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Abstract

The dynamics of solar-sail maneuvers is conceptually different from classical control maneuvers where one
considers impulsive changes in the velocity of a spacecraft. Solar-sail orbits are continuous in both position and
velocity in a varying vectorfield, opening the possibility of the existence of heteroclinic connections by means of
artificially changing the vectorfield with a sail maneuver. This paper investigates solar-sail assisted maneuvers to
obtain families of artificial heteroclinic connections joining Lissajous libration point orbits. The study is based on
a careful analysis of the geometry of the phase space of the linearized equations around the equilibrium points,
the dynamical identification of the main parameters and the representation of the solutions in the action-angle
variables. We identify the main dynamical properties of the connecting families presenting systematic new options
for the mission analysis in the libration point regime using this technology, including a methodology to approach
the classical problem of exclusion zone avoidance.

1 Introduction

Homoclinic and heteroclinic orbits have a key role when analyzing the structural dynamics of a system and, in
particular, for designing transfer trajectories in space missions [1, 2, 3, 4, 5]. They are seen as ”zero cost” transfer
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orbits, since in theory, no maneuvers are needed to transfer between the α and ω limits that they connect. From another
side, nowadays there exist an increasing interest for missions involving spacecraft with large solar sails. Solar sails
can be seen as a spacecraft propulsion device where the momentum of the Solar Radiation Pressure (SRP) emitted
by the Sun accelerates the satellite [6]. In particular, attending libration point orbits, a number of technological
applications have been considered, involving for instance: polar coverage [7, 8, 9], the Earth-Moon system [10, 11],
hybrid techniques [12, 13], feedback control possibilities [14] and the exploration of binary asteroids [15].

Solar-sail maneuvers are performed by changing the spacecraft sail’s attitude with respect to the Sun or by changing
the sail reflective properties. Opposite to the classical maneuvers, that involve an impulsive change of velocity by
means of a propulsion device, solar sail maneuvers imply a step change in the acceleration. From a dynamic system
point of view, the vectorfield changes as a result of the maneuver, but the state of the spacecraft remains the same.
It is in this context that one can see solar sail maneuvers as “zero cost” maneuvers, and when a transfer between
to different orbits is performed using this technique, we talk about an heteroclinic enhanced connection, since the
trajectory is continuous in both position and velocity, inside a changing vectorfield.

As it is general for the analysis of libration point orbits, in our work we consider the Sun-Earth Circular Restricted
Three-Body Problem (CR3BP). The CR3BP model has five equilibrium points (Li, i = 1 . . . 5), all of them on the
ecliptic plane (this is, with coordinate z = 0) [16]. When the SRP acceleration is added to this model, the equilibrium
points subsist but their position varies according to the sail’s attitude with respect to the Sun [6, 17]. We use the
notation SLi to differentiate them from the classical Li ones of the CR3BP. Libration point orbits (LPOs) are periodic
or quasi-periodic orbits around the equilibrium points, such as planar and vertical Lyapunov periodic orbits, halo
periodic orbits, and Lissajous quasi-periodic orbits [18, 19]. Similar to the equilibrium points, LPO orbits undergo
under displacements in the CR3BP-SRP model, as it has been carefully studied in [20, 21, 22].

LPO are very useful for Sun and space observations including a rich variety of sizes and shapes (see[18] and references
therein). Even that, in the same basis, the present analysis could be also made for LPO about SL1, we have considered
Lissajous orbits around collinear libration points SL2, that can be more popular in terms of the number of potential
missions, and in view of the current Chinese Change’E series [23, 24, 25]. Moreover, transfers between Lissajous orbits
are advantageous for reaching higher or lower amplitude sizes, for avoiding escape from the nominal orbit (due to their
inherent instability), for avoiding forbidden zones, such as the ones related to eclipse avoidance for missions around
L1, or for avoiding the Earth shadow cone for missions around the L2 point[26].

The SRP acceleration model considered in this paper depends on three parameters: the lightness parameter, which is a
function of the spacecraft’s reflectivity and area-to-mass ratio [5], and the normal unitary vector to the sail determining
its attitude and it is represented as a function of the so called cone and clock angles α and δ. As previously stated, the
maneuvers under consideration are performed by means of a change in the solar sail reflectivity or by re-orienting the
sail. Our goal is to do a general study of all possible transfers between Lissajous orbits changing these three parameters.
The approach we follow is geometrical [5] and is mainly based in the analysis of the linearized equations of motion
around the equilibrium points [27]. Taking into account that with an SRP maneuver the location of the artificial
libration point changes, using a reference system always centered on the nominal current SL2, a SRP maneuver is
seen as a jump in the relative position instead of in velocity. The paper uses this fact to systematically analyze the
impact of a maneuver on a satellite on a libration point trajectory. Considering maneuvers that do not introduce
unstable components in the modes of motion (that would produce divergence from the libration zone) one obtains the
heteroclinic enhanced connections between Lissajous orbits.

The paper, is organized as follows: Section 2 presents the equations of motion and the families of equilibrium points
of the CR3BP-SRP for different values of the sail parameters. The solutions of the linearized CR3BP-SRP model,
around the collinear equilibrium points, are computed in Section 3. These solutions are used in Section 4 to determine
the heteroclinics using SRP maneuvers. Finally, Section 5 accounts for a particular transfer strategy to avoid the
exclusion zones associated to libration point missions. The paper ends with some conclusions.

2 Equations of Motion

We consider the motion of an infinitesimal mass body (spacecraft) provided with a solar sail under the gravitational
attraction of two point masses, m1 and m2, such as the Sun and the Earth. The dynamical model is the three-
dimensional circular restricted three-body problem (CR3BP) including solar radiation pressure (SRP); from now on
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the CR3BP-SRP model.

As is usual in the CR3BP (see [16]) we take a synodic reference system, (X,Y, Z), with the origin at the center of
mass of the two primaries, and normalized units of mass, length and time. So µ denotes the mass of the Earth located
at (µ-1,0,0), and 1-µ the mass of the Sun located at (µ,0,0) [28].

Figure 1: Schematic representation of the sail orientation angles α and δ.

The solar sail orientation is defined by the unitary normal vector to its surface, n, which depends on two angles:
the cone angle α, and the clock angle δ. For their definition we consider a reference frame, r1, h, t, centered at the
spacecraft, such that: r1 is in the Sun-spacecraft direction, h is perpendicular to the orbital plane, so parallel to Z,
and t completes an orthogonal positive oriented frame. Then, α is the angle between n and r1 that measures the
elongation of n with respect to the Sun, and δ is the angle between the h axis and the projection of n onto the (h, t)
plane (see Fig. 1). The range of α is [−π/2, π/2], since it is not feasible to produce acceleration towards the Sun, and
the one of δ is [0, 2π].

The equations of motion of the model are, 
Ẍ − 2Ẏ = ΩX + asX ,

Ÿ + 2Ẋ = ΩY + asY ,

Z̈ = ΩZ + asZ ,

(1)

being ΩX , ΩY and ΩZ the partial derivatives of Ω(X,Y, Z),

Ω(X,Y, Z) =
1

2
(X2 + Y 2) +

1− µ
r1

+
µ

r2
+

1

2
µ(1− µ),

where r1 and r2 are the distances from the solar sail to the Sun and to the Earth, respectively, this is,

r21 = (X − µ)2 + Y 2 + Z2, r22 = (X − µ+ 1)2 + Y 2 + Z2.

Finally, asX ,asY ,asZ are the three components of the SRP acceleration as which, according to [6], is given by:

as = β
1− µ
r21

cos2 αn,

where β ∈ [0, 1] is the lightness number, related to the reflectivity of the sail. Therefore , if z = (0, 0, 1),

asX =
β(1− µ)(X − µ)

|r1|3
cos3 α− β(1− µ)(X − µ)Z

|r1|2|(r1 × z)× r1|
cos2 α sinα cos δ +

β(1− µ)Y

|r1|2|(r1 × z)|
cos2 α sinα sin δ,

asY =
β(1− µ)Y

|r1|3
cos3 α− β(1− µ)Y Z

|r1|2|(r1 × z)× r1|
cos2 α sinα cos δ − β(1− µ)(X − µ)

|r1|2|(r1 × z)|
cos2 α sinα sin δ,

asZ =
β(1− µ)Z

|r1|3
cos3 α− β(1− µ)(Y 2 + (X − µ)2)

|r1|2|(r1 × z)× r1|
cos2 α sinα cos δ.

