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Abstract
Let � be a finite group acting on a Lie group G. We consider a class of group extensions
1 → G → Ĝ → � → 1 defined by this action and a 2-cocycle of � with values in the
centre of G. We establish and study a correspondence between Ĝ-bundles on a manifold
and twisted �-equivariant bundles with structure group G on a suitable Galois �-covering
of the manifold. We also describe this correspondence in terms of non-abelian cohomology.
Our results apply, in particular, to the case of a compact or reductive complex Lie group Ĝ,
since such a group is always isomorphic to an extension as above, where G is the connected
component of the identity and � is the group of connected components of Ĝ.
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Covering · Non-abelian cohomology

Mathematics Subject Classification Primary 14H60; Secondary 53C07 · 58D29

1 Introduction

In this paper, we are concerned with the geometry of bundles with non-connected structure
group. For the sake of concreteness, we present our main results here in the smooth cate-
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gory, but the analogous results are also valid in the topological category (under some mild
assumptions which we will make precise), as well as in the holomorphic category.

Let Ĝ be a non-connected Lie group. This group fits in an extension of groups

1 → G → Ĝ
q−→ � → 1 (1.1)

where G is the connected component containing the identity, and � is the group of connected
components of Ĝ. We will assume that � is finite, although some of our results apply more
generally.

Let X be amanifold and E be a principal Ĝ-bundle over X . The quotient of E byG defines a
principal�-bundle Y over X , that is, a Galois covering Y → X with Galois group�. It is very
natural to try to reduce the study of the geometry of Ĝ-bundles over X to that of G-bundles
over Y , leading to a situation where the structure group is connected. We will pursue this
here in the case in which the characteristic homomorphism θ̄ : � → Out(G) of the extension
(1.1), where Out(G) = Aut(G)/ Int(G), has a lift to a homomorphism θ : � → Aut(G).
Here Aut(G) is the group of automorphisms of G and Int(G) is the subgroup of Aut(G)

consisting of inner automorphisms. In this situation the group Ĝ is isomorphic to a group,
which we denote by G ×(θ,c) �, whose underlying set is the Cartesian product G × �, and
the group operation is given by

(g1, γ1) · (g2, γ2) = (g1g2
γ1c(γ1, γ2), γ1γ2),

where c is a 2-cocycle of � with values in the centre Z(G) of G. Here the action of � on
Z(G) is defined by θ , but clearly only depends on θ̄ .

By a result of de Siebenthal [29], the lift θ always exists in the case in which Ĝ is a
compact or a complex reductive Lie group—this is the situation that has primarily motivated
our work, as we will explain below. Under the assumption of the existence of the lift θ , we are
able to identify theG-bundles on Y corresponding to Ĝ-bundles on X with covering Y . These
are G-bundles on Y equipped with what we call a (θ, c)-twisted �-equivariant structure (see
Definition 3.5 for details). Notice that the twisting here refers to both, the fact that � acts on
G via θ , and the presence of the 2-cocycle c of � with values in the centre of G.

After establishing in Sect. 2 some facts on the structure of non-connected Lie groups and
their actions, in Sect. 3,wedefine and study twisted equivariant structures onprincipal bundles
and associated bundles.With this in hand, inSect. 4,we establish a categorical correspondence
between principal Ĝ-bundles on X and (θ, c)-twisted �-equivariant G-bundles on a suitable
covering Y → X (see Proposition 4.5 and Theorem 4.11).

In Sect. 5, we analyse the problem of identifying which Ĝ-bundles over X determine
certain �-coverings of X from the perspective of non-abelian sheaf cohomology. An answer
to this problem is given by a general result of Grothendieck [23], which identifies the set
in question with the first cohomology set of a certain non-abelian sheaf of groups. While
Grothendieck’s result does not require, in particular, the existence of a lift θ of the character-
istic homomorphismof the extension (1.1), in the casewhere such a lift exists, Grothendieck’s
sheaf of groups has a particularly nice description (see Proposition 5.1).

In view of the results in Sect. 4, it seems clear that the first cohomology set of the
Grothendieck sheaf over X described in Proposition 5.1 must be related to the twisted equiv-
ariant bundles over a covering Y of X . This relation is treated in Sect. 6. We first give
a cohomological description of the set of equivalence classes of twisted �-equivariant G-
bundles and establish the natural long exact sequences in twisted equivariant cohomology.
In particular, the long exact sequence analysis allows us to give a criterion for existence
of twisted equivariant bundles (Theorem 6.13). In Theorem 6.17 we finally establish the
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bijection between the twisted equivariant cohomology set on the Galois covering Y and the
cohomology set of the Grothendieck sheaf over X mentioned above.

It is important to point out that the notion of twisted �-equivariant principal bundle over
a manifold X acted upon by �, given in Definition 3.5, does not require that the action of
� on X be free (notice that here in the notation we are changing the roles of X and Y ).
In fact the twisted non-abelian sheaf cohomology analysis given in Sects. 6.1, 6.2 and 6.3
is valid without the assumption of � acting freely on X . However, the relation of twisted
�-equivariant G-bundles on X with objects on the quotient Y = X/� when � does not act
freely is much more involved since, in particular, now Y is generally singular.

Twisted equivariant principal G-bundles have been considered in the literature in connec-
tion with the study of fixed points under the action of a finite group � on moduli spaces of
G-bundles and G-Higgs bundles on a compact Riemann surface X , for a complex reductive
group G. When � is the group Z/2 generated by an antiholomorphic involution of X and
� acts on G anti-holomorphically, twisted equivariant principal G-bundles coincide with
the pseudo-real G-bundles studied in [9–11]. For other groups � these objects have been
considered in [5, 7, 8, 22].

We found out recently that twisted equivariant principal G-bundles (without the extra
twisting given by a 2-cocycle) have been studied in the topological category by T. tom Dieck
in [30]. It seems that oneof hismotivationswas related to the notionof real holomorphic vector
bundle that had been introduced a bit earlier by Atiyah [1]. In fact the notion of pseudo-real
G-bundle mentioned above is the generalisation of Atiyah’s real holomorphic vector bundle
to the context of holomorphic principal bundles. Related objects have also appeared in the
work of Balaji–Seshadri [2] in connection to parahoric bundles, and Donagi–Gaitsgory and
others in the description of the Hitchin fibration for G-Higgs bundles in terms of generalised
Prym varieties [17]. In the process of completing this paper we came across recent work by
Damiolini [16] where a description of twisted equivariant principal G-bundles (without the
extra twisting given by a 2-cocycle) is given in terms of parahoric bundles in the algebraic
category. In Sect. 5.3 we briefly comment on the relation of our work to her approach.

This paper emerged from a plan to generalize Hitchin–Kobayashi and non-abelian Hodge
correspondences to the case in which the structure group is non-connected. While there is an
extensive literature on the connected case, to our knowledge, very little has beenwritten when
the group is non-connected, even for the case of principal bundles over a Riemann surface.
Some work to this end is carried out in [12]. It is important to point out that even in the study
of moduli spaces where the starting structure group is connected, there are objects with non-
connected structure group that emerge naturally. This happens for example when studying
Cayley correspondences in the context of higher Teichmüller theory [15] or in the study of
fixed points in the moduli space of bundles under the action of a finite group. Such a situation
appears when one considers a non-trivial finite order element of the set of Z(G)-bundles,
where Z(G) is the centre of a reductive group G, acting by tensorisation on the moduli
space of G-bundles. The fixed points under this action generally reduce their structure group
to a non-connected group (see [21]), and our approach in this paper has been exploited to
give a Prym–Narasimhan–Ramanan type construction of fixed points in the moduli space of
G-bundles and G-Higgs bundles (see [3, 4]). Non-connected structure groups appear also in
the study of fixed points under the action of C

∗ on the moduli space of G-Higgs bundles, the
so-called Hodge bundles [6].

In forthcoming papers [19, 20], the theory developed here is used to give a Hitchin–
Kobayashi correspondence for Higgs pairs and a non-abelian Hodge correspondence on
compact Riemann surfaces when the structure group is non-connected. An important ingre-
dient that allows to reduce the necessary existence theorems to the connected group case is
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the fact that the bundles associated to a twisted �-equivariant principal bundle relevant for
these correspondences acquire actually a true �-equivariant structure and the analysis and
geometry reduce basically to a �-invariant version of those appearing in the connected case
[18].

We thank the referee for useful comments and corrections.

2 Non-connected Lie groups and their actions

2.1 Extensions of Lie groups

A convenient reference for the material in this section is Hilgert and Neeb [24, Chap. 18].
Let G be Lie group (not necessarily connected) and let � be a discrete group. Consider

an extension
1 → G → Ĝ

q−→ � → 1. (2.1)

The adjoint action of Ĝ on the normal subgroup G defines the characteristic homo-
morphism θ̄ : � → Out(G) of the extension (2.1) to the outer automorphism group
Out(G) = Aut(G)/ Int(G). We will assume that there is a lift of θ̄ to a homomorphism
θ : � → Aut(G) making the diagram

�
θ ��

θ̄ ���
��

��
��

��
Aut(G)

��
Out(G)

(2.2)

commutative. We often write θγ for θ(γ ) and gγ = θγ (g) for the action of γ ∈ � on g ∈ G.
Under the assumption of the existence of the lift θ in (2.2), equivalence classes of exten-

sions (2.1) with characteristic homomorphism θ̄ are classified by the second cohomology
group H2

θ (�, Z(G)), where we recall that a 2-cochain c ∈ C2
θ (�, Z(G)) is a map

c : � × � → Z(G)

which satisfies c(γ, 1) = c(1, γ ) = 1 for all γ ∈ � and that the subgroup Z2
θ (�, Z(G)) of

2-cocycles consists of those c which satisfy the cocycle condition

c(γ1, γ2)
γ0c(γ0, γ1γ2) = c(γ0, γ1)c(γ0γ1, γ2), (2.3)

for γ0, γ1, γ2 ∈ �. The extension corresponding to c is G×� as a set, with the product given
by

(g1, γ1) · (g2, γ2) = (g1g2
γ1c(γ1, γ2), γ1γ2). (2.4)

WewriteG×(θ,c)� for the Cartesian product with the group structure (2.4), and the extension

1 → G → G ×(θ,c) � → � → 1

is given by the obvious maps g �→ (g, 1) and (g, γ ) �→ γ .
In order to realise a given extension (2.1) in this way, note that for γ ∈ �, the image of

the map q−1(γ ) → Aut(G) given by conjugation corresponds to the whole class θ(γ ) ∈
Out(G) = Aut(G)/ Int(G). Therefore, given a lift θ of θ , we may choose a section � → Ĝ
of q whose compositionwith Ĝ → Aut(G) is equal to θ .We call such a section a normalised
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section. Thus the action of θγ on G can be written

θγ (g) = s(γ )gs(γ )−1 (2.5)

for γ ∈ � and g ∈ G. In other words θγ = Ads(γ ) : G → G.
Then the cocycle c is given by

s(γ1)s(γ2) = c(γ1, γ2)s(γ1γ2)

and there is an isomorphism

G ×(θ,c) �
∼=−→ Ĝ

(g, γ ) �→ gs(γ ).
(2.6)

Under this isomorphism, the normalised section s is

s : � → Ĝ,

γ �→ (1, γ )
(2.7)

Note also that the cocycle c measures the failure of s to be a group homomorphism. In
particular, the trivial cocycle corresponds to the split extension, i.e., the semidirect product
Ĝ = G �θ � defined by θ .

