to see that for any element ω in the Apéry set there is a
unique maximal expression of the form kn2+hn3, and that this maximal expression
occurs with the maximum possible value of k for a representation of ω. So we may
order the elements in the Apéry set as follows:

Ap(S) = {0, n2, . . . , hn2, n3, . . . , n3 + h1n2, . . . , kSn3, . . . , kSn3 + hkS
n2}

with ord(kn3 + jkn2) = k + jk for all k = 0, . . . , kS and jk = 0, . . . , hk (where
h0 = h).

Remark 3.4. Let kn3 + h′n2 ∈ Ap(S) with ord(kn3 + h′n2) = k+ h′. If k > 0 then
(k−1)n3+h′n2 ∈ Ap(S) with ord((k−1)n3+h′n2) = k−1+h′; and if h′ > 0 then
kn3 + (h′ − 1)n2 ∈ Ap(S) with ord(kn3 + (h′ − 1)n2) = k + h′ − 1. In particular,

0 ≤ hkS
≤ · · · ≤ h1 ≤ h.

Remark 3.5. By Lemma 3.3, {n2, . . . , hn2} ∩ T = ∅.

Next two lemmas show in particular that the behavior of the set of torsion
elements in Ap(S) is rigid:
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Lemma 3.6. With the notations introduced, assume that we have maximal expres-
sions kn3 and kn3 + h′n2 for some k, h′ ≥ 1. Then

kn3 ∈ T ⇔ kn3 + h′n2 ∈ T

and tord(kn3) = tord(kn3 + h′n2).

Proof. It is clear that if ord(kn3+cn1) > k+c then ord(kn3+h′n2+cn1) > k+h′+c
and that tord(kn3) ≥ tord(kn3 + h′n2).

Reciprocally, let c = tord(kn3+h′n2). By Lemma 3.3 we may write kn3+h′n2+
cn1 = s2n2+s3n3 with s2 > h′ and s2+s3 > k+h′+c. Then kn3+cn1 = (s2−h′)n2+
s3n3 with s2−h′+s3 > k+c, hence kn3 ∈ T and tord(kn3) ≤ tord(kn3+h′n2). �

Lemma 3.7. With the notations introduced, assume that we have maximal expres-
sions for some 1 ≤ k < k′. Then

kn3 ∈ T ⇒ k′n3 ∈ T

tord(k′n3) ≤ tord(kn3)

Proof. Let c = tord(kn3). By Lemma 3.3 we have that kn3+cn1 = s2n2+s3n3 with
s2+ s3 > k+ c. Then k′n3+ cn1 = kn3+(k′ − k)n3+ cn1 = s2n2+(s3+ k′− k)n3,
so ord(k′n3 + cn1) ≥ s2 + s3 + k′ − k > k′ + c, so k′n3 ∈ T and tord(k′n3) ≤ c =
tord(kn3). �

Corollary 3.8. With the notations introduced let k ∈ {1, . . . , kS}.

T ∩ {kn3, . . . , kn3 + hkn2} 6= ∅ ⇔ kn3 ∈ T.

Example 3.9. Let S = 〈8, 11, 18〉. The Apéry set is

Ap(S) = {0, n2 = 11, 2n2 = 22, 3n2 = 33, n3 = 18, n3+n2 = 29, 2n3 = 36, 2n3+n2 = 47}

and we have that 2n3 +n1 = 44 = 4n2; so 2n3 ∈ T but n3 /∈ T . Thus, the converse
of Lemma 3.7 does not hold. The Apéry table of M is in this case

Ap(S) 0 11 18 22 29 33 36 47
Ap(M) 8 11 18 22 29 33 36 47
Ap(2M) 16 19 26 22 29 33 36 47
Ap(3M) 24 27 34 30 37 33 44 47
Ap(4M) 32 35 42 38 45 41 44 55
Ap(5M) 40 43 50 46 53 49 52 55

As a consequence we have a very simple method to decide when the tangent cone
is Cohen-Macaulay in this case:

Proposition 3.10. Let b = 3 and S minimally generated by n1 < n2 < n3. With
the notations introduced,

G(S) is a Cohen-Macaulay ring ⇔ kSn3 /∈ T.

Proof. G(S) is Cohen-Macaulay if and only if T (G(S)) = 0 if and only if T = ∅ if
and only if Ap(S) ∩ T = ∅ and by the above lemmas if and only if kSn3 /∈ T . �

Example 3.11. Let S = 〈8, 11, 18〉. The Apéry set is

Ap(S) = {0, n2 = 11, 2n2 = 22, 3n2 = 33, n3 = 18, n3+n2 = 29, 2n3 = 36, 2n3+n2 = 47}
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and we have that 2n3 +n1 = 44 = 4n2; so 2n3 ∈ T but n3 /∈ T . Thus, the converse
of Lemma 3.7 does not hold. The Apéry table of M is in this case

Ap(S) 0 11 18 22 29 33 36 47
Ap(M) 8 11 18 22 29 33 36 47
Ap(2M) 16 19 26 22 29 33 36 47
Ap(3M) 24 27 34 30 37 33 44 47
Ap(4M) 32 35 42 38 45 41 44 55
Ap(5M) 40 43 50 46 53 49 52 55

If n1 = 3 then 3 = b = e and it is well known by [26, Theorem 2] that G(S) is
Cohen-Macaulay (observe that in this case the reduction number is r ≤ 1 and from
the Apéry table is also clear that G(S) is Cohen-Macaulay). Next we see the case
n1 = 4.