When the reflectivity parameter β is zero, or when α = ±π/2, we recover the CR3BP equations. Besides, taking the
clock angle δ=π/2, then n is the plane expanded by r1 × h, and r1 and it does not exist any SRP acceleration in the
direction orthogonal to h.
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2.1 Equilibrium Points of the CR3BP-SRP Model

The equilibrium points of the CR3BP-SRP model are the solutions of the system,

ΩX + asX = 0, ΩY + asY = 0, ΩZ + asZ = 0.

It is well known that the CR3BP (asX = asY = asZ = 0) has five equilibrium points, usually denoted by L1, L2,...,L5.
When further considering SRP the new points will be denoted by SL1, SL2,...,SL5. We are interested in the two ones
that are close to the Earth, this is SL1 and SL2, and in their location when the cone angle α, the clock angle δ, and
the lightness number β vary. This problem has already been considered by different authors, including [6, 21, 17, 5].

Let us consider the main relevant cases:

• When α = ±π/2 then n̂ ⊥ r̂, so âs = 0 and, since the model coincides with the CR3BP: SLi = Li for i = 1, ..., 5.

• When α = 0, then the plane of the solar sail is perpendicular to r̂. In this case the force due to the SRP is
aligned with the gravitational attraction of the Sun, so the model can be seen as the usual CR3BP with the mass
of the Sun, 1− µ, decreased. The position of SL1 and SL2 moves towards the Sun as the value of β increases.

• In the third case α can take any value, and δ can take any of the following values: ±π/2, π, or 0.

In this case there is an extra force in the X-Y plane that displaces (left/right) the equilibrium point. If δ = 0 or
δ = π, the extra force will be in the vertical direction and will displace the equilibrium above/below the X-Y
plane.

When α and δ vary in (−π/2, π/2) and (0, 2π), respectively, the equilibrium points SL1(α, δ) and SL2(α, δ) define a
2D surface homeomorphic to a sphere; each equilibrium point on the sphere corresponds to a given sail orientation. As
β varies between 0 and 1 the two surfaces of equilibrium points SL1(α, δ) and SL2(α, δ) also change. The evolution
with β is shown in Figs 2 and 3. In the SL1(α, δ) case, for small values of β there is only one sphere of equilibrium
points, if β ∈ (0.03, 0.07) then SL1(α, δ) has two components, and for β > 0.07 one of the two components (the one
in blue in the plots) merges with the SL families associated to L3, L4 and L5, which are not considered in this paper.

3 The analytical linear CR3BP-SRP model and its solution

From now on, we focus our attention on the motion in the vicinity of SL2 (the study around SL1 is similar). For given
values of α, δ and on β, let (γ1, γ2, γ3) be the position of SL2 in the CR3BP reference frame and units. Following [5],
we perform a change of scale, and set the origin of coordinates at the equilibrium point by means of the translation, X = γx+ γ1,

Y = γy + γ2,
Z = γz + γ3,

where γ is a scaling factor chosen in order to normalize the Earth-equilibrium point distance. In our case, we have
taken γ = 0.01, since this value is very close to the Earth-L2 distance in the CR3BP. Therefore, in the new coordinates,
the adimensional distance unit will be, approximately, 1.5× 106 km.

Applying the above change of coordinates to the CR3BP-SRP equations we get,
ẍ− 2ẏ =

1

γ2
Ωx +

1

γ
asx,

ÿ + 2ẋ =
1

γ2
Ωy +

1

γ
asy,

z̈ =
1

γ2
Ωz +

1

γ
asz.

and the linearized equations of motion at the equilibrium point become, ẍ− 2ẏ = a1x+ a2y + a3z,
ÿ + 2ẋ = b1x+ b2y + b3z,

z̈ = c1x+ c2y + c3z,
(2)

where the coefficients ai, bi and ci, that depend on µ, α, δ, β, γ1, γ2, γ3, and γ are explicitly given in Appendix A.
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(a) SL1 with β=0.01 (b) SL1 with β=0.02

(c) SL1 with β=0.03 (d) SL1 with β=0.05

(e) SL1 with β=0.07 (f) SL1 with β=0.09

Figure 2: SL1(α, δ) equilibrium points families for different values of β. In each plot α ∈ (−π/2, π/2), and δ ∈ (0, 2π).

Figure 3: SL2(α, δ) equilibrium points families. In the left plot β takes four different values: 0.01, 0.05, 0.09, and
0.13. In the right plot β = 0.05.
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3.1 Analytical solution of the linearized equations

We look for solutions of the linear system (1) with one of the following two patterns, that will be respectively associated
to planar and vertical modes of motion,

Case 1: x(t) = eλt, y(t) = keλt, z(t) = keλt,

(3)

Case 2: x(t) = keλt, y(t) = keλt, z(t) = eλt,

where, in both cases, the parameters k, k, and the exponent λ are, in general, complex numbers to be determined
independently for each case.

Inserting (3) into the differential equations (2) we get the following two systems of equations for the parameters,

Case 1:


λ2 − 2kλ = a1 + a2k + a3k,

kλ2 + 2kλ = b1 + b2k + b3k,

kλ2 = c1 + c2k + c3k,

Case 2:


kλ2 − 2kλ = a1k + a2k + a3,

kλ2 + 2kλ = b1k + b2k + b3,

λ2 = c1k + c2k + c3.

In both cases the exponent λ must fulfill the following 6-th degree polynomial equation,

λ6 − (a1 + b2 + c3 − 4)λ4 + (2a2 − 2b1)λ3 − (4c3 − a1b2 + a2b1 − a1c3 + a3c1 − b2c3 + b3c2)λ2

−2(a2c3 − a3c2 − b1c3 + b3c1)λ− a3b1c2 − a2b3c1 − a1b2c3 + a3b2c1 + a2b1c3 + a1b3c2 = 0.
(4)

For the equilibrium points SL1 and SL2, two roots of this polynomial, λ1,2 (λ1 > 0, λ2 < 0), are always real, and the
remaining ones are two complex conjugate pairs: λ3,4 = η1 ± ω1i and λ5,6 = η2 ± ω2i. In general, λ1 ' −λ2, and the
equality only holds when α = 0.

For a given value of λ, solution of (4), the associated values of k and k depend on the case under consideration.

In Case 1 we get,

k =
λ4 − (c3 + a1)λ2 + a1c3 − a3c1

2λ3 + a2λ2 − 2c3λ− a2c3 + a3c2
, (5)

k =
c2λ

4 + 2c1λ
3 + (a2c1 − c2c3 − a1c2)λ2 − 2c1c3λ+ a1c2c3 − a2c1c3

2λ5 + a2λ4 − 4c3λ3 + (a3c2 − 2a2c3)λ2 + 2c23λ+ a2c23 − a3c2c3
, (6)

while in Case 2 the values of k and k are,

k =
λ4 − (c3 + a1)λ2 + a1c3 − a3c1
c2λ2 + 2c1λ− a1c2 + a2c1

, k =
2λ3 + a2λ

2 − 2c3λ− a2c3 + a3c2
c2λ2 + 2c1λa1c2 + a2c1

. (7)

From the expressions given in Appendix A, it follows that if γ3 = 0 then C1 = C2 = C3 = 0; furthermore, according
to the values of c1 and c2:

c1 =
1− µ
γ3

3A1C1

D5
1

+
µ

γ3
3A2C2

D5
2

− β(1− µ) cos2 α

γ3D3
1D3

(
3A1C1D3

D2
1

cosα− (E3D
2
3 − 2)A1 sinα cos δ

)
,

c2 =
1− µ
γ3

3C1B1

D5
1

+
µ

γ3
3B2C2

D5
2

− β(1− µ) cos2 α

γ3D3
1D3

(
3B1C1D3

D2
1

cosα− (E3D
2
3 − 2)B1 sinα cos δ

)
,

it follows that if α = 0 or α = π, and δ = π/2, then c1 = c2 = 0, so the the expressions (7) of k and k in Case 2
become singular. In other to avoid this situation, we can write k and k in terms of ai and bi as,

k =
b3λ

2 − 2a3λ− a1b3 + a3b1
λ4 − (a1 + b2 − 4)λ2 + (2a2 − 2b1)λ+ a1b2 − a2b1

,

k =
a3λ

2 + 2b3λ+ a2b3 − a3b2
λ4 − (a1 + b2 − 4)λ2 + (2a2 − 2b1)λ+ a1b2 − a2b1

,
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which are not singular for the above values of the parameters. Something similar happens in Case 1, in this case the
singularity disappears using the following expressions for k and k,

k =
−2λ3 + b3λ

2 + 2a1λ− a1b3 + a3b1
(a3 − 4)λ2 + 2(b3 − a2)λ+ a2b3 − a3b2

, k =
λ4 − (a1 + b2)λ2 − 2b1λ+ a1b2 − b1a2
(a3 − 4)λ2 + 2(b3 − a2)λ+ a2b3 − a3b2

.