It is useful to note that for g ∈ G and γ ∈ � we have

(1, γ )−1 = ((c(γ, γ −1)−1)γ
−1

, γ −1) = (c(γ −1, γ )−1, γ −1) (2.8)

A second useful observation is the following. Since � acts on Z(G) via θ and the abelian
group Z(G) is its own centre, we may use the same construction to obtain an extension

1 → Z(G) → �̂θ,c → � → 1,

where
�̂θ,c = Z(G) ×(θ,c) � ⊂ Ĝ (2.9)

and we have the commutative diagram

1 −−−−→ Z(G) −−−−→ �̂θ,c −−−−→ � −−−−→ 1
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

1 −−−−→ G −−−−→ Ĝ −−−−→ � −−−−→ 1 .

(2.10)

Finally, for completeness, we recall that a 1-cochain a ∈ B1
θ (�, Z(G)) is a map a : � →

Z(G) and its coboundary is δa ∈ Z2
θ (�, Z(G)) given by

δa(γ0, γ1) = a(γ1)
γ0a(γ0γ1)

−1a(γ0);
note that the group of 1-cocycles is precisely the kernel of δ. Two extensions defined by
cocycles which differ by a coboundary δa are isomorphic, the isomorphism being given
explicitly by

(g, γ ) �→ (ga(γ ), γ ).

We define H2
θ (�, Z(G)) := Z2

θ (�, Z(G))/δB1
θ (�, Z(G)), the second Galois cohomology

group of � with values in Z(G). See [24, 28] for more information on this object.
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Remark 2.1 We note the obvios fact that the action of � on the centre Z(G) of G does not
depend on the choice of the lift θ , in other words, θ̄ defines a canonical action of � on Z(G).
Thus objects such as �̂θ,c and H2

θ (�, Z(G)) defined in terms of this action really only depend
on θ̄ .

2.2 Non-connected compact and complex reductive Lie groups

We will be specially interested in the case in which G is a compact or complex reductive
Lie group with identity component G0 and � = π0(G) is the group of components. In
particular, thismeans thatG has amaximal compact subgroup K whichmeets all its connected
components, and thus � is finite. By a theorem of de Siebenthal [29], the exact sequence

1 → Int(K0) → Aut(K0) → Out(K0) → 1

splits. Hence, by composing the characteristic homomorphism θ̄ : � → Out(K0) with a
splitting homomorphism Out(K0) → Aut(K0), we obtain a lift of θ̄ to a homomorphism
θ : � → Aut(K0), and we can choose an associated normalised section giving us a cocycle
c. Moreover, by the universal property of the complexification of a compact Lie group,
θ can also be viewed as a lift of the characteristic homomorphism θ̄ : � → Out(G0), so
that we have compatible commutative diagrams (2.2) for the groups K0 and G0. Note that
Z(K0) ⊂ Z(G0), again by the universal property of the complexification and, hence, c can
also be viewed as a cocycle for the �-action on G0. We thus have the following.

Proposition 2.2 Let G be a complex reductive Lie group with identity component G0 and
maximal compact subgroup K . Then G is isomorphic to the group G0 ×(θ,c) � for θ and c
as above, and K can be identified with the subgroup K0 ×(θ,c) �. �	
Remark 2.3 Note, in particular, that the subgroup K0 ⊂ G0 is �-invariant. This is because
the lift θ of the characteristic homomorphism for the extension G0 → G → � comes from
a lift for the extension K0 → K → �, and is therefore compatible with it.

2.3 Actions of extensions

Our objective in this section is to describe actions of a Lie group Ĝ given as an extension as
in Sect. 2.1 in terms of what will be called (θ, c)-twisted (�,G)-actions. For simplicity we
shall state definitions and results simply in terms of actions on sets. We leave to the reader
to make the obvious modifications for smooth actions on manifolds, holomorphic actions on
complex manifolds, linear actions on vector spaces, etc.

Let � be a group which acts (on the left) on a group G via θ : � → Aut(G); we write
gγ = θγ (g) where θγ = θ(γ ). Let Z = Z(G) be the centre of G and let c : � × � → Z be
a cocycle for the �-action on Z induced by θ .

Definition 2.4 A (θ, c)-twisted left (respectively, right) (G, �)-action on a set M is given
by the following data:

• a left (respectively, right) action of G on M , for g ∈ G and m ∈ M written m �→ g · m
in the case of a left action, and m �→ m · g in the case of a right action.

Moreover, in the case of a left action,

• a map � × M → M, (γ,m) �→ γ · m satisfying

1 · m = m, m ∈ M, (i)
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γ · (g · m) = gγ · (γ · m), g ∈ G, γ ∈ �, (ii)

γ1 · (γ2 · m) = c(γ1, γ2) · ((γ1γ2) · m), m ∈ M, γ1, γ2 ∈ �, (iii)

while in the case of a right action,

• a map M × � → M, (m, γ ) �→ m · γ satisfying

m · 1 = m, m ∈ M, (i)

(m · gγ ) · γ = (m · γ ) · g, g ∈ G, γ ∈ �, (ii)

(m · γ1) · γ2 = (m · c(γ1, γ2)) · (γ1γ2), m ∈ M, γ1, γ2 ∈ �. (iii)

Remark 2.5 Sometimes we shall be interested in the case whenG = Z is abelian. In that case
we usually speak simply of a (θ, c)-twisted �-action. In particular, given a (θ, c)-twisted
(G, �)-action, there is an associated (θ, c)-twisted�-action, obtained by restricting the action
of G to its centre Z . In this situation, notice that if the subgroup of Z generated by the image
of c acts trivially on M , then a (θ, c)-twisted �-action is a true �-action.

Remark 2.6 There are several equivalentways of formulating the conditions ofDefinition 2.4.
For example, using condition (ii) for a twisted left action, condition (iii) can be written as

γ1 · (γ2 · m) = (γ1γ2) · (c(γ1, γ2)
(γ1γ2)

−1 · m).

Similarly, the condition (iii) for a right action can written as

(m · γ1) · γ2 = (m · (γ1γ2)) · c(γ1, γ2)(γ1γ2)−1
.

Assume now that � is discrete, and let Ĝ = G ×(θ,c) � be the extension of � by G
determined by c and θ as in the preceding section.

Proposition 2.7 There is a bijective correspondence between Ĝ-actions on a set M and
(θ, c)-twisted (G, �)-actions on M, given as follows:

• Given an action of Ĝ on M, the action of the subgroup G ⊆ Ĝ on M is defined by
restriction, and the action of γ ∈ � on M is defined to be the action of (1, γ ) ∈ Ĝ.

• Given a (θ, c)-twisted (G, �)-action on M, in the case of a left action, we define the
Ĝ-action on M by

(g, γ ) · m = g · (γ · m)

while, in the case of a right action, we define

m · (g, γ ) = (m · g) · γ.

Proof Suppose we have an action of Ĝ on M . Let us check the conditions of Definition 2.4
with the actions of G and � defined as in the statement of the proposition. Let g ∈ Ĝ and
γ, γ1, γ2 ∈ �. Then we have identities in Ĝ,

(1, γ )(g, 1) = (gγ , γ ) = (gγ , 1)(1, γ ) and

(1, γ1)(1, γ2) = (c(γ1, γ2), γ1γ2) = (c(γ1, γ2), 1)(1, γ1γ2),
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which show that the conditions for a (G, �)-twisted left action are satisfied when Ĝ acts on
the left. The same identities show that the conditions for a (G, �)-twisted right action are
satisfied when Ĝ acts on the right.

Conversely, suppose we have a (G, �)-twisted action on M , and define the action of Ĝ
as in the statement of the proposition (it is worth noting that this definition is forced upon
us by the identity (g, γ ) = (g, 1)(1, γ ) ). We must check that this in fact defines an honest
Ĝ-action. In the case of a left action we have, for g1, g2 ∈ G and γ1, γ2 ∈ �:

(g1, γ1) · ((g2, γ2) · m) = (g1, γ1) · (g2 · (γ2 · m))

= g1 · (γ1 · (g2 · (γ2 · m)))

= g1 · (gγ1
2 · (γ1 · (γ2 · m)))

= g1 · (gγ1
2 · (c(γ1, γ2) · ((γ1γ2) · m)))

= (g1g
γ1
2 c(γ1, γ2)) · ((γ1γ2) · m)

= ((g1, γ1)(g2, γ2)) · m.

We leave to the reader the analogous calculation in the case of a right action. �	

Remark 2.8 Proposition 2.7 implies in particular that there is a bijective correspondence
between �̂-actions on M and (θ, c)-twisted �-actions on M , where �̂ is given by (2.9).

A right Ĝ-action on M can be converted into a left Ĝ-action and vice-versa in the standard
way. In the next proposition we interpret this in terms of twisted (G, �)-actions. Note the
twist in the conversion of the twisted �-action.

Proposition 2.9 Let Ĝ = G×(θ,c) � be as above. Suppose Ĝ acts on M on the left and define
the corresponding right Ĝ-action in the standard way by

m · (g, γ ) = (g, γ )−1 · m.

Then

m · (g, 1) = (g−1, 1) · m,

m · (1, γ ) = (c(γ −1, γ )−1, 1) · ((1, γ −1) · m).

Similarly, if Ĝ acts on M on the right, then the left Ĝ-action (g, γ ) · m = m · (g, γ )−1

satisfies

(g, 1) · m = m · (g−1, 1),

(1, γ ) · m = (m · (c(γ −1, γ )−1, 1)) · (1, γ −1).

Proof Consider the case of a left Ĝ-action (the case of a right action is analogous). The
formula for the right action of (g, 1) follows from (g, 1)−1 = (g−1, 1) and the formula for
the right action of (1, γ ) follows from

(1, γ )−1 = (c(γ −1, γ )−1, γ −1) = (c(γ −1, γ )−1, 1)(1, γ −1),

where we have used (2.8). �	

This proposition motivates the following definition.
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Definition 2.10 Suppose we have a (θ, c)-twisted (G, �)-left action on M . Then the corre-
sponding (θ, c)-twisted (G, �)-right action on M is defined by

m · g = g−1 · m,

m · γ = c(γ −1, γ )−1 · (γ −1 · m).

Similarly, given a (θ, c)-twisted (G, �)-right action on M , the corresponding (θ, c)-twisted
(G, �)-left action on M is defined by

g · m = m · g−1,

γ · m = (m · c(γ −1, γ )−1) · γ −1.

Definition 2.11 A map f : M → N between sets with (θ, c)-twisted (G, �)-actions is said
to be (θ, c)-twisted (G, �)-equivariant if it satisfies

f (g · m) = g · f (m) and f (γ · m) = γ · f (m), g ∈ G, γ ∈ �,m ∈ M,

in the case of a left action, with the obvious modification in the case of a right action.