Corollary 3.12. Let S = 〈4, n2, n3〉. Then

G(S) is not a Cohen-Macaulay ring ⇔ n3 + 4 = 3n2 ⇔ r = 3.

Proof. First of all we have that r ≤ 3 and so tord(w) ≤ 1 for any w ∈ Ap(S), by
Remark 2.11 . It is clear that if n3 + 4 = 3n2 then n3 ∈ T and G(S) is not Cohen-
Macaulay. On the other hand, the Apéry set of S is Ap(S) = {0, n2, n3, n3 + n2}
or Ap(S) = {0, n2, 2n2, n3}. In both cases, if G(S) is not Cohen-Macaulay then
n3 ∈ T by Proposition 3.10 and, since tord(n3) = 1, it is easy to deduce from
Lemma 3.3 that n3 + 4 = 3n2.

For the right equivalence we observe that if n3 + 4 = 3n2 then n3 + n2 /∈ Ap(S)
(since n3 + n2 is equivalent to 0 module 4). So by Lemma 3.3 there are three
possibilities for the Apéry table of S:

Ap(S) 0 n2 n3 n3 + n2

Ap(M) 4 n2 n3 n3 + n2

Ap(2M) 8 n2 + 4 n3 + 4 n3 + n2

Ap(S) 0 n2 2n2 n3

Ap(M) 4 n2 2n2 n3

Ap(2M) 8 n2 + 4 2n2 n3 + 4

Ap(S) 0 n2 2n2 n3

Ap(M) 4 n2 2n2 n3

Ap(2M) 8 n2 + 4 2n2 n3 + 4
Ap(3M) 12 n2 + 8 2n2 + 4 n3 + 4

The table at the bottom corresponds to the only non Cohen-Macaulay case (that
is, when n3 + 4 = 3n2) and r = 3 in this case. Otherwise r = 2. �

Example 3.13. 〈4, 5, 6〉, 〈4, 5, 7〉 and 〈4, 5, 11〉 are semigroups each of them corre-
sponding to each one of the Apéry tables in the above corollary.

Remark 3.14. In the situation of Corollary 3.12, we observe that if G(S) is not
Cohen-Macaulay then the torsion T (G(S)) is minimally generated by (tn3)∗. Since
tord(n3) = 1 we have that T (G(S)) = {0, (tn3)∗}, and so it has length 1 and G(S)
is then Buchsbaum because G(S)+ · T (G(S)) = 0.

Next we prove that in fact the above situation is the only possibility for G(S)
to be Buchsbaum when b = 3. As a consequence, we get that if b = 3 then G(S) is
Buchsbaum if and only if λ(T (G(S))) ≤ 1. This result was conjectured by Sapko
[28] and has been proved by Shen in [29] and also by D’Anna-Micale-Sammartano
in [10] using different methods.
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Theorem 3.15. Assume that b = 3. With the notations introduced,

G(S) is a Buchsbaum, not Cohen-Macaulay ring ⇔ T = {kSn3}

Proof. If T = {kSn3} then T (G(S)) is minimally generated by (tkSn3)∗, and because
tord(kSn3) = 1 we get that T (G(S)) has length 1 and so, as we have noted at the
beginning of this section, G(S) is Buchsbaum.

Reciprocally, assume that G(S) is Buchsbaum and not Cohen-Macaulay. By
Proposition 3.10 the element kSn3 belongs to T . We claim that Ap(S)∩T = {kSn3}.
First observe that tord(kSn3) = 1 by Remark 3.1. Hence, if kSn3+h′n2 ∈ Ap(S)∩T
with ord(kSn3 + h′n2) = kS + h′ then h′n2 has order h′ and

(th
′n2)∗ · (tkSn3)∗ = tkSn3+h′n2 ∈ m

kS+h′

/mkS+h′+1

is not zero, which contradicts the Buchsbaum property of G(S). Now, by Lemmas
3.6 and 3.7 we only have to prove that kn3 /∈ T for any k < kS . Assume that
kn3 ∈ T for some k < kS . Then

(tn3)∗ · (tkn3 )∗ = t(k+1)n3 ∈ m
k+1/mk+2

is not zero because (k + 1)n3 ∈ Ap(S) with ord(k + 1)n3 = k + 1, which is again a
contradiction because G(S) is Buchsbaum.

Now, since Ap(S) ∩ T = {kSn3} we have that

T ⊂ {kSn3 + cn1; c ≥ 0}.

On the other hand, kSn3+n1 = s2n2+s3n3 with ord(s2n2+s3n3) = s2+s3 > kS+1.
We claim that s3 = 0. Otherwise it is easy to see that (kS − 1)n3 ∈ Ap(S) ∩ T

which contradicts the first claim.
Hence kSn3 + n1 = s2n2 which implies, by Lemma 3.2, that kSn3 + n1 /∈ T .

As a consequence, kSn3 + cn1 /∈ T for all c ≥ 1 and T = {kSn3} as we wanted to
prove. �

Corollary 3.16. Assume that b = 3 and that G(S) is Buchsbaum and not Cohen-
Macaulay. With the notations introduced, the Apéry set of S has the form

Ap(S) = {0, n2, . . . , hn2, . . . , kn3 + jkn2, . . . , kSn3}

with ord(kn3 + jkn2) = k + jk for all k = 0, . . . , kS − 1 and jk = 0, . . . , hk (where
h0 = h) and ord(kSn3) = kS , and G(S) is of the form

G(S) ∼=


F (tn1)⊕

kS−1⊕

k=0

hk⊕

jk=0

F (tn1)(−k − jk)⊕ F (tn1)(−α)


⊕

F (tn1)

((tn1)∗)F (tn1)
(−kS),

where α = ord(kSn3 + n1).