In Case 1, the solution of the differential equations (2) associated to the planar mode can be written as:

x(t) = A1e
λ1t +A2e

λ2t +A3e
η1t cosω1t+A4e

η1t sinω1t,

y(t) = A1k1e
λ1t +A2k2e

λ2t +A3e
η1t(k3 cosω1t+ k4 sinω1t) +A4e

η1t(k3 sinω1t− k4 cosω1t),

z(t) = A1k1e
λ1t +A2k2e

λ2t +A3e
η1t(k3 cosω1t+ k4 sinω1t) +A4e

η1t(k3 sinω1t− k4 cosω1t),

and in Case 2, associated to the vertical mode, as:

x(t) = A5e
η2t(k5 cosω2t+ k6 sinω2t) +A6e

η2t(k5 sinω2t− k6 cosω2t),

y(t) = A5e
η2t(k5cosω2t+ k6 sinω2t) +A6e

η2t(k5 sinω2t− k6 cosω2t),

z(t) = A5e
η2t cosω2t+A6e

η2t sinω2t.

So, in general, the final form of the solution (2) containing all modes becomes:

x(t) = A1e
λ1t +A2e

λ2t +A3e
η1t cosω1t+A4e

η1t sinω1t

+A5e
η2t(k5 cosω2t+ k6 sinω2t) +A6e

η2t(k5 sinω2t− k6 cosω2t),

y(t) = A1k1e
λ1t +A2k2e

λ2t +A3e
η1t(k3 cosω1t+ k4 sinω1t) +A4e

η1t(k3 sinω1t− k4 cosω1t)

+A5e
η2t(k5 cosω2t+ k6 sinω2t) +A6e

η2t(k5 sinω2t− k6 cosω2t), (8)

z(t) = A1k1e
λ1t +A2k2e

λ2t +A3e
η1t(k3 cosω1t+ k4 sinω1t) +A4e

η1t(k3 sinω1t− k4 cosω1t)

+A5e
η2t cosω2t+A6e

η2t sinω2t.

In these equations A1, ..., A6 are arbitrary parameters, λ1,2 are the real roots of (4), (λ1 > 0, λ2 < 0), and λ3,4 = η1±ω1i
and λ5,6 = η2 ± ω2i are the two complex conjugate pairs. The eigenvalues λ3,4 are the ones associated to the planar
oscillations of the solutions, and λ5,6 are the ones associated to the vertical ones. The values of ki and ki, for i = 1, ..., 6,
are given in Appendix B.

An important property of the formulation chosen in (8) is that it gives a continuous global representation when crossing
bifurcations varying the values α, δ, β and changing the type of equilibrium point associated. To have a general idea
of the magnitude of the eigenvalues, Table 1 shows some values of λ1,2, η1,2, ω1,2 depending on α and δ for β = 0.02.
From the first two lines, we see that if α = 0, the eigenvalues do not change no matter what value of δ. Lines 3 to 9
show how the variation of eigenvalues when δ = π/2 and the value of α changes. Lines 10 to 20 show the behavior of
the roots when α = π/6, and the value of δ varies.

The expression (8) can be also written in matrix form as,

[x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]
T

= H(t) [A1, A2, A3, A4, A5, A6]
T
, (9)

where the components of the matrix H are given in Appendix C. Inverting the above system we get,

[A1, A2, A3, A4, A5, A6]
T

= H−1(t) [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]
T
, (10)

that, for t = 0 gives the values of the amplitudes as a function of the initial conditions,

[A1, A2, A3, A4, A5, A6]
T

= H−1(0) [x0, y0, z0, ẋ0, ẏ0, ż0]
T
. (11)

Unfortunately, it is not possible to write short expressions for the components of the matrix H−1(t) .

It is also convenient to write the oscillatory solutions (8) of the differential equations (2) using amplitudes and
associated phases. Defining the unstable and stable amplitudes, Au and As, and the planar (in-plane) and vertical
(out-of-plane) amplitudes, Ax =

√
A2

3 +A2
4 and Az =

√
A2

5 +A2
6, respectively, by means of the relations,

A1 = Au, A2 = As, A3 = Ax cosφ1, A4 = −Ax sinφ1, A5 = Az cosφ2, A6 = −Az sinφ2, (12)
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Table 1: Some relevant example values of λ1,2, η1,2, ω1,2 depending on α and δ for a given β = 0.02.

No. α δ λ1 λ2 η1 ω1 η2 ω2

1 0 π/2 3.30475 −3.30475 0 2.57190 0 2.51131
2 0 π/4 3.30475 −3.30475 0 2.57190 0 2.51131
3 π/6 π/2 3.00566 −3.00466 −0.00050 2.37048 0 2.32633
4 π/4 π/2 2.75492 −2.75382 −0.00055 2.21122 0 2.16727
5 π/3 π/2 2.57546 −2.57471 −0.00038 2.10685 0 2.04750
6 -π/6 π/2 3.00466 −3.00566 0.00050 2.37048 0 2.32633
7 -π/4 π/2 2.75382 −2.75492 0.00055 2.21122 0 2.16727
8 -π/3 π/2 2.57470 −2.57546 0.00038 2.10685 0 2.04750
9 ± π/2 π/2 2.48432 −2.48432 0 2.05701 0 1.98508
10 π/6 0 3.01329 −3.01329 0 2.48569 0 2.21387
11 π/6 π/6 3.01150 −3.01100 −0.00014 2.46770 −0.00011 2.23117
12 π/6 π/3 3.00762 −3.00676 −0.00027 2.41942 −0.00016 2.27808
13 π/6 π/2 3.00566 −3.00466 −0.00050 2.37048 0 2.32633
14 π/6 2π/3 3.00762 −3.00676 −0.00027 2.41942 −0.00016 2.27808
15 π/6 5π/6 3.01150 −3.01100 −0.00014 2.46770 −0.00011 2.23117
16 π/6 π 3.01329 −3.01329 0 2.48569 0 2.21387
17 π/6 7π/6 3.01100 −3.01150 0.00014 2.46770 0.00011 2.23117
18 π/6 2π/3 3.00676 −3.00762 0.00027 2.41942 0.00016 2.27808
19 π/6 3π/2 3.00466 −3.00566 0.00050 2.37048 0 2.32633
20 π/6 4π/3 3.00676 −3.00762 0.00027 2.41942 0.00016 2.27808
21 π/6 11π/6 3.01100 −3.01150 0.00014 2.46770 0.00011 2.23117

we can write the general solution (8) as a function of (Au, As, Ax, Az, φ1, φ2):

x(t) = Aue
λ1t +Ase

λ2t +Axe
η1t cos(ω1t+ φ1)

+Aze
η2tk5 cos(ω2t+ φ2) +Aze

η2tk6 sin(ω2t+ φ2),

y(t) = Auk1e
λ1t +Ask2e

λ2t +Axe
η1tk3 cos(ω1t+ φ1) +Axe

η1tk4 sin(ω1t+ φ1)