The following proposition shows that the correspondence of Proposition 2.7 is natural.

Proposition 2.12 A map f : M → N between sets with (θ, c)-twisted (G, �)-actions is
(θ, c)-twisted (G, �)-equivariant if and only if it is Ĝ-equivariant for Ĝ = G ×(θ,c) �.

Proof The “if” part is clear. The “only if” part follows because the group Ĝ is generated by
elements of the form (g, 1) and (1, γ ). �	

We recall the following elementary fact about group actions.

Proposition 2.13 Let Ĝ be a group given as an extension

1 → G → Ĝ → � → 1.

Suppose Ĝ acts on a set M. Then there is an induced action of � on the orbit space M/G
and the quotient map M → M/G is equivariant for the homomorphism Ĝ → �. �	

As an immediate consequence of this and Proposition 2.7 we get the following result.

Proposition 2.14 Let Ĝ = G×(θ,c) � be as above. Suppose we have a (θ, c)-twisted (G, �)-
action on M. Then the quotient of M by G has a natural �-action and the quotient map
M → M/G is equivariant for the homomorphism Ĝ → �. �	

The following lemma will be crucial later, to prove Proposition 3.18.

Lemma 2.15 Let Ĝ be a group given as an extension

1 → G → Ĝ → � → 1.

Suppose that Ĝ acts on sets E and M on the right and that the induced G-action on E is
free. Let s̃ : E → M be a G-equivariant map and let s : E/G → (E × M)/G be the map
induced by the G-equivariant map (Id, s̃) : E → E × M. Then the map s̃ is Ĝ-equivariant
if and only if the map s is �-equivariant.
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Proof Let ĝ ∈ Ĝ and write γ ∈ � for the image of ĝ under the map Ĝ → �. Then, for
e ∈ E , we have

s([e] · γ ) = s([e · ĝ]) = [(e · ĝ, s̃(e · ĝ))].
On the other hand

s([e]) · γ = [(e, s̃(e))] · γ = [(e · ĝ, s̃(e) · ĝ)].
Now, sinceG acts freely on E , we see that s([e]·γ ) = s([e])·γ if and only if s̃(e·ĝ) = s̃(e)·ĝ.

�	

2.4 Twisted actions for different�

Up to this point we have worked with a fixed choice of lift θ : � → Aut(G) of the charac-
teristic homomorphism θ̄ : � → Out(G) = Aut(G)/ Int(G) (see (2.2)). In this section we
show that a different choice of lift leads to essentially the same theory (see Proposition 2.16
below).

Given another homomorphism θ ′ : � → Aut(G) lifting θ̄ , there exists a map s : � → G
such that θ ′ = Ints θ ; we may assume that s(1) = 1. Here Ints is the homomorphism of �

to Int(G) defined by Ints(γ ) = Ints(γ ). Since Int(G) acts trivially on Z , there is a natural
identification Z2

θ (�, Z) ∼= Z2
θ ′(�, Z) and so we talk about 2-cocycles as elements in any of

these sets indistinctly. Since θ ′ is a homomorphism we have

Ints(γ ) Intθγ (s(γ ′)) θγ γ ′ = Ints(γ ) θγ Ints(γ ′) θγ ′ = θ ′
γ θ ′

γ ′ = θ ′
γ γ ′ = Ints(γ γ ′) θγ γ ′ ,

i.e.
Ints(γ ) Intθγ (s(γ ′)) = Ints(γ γ ′) (2.11)

for every γ and γ ′ ∈ �. In terms of Galois cohomology this means that Ints is a 1-cocycle
in Z1

θ (�, Int(G)). Thus we may define a map

cs : � → � → Z; (γ, γ ′) �→ s(γ )θγ (s(γ ′))s(γ γ ′)−1.

This is in fact a 2-cocycle, since

θγ0(cs(γ1, γ2))cs(γ0, γ1γ2)

= θγ0(s(γ1)θγ1(s(γ2))s(γ1γ2)
−1)s(γ0)θγ0(s(γ1γ2))s(γ0γ1γ2)

−1

= θγ0(s(γ1))θγ0γ1(s(γ2))s(γ0)s(γ0γ1γ2)
−1

= s(γ0)θγ0(s(γ1))s(γ0γ1)
−1s(γ0γ1)θγ0γ1(s(γ2))s(γ0γ1γ2)

−1 = cs(γ0, γ1)cs(γ0γ1, γ2)

and

cs(γ, 1) = s(γ )θγ (s(1))s(γ )−1 = 1 = s(1)θ1(s(γ ))s(γ )−1 = cs(1, γ ).

Thus the product ccs is also a 2-cocycle.
We have the following.

Proposition 2.16 Let s : � → Int(G)beamap satisfying (2.11). LetC(θ, c)be the category of
pairs (M, ·) consisting of a set M and a (θ, c)-twisted (G, �)-action on M, whose morphisms
are (θ, c)-twisted (G, �)-equivariant maps. Then the categories C(θ, c) and C(Ints θ, ccs)
are equivalent.
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Proof Set θ ′ := Ints θ as above. Let M be a set equipped with a (θ, c)-twisted (G, �)-action,
which we denote with a dot. We have a natural choice of (θ ′, ccs)-twisted �-equivariant
action on M , namely

M × � → M; (m, γ ) �→ m ∗ γ := ms(γ ) · γ. (2.12)

This satisfies Definition 2.4:

(mg) ∗ γ = (ps(γ )s(γ )−1gs(γ )) · γ = (ms(γ )) · γ θ−1
γ (s(γ )−1gs(γ )) = m ∗ γ θ ′−1

γ (g)

and

(m ∗ γ ) ∗ γ ′ = (ms(γ ) · γ )s(γ ′) · γ ′ = ((m · γ ) · γ ′)θ−1
γ γ ′(s(γ ))θ−1

γ ′ (s(γ ′))

= ((mc(γ, γ ′)) · γ γ ′)θ−1
γ γ ′(s(γ )θγ (s(γ ′))) = ((mc(γ, γ ′)) · γ γ ′)θ−1

γ γ ′(cs(γ, γ ′)s(γ γ ′))

= (mc(γ, γ ′)cs(γ, γ ′)s(γ γ ′)) · γ γ ′ = (mcs(γ, γ ′)) ∗ γ γ ′

for each g ∈ G, γ, γ ′ ∈ � and m ∈ M .
A (θ, c)-twisted (G, �)-equivariant morphism of sets f : M → M ′ is also (θ ′, ccs)-

twisted �-equivariant. Indeed, we have

f (m ∗ γ ) = f (ms(γ ) · γ ) = f (m · γ )θ−1
γ (s(γ )) = f (m) · γ θ−1

γ (s(γ ))

= f (m)s(γ ) · γ = f (m) ∗ γ

for each m ∈ M and γ ∈ �.
Finally it is clear that the functor is invertible, namely we get the · action by composing

the ∗ action with multiplication by s(•)−1. �	

3 Twisted equivariant structures on bundles

In this section we review and further develop the theory of twisted equivariant bundles
introduced in [5, 22] (see also [7–11]). We work in the smooth category for definiteness.
However, everything could equally well be done in the topological and the holomorphic
categories. Let X be a smooth manifold (a topological or complex manifold if we work in
the topological or holomorphic category) and G be a Lie group (topological or complex if
we work in the topological or holomorphic category).

3.1 Twisted equivariant bundles

Let � be a discrete group, and let G be a Lie group with centre Z(G) = Z . As in Sects. 2.1
and 2.3 assume that � acts on G via θ : � → Aut(G) and let c ∈ Z2

θ (�, Z) be a 2-cocycle
for this action. Let Ĝ = G ×(θ,c) � be the extension of � by G defined by θ and c, and write
�̂θ,c for the corresponding central extension of � by Z .

Definition 3.1 A (θ, c)-twisted (G, �)-manifold is a smooth manifold M with a (θ, c)-
twisted (G, �)-action such that the maps defined by each g ∈ G and γ ∈ � are
diffeomorphisms of M .

In the case when G = Z , we simply use the expression (θ, c)-twisted �-manifold for a
(θ, c)-twisted (Z , �)-manifold. If we want to specify whether the action is on the right or on
the left, we qualify the word “manifold” with the corresponding adjective.
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Remark 3.2 From Propositions 2.7 and 2.12 we see that the category of (θ, c)-twisted
(G, �)-manifolds is equivalent to the category of Ĝ-manifolds (with the obvious notions
of morphisms).

Let X be a �-manifold.

Definition 3.3 A (θ, c)-twisted �-equivariant bundle on X is a fibre bundle F → X
with a (θ, c)-twisted action of � on the total space F , such that Z acts fibrewise and the
projection π : F → X is �-equivariant, in the sense that, in the case of a right action,
π( f · γ ) = π( f ) · γ, and, in the case of a left action, π(γ · f ) = γ · π( f ) for γ ∈ � and
f ∈ F .

Remark 3.4 In view of Proposition 2.7 we see that a (θ, c)-twisted �-equivariant bundle on
X is the same thing as a bundle F → X with a �̂θ,c-action on F , such that the projection is
equivariant for the homomorphism �̂θ,c → �.

Let X be a right �-manifold.

Definition 3.5 A (θ, c)-twisted �-equivariant principal G-bundle on X is a right (θ, c)-
twisted �-equivariant bundle E → X with a right G-action such that

(1) the actions of G and � make E into a (θ, c)-twisted (G, �)-manifold, and
(2) the action of G makes E → X into a principal G-bundle.

Explicitly, the preceding definition means that there is smooth a (θ, c)-twisted right �-
action on the principal G-bundle E , covering the �-action on X , and such that

(egγ ) · γ = (e · γ )g, (3.1)

(e · γ1) · γ2 = (ec(γ1, γ2)) · (γ1γ2). (3.2)

Note that, in accordance with custom, we usually omit the “·” in the notation for the right
action of G on E .

Remark 3.6 In view of Proposition 2.7 we have the following alternative definition: a (θ, c)-
twisted �-equivariant principal G-bundle on a right �-manifold X is a right Ĝ-manifold E
together with a smoothmapπ : E → X which is equivariant for the homomorphism Ĝ → �,
and defines a structure of principal G-bundle on E over X .

Remark 3.7 If � acts trivially on X , a (θ, c)-twisted �-equivariant principal G-bundle on X
is the same thing as a principal Ĝ-bundle on X .

The next definition completes the description of the category of (θ, c)-twisted �-
equivariant principal G-bundles.

Definition 3.8 A morphism between (θ, c)-twisted �-equivariant principal G-bundles is a
commutative diagram

E
f̃ ��

��

F

��
X

f �� Y

where f : X → Y is �-equivariant, and f̃ : E → F is (θ, c)-twisted (G, �)-equivariant,
i.e., f̃ (e · γ ) = f̃ (e) · γ and f̃ (eg) = f̃ (e)g for e ∈ E , γ ∈ � and g ∈ G.
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Remark 3.9 In the preceding definition, in view of Proposition 2.12, we may equivalently
require f̃ to be Ĝ-equivariant.