With similar ideas we can also describe the case 2-Buchsbaum. As a consequence
we will have that if b = 3, then G(S) is 2-Buchsbaum (and not Buchsbaum) if and
only if λ(T (G(S)) = 2. With different techniques this result has also been proved
by Shen [29]. Note that in our case we may give an explicit description of T (G(S))
in terms of the set T which can be easily detected in the Apéry table.

Theorem 3.17. Assume that b = 3. With the notations introduced,

G(S) is 2-Buchsbaum and not 1-Buchsbaum ⇔





T = {kSn3, kSn3 + n1} or

T = {kSn3, kSn3 + n2}, or

T = {kSn3, (kS − 1)n3}
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Proof. ⇐ is clear since by similar arguments as in Proposition 3.15 we have that
λ(T (G(S)))) = 2. Note that in the structure of G(S) there will be only one torsion
direct summand of order 2 in the first case, and two torsion direct summands of
order 1 in the other two cases.

We assume now that G(S) is 2–Buchsbaum and not Buchsbaum. Then the tor-
sion order of any s ∈ S is at most 2 by Remark 3.1 and {kSn3} ( T by Proposition
3.10 and Theorem 3.15. We will distinguish three cases.

First case: We assume that Ap(S)∩T = {kSn3}. We will prove that in this case
the torsion order of kSn3 is equal to 2.

If tord(kSn3) = 1 then by Lemma 3.3, kSn3+n1 = s2n2+ s3n3 with ord(s2n2+
s3n3) = s2 + s3 > kS + 1. If s3 6= 0 then kS > 1 because {n1, n2, n3} is a minimal
system of generators. But then (kS − 1)n3 ∈ Ap(S) ∩ T (see Lemma 4.6) which
contradicts the hypothesis. Thus ksn3 +n1 = s2n2, which does not belong to T by
Lemma 3.2. So ksn3 + cn1 /∈ T for any c ≥ 1 and T = {kSn3}. Hence the tangent
cone G(S) is Buchsbaum, a contradiction.

Now, similarly to the above argument, since the torsion order of kSn3 is equal
to 2 and (kS − 1)n3 is not a torsion element, we may write kSn3 +2n1 = s2n2 /∈ T .
Thus, kSn3 + cn1 /∈ T for any c ≥ 2 and the only elements in the Apéry table of M
which are torsion are 0, kSn3, kSn3+n1. It is then clear that T = {kSn3, kSn3+n1}.

Second case: We assume that {kSn3} ( Ap(S) ∩ T and kSn3 + n2 ∈ Ap(S).
Note that kSn3+n2 is a maximal expression because kS is the maximum possible

value for such a representation.
First, we prove that (kS − 1)n3 /∈ T . If (kS − 1)n3 is a torsion element, then

because G(S) is 2–Buchsbaum we have that kSn3 + n2 = (kS − 1)n3 + n3 + n2 =
s2n1 + s2n2 + s3n3 with ord(sn1 + s2n2 + s3n3) = s1 + s2 + s3 > kS + 1, which is
a contradiction because kSn3 + n2 is a maximal expression.

Secondly, by Lemma 3.6 we have that kSn3 + n2 ∈ T , and that tord(kSn3) =
tord(kSn3 + n2). On the other hand, kSn3 + n2 + n1 is not a maximal expression
because G(S) is 2-Buchsbaum. Hence tord(kSn3 + n2) = 1 and tord(kSn3) = 1 as
well.

Finally, we prove that there are no more elements in the Apéry table belonging
to T . For that it suffices to see that kSn3 + n1 and kSn3 + n2 + n1 are not in
T . Because of Lemma 3.3, a maximal expression of kSn3 + n1 must be of the
form kSn3 + n1 = s2n2 + s3n3 with s2 + s3 > kS + 1. But then, if s3 6= 0 we
would have that (kS − 1)n3 ∈ T , a contradiction. Hence s3 = 0 and by Lemma
3.2, kSn3 + n1 /∈ T . A similar argument shows that kSn3 + n2 + n1 /∈ T (note
that (kS − 1)n3 + n2 /∈ T by Lemma 3.6 because (kS − 1)n3 /∈ T ). Thus we get
T = {kSn3, kSn3 + n2}.

Third case: We assume that {kSn3} ( Ap(S)∩T and kSn3+n2 /∈ Ap(S). Then,
by Lemmas 3.6 and 3.7, (kS − 1)n3 ∈ Ap(S) ∩ T . Note that kS ≥ 2.

First we show that tord(kSn3) = 1. Assume the contrary. Then, note that
the element n3 + n1 ∈ 2M \ 3M since otherwise, by Lemma 3.7, n3 ∈ T and
1 = tord(n3) = · · · = tord(kSn3) which supposes a contradiction. But then we
have that

0 6= (tn3+n1)∗ · (t(kS−1)n3)∗ = tkSn3+n1 ∈ m
kS+1/mkS+2

with (tn3+n1)∗ ∈ G(S)2+, which contradicts the assumption thatG(S) is 2–Buchsbaum.
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Secondly, note that kn3 /∈ T for k /∈ {kS , kS − 1}, otherwise (kS − 2)n3 ∈ T and