+Aze
η2tk5 cos(ω2t+ φ2) +Aze

η2tk6 sin(ω2t+ φ2), (13)

z(t) = Auk1e
λ1t +Ask2e

λ2t +Axe
η1tk3 cos(ω1t+ φ1) +Axe

η1tk4 sin(ω1t+ φ1)

+Aze
η2t cos(ω2t+ φ2),

or, in a more compact form,

x(t) = Aue
λ1t +Ase

λ2t +Axe
η1t cos(ω1t+ φ1) +Aze

η2tk56 cos(ω2t+ φ56),

y(t) = Auk1e
λ1t +Ask2e

λ2t +Axe
η1tk34 cos(ω1t+ φ34) +Aze

η2tk56 cos(ω2t+ φ56), (14)

z(t) = Auk1e
λ1t +Ask2e

λ2t +Axe
η1tk34 cos(ω1t+ φ34) +Aze

η2t cos(ω2t+ φ2),

where the relations between the values of the parameters in (13) and in (14) are:

k34 cosφ34 = k3 cosφ1 + k4 sinφ1, k34 sinφ34 = k3 sinφ1 − k4 cosφ1,

k34 cosφ34 = k3 cosφ1 + k4 sinφ1, k34 sinφ34 = k3 sinφ1 − k4 cosφ1.
k56 cosφ56 = k5 cosφ2 + k6 sinφ2, k56 sinφ56 = k5 sinφ2 − k6 cosφ2,

k56 cosφ56 = k5 cosφ2 + k6 sinφ2, k56 sinφ56 = k5 sinφ2 − k6 cosφ2.

Note that taking Au = As = 0 in (14) produces a quasi-periodic solutions, Lissajous orbits, with frequencies ω1 and
ω2, and respective planar and vertical amplitudes equal to Ax and Az. The values Au and As are related to the
unstable and stable manifold of the Lissajous orbit. For instance, the relation Au = 0 and As 6= 0 defines the stable
manifold of the Lissajous orbit defined by Ax and Az; any orbit verifying this condition will tend forward in time to
the Lissajous orbit, since the term in As goes to zero. A similar fact happens when Au 6= 0 and As = 0, in this case
the term with Au increases as time increases but goes to zero backwards in time, therefore, these solutions will go
away exponentially fast forward in time, and define the unstable manifold of the Lissajous orbit.
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3.2 The effective phases plane (EPP)

Following [26], to describe Lissajous orbits is very convenient to use the so called effective phases (Φ, Ψ). They are an
adaptation of the action-angle variables to describe states on invariant tori in dynamical systems that can characterize
very well heteroclinic connections [29, 30]. A Lissajous trajectory is determined by two amplitudes Ax, Az and two
phases, φ1 and φ2, at t = 0. The effective phases are defined by:

Φ(t) = ω1t+ φ1 (mod 2π),

Ψ(t) = ω2t+ φ2 (mod 2π).

Clearly, at each epoch, t, there is a one-to-one correspondence between a pair of effective phases (Φ(t), Ψ(t)) ∈
[0, 2π] × [0, 2π] and the state (x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)) on the Lissajous. Using this representation, the 2D tori
defined by Lissajous orbits become straight lines with slope ω1/ω2 (a value slightly less than one in our case) in the
effective phases plane [0, 2π]× [0, 2π]. The orbit at t = 0 departs from the point (φ1, φ2) and travels with constant
velocity components ω1 and ω2 in the EPP. Note that each point (Φ,Ψ) on the EPP identifies a position on the
Lissajous orbit, although the size of current the orbit, given by the constant values Ax and Az, is not represented.
When the orbit is on a stable or unstable manifold either Au or As has a non-zero constant value, but the purpose of
the EPP remains the same.

For one of the transfers between two Lissajous orbits that are computed in the next sections, Fig 4 shows how the
departing (in blue) and arrival (in black) orbits are seen in both, the configuration space and in the EPP. The left plot
shows, in the configuration space, the departing (in blue) and arrival (in black) orbits. The other two plots correspond
to the EPP representation of the departing (middle) and arrival (right) orbits. The red cross in the departure EPP
indicates the starting position, while the one in the arrival EPP indicates the maneuver insertion in the stable manifold
of the arrival orbit. More applications will be shown in the following sections.

Figure 4: Transfer between two Lissajous orbits in the configuration space and in the EPP.

4 Heteroclinic enhanced connections between Lissajous orbits

This section is devoted to introduce the SRP maneuver strategy that defines the heteroclinic enhanced connections
between libration point orbits around the collinear equilibrium points. These transfers are propellant-free and are
performed by means of a variation of the sail parameters: α (cone angle), δ (clock angle) or β (lightness number).
The influence of the phases φ1 and φ2 at the departing point, as well as the amplitudes Ax and Az of the initial orbit,
will be also analyzed.

As we have seen, the stability and location of the SRP-libration points change with the sail parameters, for this reason
we use three different reference systems to design a transfer. The first is usual CR3BP synodic frame (X,Y, Z) centered
on the Sun-Earth center of mass. The second and third ones are respectively associated with the departure and target
libration points and we denote by (x, y, z) and (x′, y′, z′) their coordinates. The three reference systems are related
by the change of variables:
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X = γx+ γ1 = γx′ + γ′1,
Y = γy + γ2 = γy′ + γ′2,
Z = γz + γ3 = γz′ + γ′3,

Ẋ = γẋ = γẋ′,

Ẏ = γẏ = γẏ′,

Ż = γż = γż′,

(15)

where (γ1, γ2, γ3) and (γ′1, γ
′
2, γ
′
3) are the coordinates of the departure and target SRP libration points in the CR3BP

reference system, and γ = 0.01, is a convenient scaling factor introduced to normalize the Earth-equilibrium point
distance (using this scaling factor the distance from the Earth to the SL2 point in the local reference frames is
approximately one, corresponding to about 1.5× 106 km in physical units). In Fig. 5 we schematically show the three
reference systems involved when, by means of a solar-sail maneuver, we intend to connect a LPO around SL2 with
another one around SL

′

2.

Figure 5: Schematic representation of the three reference systems involved in the study of solar-sail maneuvers. Due
to the maneuver, the equilibrium point moves from SL2 (position before the maneuver) to SL

′

2 (position after the
maneuver).

An interesting dynamical remark on solar-sail maneuvers using always these SLi centered local reference frames is
that, contrary to usual impulsive maneuvers that involve a change in velocities (known as a a ∆v), the solar-sail
maneuver changes the position coordinates of the artificial equilibrium point but keeps the velocity. So it can be
assumed as a jump in position in the (lowercase) local frame, although in the usual CR3BP the orbit is continuous in
both position and velocity.

Assuming that we are departing from a Lissajous orbit by means of a trajectory on its unstable manifold, we accomplish
an heteroclinic enhanced connection by means of a solar-sail maneuver that injects us on the stable manifold of the
target one. In what follows, we study the characteristics of the these transfers considering:

• Maneuvers that change of the cone angle α of the sail.

• Maneuvers that change of the clock angle δ of the sail.

• Maneuvers that change the lightness number β of the sail.

• Dependency on the phases, φ1 and φ2, of the departing point.

• Dependency on the amplitudes of the departing Lissajous orbit.

4.1 Heteroclinic enhanced connections changing the cone angle for a fixed φ1 and φ2

We note that to obtain such connection between two Lissajous orbits, the unstable component, Au, of the arrival one
should be equal to zero after the solar-sail maneuver. In this section, we explore the changes of the cone angle α that
fulfill this arrival condition. For all the computations that follow we keep fixed the value of the clock angle δ = π/2,
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the lightness number β = 0.02, the phases of the departing point φ1 = φ2 = 0, and the size of the departing orbit,
given by the normalized amplitudes Ax = 1/24 and Az = 1/6.