Remark 3.10 According to Definition 3.8, two (θ, c)-twisted �-equivariant principal G-
bundles on the same base X are isomorphic if there is an isomorphism between them covering
a �-equivariant automorphism of X . Below we shall use notions of isomorphism covering
more restricted classes of �-equivariant automorphisms of X , e.g., the identity, or the action
of Z(�).

Proposition 2.16 implies the following.

Proposition 3.11 Let s : � → G be a map making Ints θ : � → Aut(G) a homomorphism.
Let cs ∈ Z2

θ (�, Z) be the 2-cocycle defined in Sect. 2.4. Then the category of (θ, c)-twisted�-
equivariant G-bundles on is equivalent to the category of (Ints θ, ccs)-twisted �-equivariant
G-bundles on X.

We can define the pull-back of a (θ, c)-twisted �-equivariant G-bundle E
π−→ Y under a

�-equivariant map f : X → Y in the usual way and obtain a (θ, c)-twisted �-equivariant
G-bundle f ∗E → X , as follows. Recall that the pull-back can be defined as

f ∗E = {(x, e) ∈ X × E | f (x) = π(e)},
and this is principalG-bundle in a natural way.We define the twisted�-action by coordinate-
wise multiplication

(x, e) · γ = (x · γ, e · γ )

and one checks that f ∗E → X is indeed a (θ, c)-twisted �-equivariant bundle. Moreover,
the natural bundle map f ∗E → E covering f : X → Y is a morphism of (θ, c)-twisted
�-equivariant G-bundles.

Remark 3.12 If f = ηγ : X → X , x �→ x · γ −1 corresponds to the action of γ ∈ �, then
we have a natural isomorphism of (θ, c)-twisted �-equivariant G-bundles

η∗
γ E

∼=−→ E

coveringηγ : X → X .Note that the action of� on X makingη∗
γ E into a twisted�-equivariant

bundle is given as follows: an element λ ∈ � acts by x �→ x · (γ −1λγ ). Composing with the
inverse of this isomorphism we see that η̃γ : E → E, e �→ e · γ −1 covering ηγ : X → X
corresponds to an isomorphism

E
∼=−→ η∗

γ E

of (θ, c)-twisted �-equivariant G-bundles covering the identity.

Definition 3.13 A smooth section s : X → F of a twisted�-equivariant fibre bundle F → X
is said to be twisted �-equivariant if it satisfies

s(x · γ ) = s(x) · γ, x ∈ X , γ ∈ �

in the case of a right action, with the obvious modification in the case of a left action.
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Remark 3.14 We can make �̂θ,c act on the space of sections of F → X . For definiteness
assume that the twisted �-action on F → X is on the right. Then we can define

(s · γ )(x) = s(x · γ −1) · γ,

(s · z)(x) = s(x) · z
for γ ∈ �, z ∈ Z , x ∈ X and s ∈ C∞(X , F). It is simple to check that this defines a
twisted right �-action on C∞(X , F). In other words, we have a �̂θ,c-action on C∞(X , F).
Moreover, s is twisted �-equivariant if and only if s · γ = s for all γ ∈ �.

We denote the space of twisted �-equivariant smooth sections of a twisted �-equivariant
fibre bundle F → X byC∞(X , F)� . Of course this includes the case of a�-twisted principal
G-bundle E

π−→ X .

3.2 Twisted equivariant structures and associated bundles

Let E be a principal G-bundle over X and M be any set on which G acts. In the (most
common) case, when the G-action on M is on the left, we convert it into a right action in the
standard way, by defining

m · g = g−1 · m.

We denote by E(M) the orbit space (E × M)/G. In the case of a left action of G on M , we
thus have the twisted product E(M) = E ×G M , which can be viewed as the quotient of
E × M by the equivalence relation

(eg,m) ∼ (e, g · m) (3.3)

for any e ∈ E , g ∈ G and m ∈ M .

Remark 3.15 The smooth sections s of E(M) are in natural bijection with the smooth maps
s̃ : E → M satisfying the G-equivariance condition

s̃(eg) = s̃(e) · g for any e ∈ E and g ∈ G. (3.4)

To see this, let s̃ : E → M satisfy (3.4). Then (Id, s̃) : E → E × M is G-equivariant and,
therefore, descends to the quotient so that we have a commutative diagram

E
(Id,s̃)−−−−→ E × M

⏐
⏐
�

⏐
⏐
�

E/G
s−−−−→ (E × M)/G ,

and s : E/G = X → E(M) = (E × M)/G is the section corresponding to s̃. Conversely,
given a section s, we can recover s̃ by setting s̃(e) = m, where s([e]) = [(e,m)]; this is
well-defined because the fibres of E → X are G-torsors.

We view E as the G-frame bundle of E(M) in the usual way: an element e ∈ E with
π(e) = x defines the frame

M
∼=−→ E(M)x ,

m �→ [e,m].
(3.5)
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Proposition 3.16 Let M be a (θ, c)-twisted right (G, �)-manifold and let π : E → X be
a (θ, c)-twisted �-equivariant principal G-bundle. Then the associated fibre bundle with
typical fibre M,

E(M) := E ×G M → X ,

[e,m] �→ π(e),

defined by the above construction is a �-equivariant fibre bundle.

Proof Proposition 2.14 shows that

[e,m] · γ = [e · γ,m · γ ]
defines a�-action on E(M), and�-equivariance of the projection is immediate from (twisted)
�-equivariance of π : E → X . �	
Remark 3.17 Note that the map (3.5) has no equivariance properties with respect to �.

LetC∞(E, M)G,� be the space of (θ, c)-twisted (G, �)-equivariant smoothmaps s̃ : E →
M in the sense of Definition 2.11, and let C∞(X , E(M))� be the space of �-equivariant
sections of E(M) → X .

Proposition 3.18 With the above notation, there is a bijection

C∞(E, M)G,�
∼=−→ C∞(X , E(M))�.

Proof The correspondence between G-equivariant maps E → M and sections of E(M) →
X is given by Remark 3.15 and the �-equivariance statement follows from Lemma 2.15. �	
Remark 3.19 Since usually the twisted (G, �)-action on M is on the left, we spell out the
correspondence in the case: there is a bijective correspondence between�-equivariant smooth
sections of E(M) → X and smooth maps s̃ : E → M satisfying

s̃(eg) = g−1 · s̃(e),
s̃(e · γ ) = c(γ −1, γ )−1 · (γ −1 · s̃(e)).

3.3 Extension and reduction of structure group of twisted equivariant bundles

Let H be a Lie group equipped with a homomorphism τ : � → Aut(H). Letψ : G → H be
a �-equivariant Lie group homomorphism such that ψ(c(� ×�)) ⊆ Z(H), the centre of H .
Thenψ ◦c : �×� → Z(H) is an element of Z2

τ (�, Z(H)). This setting allows us to include
extensions of structure group in our framework. To do this, recall that the principal H -bundle
obtained by extension of structure group of the principal G-bundle E via ψ : G → H is
F = E ×G H , where the equivalence relation is (e, h) ∼ (eg−1, ψ(g)h). Then, if E is a
twisted �-equivariant bundle, we can define a twisted �-action on F = E ×G H by

[e, h] · γ = [e · γ, h · γ ].
It is easy to check that this is well defined and makes F → X into a (τ, ψ ◦ c)-twisted
�-equivariant H -bundle such that the natural map E → F is a morphism of twisted �-
equivariant principal bundles.

Let E be a G-bundle over X and let H ⊆ G be a subgroup. A reduction of structure
group of E to H is a section σ of E(G/H). If we view E as the bundle of G-frames
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of itself, then σ is a section of the bundle of H -equivalence classes of G-frames. Since
E(G/H) ∼= E/H canonically and the quotient E → E/H has the structure of a principal
H -bundle, the pullback Eσ := σ ∗E is a principal H -bundle over X , and we can identify
canonically E ∼= Eσ ×H G as principal G-bundles (this justifies saying that σ gives a
reduction of the structure group of E to H ).

Now assume that H ⊆ G is invariant under θ and that E is a (θ, c)-twisted �-equivariant
principal G-bundle. We want to obtain sufficient and necessary conditions for the �-action
on E to preserve Eσ , regarded as an H -invariant submanifold of E . Note that the section of
E(G/H) determining the reduction of structure group may be regarded as a G-equivariant
map s : E → G/H , where G acts on G/H by inverse left multiplication. This map is
determined by Eσ , namely e ∈ E is sent to g−1H , where g ∈ G is such that e ∈ Eσ g. For
every γ ∈ �, from (3.1), we have

e · γ ∈ (Eσ g) · γ = (Eσ · γ )θ−1
γ (g)

which shows that Eσ = Eσ · γ if and only if s is �-equivariant, where � acts on G/H on
the right via the inverse of θ . This is a θ -twisted right �-equivariant action:

Proposition 3.20 Let H ⊆ G be a Lie subgroup which is preserved by the�-action, i.e., such
that γ · h ∈ H for all h ∈ H. Consider the usual G-action on the homogeneous space G/H
given by g1 · (gH) = (g1g)H. Then

γ · (gH) = (γ · g)H .

defines a θ -twisted (G, �)-action on G/H, in other words, an action of the semidirect product
G �θ � on G/H defined by θ .

Proof For every g, g′ ∈ G and γ, γ ′ ∈ � we have

γ · (g′gH) = θγ (g′g)H = θγ (g′)θγ (g)H = θγ (g′)(γ · gH)

and
γ · (γ ′ · gH) = θγ θγ ′(g)H = θγ γ ′(g)H = γ γ ′ · gH ,

as required. �	

By Sect. 3.2 we have a right �-action on the space of sections of E(G/H), and we thus
have the following.

Proposition 3.21 Given a reduction of structure group σ ∈ E(G/H), the corresponding H-
bundle Eσ ⊂ E is �-invariant if and only if σ is �-invariant. If any of these two equivalent
conditions is met then there is an induced (θ, c)-twisted �-equivariant structure on Eσ .

This motivates the following:

Definition 3.22 Given a (θ, c)-twisted �-equivariant G-bundle E over Y and a �-invariant
subgroup H ⊂ G, a (θ, c)-twisted �-equivariant reduction of structure group of E to H
is a �-invariant section of E(G/H).

Remark 3.23 In view of Proposition 3.18, the map σ̃ corresponds to a �-equivariant section
σ of the �-equivariant bundle E(G/H) → X .

123



Geometriae Dedicata (2023) 217 :27 Page 17 of 41 27

4 Twisted equivariant bundles and coverings

Let G be a connected Lie group and let � be a discrete group. Consider a group Ĝ given as
an extension

1 → G → Ĝ → � → 1. (4.1)

As in Sect. 2.1, we will assume that there is a lift of the characteristic homomorphism
θ̄ : � → Out(G) of the extension (4.1) to a homomorphism θ : � → Aut(G) making the
diagram

�
θ ��

θ̄ ���
��

��
��

��
Aut(G)

��
Out(G)

commutative and identify Ĝ = G ×θ,c �.
Let X be a connected smooth manifold. In this section we relate principal Ĝ-bundles on

X with twisted �-equivariant principal G-bundles over a covering p : Y → X with covering
group �. We work in the smooth category for definiteness, but everything could equally well
be done in the holomorphic category.