0 6= (t2n3)∗ · (t(kS−2)n3)∗ = tkS ∈ m
kS/mkS+1 ,

again a contradiction to the fact that G(S) is 2–Buchsbaum.
Now we prove that (kS−1)n3+n2 /∈ Ap(S). Assume the contrary: by Lemma 3.6

this will imply that (kS − 1)n3+n2 ∈ T . Since G(S) is 2–Buchsbaum we have that
(kS−1)n3+2n2 = r1n1+r2n2+r3n3, a maximal expression with r1+r2+r3 > kS+1.
We want to see first that r1 6= 0. If r1 = 0 then (kS − 1)n3 + 2n2 = r2n2 + r3n3, a
maximal expression with r2+ r3 > kS +1. We have two possibilities: if kS − 1 < r3
then 2n2 = r2n2 + (r3 − (kS − 1))n3 > 2n2 because r2 + r3 − (kS − 1) > 2, a
contradiction. If kS − 1 ≥ r3 then ((kS − 1) − r3)n3 = (r2 − 2)n2 which implies
that r2 − 2 > (kS − 1) − r3 because n3 > n2. Consequently, ((kS − 1) − r3)n3

is not a maximal expression, which is a contradiction to our set up in the order
of the elements of Ap(S). Thus we have that r1 6= 0 as wanted to see. On the
other hand, r2 = 0 because if not we would have that (kS − 1)n3 + n2 is not a
maximal expression and so this element cannot belong to the Apéry set, which
contradicts our hypothesis. Hence we have (kS − 1)n3 + 2n2 = r1n1 + r3n3, with
r1 + r3 > kS + 1 and r1 6= 0. If r3 > kS − 1 then 2n2 = r1n1 + (r3 − (kS − 1))n3

with r1 + r3 − (kS − 1) > 2, and so 2n2 is not a maximal expression. But this is
a contradiction: since kSn3 ∈ T and has order 1 we have that by Lemma 3.3 that
kSn3 + n1 = s2n2 + s3n3, a maximal expression with s2 + s3 > kS + 1. We have
s3 ≤ 1 because kn3 /∈ T for k < kS − 1, so s2 > kS ≥ 2 and this means that 2n2 is
a maximal expression. Hence we must have that r3 ≤ kS − 1. Now we get the two
following equalities:

((kS − 1)− r3)n3 + 2n2 = r1n1

kSn3 + n2 = r′1n1

(the second one because kSn3 + n2 /∈ Ap(S), kSn3 ∈ Ap(S), and (kS − 1)n3 + n2 ∈
Ap(S) by hypothesis). Subtracting the first one to the second one we have that
(1 + r3)n3 − n2 = (r′1 − r1)n1 (and so r′1 − r1 > 0), equivalently, (1 + r3)n3 =
(r′1 − r1)n1 + n2. But since 1 + r3 ≤ kS , the element (1 + r3)n3 ∈ Ap(S) and so it
must happen that r′1 − r1 = 0. Hence n2 = (1 + r3)n3, a contradiction.

Our next step is to prove that tord((kS − 1)n3) = 1. Assume the contrary.
Then it must be 2 because G(S) is 2–Buchsbaum. By Lemma 3.3 this implies that
(kS − 1)n3 + 2n1 = r2n2 + r3n3, a maximal expression with r2 + r3 > kS + 1.
Then r3 = 0 because kn3 /∈ T for k < kS − 1. Hence we have the equality
(kS − 1)n3 + 2n1 = r2n2, a maximal expression with r2 > kS + 1. On the other
hand, because the torsion order of kSn3 is 1 we have again by Lemma 3.3 that
kSn3+n1 = r′2n2+ r′3n3, a maximal expression with r′2 + r′3 > kS +1. Now, r′3 = 0
because we are assuming that tord((kS−1)n3 = 2. Thus we have the two equalities

(kS − 1)n3 + 2n1 = r2n2

kSn3 + n1 = r′2n2

Subtracting the first one to the second one we get n3 − n1 = (r′2 − r2)n2 (and so
r′2 − r2 > 0), equivalently n3 = n1 + (r′2 − r2)n2, a contradiction.

We have proved that T ∩Ap(S) = {(kS−1)n3, kSn3}, both elements with torsion
order one. To finish, we must see that there are no more torsion elements in S, and
for that it will suffice to see that there are no other elements in the Apéry table
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which are torsion. Since they must be congruent with kS or kS − 1 it is enough to
show that kSn3 + n1, (kS − 1)n3 + n1 /∈ T .

Observe first that by Lemma 3.3 we have an equality (kS − 1)n3 + n1 = s2n2 +
s3n3, a maximal expression with s2 + s3 > kS . Then, s3 = 0 because kn3 /∈ T for
k < kS − 1. Thus we have (kS − 1)n3 + n1 = s2n2. But the elements of the form
kn2 are never torsion for any k ≥ 1, so (kS − 1)n3 + n1 /∈ T .