Since the departure of the initial Lissajous orbit is done along its unstable manifold, we must set the amplitudes
As = 0 and Au 6= 0; we have used Au = −10−4. Fixing the values of the phases φ1 and φ2 at t0 = 0 we are selecting an
orbit of the unstable manifold of the Lissajous orbit, the whole manifold can be obtained varying the values of these
phases. Along the selected orbit on the unstable manifold we consider a fixed time step of ∆t = 10−4 adimensional
time units, for a maximum time interval of tmax − t0 = 15 adimensional time units. At each time step we consider a
potential change in the cone angle from its initial value αi to a final one αf . This means that the cone angle variation
we consider is always equal to ∆α = αf − αi. Then, we compute the unstable component of the resulting trajectory
associated to the new sail parameters in order to check for the condition A′u = 0, that guarantees that we are on the
stable manifold of a Lissajous orbit. The computations are done according to the following scheme:

1. Initialize the parameters: µ, αi, αf , δ, β, φ1 = φ2 = 0, t0 = 0, ∆t, tmax, and the amplitudes Ax and Az (from
which ones we can compute A3, A4, A5 and A6 using the relations (12)).

2. Set A1 = Au = −10−4, A2 = As = 0, and t = t0 = 0.

3. Set α = αi, and compute the coordinates (γ1, γ2, γ3) of the equilibrium point.

4. Using the expressions given in Appendix A, compute the coefficients of the polynomial (4), and its roots: λ1,
λ2, λ3,4 = η1 ± ω1i, λ5,6 = η2 ± ω2i.

5. Using the expressions given in Appendix C, compute the matrix H(t) and determine the state (x, y, z, ẋ, ẏ, ż) at
time t.

6. Change αi to αf and compute the position of the new artificial equilibrium point (γ′1, γ
′
2, γ
′
3), as well as

(x′, y′, z′, ẋ′, ẏ′, ż′) by means of(15).

7. Since the vectorfield is autonomous, we can use (11) to get the values of the resulting amplitudes A′1 = A′u,
A′2 = A′s, A

′
3, A′4, A′5, A′6 after the maneuver.

8. Store the values of t and the obtained unstable amplitude A′u.

9. Set t = t+ ∆t and, if t < tmax, go to step 5.

We have always taken an initial cone angle αi = 0, so the cone angle maneuver is ∆α = αf − αi = αf .

4.1.1 Evolution of the final unstable amplitude for positive and negative cone angle maneuvers

The analysis of the results is divided into two cases: ∆α = αf > 0 and ∆α = αf < 0. For both cases, Fig. 6 shows
a typical evolution of A′u as a function of the maneuver time (this is the time where the value of α changes from
αi = 0 to αf ). In the plots of the figure, each line represents a different value of ∆α = αf . The values that have been
explored are ∆α ∈ (0.01, π/2) (left plot) and ∆α ∈ (−0.01,−π/2) (right plot).

From the left plot of the figure it follows that, for any fixed value of αf > 0, there is only one value of the maneuver
time for which A′u is zero. These values will be the suitable epochs (after departure) to perform the transfer maneuver
by means of a change of the cone angle.

As an example, Fig. 7 shows the transfer connection associated to ∆α = π/4. The solar-sail maneuver is performed
after 1.9 adimensional time units after the departure from the initial Lissajous orbit (in blue). The red cross indicates
the departing point along the unstable manifold of the initial orbit, and the green cross the place of the maneuver,
from this point on the orbit follows an orbit on the stable manifold of the arrival Lissajous orbit (in black).

From the right panel of Fig. 6 we find that, when ∆α = αf < 0, there are four different behaviors, according to the
number of crossings with the A′u = 0 axis of the lines associated to different αf values. The curves A′u(αf ) displayed
in the figure have zero crossings with A′u = 0 when αf ∈ (−0.22,−0.01), one crossing when αf ∈ (−π/2,−0.51), two
crossings when αf ∈ (−0.40,−0.23) and three crossings when αf ∈ (−0.50,−0.41). In Fig. 8 we show one example of
each case and in Fig. 9 we show the resulting connections obtained for each case (3D (X,Y, Z) CR3BP representation
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Figure 6: Behavior of A′u vs maneuver time for ∆α = αf ∈ (0.01, π/2) (left) and for ∆α = αf ∈ (−0.01,−π/2) (right).

Figure 7: Evolution of the final unstable amplitude Au for αf = π/4 (top left), 3D representation and coordinate
projections of the initial (in blue) and final (in black) Lissajous orbits. The orbit plots are in the (X,Y, Z) CR3BP
reference frame, but using physical units (km).

and XY -projections using physical units in km) of the initial (in blue) and final (in black) Lissajous orbits associated
to the transfers determined for αf = −π/4 (one A′u = 0 crossing), αf = −0.35 (two A′u = 0 crossings), and αf = −0.45
(three A′u = 0 crossings).
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Figure 8: Behavior of A′u vs maneuver time for α = −0.15 (zero crossings with A′u = 0), αf = −π/4 (one crossing),
αf = −0.35 (two crossings), αf = −0.45 (three crossings).

13



Figure 9: 3D representation and XY -coordinate projection for the three different cases with existing connections of
Fig 8. The departure Lissajous is represented in blue.

In the following we give some details about the behavior of the transitions between these three different situations.

1. When αf varies between –0.52 and –0.50, the number of connections goes from 1 to 3, since in this interval the
curve A′u(αf ) goes through a tangency with the A′u = 0 line for αf ≈ −0.51. Fig. 10 shows the behavior of A′u
as a function of the maneuver time for this value of αf .

2. When αf varies between –0.42 and –0.40, the number of connections goes from 3 to 2, since in this interval the
curve Au(αf ) goes through a tangency with the Au = 0 line for αf ≈ −0.41.

3. When αf varies between –0.23 and –0.20, the number of connections goes from 2 to 0, since in this interval the
curve A′u(αf ) goes through a tangency with the A′u = 0 line for αf ≈ −0.20.

Table 2 gives the values of the maneuver time and amplitudes of the Lissajous final orbits in physical units, and Fig. 10
shows the departing and final Lissajous orbits together with the transfer path that follows the unstable manifold of
the departing orbit, until the maneuver time, and the stable manifold of the final one.
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Table 2: Maneuver time and Lissajous final amplitudes of the connections close to the tangencies with A′u = 0 for
negative cone angle maneuvers.

Maneuver Final X–amplitude Final Z–amplitude
αf time (days) A′x (106 km) A′z (106 km)

–0.51 104.2 14.8 26.78
–0.50 15.06 5.1 25.58
–0.50 23.08 2.8 26.18
–0.50 103.7 14.7 26.63
–0.41 0.39 8.15 24.94
–0.41 40.20 2.82 26.15
–0.41 98.66 13.35 25.96
–0.40 41.46 3.13 26.07
–0.40 98.00 13.17 25.88
–0.23 68.06 7.48 24.95
–0.23 75.12 8.42 24.94

Figure 10: Departing (blue) and final Lissajous (green, magenta, and black) orbits, together with the connecting path
in the unstable manifold of the departing orbit (before the maneuver) and in the stable manifold of the final one (after
the maneuver). The results correspond to αf ∈ (−0.51,−0.50).

15



Figure 11: Same as Fig. 10 but for αf ∈ (−0.41,−0.40) (first two rows) and αf = −0.23 (bottom row).
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4.1.2 Evolution of the planar and vertical amplitudes of the final Lissajous orbits for cone angle
maneuvers

We have seen how to perform a transfer from a given Lissajous orbit changing the cone angle parameter of the sail
and keeping fixed the remaining sail parameters. Next we show how the X and Z amplitudes, A′x and A′z respectively,
of the reached Lissajous orbit, as well as the epoch of the maneuver, depend on ∆α. The results obtained are given in
Fig. 12. As it has already been said, for α ∈ (−0.22, −0.01) there is a gap associated to the fact that for these values
of α the unstable amplitude A′u does not intersect the A′u = 0 line. In the top plots we show the amplitudes, A′x,A′z of
the final Lissajous orbit as a function of the cone angle maneuver ∆α. The bottom plot shows the value of the epoch of
the maneuver after the departure also as a function of the cone angle maneuver ∆α. When ∆α = αf ∈ (−0.22,−0.01)
there are no connections since for these values A′u 6= 0.

Figure 12: Final cone angle with X,Z Amplitudes and maneuver time.