4.1 An equivalence of categories

The goal of this section is to relate principal Ĝ-bundles on a manifold X to (θ, c)-twisted �-
equivariant principal G-bundles on a suitable covering Y → X . Since we wish to understand
isomorphism classes, we shall make categorical statements. In order to find the correct notion
of morphism we start upstairs.

Let Y be a connected smooth manifold equipped with a smooth �-action � → Aut(Y )

and let E → Y be a (θ, c)-twisted �-equivariant principal G-bundle. We have a canonical
isomorphism E/G ∼= Y and a right �-action on Y induced by the G-action on E . Moreover,
if the �-action on Y is free and properly discontinuous, then E → X = Y/� is a principal
Ĝ-bundle (cf. Remark 3.2).

Proposition 4.1 Let E → Y and E ′ → Y be (θ, c)-twisted �-equivariant principal G-
bundles. Assume that the induced �-action on E/G ∼= Y ∼= E ′/G is free and write Y →
X = Y/� for the corresponding (right) �-covering. Let φ : E → E ′ be a morphism of the
corresponding principal Ĝ-bundles on X, i.e., a Ĝ-equivariant map covering the identity on
X. Then there is a unique covering transformation φ̄ : Y → Y making the diagram

E
φ−−−−→ E ′

⏐
⏐
�

⏐
⏐
�

Y
φ̄−−−−→ Y

⏐
⏐
�

⏐
⏐
�

X
Id−−−−→ X

commutative. Moreover φ̄ ∈ Z(�) ⊂ � = Aut(Y/X).
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Proof Since φ is Ĝ-equivariant, it is also G-equivariant. Hence φ descends to a unique φ̄

which, being a covering transformation, is of the form φ̄(y) = y · γ̄ for a fixed γ̄ ∈ �

Moreover, Ĝ-equivariance of φ implies �-equivariance of φ̄, so that for any γ ∈ � and
y ∈ Y ,

y · γ γ̄ = (y · γ ) · γ̄ = φ̄(y · γ ) = φ̄(y) · γ = (y · γ̄ ) · γ = y · γ̄ γ .

We conclude that γ γ̄ = γ̄ γ because the �-action is free. �	
Let Y → X be a fixed connected �-covering, where the discrete group � acts on the right.

Definition 4.2 We denote by C1 the category whose

• objects are (θ, c)-twisted�-equivariant principalG-bundles E → Y such that the twisted
�-action descends to the action of � as covering transformations of the fixed �-covering
E/G ∼= Y → X , and whose

• morphisms are (θ, c)-twisted (G, �)-equivariant maps φ : E → E ′ such that the dia-
gram

E
φ−−−−→ E ′

⏐
⏐
�

⏐
⏐
�

Y
φ̄−−−−→ Y

commutes and the induced map φ̄ : Y → Y is a covering transformation which belongs
to Z(�).

Proposition 4.3 The category C1 is isomorphic to the category whose objects are principal

Ĝ-bundles E → X together with an identification E/G
∼=−→ Y → X of E/G with the fixed

�-covering Y → X, and whose morphisms are morphisms of principal Ĝ-bundles.

Proof As explained in the paragraph preceding Proposition 4.1 objects of one category can
be viewed as objects of the other, and in view of Proposition 4.1 morphisms are also the
same. �	
Definition 4.4 We denote by C2 the category whose

• objects are principal Ĝ-bundles on X such that there is an isomorphism E/G ∼= Y
covering the identity on X and whose

• morphisms are morphisms of principal Ĝ-bundles.

In view of Proposition 4.3, the only difference between C1 and C2 is that in the latter
category we do not specify the identification E/G ∼= Y .

Recall that a functor is an equivalence of categories if it is fully faithful and essentially
surjective. In particular, it induces a bijection on isomorphism classes of objects.

Proposition 4.5 The functor from C1 to C2 which forgets the identification E/G ∼= Y is an
equivalence of categories.

Proof Proposition 4.1 says that the functor is full (surjective on hom-sets) and faithful (injec-
tive on hom-sets). Finally, given a principal Ĝ-bundle on X such that there is an isomorphism
E/G ∼= Y covering the identity on X , we can of course choose such an isomorphism. Hence
the functor is in fact surjective. �	
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Remark 4.6 Even though an inverse functor from C2 to C1 can be constructed on abstract
grounds, using the axiom of choice to specify identifications E/G ∼= Y , there is no canonical
way of doing this.

Now let C3 be the category of �-equivariant Ĝ-bundles over Y , with morphisms being
�-equivariant morphisms of Ĝ-bundles (note that these induce the identity on Y ). Recall
that there is a natural equivalence of categories between C2 and C3 given by pullback, so
that necessarily we must have a natural equivalence of categories between C1 and C3. A
candidate map on objects that makes this equivalence explicit is given as follows: given a
twisted equivariant G-bundle E with �-action ·, consider its extension of structure group
Ê := E ×G Ĝ to Ĝ. Note that E may be regarded as a submanifold of Ê , and moreover

Ê =
⊔

γ∈�

E(1, γ ).

We may define a �-action on Ê via its restriction to E : first define a product

E × � → Ê; (e, γ ) �→ e ∗ γ := (e · γ )(1, γ )−1. (4.2)

This is G-equivariant: for every g ∈ G, e ∈ E and γ ∈ �,

(eg) ∗ γ = ((eg) · γ )(1, γ )−1 = (e · γ )θγ −1(g)(1, γ )−1 = (e · γ )(1, γ )−1g = (e ∗ γ )g.

Hence we may extend ∗ to a Ĝ-equivariant �-action ∗ on Ê . This is an honest group action
since, for every g ∈ G, e ∈ E and γ and γ ′ ∈ �,

(e ∗ γ ) ∗ γ ′ = ((e · γ )(1, γ )−1) ∗ γ ′ = ((e · γ ) · γ ′)(1, γ ′)−1(1, γ )−1

= ((ec(γ, γ ′)) · γ γ ′)((1, γ )(1, γ ′))−1 = (e · γ γ ′)θ−1
γ γ ′(c(γ, γ ′))(c(γ, γ ′)(1, γ γ ′))−1

= (e · γ γ ′)θ−1
γ γ ′(c(γ, γ ′))(1, γ γ ′)−1c(γ, γ ′)−1 = (e · γ γ ′)(1, γ γ ′)−1c(γ, γ ′)c(γ, γ ′)−1

= e ∗ γ γ ′.

Thus we have a map F from objects of C1 to objects of C3 mapping (E, ·) to (Ê, ∗).

Proposition 4.7 The map F : ob(C1) → ob(C3) induces an equivalence of categories C1 →
C3 which we also call F . This fits in a commutative diagram

C1 F ��

���
��

��
��

� C3
/�

��
C2,

p∗
�� (4.3)

where p : Y → X is the étale cover morphism and the diagonal functor is defined in
Proposition 4.5.

Proof It is enough to prove the commutativity of the diagram at the level of objects; indeed,
this would determine F as the composition of the diagonal functor and p∗.

Let q : EG → Y be a (θ, c)-twisted �-equivariant G-bundle over Y and let EĜ :=
EG ×G Ĝ be the extension of structure group of EG to Ĝ. Consider the corresponding Ĝ-
bundle over X defined by Proposition 4.5, which we call E ; recall that the total spaces of E
and EG are equal, the projection of EG on X is just the composition p ◦ q and the Ĝ-action
on E is determined by the original actions ofG and � on E following Proposition 2.7. Recall
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also that p∗E := E ×X Y is equipped with the pullback �-equivariant action induced by the
right action of � on Y , which we denote with a dot.

We have a natural isomorphism of Ĝ-bundles

EĜ → p∗E; (e, g) �→ (eg, q(e)). (4.4)

Recall that, if ‘·’ denotes the�-action on EG , we have a�-equivariant action ∗ on EĜ defined
by (4.2). To finish the proof we need to check that the �-action on p∗E induced by ∗ and
(4.4) is precisely the pullback action. Indeed, for every e ∈ EG and γ ∈ � we have

(e, 1) ∗ γ = (e · γ, (1, γ )−1) �→ (e · γ (1, γ )−1, q(e · γ )) = (e, q(e) · γ ) = γ ∗(e, q(e)),

where the second equation follows from the fact that the action of γ on EG is equal to the
action of (1, γ ) on E , together with the �-equivariance of q . Thus by Ĝ-equivariance of both
∗ and the pullback action we have, for every (e, g) ∈ EĜ and γ ∈ �,

(e, g) ∗ γ = ((e, 1) ∗ γ )g �→ (γ ∗(e, q(e)))g = γ ∗(eg, q(e)),

so that ∗ induces the pullback action as required. �	
Finally, we have the following important result.

Proposition 4.8 Let E → Y be a (θ, c)-twisted �-equivariant G bundle over Y and Ê =
E → X be the corresponding Ĝ-bundle over X. Let M be a Ĝ-manifold. Then E(M) → Y
has the structure of a�-equivariant bundle, and there is a one-to-one correspondence between
sections of Ê(M) → X and �-equivariant sections of E(M) → Y .

Proof In view of Proposition 2.12 there is a one-to-one correspondence between sections of
Ê(M) and twisted (G, �)-equivariant maps Ê → M . The result now follows from Proposi-
tions 3.16 and 3.18. �	

4.2 Coverings andmonodromy

Let Ê → X be a principal Ĝ-bundle (we do not assume that Ê is connected). We obtain a
principal �-bundle

Y := Ê/G
p−→ X ,

where the � = Ĝ/G-action is induced by the Ĝ-action. Since � is discrete, p : Y → X is a
smooth covering of X with covering group �. Notice that � acts on Y on the right. Write

p̃ : Ê → Y = Ê/G (4.5)

for the quotient map, then, since G is connected, p̃ induces an isomorphism π0 Ê
∼=−→ π0Y .

Choose compatible base points in X and Y . Fundamental groups will be takenwith respect
to these base points and can be identified with the corresponding covering groups of the
(common) universal covering of X and Y . Let Y ′ be the connected component of Y containing
the base point. The �-action on Y induces a �-action on π0Y . Let �′ ⊆ � be the kernel of the
corresponding homomorphism � → Aut(π0Y ). Then Y ′ → X is a connected �′-covering.
Moreover, we have the exact sequence

1 → π1Y
′ → π1X

w−→ �′ → 1.
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Identifying π1X with the covering group of the universal covering X̃ → X , themonodromy
w : π1X → �′ takes a covering transformation of X̃ → X to the induced covering trans-
formation of Y ′ → X which fixes the base point in Y ′. Equivalently, if [α] ∈ π1X , then
w([α]) ∈ �′ is the unique element relating the endpoints of the lift of the loop α starting at
the base point of Y ′. We shall sometimes refer to w : π1X → �′ ⊂ � as themonodromy of
the Ĝ-bundle Ê → X and to �′ as the monodromy group of Ê .