Finally assume that kSn3 + n1 ∈ T . Again by Lemma 3.3 we have an equality
kSn3+n1 = s2n2+s3n3, a maximal expression with s2, s3 6= 0 and s2+s3 > kS+1.
Observe that n2 + n3 is a maximal expression. If s3 > kS then n1 = s2n2 + (s3 −
kS)n3, which is impossible. So kS ≥ s3. Observe that by Lemma 3.7, s3n3 ∈ T
and hence s3 = kS or kS − 1. On the other hand, (kS − s3)n3 + n1 = s2n2, with
s2 > kS − s3 + 1, which means that (kS − s3)n3 is torsion. Hence kS − s3 = kS or
kS − 1. Because s3 6= 0 we get kS − s3 = kS − 1, and so kS = 2 since kS ≥ 2. Thus
n3 + n2 /∈ Ap(S) and we must have n3 + n2 = k1n1 + k2n2 + k3n3, with k1 ≥ 1.
Observe then that k2 = k3 = 0, and because n3 + n2 is a maximal expression,
k1 ≤ 2. But this is a contradiction because 2n1 < n2 + n3. �

Example 3.18. The semigroups S1 = 〈5, 6, 14〉, S2 = 〈8, 11, 18〉, and S3 = 〈10, 16, 27〉
are 2–Buchsbaum and not Buchsbaum. Following the cases in the above proof, we
have that S1 = 〈5, 6, 14〉 belongs to the first case, S2 = 〈8, 11, 18〉 to the second
case, and S3 = 〈10, 16, 27〉 to the third one.

The following example shows that k is not necessarily the maximal possible value
for λ(T (G(S))), when k > 2 and G(S) is k–Buchsbaum.

Example 3.19. Let S =< 6, 7, 16 >. The Apéry table of S is

Ap(S) 0 7 14 21 16 23
Ap(M) 6 7 14 21 16 23
Ap(2M) 12 13 14 21 22 23
Ap(3M) 18 19 20 21 28 29
Ap(4M) 24 25 26 27 28 35
Ap(5M) 30 31 32 33 34 35

As a consequence, T = {16, 22, 23, 29} and ord(x + y) > ord(x) + ord(y) for all
x ∈ T and y ∈ 3M \ 4M . Hence G(S) is 3–Buchsbaum. But λ(T (G(S))) = 4.

Remark 3.20. Note that whenG(S) is k–Buchsbaum and not Cohen-Macaulay, then
T 6= ∅ and for each element x ∈ T with maximal expression x = r1n1+ r2n2+ r3n3,
we have r2n2 + r3n3 ∈ T by Remark 2.4 and r1 ≤ k − 1. Now set

x′ = max{x | (kS − x)n3 ∈ T }
y′ = max{y | (kS − x)n3 + yn2 ∈ T is maximal expression for somex ≥ 0}

Observe that by Lemma 3.6, (kS − x′)n3 + y′n2 ∈ T , and since G(S) is k–
Buchsbaum it must happen that x′ + y′ ≤ k − 1. Let X = x′ + 1, Y = y′ + 1.
Then, X + Y ≤ k+2 and a biggest value of the function f(X,Y ) = XY under the
constraint X + Y ≤ k+2 gives a bound for the cardinal of the set of elements that
can be written in the above way, which contains T . It is then easy to see that this
biggest value is attained for X = Y = k+1

2 and so

#{x ∈ T | x = r2n2 + r3n3 is a maximal expression } ≤
(k + 1)2

4
.
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Hence λ(H0
G(S)+

(G(S))) ≤ k(k+1)2

4 and #(Ap(S) ∩ T ) ≤ (k+1)2

4 .

As we have seen in the 2–Buchsbaum case, the above formula is not a sharp
bound for λ(H0

G(S)+
(G(S))), in the sense that for k = 2, we never have the equality

in this formula. In fact, the structure of the set T is more involved than the one
used to get the formula. Nevertheless, having a good bound for λ(H0

G(S)+
(G(S)))

may be useful to detect the k-Buchsbaum property of G(S). Hence is natural to
ask:

Question 3.21. Assume that b = 3 and G(S) is k–Buchsbaum. Is there a sharp
formula depending on k bounding λ(T (G(S)))?

Remark 3.22. From the previous bounds we have in the 2-Buchsbaum case that
#(Ap(S) ∩ (T \ {0})) ≤ 2. This gives an alternative for proving the fact that
(kS − 1)n3 + n2 /∈ Ap(S) in the third case of Theorem 3.17. Namely, if (kS −
1)n3 + n2 ∈ Ap(S), it also belongs to T by Lemma 3.6 and so #(Ap(S) ∩ T ) ≥ 3,
a contradiction.

4. Non-decreasing Hilbert functions

The objective of this section is to study the growth of the Hilbert function of
a numerical semigroup ring. For that we shall use the Apéry table structure to
provide some new cases where the Hilbert function is non decreasing. Namely, we
shall prove that this property holds when the embedding dimension is 4 and G(S)
is Buchsbaum, and when S is balanced, a notion that extends to any embedding
dimension the case considered by Patil-Tamone in [25]. On the way, we shall also
provide a new and simple proof for the well known case of embedding dimension 3.

We start by recalling the two subsets in the Apéry table that control the behavior
of the Hilbert function.

Remark 4.1. Let k be a positive integer. Consider the subsets of (k− 1)M defined
by

Dk := {x | ord(x) = k − 1 and ord(x+ n1) > k} ⊂ T

and

Ck := {y | ord(y) = k and y − n1 /∈ (k − 1)M}.

Observe that the elements in Dk have torsion order one. We have that #Ck is
the number of ends of landings in the row k of the Apéry table, and that #Dk is
the number of beginnings of true landings in the row k of the Apéry table. Then,
the successive differences of the Hilbert function of G(S) may be computed as
H(k)−H(k − 1) = #Ck −#Dk.

In order to prove that H is a non-decreasing function we will construct an in-
jective map Dk −→ Ck. Next lemma will allow to construct elements in Ck from
elements in Dk.

Lemma 4.2. Assume that x ∈ T with tord(x) = 1 and that x+ n1 =
∑b

i=2 sini is
a maximal expression. Let lx = ord(x+ n1)− ord(x) − 1 > 0. Then

(1) lx <
∑b−1

i=2 si.