4.1.3 Evolution of the maneuver time when αi 6= 0

In the previous computations we have set equal to zero the value of the cone angle before the maneuver (αi = 0);
when this angle changes the maneuver time also does. Next we show how this time changes when αi varies within its
range, (−π/2, π/2), keeping fixed the values of the remaining parameters: δ = π/2, As = 0, Au = −10−4, Ax = 1/24,
Az = 1/6, and φ1 = φ2 = 0.

Figs. 13 and 14 show the results obtained when αi ∈ (0, π/2). Note that in the plots of both figures αf ∈ (0, π)
instead of αf ∈ (−π/2, π/2), so the results for αf ∈ (π/2, π) are, in fact, the ones for αf ∈ (−π/2, 0). This is
because the maneuver time for αf = −π/2 coincides with the one for αf = π/2.

As in the case αi = 0, we have also that, depending on the value of ∆α = αf −αi, there are 0, 1 2 or 3 possible transfer
times, giving A′u = 0 after the the maneuver. For all possible values of αi we get values of the solar-sail time maneuver
very close to zero, which means that we can perform a transfer without using the unstable orbit of the departing
Lissajous orbit. When αi > 1.087 it appears a gap in the possible values of the transfer time around ttrans = 0.7.
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Figure 13: Maneuver time as a function of αf , for different initial cone angles αi ∈ (0, π/2). The applied maneuver
is ∆α = αf − αi.

The size of the gap increases, and for αi ∈ (1.186, 1.189) there are no possible transfers. Transfer possibilities appear
again for αi = 1.189. From this value on, the corresponding maximum maneuver time increases until the αi equals to
π/2. Note that the range of the possible maneuver values ∆α = αf − αi also varies with αi.

Finally, Fig. 15 shows the maneuver times and the final X and Z amplitudes, when both the initial and final cone
angles αi and αf vary in (−π/2, π/2). The right bottom plot of this figure is the projection on the αi − αf plane
of the three above plots. Note that this projection has three unconnected regions: the smaller region on the right is
related to the gap already mentioned for αi > 1.087, the other two regions correspond to αf < αi (lower region), and
αf > αi (upper region).

4.2 Heteroclinic enhanced connections when varying the cone angle and the phases φ1

and φ2

In the previous section we studied connections associated to changes of the cone angle for initial phases φ1 = φ2 = 0,
which means that only one orbit of the unstable manifold of the departing Lissajous orbit is considered. Next we allow
variations in both phases in order to explore the full unstable manifold of the Lissajous orbit, enlarging this way the
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Figure 14: Maneuver time as a function of αf , for different initial cone angles αi ∈ (−π/2, 0).

Figure 15: Maneuver times, and final X and Z amplitudes as a function of the initial and final cone angles αi and αf .

transfer possibilities.

As in the preceding section, for all the explorations that follow we fix the initial and final values of the clock angle
δ = π/2, as well as the size of the departing orbit, given by the amplitudes Ax = 1/24 and Az = 1/6 in normalized
units.
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4.2.1 Evolution of the final Lissajous parameters with respect to φ1 and φ2

With the above mentioned parameters, together with αi = 0, αf = π/4, keeping fixed φ2 = 0, and varying φ1 ∈
(−π/2, 3π/2), for each value of φ1 there is only one possible connection. Fig. 16 shows the values of the maneuver
time as well as the X and Z amplitudes of the final Lissajous orbit reached with the solar-sail maneuver.

Figure 16: Maneuver times and final X and Z amplitudes, when φ1 ∈ (−π/2, 3π/2) and φ2 = 0.

If instead of keeping fixed φ2 = 0 we fix φ1 = 0 and vary φ2 ∈ (−π/2, 3π/2), for each value of φ2 there is only one
possible connection when, as before, αi = 0 and αf = π/4. Fig 17 shows the maneuver times as well as the X and
Z amplitudes of the final Lissajous orbit reached with the solar-sail maneuver. Clearly in this case, the variation of
φ2 does not affect the maneuver time and the final X−amplitude; only the Z−amplitude of the final Lissajous orbits
varies.

Figure 17: Maneuver times and final X and Z amplitudes, when φ1 = 0 and φ2 ∈ (−π/2, 3π/2).

When the condition αf = π/4 is removed, allowing αf to vary in (−π/2, π/2), Figs. 18 and 19 show the values of the
maneuver time, as well as the X and Z amplitudes of the final Lissajous orbit, for φ1 ∈ (−π/2, 3π/2), φ2 = 0 and
φ1 = 0, φ2 ∈ (−π/2, 3π/2), respectively. Each transfer corresponds to different values of (αf , φ1) in the first figure,
and of (αf , φ2) in the second one. Fig. 19 shows that the variations of φ2 only modify the final Z amplitude, not
affecting the maneuver time and the final X amplitude.
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Figure 18: Maneuver time s (top) and final X (middle) and Z (bottom) amplitudes , when φ1 ∈ (−π/2, 3π/2), φ2 = 0
and αf ∈ (−π/2, π/2).
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Figure 19: Maneuver times (top) and final X (middle) and Z (bottom) amplitudes , when φ1 = 0, φ2 ∈ (−π/2, 3π/2),
and αf ∈ (−π/2, π/2).
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It is worth to remark that, due to the symmetry of the solutions with respect to the z = 0 plane, the same final
Lissajous orbit can be reached departing from two different points of the initial one, by changing only the value of
the phase φ2 into φ2 + π, and in fact, the two transfer times are also the same. Fig. 20 shows the two connections
obtained when departing from a Lissajous orbit with Ax = 1/24, Az = 1/6, φ1 = 0 and φ2 values φ2 = 0, φ2 = π. For
both connections we keep δ = π/2, maneuvering in α from 0 to π/4 after, approximately, 1.9 adimensional time units.

Figure 20: Connections towards the same final orbit changing only the initial value of the second phase: φ2 = 0 and
φ2 = π.

4.3 Heteroclinic enhanced connections varying the clock angle for fixed φ1 and φ2

4.3.1 Evolution of the final unstable amplitude for clock angle maneuvers

In this section we study connections between Lissajous orbits by means of changing the clock angle δ for different
fixed values of αi. As in the preceding section, we keep fixed the value of the lightness number β = 0.02, and the size
of the departing orbit, given by the amplitudes Ax = 1/24, and Az = 1/6 in adimensional units.

Again, during the adimensional time interval [0, 15] we explore the leg of the unstable manifold of the departing orbit
taking Au = −10−4, As = 0, and starting phases at t = 0: φ1 = φ2 = 0. Along the states of this orbit we consider
a potential change of the initial clock angle δi = π/2 into a fixed final value δf ∈ (−π/2, 3π/2), so the maneuver is
given by ∆δ = δf − δi ∈ (−π, π). Then we compute the unstable component of the resulting state, associated to
the new sail parameters, looking for the connection condition A′u = 0. The resulting unstable amplitude curves A′u(t)
depend on the value of αi, and for αi = −0.45, −0.78, +0.78 are given in Fig. 21.

Figure 21: Behavior of A′u vs maneuver time for αf = −0.45,−0.78 and 0.78, and δf ∈ (−π/2, 3π/2).

Each curve in Fig. 21 corresponds to a different value of δf ∈ (−π/2, 3π/2). It follows that if αi = −0.45, there are
three different behaviors, according to the number of crossings of the A′u = 0 axis of the lines associated to different δf
values. This number can be one if δf ∈ (−π/2, 0.91) and δf ∈ (2.33, 3π/2), two when δf ∈ (1.94, 2.19), or three when
δf ∈ (0.92, 1.93) and δf ∈ (2.20, 2.34). For the other two values of αi, there are no transfer possibilities, since there
are no crossings with the A′u = 0 line. Fig. 22 shows the three amplitude curves A′u(t) for δf = 0 (only one A′u = 0
crossing), δf = 1.6 (three A′u = 0 crossings), and δf = 2 (two A′u = 0 crossings), and Fig. 23 shows the initial, transfer
and final orbits obtained for each case.
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Figure 22: Behavior of the unstable amplitude curves A′u(t) for αi = −0.45, δi = π/2, and different ∆δ = δf − δi
maneuvers.