Proposition 4.9 Let Ê → X be a principal Ĝ-bundle with monodromy w : π1X → �′ ⊆ �.
Then Ê admits a reduction of structure group to Ĝ ′ ⊆ Ĝ, where Ĝ ′ := G×θ,c�

′ is defined by
restricting θ and c to �′. Moreover, the total space of the corresponding Ĝ ′-bundle Ê ′ ⊆ Ê
is connected, and Y ′ = Ê ′/G → X is a connected �′-covering with surjective monodromy
w : π1X → �′.

Proof Let Ê ′ = p̃−1(Y ′), where p̃ was defined in (4.5). Then Ê ′ is connected and, by
construction, the Ĝ-action on Ê restricts to a Ĝ ′-action on Ê ′ which makes Ê ′ → X into a
principal Ĝ ′-bundle. �	

We have the following immediate corollary.

Corollary 4.10 Let Ê → X be a principal Ĝ-bundle. Then Ê admits a reduction to the
connected component of the identity G ⊆ Ĝ if and only if its monodromy is trivial. �	

In the study of principal Ĝ-bundles on X , the first topological invariant to fix is the
monodromy. Moreover, in view of Proposition 4.9 we may reduce to the case when the
monodromy group is � (and the total space is connected). Putting together the preceding
results we then have the following, which transforms this study into the study of twisted
bundles with connected structure group.

Theorem 4.11 Let w : π1X → � be a fixed surjective homomorphism and let Y → X
be the corresponding connected covering. The category of principal Ĝ-bundles on X with
monodromy w is equivalent to the category C1 of (θ, c)-twisted �-equivariant principal
G-bundles on Y , defined above.

Proof This follows from Proposition 4.5. �	
Let N�(�′) be the normalizer of �′ in �. Every element γ ∈ N�(�′) defines an

element (1, γ ) ∈ Ĝ which acts by conjugation on Ĝ ′ since, for every (g, γ ′) ∈ Ĝ ′,
(1, γ )(g, γ ′)(1, γ )−1 is equal to (x, γ γ ′γ −1) for some x ∈ G; note that the converse is
also true, i.e. if conjugation by (1, γ ) preserves Ĝ ′ then γ ∈ N�(�′). This defines an action
of N�(�′) on the set M′ of equivalence classes of Ĝ ′-bundles by extension of structure
group. Moreover, this action preserves the set M′

�′ of equivalence classes of Ĝ ′-bundles E
such that E/G has monodromy equal to �′.

Proposition 4.12 Let M be the set of equivalence classes of Ĝ-bundles, and let M′
�′ be the

set of equivalence classes of Ĝ ′-bundles E such that E/G has monodromy �′. Assume that
G is connected. Then the extension of structure group morphismM′

�′ → M factors through
an embedding M′

�′/N�(�′) ↪→ M, where N�(�′) acts by extension of structure group.

Proof Consider a Ĝ ′-bundle E and γ ∈ N�(�′). The element s := (1, γ ) ∈ Ĝ determines
an automorphism θ := Ints−1 of Ĝ ′ which defines an extension of structure group θ(E). Let
Ê be the extension of structure group of E by the embedding Ĝ ′ ↪→ Ĝ. Then the stabilizer
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of E under the Ĝ-bundle action is equal to Ĝ ′, which implies that the stabilizer of Es ⊂ Ê
is equal to s−1Ĝ ′s = Ĝ ′; in other words, Es determines a reduction of structure group of Ê
to Ĝ ′. Moreover, the map

E → Es; e �→ es

induces an isomorphism of G-bundles θ(E) ∼= Es. Indeed, recall that θ(E) may be regarded
as the Ĝ ′-bundle which has the same total space as E and G-action determined by

E × Ĝ ′ → E; (e, g) �→ eθ−1(g).

But we have

eθ−1(g)s = esgs−1s = esg,

which shows that the induced map θ(E) → Es is Ĝ ′-equivariant. This implies that Es,
which is a reduction of structure group of Ê to Ĝ ′, is isomorphic to θ(E); in other words, Ê
is the extension of structure group of θ(E) by the embedding Ĝ ′ ↪→ Ĝ.

Conversely, let E and E ′ be two Ĝ ′-bundles such that the monodromies of E/G and E ′/G
are both equal to �′; since G is connected, this implies that both E and E ′ are connected.
Assume that they have the same extension of structure group Ê to Ĝ. Note that Ê has an
explicit decomposition into connected components, namely

Ê =
⊔

γ�∈�/�′
E(1, γ ),

where each coset in �/�′ has one and only one representative component in the union. Thus
E ′ must be equal to one of these components, say E(1, γ ) for some γ ∈ �. Let s := (1, γ )

and θ := Ints−1 . The first observation is that, since Ê is the extension of structure group of E ′
by the prescribed embedding of Ĝ ′ in Ĝ, the group Ĝ ′ is equal to the stabilizer of Es by the
Ĝ-bundle action. But, on the other hand, the fact that the stabilizer of E is Ĝ ′ implies that the
stabilizer of Es is equal to s−1Ĝ ′s = θ(Ĝ ′); this implies that Ĝ ′ = θ(Ĝ ′) or, equivalently,
γ ∈ N�(�′). Finally, as in the previous paragraph, the map E → Es given by the action of
s induces an isomorphism of G-bundles θ(E) ∼= Es = E ′, as required. �	

5 Non-abelian sheaf cohomology and group extensions

Let X be a topological space. We may assume that X is paracompact and Hausdorff, since
we will be mostly interested in the case in which X is a differenciable real manifold or a
complex manifold. Let G be a topological group, or a real Lie group (respectively a complex
Lie group) if we are working on the smooth category (respectively holomorphic category).

In this section we briefly recall some basic facts on non-abelian cohomology, and how
this can be used to describe the set of equivalence classes of G-bundles over X , since we
will elaborate on this in the next section when we add twisted equivariant structures. A good
reference for this material is the paper of Grothendieck [23] (see also Hirzebruch [25]).

5.1 Non-abelian cohomology and G-bundles

A sheaf of (not necessarily abelian) groups over X is defined as a triple S = (S, X , π),
where S is a topological space and π : S → X is a local homeomorphism, so that the stalk
Sx = π−1(x) over every point x ∈ X has the structure of a group, and for every α, β in Sx ,
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the element αβ−1 depends continuously on α and β. Notice that the fact that π is a local
homeomorphism implies that the topology of S induces the discrete topology on every stalk
Sx .

Recall that ifU is a open subset of X we can define the group of sections H0(U ,S ) and
in particular the group H0(X ,S ) of global sections ofS .

While higher cohomology groups cannot be defined in the case of non-abelian groups, it
is nevertheless possible to define a cohomology set H1(X ,S )with a distinguished element.
In the abelian case this coincides with the usual first cohomology group ofS .

To define H1(X ,S ), let U = {Ui }i∈I be an open covering of X . A U -cocycle is a
function f which associates to each order pair i, j of elements in I , an element fi j ∈
H0(Ui ∩Uj ,S ) such that

fi j f jk = fik in Ui ∩Uj ∩Uk for all i, j, k ∈ I .

The set ofU -cocycles is denoted by Z1(U ,S ). Cocycles f and f ′ are said to be equivalent
if for each i ∈ I there exists an element gi ∈ H0(Ui ,S ) such that

f ′
i j = gi fi j g

−1
j in Ui ∩Uj for all i, j ∈ I .

The cohomology set H1(U ,S ) is the set of equivalence classes of U -cocycles, and the
cohomology set H1(X ,S ) is defined as a direct limit of the sets H1(U ,S ) asU runs over
all open covering of X (see §3 of [25] for details).

A case of particular interest to us is that in which G is a group andS = (S, X , π) is the
sheaf of germs of functions with values in G. This sheaf will be denoted by G. The set S here
is the product X×G and π is the projection onto X . If X is a topological space (respectively a
differentiable or complex manifold) andG is a topological group (respectively real Lie group
or complex Lie group), then G is the sheaf for which H0(U ,G) is the group of continuous
(respectively differentiable or holomorphic) functions.

WithG as above, the cohomology set H1(X ,G)parameterizes equivalence classes of prin-
cipalG-bundles over X , in the topological, differentiable or holomorphic category, according
to the structures considered on X and G. This can be easily seen by considering an open
covering of X and the trivializations and transition functions of a principal bundle for this
covering. The transition functions satisfy precisely the cocycle condition. In this case the
distinguished element in H1(X ,G) is of course the trivial principal G-bundle over X .

5.2 Group extensions and induced exact non-abelian cohomology sequences

Let � be a finite group, and θ : � → Aut(G) be a homomorphism, so that the action of �

on G defined by θ is continuous. Let Z = Z(G) be the centre of G, and c ∈ Z2
θ (�, Z) be a

2-cocycle. Consider the extension of groups

1 → G → Ĝ → � → 1 (5.1)

where the group structure of Ĝ is givenby (2.4).Naturally, ifG is a realLie group (respectively
complex Lie group) we will require that the action of � on G be differentiable (respectively
holomorphic).

The extension (5.1) defines an extension of sheaves

1 → G → Ĝ → � → 1, (5.2)

where the sheaves G and Ĝ are defined as in Sect. 5.1, and we denote the sheaf � simply by
� since � is a finite group.
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Associated to (5.2) there is a long exact sequence of cohomology sets with distinguished
elements

H0(X , �) → H1(X ,G) → H1(X , Ĝ)
π−→ H1(X , �). (5.3)

In Proposition 5.6.2 and following Corollary of [23], Grothendieck gives a characterization
of the inverse image by π of an element of H1(X , �) when this inverse image is nonempty.

Let E� be a principal �-bundle over X and [E�] ∈ H1(X , �) be its corresponding
equivalence class. Assume that E� can be lifted to a principal Ĝ-bundle EĜ , implying, in
particular, that the inverse image of [E�] under π is nonempty. Notice that this is indeed the
case if the cocycle c is trivial and Ĝ is then the semidirect product. The group Ĝ acts by
conjugation on G, and we consider the bundle of groups EĜ(G) associated to the principal
bundle EĜ via this action. Notice that in the semidirect product case, if EĜ is the extension

of structure group of E� via the natural embedding � ↪→ Ĝ then EĜ(G) = E�(G), where
E�(G) is the bundle associated to E� via the action of � on G given by θ . We can also
consider the adjoint bundle of groups E�(�) associated to E� via the adjoint action of � on
itself.

With all this in place, the answer given by Grothendieck is the following.

Proposition 5.1 With the above notation we have the identification

π−1([E�]) = H1(X , EĜ(G))/H0(X , E�(�)).

Sketch of the proof Throughout this proof we denote by π the extension of structure group
map from the set of isomorphism classes of Ĝ-bundles to the set of isomorphism classes of
�-bundles induced by (5.1) by abuse of notation. Fix an isomorphism π(EĜ) ∼= E� . Let E ′

Ĝ

be a Ĝ-bundle over X such that π(E ′
Ĝ
) ∼= E�, and fix such an isomorphism f : E ′

Ĝ

∼−→ E� .