(2) Let yx =
∑b

i=2(si − ri)ni, with 0 ≤ ri ≤ si for all i = 2, . . . , b, and such

that
∑b

i=2 ri = lx. Then yx ∈ Ck, where k = ord(x) + 1.
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Proof. (1) Let x =
∑b

i=1 rini be a maximal expression with ord(x) =
∑b

i=1 ri. If

sb ≥
∑b

i=1 ri + 1, then

sbnb ≥ (

b∑

i=1

ri + 1)nb > r1n1 + r2n2 + · · ·+ rbnb + n1 = x+ n1,

which is a contradiction. Thus sb <
∑b

i=1 ri + 1 so that ord(x + n1) =
∑b

i=2 si <∑b−1
i=2 si +

∑b
i=1 ri + 1 =

∑b−1
i=2 si + ord(x) + 1. Hence lx <

∑b−1
i=2 si.

(2) Since yx =
∑b

i=2(si − ri)ni is a maximal expression we have that ord(yx) =∑b
i=2 si−

∑b
i=2 ri = ord(x+n1)− lx = ord(x)+ 1 = k. Now we have to prove that

y− n1 /∈ (k− 1)M . If y ∈ Ap(S) then y− n1 /∈ S. If not, then y−n1 = x−w ∈ S,

where w =
∑b

i=2 rini. We have that ord(w) = lx > 0, so k = ord(x) + 1 >
ord(x−w)+1 = ord(y−n1)+1. Hence k−1 > ord(y−n1) and y−n1 /∈ (k−1)M . �

The above general construction allows us to show the non-decreasing of the
Hilbert function for numerical semigroup rings in several cases. For instance, when
we apply our strategy to the three generated case, we obtain a very simple proof
which is similar to the one by I. C. Şerban in [30].

Proposition 4.3. Let b = 3. Then the numerical semigroup ring k[[S]] has non-
decreasing Hilbert function.

Proof. By using the notation of Remark 4.1, it will suffice to construct an injective
map Dk −→ Ck. Let x ∈ Dk. By Lemma 3.3, we have that x = r1n1 + r2n2 + r3n3

with ord(x) = k − 1 = r1 + r2 + r3 and x + n1 = s2n2 + s3n3 with ord(x + n1) =
s2+ s3 > k and s2 6= 0. Let lx = ord(x+n1)− ord(x)− 1. Then lx < s2 by Lemma
4.2(1) and so we may consider the element yx := (s2 − lx)n2 + s3n3. By Lemma
4.2(2), ord(yx) = k = ord(x) + 1 and yx ∈ Ck.

Thus the map
Dk −→ Ck

x 7→ yx
is well defined.

Now we see that this map is injective. Assume that x, x′ are elements in Dk with
yx = yx′ . Thus, ord(x) = ord(x′) = k − 1, and if we write x + n1 = s2n2 + s3n3,
x′ + n1 = s′2n2 + s′3n3 with s2 + s3 = ord(x+ n1) and s′2 + s′3 = ord(x′ + n1), then
yx = x+ n1 − lxn2 = x′ + n1 − lx′n2 = yx′ . So, assuming for instance that lx′ ≥ lx,
we will have x′ = x + (lx′ − lx)n2. But since ord(x) = ord(x′) this is only possible
if lx′ − lx = 0, and so x = x′. �

We may also prove, in general, that if the torsion of G(S) has length one then
the Hilbert function is non-decreasing (extending the case Cohen-Macaulay).

Proposition 4.4. Let S be a numerical semigroup such that λ(H0
G(S)+

(G(S))) = 1.

Then, k[[S]] has non-decreasing Hilbert function.

Proof. Again by using the notation of Remark 4.1, it will suffice to construct an
injective map Dk −→ Ck. Note that in this case there is only one torsion element
in G(S) and so there is only one possible value k such that Dk 6= ∅, and only one
element x in Dk. Hence it suffices to construct an element in Ck. Assume that
x + n1 =

∑b
i=2 sini is a maximal expression with lx =

∑b
i=2 si − ord(x) − 1 > 0.

Then, lx <
∑b

i=2 si and one can find values ri ≤ si, for any i = 2, . . . , b, such that
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∑b
i=2 ri = lx. Let yx =

∑b
i=2(si − ri)ni. By Lemma 4.2(2), yx ∈ Ck and we are

done. �

Our next result shows the new case that the Hilbert function of monomial curves
of embedding dimension 4 whose tangent cone is Buchsbaum is non-decreasing.
First we need to introduce the following notation.

Definition 4.5. Assume that x ∈ S. Define rx := (r1, . . . , rb), where x =∑b
i=1 rini is the maximal expression in which

r1 = max{r′1 | r′n1is part of a maximal expression of x},
r2 = max{r′2 | r1n1 + r′2n2 is part of a maximal expression of x},
...
rb = max{r′b | r1n1+r2n2+· · ·+rb−1nb−1+r′bnb is part of a maximal expression of x}.

Note that rb is determined by the previous ones. For x, y ∈ S, we use rx · ry to
denote the vector (r1 · s1, . . . , rb · sb), where ry = (s1, . . . , sb). We denote by 0 the
null vector.

It is easy to see that if x =
∑b

i=1 rini with rx = (r1, . . . , rb) and x′ =
∑b

i=1 r
′
ini

is a subrepresentation with r′i ≤ ri for all i = 1, . . . , b, then rx′ = (r′1, . . . , r
′
b).