Next we explore four different cases, according to the value of αi, that, as we have seen can produce one, two, or three
different connections. Fig. 24 shows the results obtained for αi = π/4, −0.35, −0.45, and −π/4 = −0.7854 (with
∆α = αf − αi = 0). For all the computations δi = π/2 is fixed, and δf varies in (−π/2, 3π/2).

Figure 23: The left, central, and right columns correspond to δf = 0 (one A′u = 0 crossing), δf = 2 (two A′u = 0
crossings), and δf = 1.6 (three A′u = 0 crossings), respectively.
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From the plots in the top and bottom rows of Fig. 24, corresponding to αi = π/4 and αi = −π/4, we can conclude
that changing the δf value does not affect the number of crossing with the A′u = 0 axis. The two middle rows,
corresponding to αi = −0.35, and αi = −0.45, correspond to parameter values for which there are one, two or
three transfer possibilities when δf ∈ (−π/2, 3π/2). Next we give some detailed results about these transitions when
αi = −0.45, which are summarized in Table 3. This table shows the the values of the maneuver time and amplitudes
of the Lissajous final orbits before and after the tangency.

Figure 24: Behavior of the maneuver time, the A′x, A′z amplitudes as a function of δ maneuvers. The results correspond
to αf = π/4, −0.35, −0.45 and −π/4.

1. When δf varies between 0.91 and 0.92, the number of transfers goes from 1 to 3, since in this interval the curve
A′u(δf ) goes through a tangency with the A′u = 0 line for δf ≈ 0.905. Fig. 25 shows the behavior of A′u as a
function of the maneuver time for this value of δf .

2. When δf varies between 1.94 and 1.95, the number of transfers goes from 3 to 2, since in this interval the curve
A′u(δf ) goes through a tangency with the A′u = 0 line for δf ≈ 1.94.
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3. When δf varies between 2.19 and 2.20, the number of transfers goes from 2 to 3, since in this interval the curve
A′u(δf ) goes through a tangency with the A′u = 0 line for δf ≈ 2.20.

4. When δf varies between 2.31 and 2.32, the number of transfers goes from 3 to 1, since in this interval the curve
A′u(αf ) goes through a tangency with the A′u = 0 line for δf ≈ 2.32.

Figure 25: Departing (blue) and final Lissajous (green, magenta, and black) orbits.

Fig. 25 shows the departing (blue) and final Lissajous (green, magenta, and black) orbits, together with the transfer
path that follows the unstable manifold of the departing orbit, until the maneuver time, and the stable manifold of the
final one. The first row corresponds to the transition δf ∈ (0.91, 0.92), the second row corresponds to the transition
δf ∈ (1.94, 1.95), the third row corresponds to the transition δf ∈ (2.19, 2.20), and fourth row corresponds to the
transition δf ∈ (2.31, 2.32).

If we allow αi to vary in (−π/2, π/2) and δf ∈ (−π/2, 3π/2) while keeping δi = π/2 and φ1 = φ2 = 0, Fig. 26
shows the values of the maneuver time and the X and Z amplitudes, when αf ∈ (−π/2, π/2), δf ∈ (−π/2, 3π/2),
and φ1 = φ2 = 0 in the top line. The bottom line shows the projection of the three surfaces on a coordinate plane:
αf -maneuver time, αf −X amplitude, and αf − Z amplitude.

In the preceding computations we have always set the value of the clock angle before the maneuver, δi, equal to π/2.
When this angle changes the maneuver time also does.

Fig. 27 shows the values of the maneuver time and the X and Z amplitudes, when both the initial δi and final δf
vary in ∈ (−π/2, 3π/2), keeping fixed the values of the remaining parameters: αi = 0, αf = −0.45, Au = −10−4,
Ax = 1/24, Az = 1/6, and φ1 = φ2 = 0. The bottom line the figure shows the projection of the three surfaces on
a coordinate plane: δf -maneuver time, δf -X amplitude, and δf -Z amplitude. Comparing the bottom line in Fig. 27
and Fig. 24, we can conclude that δi does not affect the maneuver time and the final X and Z amplitudes.
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Table 3: Maneuver time and Lissajous final amplitudes of the transfers close to the tangencies with Au = 0 for clock
angle maneuvers.

Tangency Maneuver Final X–amplitude Final Z–amplitude
transition δf time (days) Ax (106 km) Az (106 km)

0.91 101.7 5.42 36.37
1→ 3 0.92 30.2 3.22 24.85

0.92 32.5 3.43 23.92
0.92 101.7 5.54 36.41
1.94 0.0009 9.05 7.67
1.94 26.3 5.22 16.37

3→ 2 1.94 100.1 14.68 8.29
1.95 26.0 5.27 16.16
1.95 100.0 14.65 8.32
2.19 68.1 7.48 24.95
2.19 75.1 8.42 24.94

2→ 3 2.20 0.003 8.21 5.83
2.20 16.4 6.12 11.20
2.20 99.2 14.17 9.92
2.31 3.59 7.41 6.69

3→ 1 2.31 8.4 6.81 8.20
2.31 98.8 14.02 10.62
2.32 98.8 14.00 10.68

Figure 26: The values of the maneuver time and the X and Z amplitudes, when αf ∈ (−π/2, π/2), δf ∈ (−π/2, 3π/2),
and φ1 = φ2 = 0.
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Figure 27: Maneuver times and final X and Z amplitudes, when αf= -0.45, δi ∈ (−π/2, 3π/2) and δf ∈ (−π/2, 3π/2).

4.4 Heteroclinic enhanced connections varying of the clock angle and phases φ1 and φ2

In the previous section we studied transfers associated to changes of the clock angle δf for fixed phases φ1 = φ2 = 0.
Now we allow variations in both phases, which means that we consider different orbits of the unstable manifold of the
departing Lissajous orbits.

As in the preceding section, for all the explorations that follow, we fix the initial and final values of the cone angle
αi = 0, αf = π/4, as well as the size of the departing orbit, given by the amplitudes Ax = 1/24 and Az = 1/6.

For the Fig. 28, In the first and third lines, values of the maneuver time and the X and Z amplitudes, when φ1 ∈
(−π/2, 3π/2), φ2 = 0 (first line), and φ1 = 0, φ2 ∈ (−π/2, 3π/2) (third line). In both cases δf ∈ (−π/2, 3π/2).
The second and forth lines show the projection of the surfaces on the coordinate planes: δf -maneuver time, δf -X
amplitude, and δf -Z amplitude, respectively.

4.5 Heteroclinic enhanced connections varying the cone angle for different values of
the reflectivity parameter

In this section, we consider the influence of variations of the β parameter when it varies in (0.01, 0.1). The initial and
final cone and clock angles are: αi = 0, αf = π/4, δi = δf = π/2. As in the preceding sections, the amplitudes of the
Lissajous orbit are: Ax = 1/24 and Az = 1/6.

Fig. 29 shows the values of the maneuver time and the X and Z amplitudes, when βi = 0 and βf ∈ (0.01, 0.1). The
top line correspond to use as transfer orbit the one of the unstable manifold departing from φ1 = φ2 = 0, and the
bottom line when φ1 ∈ (−π/2, 3π/2), φ2 ∈ (−π/2, 3π/2). Fig. 30 displays 3D representation and XY coordinate
projection of two transfers performed changing the cone angle from αi = 0 to αf = π/4, for two different values of the
β parameter. Both departing Lissajous orbits have the same amplitudes Au = −10−4, As = 0, Ax = 1/24, Az = 1/4,,
but two different β values β = 0.02 (in blue), and β = 0.1 (in red).
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Figure 28: Values of the maneuver time and the final X and Z amplitudes, as function of φ1, φ2 and δf .