Let U = {Ui }i∈I be a countable open cover of X trivializing both EĜ and E ′
Ĝ
. Let (Ui , ei )

and (Ui , e′
i ) be a system of trivializations of EĜ and E ′

Ĝ
respectively whose images under

π (composed with the chosen isomorphisms) is the same trivialization (Ui , ei ) of E� . Set
Ui j := Ui ∩ Uj and let (Ui j , gi j ), (Ui j , g′

i j ) such that e j = ei gi j and e′
j = e′

i g
′
i j for each

i and j ∈ I . Then we have that g′
i j = hi j gi j for some set of functions hi j : Ui j → G. We

claim that (Ui j , (ei , hi j )) is a 1-cocycle in Z1(U , EĜ(G)). Indeed, the fact that both gi j and
g′
i j are 1-cocycles implies:

hi j (gi j h jkg
−1
i j )gi j g jk = hi j gi j h jkg jk = hikgik = hikgi j g jk,

thus hi j gi j h jkg
−1
i j = hik . Hence:

(ei , hi j )(e j , h jk) = (ei , hi j )(ei gi j , h jk) = (ei , hi j )(ei , gi j h jkg
−1
i j ) = (ei , hi j gi j h jkg

−1
i j )

= (ei , hik),

as required.This identifies the trivialization (Ui , e′
i )of E

′
Ĝ
with an element of Z1(U , EĜ(G)).

Another trivialization of E ′
Ĝ
whose image under f ◦ π is equal to (Ui , ei ) provides an

isomorphic 1-cocycle. Similarly, given a G-bundle E ′′
Ĝ
, an isomorphism π(E ′′

Ĝ
) ∼= E� and

an isomorphism E ′
Ĝ

∼= E ′′
Ĝ
whose induced automorphism of E� is the identity, E ′′

Ĝ
yields an

equivalent 1-cocycle. Thus we get a bijection between equivalence classes of pairs (E ′
Ĝ
, f :

π(E ′
Ĝ
)

∼−→ E�), where the equivalence relation is an isomorphism of Ĝ-bundles inducing the

identity on E� , and H1(X , EĜ(G)). If we now consider any induced automorphism of E�
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and we forget the isomorphisms f then we get a bijection between the set of isomorphism
classes of Ĝ-bundles E ′

Ĝ
and H1(X , EĜ(G))/H0(X , E�(�)), where H0(X , E�(�)) is the

group of automorphisms of the �-bundle E� . �	
Notice that if E� is the trivial �-bundle—the distinguished element in H1(X , �)—then

Proposition 5.1 follows simply from the exactness of (5.3) and

π−1([E�]) = H1(X ,G)/H0(X , �).

Remark 5.2 The characterization given by Grothendieck in [23] applies in fact to any exten-
sion of topological groups and actually to any extension of sheaves of groups. Obviously
the answer in our situation is particularly simple, considering the special structure of the
extension (5.1).

The centre of G is a normal subgroup of Ĝ and we can consider the quotient group
Ǧ = Ĝ/Z . The group Ǧ fits into an extension

1 → G/Z → Ǧ → � → 1

where the group structure of Ǧ is the semidirect product one. If we consider the induced
sequence of sheaves, any [E�] ∈ H1(X , �) can be lifted now to an element [EǦ ] ∈
H1(X , Ǧ), and the question of when this can be lifted to H1(X , Ĝ) can be analysed in
terms of the exact sequence of sheaves

1 → Z → Ĝ → Ǧ → 1.

Since Z is abelian one can define the cohomology group H2(X , Z), and this sequence induces
a long exact sequence

H1(X , Ĝ) → H1(X , Ǧ)
σ−→ H2(X , Z). (5.4)

The element [EǦ ] can be lifted to an element [EĜ ] ∈ H1(X , Ĝ) if and only if σ([EǦ ]) is
the neutral element of the group H2(X , Z).

Remark 5.3 If σ([EǦ ]) is not the neutral element one can still lift [EǦ ] to a twisted principal
G-bundle or equivalently, a torsor over a certain sheaf of groups (see [26] for example), but
we will not consider these objects in this paper.

A connected principal �-bundle E� over X is of course the same as a finite Galois
covering Y := E� → X with Galois group �. In view of the results in Sect. 4, and in
particular Theorem 4.11, we conclude the following.

Proposition 5.4 Let EĜ be a connected Ĝ-bundle over X.
(1) The cohomology set H1(X , EĜ(G)) is in one-to-one correspondence with the set

of equivalence classes of (θ, c)-twisted �-equivariant G-bundles on Y , where equivalence
means that the induced map on Y is the identity.

(2) The quotient H1(X , EĜ(G))/H0(X , E�(�)) is in one-to-one correspondencewith the
set of equivalence classes of (θ, c)-twisted�-equivariant G-bundles on Y , where equivalence
allows now that the induced map on Y be an element of the centre of �.

Proof Let π be the extension of structure group map from the set of isomorphism classes
of Ĝ-bundles to the set of isomorphism classes of �-bundles induced by (5.1) by abuse
of notation. By the proof of Proposition 5.1, H1(X , EĜ(G)) is in bijection with the set of
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equivalence classes of pairs (E ′
Ĝ
, f : π(E ′

Ĝ
)

∼−→ E�), where an equivalence between pairs

is defined to be an isomorphism of Ĝ-bundles inducing the identity on E� . By Proposition
4.1 this is in bijection with equivalence classes of (θ, c)-twisted �-equivariant G-bundles on
Y , where equivalence means that the induced map on Y is the identity. This proves (1).

Since EĜ is connected, so is E� . Thus the image of the monodromy of E� is surjective,
and (2) follows from Theorem 4.11 and Proposition 5.1. �	

In the next sectionwewill give a characterization of the set of equivalence classes of (θ, c)-
twisted �-equivariant G-bundles on Y in terms of non-abelian cohomology from which we
can also obtain Proposition 5.4.

5.3 Twisted equivariant bundles as torsors

Following [16] we offer a generalization of the analysis of Sect. 5.2. We work in the topo-
logical category, even though our results are true in the smooth, holomorphic and algebraic
categories (the last case is almost a direct consequence of 5.2).

Let X be a paracompact and Hausdorff topological space equipped with a finite group
of automorphisms �, and take the quotient space p : X → Y := X/�. Note that we have
notationally changed the roles of X and Y , because the basic objects of study are now twisted
equivariant bundles on the covering X .

Let G be a topological group with centre Z and consider a homomorphism θ : � →
Aut(G) and a 2-cocycle c ∈ Z2

θ (�, Z).

Definition 5.5 Given two (θ, c)-twisted �-equivariant G-bundles E and E ′ define the sheaf
IsoG(E, E ′) whose local sections are local G-bundle isomorphisms from E to E ′. This
inherits a�-equivariant structure, so we denote�-invariant sections over a�-invariant subset
of X with a superscript. We say that E and E ′ have the same local type if IsoG(E, E ′)|�

p−1(y)
is nonempty for each y ∈ Y .

Remark 5.6 In the situation where� acts freely, local types are all the same since the fibre of a
(θ, c)-twisted �-equivariant G-bundle over Y is isomorphic to Ĝ = G×θ,c � by Proposition
4.3.

See [16] for more properties of local types in the algebraic category.
Given a sheaf of groups G over Y as defined in Sect. 5.1, we define a G-bundle (sometimes

also referred as a G-torsor) as a sheaf of sets S with nonempty stalks such that, for every
open neighbourhood V in Y , the group G(V ) acts on S(V ) transitively. This implies that S is
locally isomorphism to G. An isomorphism of G-bundles is just a G-equivariant morphism
of sheaves. The set of isomorphism classes of G-bundles is parametrized by H1(Y ,G) as
defined in Sect. 5.1.

Proposition 5.7 The set of isomorphism class of (θ, c)-twisted�-equivariant G-bundles over
X with the same local type as a given twisted equivariant bundle E is in bijection with the
set of isomorphism classes of GE := (p∗IsoG(E, E))�-bundles over Y . The map is given
by (p∗IsoG(E,−))� , and the inverse is p∗(−) ×p∗GE E

Proof This is identical to the proof of Theorem 3.2 in [16], after replacing E, p,GE and
IsoG(E,−) by P, π,HP and IP (−), respectively. �	

Now fix a (θ, c)-twisted �-equivariant G-bundle E .
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Proposition 5.8 When � acts freely on X, the sheaf of groups GE is isomorphic to the sheaf
of groups EĜ(G) := EĜ ×Ĝ G defined using the conjugacy action of Ĝ on G, where EĜ is

the Ĝ-bundle obtained via Proposition 4.3.

Remark 5.9 This shows that Proposition 5.7 is a generalization of Proposition 5.4.

Proof of Proposition 5.8 Throughout the proof we regard elements of E or EĜ indistinctly.
Let V be an open neighbourhood of Y . Recall that the sheaf IsoG(E, E) is isomorphic

to E(G) := E ×G G, where G acts on itself by conjugation. Therefore a section in GE (V )

is just a �-invariant section of E(G)(U ), where U := p−1(V ) and � acts simultaneously
on E and G (see Sect. 3.2). From such a section (e, g) : U → E(G) we obtain a section of
E(G) which is defined for each y ∈ V as (e, g)|x for any x ∈ p−1(y). This is independent
of the choice of x : given γ ∈ �, by �-invariance we have

(e, g)|xγ = (e · γ, θ−1
γ (g)) = (e(1, γ ), θ−1

γ (g)) = (e, g).

It is also independent of the representative (e, g), since (eh, h−1g) = (e, g) in EĜ(G) for
every h ∈ G.

Thus we have a map GE → EĜ(G). The group multiplication is obviously preserved,
so we get a morphism of sheaves of groups. The inverse takes a section s ∈ EĜ(G)(V )

and produces a section of E(G)(U ) which, at each x ∈ U , is equal to a representative
(e, g) ∈ E × G|y of s such that e ∈ E |x . This is independent of the choice of representative
because all of them are related by the G-action, and it is �-equivariant because

(e, g)|xγ = (e(1, γ ), θ−1
γ (g)) = (e · γ, θ−1

γ (g)) for every γ ∈ �.

It is clear that this is indeed the inverse. �	

6 Twisted equivariant cohomology

Let X be a paracompact and Hausdorff connected topological space, such as a differentiable
or complex manifold. Let G be a group with centre Z ; if we are working with topological
spaces G is a topological group, whereas it is a real or complex Lie group if we are in the
smooth or holomorphic category, respectively.

Let� be a discrete group of automorphisms of X with centre Z(�). We have an associated
right action of � on X , given by

X × � → X; x �→ γ −1(x).

Consider a homomorphism

θ : � → Aut(G); γ �→ θγ

and a 2-cocycle c ∈ Z2
θ (�, Z). We provide a (non-abelian) cohomological interpretation

for the set of isomorphism classes of (θ, c)-twisted �-equivariant G-bundles over X . In
particular, this allows us to provide cohomological conditions for the existence of (θ, c)-
twisted �-equivariant G-bundles over X . Our method imitates the usual construction of
Čech cohomology, see for example Chapter V in [23].