Next lemma allows to construct torsion elements from torsion maximal expres-
sions.

Lemma 4.6. Let S be a numerical semigroup minimally generated by n1 < · · · <
nb. Let x =

∑b
i=1 rini ∈ T a maximal expression such that x+cn1 = y =

∑b
i=1 sini,

a maximal expression with ord(y) > ord(x) + c. Assume that rj , sj 6= 0 for some

j = 1, . . . b. Then, x′ =
∑b

i=1,i6=j rini + (rj − 1)nj ∈ T with tord(x′) ≤ c.

Proof. We have that y′ = x′+cn1 =
∑b

i=1,i6=j rini+(rj−1)nj+cn1 =
∑b

i=1,i6=j sini+

(sj − 1)nj with ord(x′) + c =
∑b

i=1,i6=j ri + (rj − 1) + c <
∑b

i=1,i6=j si + (sj − 1) =

ord(y′) because both x′, y′ are subrepresentations of maximal expressions, and so
maximal expressions. Hence x′ ∈ T with tord(x′) ≤ c. �

Proposition 4.7. Assume that G(S) is Buchsbaum and let x be a torsion element.
Then rx · rx+n1

= 0.

Proof. Since G(S) is Buchsbaum, then any torsion element is annihilated by all

elements in G(S)+. Thus x =
∑b

i=1 rini cannot have a torsion subrepresentation.
By the above Lemma 4.6 we must have that min{ri, si} = 0, that is ri · si = 0 for
i = 1, . . . , b, where (s1, . . . , sb) = rx+n1

. �

For embedding dimension 4 we have the following:

Proposition 4.8. Assume that b = 4 and that for any x ∈ T , tord(x) = 1. Assume
also that rx · rx+n1

= 0 for all x ∈ T . Then the Hilbert function of k[[S]] is non-
decreasing.

Proof. Let x be a torsion element with rx = (r1, r2, r3, r4) and rx+n1
= (s1, s2, s3, s4).

First note that since the torsion order of any torsion element is 1, then r1 = 0. Also
that s1 = 0. Now, by Lemma 4.2(1)

(2) s2 + s3 > ord(x+ n1)− ord(x)− 1 = lx.
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Let l = min{lx, s2 − 1}, so that s2 − l > 0 and s3 − lx + l ≥ 0. Then we may
define

yx :=





x+ n1 − lxn2 if s3 = 0 (a)
x+ n1 − lxn3 if s2 = 0 (b)
(s2 − l)n2 + (s3 − lx + l)n3 if s2, s3 6= 0 (c)

Observe that if x ∈ Dk, then yx ∈ Ck, by Lemma 4.2(2). Thus the map

Dk −→ Ck

x 7→ yx

is well defined. Let us see that it is injective.
Assume that there exists another torsion element x′ ∈ Dk with yx′ = yx. Let

lx′ := ord(x′ + n1) − ord(x′) − 1 and rx′ = (r1, r2, r3, r4), rx′+n1
= (s′1, s

′
2, s

′
3, s

′
4)

be the corresponding vectors (note that s′1 = 0). By definition of Dk we have that
ord(x) = ord(x′) = k − 1.

Now we are going to distinguish several possibilities:

(i) If both yx and yx′ are in case (a), and assuming that lx ≥ lx′ , then x+n1 =
yx + lxn2 = yx′ + lxn2 = x′ + n1 + (lx − lx′)n2. Canceling n1 we get that
x = x′ +(lx− lx′)n2. So lx = lx′ because ord(x) = ord(x′), and we get that
x = x′.

(ii) If both yx and yx′ are in case (b), then similarly to (i), we have x = x′.
(iii) If both yx and yx′ are in case (c), then by hypothesis we have that x =

r1n1 + r4n4 and x′ = r′1n1 + r′4n4. But as noted at the beginning, r1 =
r′1 = 0, so x = r4n4 and x′ = r′4n4, which implies that x = x′ since both
are maximal expressions and ord(x) = ord(x′) = k − 1.

(iv) If yx is in case (a) and yx′ is in case (b), then yx = (s2 − lx)n2 + s4n4 and
yx′ = (s′3− lx′)n3+ s′4n4. Hence s2− lx = s′3− lx′ = 0, by the uniqueness of
such maximal expressions. But this is a contradiction because s3 = 0 and
so s2 > lx.

(v) If yx′ is in case (a) and yx is in case (c), then (s′2 − lx′)n2 + s′4n4 = (s2 −
l)n2+(s3− lx+ l)n3. Once more because of the uniqueness of such maximal
expressions we have that s3 − lx + l = 0. Now l = s2 − 1 < lx since s3 6= 0.
Hence yx = n2 which contradicts the fact that ord(yx) = ord(x) + 1 > 1.

(vi) If yx′ is in case (b) and yx is in case (c), then (s′3 − lx′)n3 + s′4n4 = (s2 −
l)n2 + (s3 − lx + l)n3. Again because of the uniqueness of the involved
maximal expressions we have that s2 − l = 0, which is a contradiction to
our definition of l.

�

As a consequence of the above two propositions and taking into account that if
G(S) is Buchsbaum then the torsion order of any element in T is equal to 1, we get
our desired result:

Theorem 4.9. Assume that b = 4 and G(S) is Buchsbaum. Then, the Hilbert
function of R is non-decreasing.