5 Libration point exclusion zone avoidance

For orbits around L1 in the Sun-Earth system there is region around the solar disk, as seen from the Earth, that has
to be avoided in order that the data coming from the spacecraft be not hidden by the electromagnetic radiation of the
Sun. This exclusion zone is, approximately, of three degrees about the solar disc as seen from the Earth. Something
similar happens for orbits around the L2 point of the same system, where the spacecraft must avoid the regions eclipsed
by the Earth or, eventually, some bright regions of the sky. In most of these cases the exclusion zone is a disk in
the y-z plane centered along the x-axis. This is the situation considered in this paper, so the exclusion zone, in the
configuration space, is defined by

y2 + z2 < R2,

with R = 90 000 km (see [26] and references herein).

Figure 31 shows the 3-D view of two exclusion disks of a Lissajous orbit (left) around the Sun-Earth L2 point with
Ax = 1/24 and Az = 1/6, and its representation using the EPP (right). In this example the disks represent the
eclipsed regions by the Earth. The value of the two frequencies ω1 and ω2 associated to this orbit are ω1 = 2.571904
and ω2 = 2.51130744, so the slope of the lines in the EPP representation of the Lissajous orbit is ω2/ω1 = 0.976439019.
If the length of the mission in a Lissajous orbit is long enough, since the slope of the orbits in the EPP (ω2/ω1) is
close to one, the satellite will irremediable cross the exclusion zone, so some maneuvers must be foreseen to avoid it.

29



Figure 29: Maneuver times and final X and Z amplitudes, when βi = 0 and βf ∈ (0.01, 0.1).

Figure 30: 3D representation and XY coordinate projection for two different values of the β parameter.

Figure 31: 3-D view of two exclusion disks of a Lissajous orbit (left) and its representation using the EPP (right).
More details about this representation can be found in [26].

When the solar sail parameters vary the equilibrium points also do, so, in many cases they are no longer aligned
with the Sun-Earth direction. As a consequence, after a solar sail maneuver the exclusion zone of the Lissajous orbit
changes and, eventually, it can disappear. As an example, consider a transfer maneuver, departing from the Lissajous
orbit with Ax = 1/24 and Az = 1/6, associated to a change of the cone angle from αi = 0 to αf = −0.45, with the
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value of the clock angle fixed to δ = π/2. Fig. 32 shows the value of the maneuver time as function of φ1 ∈ (−π, π).
Recall that in this case the value of φ2 does not affect the maneuver time and amplitude of the final Lissajous orbit.

Figure 32: Possible maneuver times as a function of φ1 ∈ (−π, π).

From Fig. 32 it follows that, depending on the value of φ1 there is one φ1 ∈ (−π,−1.48) and ∈ (1.48, π), two
φ1 ∈ (0.21, 1.48) or three φ1 ∈ (−1.48, 0.21) transfer possibilities. For φ1 = 0, φ2 = 0, Fig. 33 shows the x−y projection
and EPP representation of the departing and arrival Lissajous orbits associated to a connection accomplished with just
a variation of the cone angle from αi = 0 to αf = −0.45. The departing point of the unstable manifold corresponding
to φ1 = 0, φ2 = 0 allows three connections at three different epochs, as is shown in Fig. 32. With the first maneuver,
the exclusion zone is reached after 105.8 days, and with the third after 935.3 days. Note that with the second maneuver
the exclusion zone disappeared. Two dashed parallel lines in the upper left plot represent the exclusion zone. As is
clear from the plots, in some cases the forbidden zone of the target orbit is larger than the one of the departing
Lissajous, in other cases, because the libration point has moved and the target orbit has reduced its amplitude, the
forbidden zone disappears.

As we have already said, for any transfer the variation of the value of φ2 does not change either the target orbit and
the maneuver time, but it changes the orbit of the unstable manifold used for the connection. This means that it may
happen that once the final orbit is reached, it can take a long time before the exclusion zone is reached. This is what is
shown in Fig. 35, the EPP representation of the departing and arrival Lissajous orbits and exclusion zones associated
to connections performed just with a variation of the cone angle from αi = 0 to αf = −0.45. The departing point of
the unstable manifold corresponds to φ1 = 0 and, from top to bottom, φ2 = π/4, π/2, π, 3π/2 and 7π/4.

In the Fig. 34, we show an example of an exclusion zone avoidance maneuver with the parameters: αi = 0, αf =
−0.45, δi = δf = π/2, φ1 = 0, φ2 = 1. The left figure shows the trajectory from the initial Lissajous orbits (in blue)
to the final Lissajous orbits (in black), the red arcs represent exclusion zones. The right figure is the associated EPP
representation. The departure is at the point with coordinates (0,1) in the y-axis, which moves along the lines with
slope ω2/ω1 = 0.976 until it reaches a blue region, which are the exclusion zones; then cone angle is changed to
αf = −0.45, that corresponds to a jump in the EPP, and the new exclusion zones are the red ones. The new orbit
needs about 861 days to reach (tangently) the red area.

6 Conclusion

This paper investigates heteroclinic enhanced connections between libration point orbits using solar sailing. They can
be seen as transfer trajectories continuous in both position and velocity in a changing vectorfield, with many potential
applications including libration point exclusion avoidance. The dynamical model considered is the CR3BP including
the solar radiation pressure, and the key point for the analysis is the representation of the solutions of the linearized
system about the artificial equilibrium points, that change position according to the sail attitude and its reflective
properties.

The invariant manifolds of libration point orbits are considered for the obtaintion of transfer trajectories joining Lis-
sajous orbits in the Sun-Earth system, and the transfer maneuvers are performed by changing the angular parameters;
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Figure 33: x − y projection and EPP representation of the departing and arrival Lissajous orbits associated to a
connection obtained just changing the cone angle from αi = 0 to αf = −0.45 at three different epochs, in order to
avoid the exclusion zone. Exclusion zones of the departure Lissajous are plotted in blue while the ones of the arrival
orbit are in red.

Figure 34: An example of an exclusion zone avoidance maneuver.

the so called cone and clock angles, that determine the orientation of the sail with respect to the Sun, as well as
phases, reflectivity parameter and initial amplitudes.

The connections considered correspond to:

1. Select one orbit of the unstable manifold of the departing Lissajous orbit, and to explore the different transfer
possibilities associated to transfer maneuvers done by means of cone and clock angle variations and, for a fixed
cone (or clock) angle variation, to different epochs at which the solar-sail maneuver is performed.

2. Consider all the orbits of the unstable manifold of the departing Lissajous orbit, and to explore the different
connection possibilities associated to the cone and clock angles solar-sail maneuvers departing from a fixed cone
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Figure 35: EPP representation of the departing and arrival Lissajous orbits.

angle value.

3. Apart from the above parameters, the paper considers the reflectivity parameter β and initialX and Z amplitudes
(Axi, Azi) that impact the solar-sail maneuvers and final Lissajous orbits amplitude.

In all cases the results obtained include a description of the size of the final Lissajous orbit together with the epoch
at which the solar-sail maneuver has to be performed (i.e. the transfer time).
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Appendix A

Values of the coefficients ai , bi, and ci, for i = 0, ..., 3, that appear in the linearized equations of motion (2). It must
be noted that the values of a0, b0 and c0 are zero at the equilibrium points, so they do not appear in the differential
equations.
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Appendix B

Values of the coefficients ki and ki, for i = 1, ..., 6, that appear in the final form of the solution (8).
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Appendix C

Components of the matrix H = (hij) appearing in the transformation (9).

h11 = eλ1t,

h12 = eλ2t,

h13 = eη1t cosω1t,

h14 = eη1t sinω1t,

h15 = eη2t(k5 cosω2t+ k6 sinω2t),

h16 = eη2t(k5 sinω2t− k6 cosω2t),

h21 = k1e
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h22 = k2e
λ2t,

h23 = eη1t(k3 cosω1t+ k4 sinω1t),

h24 = eη1t(k3 sinω1t− k4 cosω1t),

h25 = eη2t(k5 cosω2t+ k6 sinω2t),
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h33 = eη1t(k3 cosω1t+ k4 sinω1t),

h34 = eη1t(k3 sinω1t− k4 cosω1t),
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h41 = λ1e
λ1t,

h42 = λ2e
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h65 = η2e
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h66 = η2e
η2t sinω2t+ ω2e

η2t cosω2t.

Note that h41, h41,...,h66 are the time derivatives of h11, h11,...,h36, respectively.
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