Example 4.10. We quote the following example from [9]. Let S =< 10, 17, 23, 82 >.
The Apéry table is
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Ap(S) 0 17 23 34 46 51 68 69 82 85
Ap(M) 10 17 23 34 46 51 68 69 82 85
Ap(2M) 20 27 33 34 46 51 68 69 92 85
Ap(3M) 30 37 43 44 56 51 68 69 92 85
Ap(4M) 40 47 53 54 66 61 68 79 92 85
Ap(5M) 50 57 63 64 76 71 78 89 102 85
Ap(6M) 60 67 73 74 86 81 88 99 102 95

We have that H0
G(S)+

(G(S)) = {(t82)∗, (t92)∗}, so λ(H0
G(S)+

(G(S))) = 2, and

G(S) is Buchsbaum by [9, Remark 3.9] (or check it directly by using the Apéry
table). The Hilbert function of k[[S]] is H(n) = {1, 4, 5, 7, 9, 9, 10→}.

Finally, we consider balanced numerical semigroups. The notion of balanced has
been considered in the case of 4 generated numerical semigroups by Patil-Tamone
in [25]. Our definition generalizes their definition to any embedding dimension.
We shall prove that the Hilbert function of any balanced numerical semigroup is
non-decreasing, extending [25, Theorem 2.11].

Definition 4.11. S is called balanced, if ni + nj = ni−1 + nj+1 for all i 6= j ∈
{2, . . . , b− 1}.

Remark 4.12. S is balanced if and only if ni + nj = n1 + ni+j−1 for all i 6= j ∈
{2, . . . , b− 1} with i+ j ≤ b− 1.

In order to make more clear our arguments and for the purposes of this paper, we
single out in a new definition the basic property of balanced numerical semigroups
we shall use.

Definition 4.13. We say S has a cyclic 1-torsion, if for each element x ∈ T with
tord(x) = 1, there exists 2 ≤ i ≤ b−1 such that x+n1 = sini+sbnb is the maximal
expression that satisfies Definition 4.5.

It is obvious that all 3 generated semigroups have a cyclic 1-torsion. And also
balanced numerical semigroups have a cyclic 1-torsion.

Proposition 4.14. Assume that S is balanced. Then S has a cyclic 1-torsion.

Proof. Let s ∈ T with tord(x) = 1, and let x + n1 =
∑b

i=1 sini be a maximal
expression with rx+n1

= (s1, . . . , sb). Recall that s1 = 0 because tord(x) = 1.
Assume that there exist si, sj 6= 0 for some 1 < i < j < b. This will imply in
particular that y = ni + nj is also a maximal expression that satisfies definition
4.5. But then, since ni + nj = ni−1 + nj+1, we have a contradiction because
y = ni−1 + nj+1 is also a maximal expression. �

Now we have:

Proposition 4.15. The Hilbert function of a semigroup S with a cyclic 1-torsion
is non-decreasing.

Proof. We will proceed as in the previous cases. Assume that x ∈ Dk and let
x+n1 = sini+ sbnb be the corresponding unique maximal expression that satisfies
Definition 4.5. Then lx = ord(x + n1) − ord(x) − 1 < si by Lemma 4.2(1). Now,
define yx := (si − lx)ni + sbnb. By Lemma 4.2(2), yx ∈ Ck.
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Assume that yx = yx′ for some x, x′ ∈ Dk, with x′ + n1 = s′jnj + s′bnb the

chosen unique maximal expression. Then (si − lx)ni + sbnb = (s′j − lx′)nj + s′bnb.
Hence sb = s′b and i = j. Now, assuming for instance that si ≥ s′i, we have that
x+ n1 = x′ + n1 + (si − s′i)ni and so x = x′ + (si − s′i)ni. But on the other hand
ord(x) = ord(x′) = k, hence x = x′. �

As a consequence we extend to any embedding dimension the result proven by
Patil-Tamone for embedding dimension 4, see [25, Theorem 2.11].

Theorem 4.16. Assume that S is balanced. Then the Hilbert function of R is
non–decreasing.

Example 4.17. It is not difficult to construct balanced numerical semigroups. The
following example is a numerical semigroup having a cyclic 1-torsion, which is
neither balanced or Buchsbaum. Let S =< 11, 18, 104, 118>. The Apéry table is

Ap(S) 0 18 36 54 72 90 104 108 118 122 136
Ap(M) 11 18 36 54 72 90 104 108 118 122 136
Ap(2M) 22 29 36 54 72 90 115 108 129 122 136
Ap(3M) 33 40 47 54 72 90 126 108 140 133 147
Ap(4M) 44 51 58 65 72 90 126 108 151 144 158
Ap(5M) 55 62 69 76 83 90 126 108 162 144 169
Ap(6M) 66 73 80 87 94 101 126 108 162 144 180
Ap(7M) 77 84 91 98 105 112 126 119 162 144 180
Ap(8M) 88 95 102 109 116 123 137 130 162 144 180
Ap(9M) 99 106 113 120 127 134 148 141 162 155 180
Ap(10M) 110 117 124 131 138 145 159 152 173 166 180

We have that the 1-torsion elements of H0
G(S)+

(G(S)) are exactly

{(t115)∗, (t133)∗, (t151)∗, (t169)∗}

and that 126 = 7 · 18, 144 = 8 · 18, 162 = 9 · 18, 180 = 10 · 18 are maximal
expressions satisfying Definition 4.5. The Hilbert function of k[[S]] is H(n) =
{1, 4, 7, 7, 7, 7, 7, 8, 9, 10, 11→}.

Finally, we would like to thank the referees for a careful reading of the manuscript
and several valuable comments and suggestions.
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