Recall that we have two natural notions of isomorphisms, depending on whether they
induce the identity on X or an element of Z(�); hence we explain the relation between
the respective cohomology sets, which are called twisted equivariant and reduced twisted
equivariant, respectively.
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We show that twisted equivariant cohomology over X coincides with usual non-abelian
cohomology over Y := X/� (see Sect. 5) when � acts freely. Thus, twisted cohomology is
in some sense a generalization of non-abelian cohomology.

6.1 Twisted equivariant bundles and cohomology

In this section we define the (reduced) first (θ, c)-twisted �-equivariant cohomology set
H1

�,θ,c(X ,G), where G is the sheaf of (continuous, smooth, holomorphic) functions with
values in G. This set will parametrize isomorphism classes of twisted equivariant bundles
over X .

Cochains There is a natural right action of � on the set of open covers of X . Let U :=
{Ui }i∈I be a �-invariant countable open cover of X , and set

Ui1,...,ik := Ui1 ∩ · · · ∩Uik .

The action of � on U induces a right action on the index I , thus an action on I × · · · × I .
First define Ck(U ,G) as the set of k-cochains (gi1,...,ik+1)i1<···<ik+1∈I , where gi1,...,ik+1 ∈
H0(Ui1,...,ik+1 ,G). The group� acts naturally onCk(U ,G) on the left via�×Ck(U ,G) →
Ck(U ,G); (γ, (gi1,...,ik+1)) �→ gγ := (g(i1,...,ik+1)·γ ◦ γ −1).

From twisted equivariant bundles to cochains Let S(U ,G, �, θ, c) be the set of isomor-
phism classes of (θ, c)-twisted �-equivariant G-bundles over X such that the restrictions
of the underlying bundle to the open sets Ui are trivial; the isomorphisms considered here
respect fibres over X . Take an isomorphism class [(E, ·)] ∈ S(U ,G, �, θ, c), together with
a representative (E, ·) consisting of aG-bundle E and a twisted�-action. Take trivializations
si : Ui → E and define fi j : Ui j → G such that si fi j = s j , a 1-cocycle in H1(U ,G)

as defined in Sect. 5.1. For each γ ∈ �, we define ϕγ,i : Ui → G to be the holomorphic
function that satisfies

sγ

i ϕγ,i = si · γ (6.1)

for every i ∈ I , where sγ

i := si ·γ ◦γ −1. Thus we have obtained a pair ( f , ϕ) ∈ C1(U ,G)×
Fun(�,C0(U ,G)), where Fun denotes the group of maps between two groups that preserve
the identity.

In the following we imitate the usual yoga regarding the interplay between Čech coho-
mology and fibre bundles; see Chapter V in [23], for example.

Dependence on the choice of trivializations Another choice of trivializations is given
by si gi for a suitable g := (gi ) ∈ C0(U ,G), and the obtained pair using these is
(g−1

i fi j g j , g
γ−1
i ϕγ,iθ

−1
γ (gi )). Similarly, if h : (E, ·) → (E ′, ·) is an isomorphism of

(θ, c)-twisted �-equivariant G-bundles (we are denoting both actions with a dot by abuse
of notation), choose local sections si and s′

i for E and E ′, respectively, and set ( f , ϕ) and
( f ′, ϕ′) to be the respective pairs as in the previous paragraph. Recall that h is an equivariant
isomorphism of G-bundles h : E → E ′. Define an element g := (gi )i∈I ∈ C0(U ,G)

such that h(si ) = s′
i gi . Then we have fi j = g−1

i f ′
i j g j , and the compatibility of the actions

translates into

h(sγ

i )ϕγ,i = h(sγ

i ϕγ,i ) = h(si · γ ) = h(si ) · γ = (s′
i gi ) · γ = (s′

i · γ )θ−1
γ (gi ) =

s′γ
i ϕ′

γ,iθ
−1
γ (gi ) = h(sγ

i )gγ−1
i ϕ′

γ,iθ
−1
γ (gi ).
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We may identify (g−1
i fi j g j , g

γ−1
i ϕγ,iθ

−1
γ (gi )) and (g−1

i f ′
i j g j , g

γ−1
i ϕ′

γ,iθ
−1
γ (gi )) with

( f , ϕ) · g and ( f ′, ϕ′) · g, respectively, where · denotes the right action
(C1(U ,G) × Fun(�,C0(U ,G))) × C0(U ,G) → (C1(U ,G) × Fun(�,C0(U ,G)));

(( f , ϕ), g) �→ ( f · g, ϕ · g) := (g−1
i fi j g j , g

γ−1
i ϕγ,iθ

−1
γ (gi )). (6.2)

‘Cocycle conditions’ on ϕ. The (θ, c)-twisted conditions translate into

si g · γ = si · γ θ−1
γ (g) and (si · γ ′) · γ = si c(γ

′, γ ) · (γ ′γ )

for every g ∈ G, i ∈ I and γ and γ ′ ∈ �. In particular, we get

sγ

i f γ

i j ϕγ, j = sγ

j ϕγ, j = s j · γ = (si fi j ) · γ = (si · γ )θ−1
γ ( fi j ) = sγ

i ϕγ,iθ
−1
γ ( fi j ),

i.e.
(ϕγ,i )

−1 f γ

i j ϕγ, j = θ−1
γ ( fi j ). (6.3)

Moreover,

sγ ′γ
i ϕγ ′γ,iθ

−1
γ ′γ (c(γ ′, γ )) = (si · (γ ′γ ))θ−1

γ ′γ (c(γ ′, γ )) = (si c(γ
′, γ )) · (γ ′γ ) =

(si · γ ′) · γ = (sγ ′
i ϕγ ′,i ) · γ = (sγ ′

i · γ )θ−1
γ (ϕγ ′,i ) = sγ ′γ

i ϕ
γ ′
γ,iθ

−1
γ (ϕγ ′,i ),

where the equality sγ ′
i · γ = sγ ′γ

i ϕ
γ ′
γ,i follows from (6.1) after substituting i by i · γ ′ and

composing both sides on the right with γ −1. In other words,

ϕγ ′γ,iθ
−1
γ ′γ (c(γ ′, γ )) = ϕ

γ ′
γ,iθ

−1
γ (ϕγ ′,i ). (6.4)

Remark 6.1 Let Z1
θ,c(�,C0(U ,G)) be the set of maps a : � → C0(U ,G) satisfying

aγ γ ′,i = aγ,iθγ (aγ

γ ′,i )c(γ, γ ′)

for each γ, γ ′ ∈ � and i ∈ I . This is very similar to the definition of a 1-cocycle of � with
values in C0(U ,G) of Galois cohomology, where the action of γ ∈ � is given by a �→
θγ (aγ ), with the difference of the 2-cocycle c. Equation (6.4) implies that (θγ (ϕγ,i )

−1) ∈
Z1

θ,c(�,C0(U ,G)).

Cocycle conditions and complexes of cochains Equations (6.3) and (6.4), together with
the fact that fi j is a 1-cocycle may be codified using a map

d1 : C1(U ,G) × Fun(�,C0(U ,G)) → C2(U ,G) × Fun(�,C1(U ,G))

×Fun(� × �,C0(U ,G));
( fi j , ϕγ,i ) �→ ( fi j f jk f

−1
ik , (ϕγ,i )

−1 f γ

i j ϕγ, jθ
−1
γ ( fi j )

−1, ϕ
γ ′
γ,iθ

−1
γ (ϕγ ′,i )ϕ

−1
γ ′γ,i ),

where we are using Fun to denote maps between groups that preserve the identity. Let
θ−1(c) ∈ Fun(� × �,C0(U ,G)) be the map

� × � � (γ, γ ′) �→ θ−1
γ ′γ (c(γ ′, γ )) : X → Z ,

which is a constant function (we think of this as an element of C0(U ,G) by restricting
to the open neighbourhoods Ui ). Then we define the set of (θ, c)-twisted �-equivariant
1-cocycles Z1

�,θ,c(U ,G) := d−1
1 (1, 1, θ−1(c)) ⊆ C1(U ,G) × Fun(�,C0(U ,G)), equiv-

alently defined as the set of pairs ( f , ϕ) ∈ C1(U ,G) × Fun(�,C0(U ,G)) such that f is a
1-cocycle in the sense of Sect. 5 and ϕ satisfies (6.3) and (6.4).
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Action of 0-cochains and cohomology The action of C0(U ,G) on C1(U ,G) ×
Fun(�,C0(U ,G)) given by (6.2) preserves Z1

�,θ,c(U ,G) since, for every ( f , ϕ) ∈
Z1

�,θ,c(U ,G) and g ∈ C0(U ,G), we have

(ϕ · g)−1
γ,i ( f · g)γi j (ϕ · g)γ, j

= (gγ−1
i ϕγ,iθ

−1
γ (gi ))

−1(gγ−1
i f γ

i j g
γ

j )g
γ−1
j ϕγ, jθ

−1
γ (g j )

= θ−1
γ (gi )

−1ϕ−1
γ,i f

γ

i j ϕγ, jθ
−1
γ (g j ) = θ−1

γ (g−1
i fi j g j ) = θ−1

γ ( f · gi j )
and

(ϕ · g)γ ′
γ,iθ

−1
γ ((ϕ · g)γ ′,i )

= gγ ′γ−1
i ϕ

γ ′
γ,iθ

−1
γ (gγ ′

i )θ−1
γ (gγ ′−1

i ϕγ ′,iθ
−1
γ ′ (gi ))

= gγ ′γ−1
i ϕ

γ ′
γ,iθ

−1
γ (ϕγ ′,i )θ

−1
γ ′γ (gi )) = (ϕ · g)γ ′γ,iθ

−1
γ ′γ (c(γ ′, γ )).

We define the first (θ, c)-twisted �-equivariant cohomology set overU with values in G
to be

H1
�,θ,c(U ,G) := Z1

�,θ,c(U ,G)/C0(U ,G).

We thus get a map S(U ,G, �, θ, c) → H1
�,θ,c(U ,G). In what follows we prove that it is a

bijection.
Surjectivity Conversely, given an element ( f , ϕ) ∈ Z1

�,θ,c(U ,G), we may define a G-
bundle E using the 1-cocycle f , together with local trivializations si : Ui → E such that
si fi j = s j . Then we define the action of � on E by (si g) · γ := sγ

i ϕγ,iθ
−1
γ (g) for every

g ∈ G, i ∈ I and γ ∈ �. To see that this is well defined note that, by (6.3),

(si fi j ) · γ = sγ

i ϕγ,iθ
−1
γ ( fi j ) = sγ

i f γ

i j ϕγ, j = sγ

j ϕγ, j = s j · γ.

The �-action is compatible with the action of G twisted by θ by definition, and by (6.4) we
have

(si · γ ′) · γ = (sγ ′
i ϕγ ′,i ) · γ = sγ ′γ

i ϕ
γ ′
γ,iθ

−1
γ (ϕγ ′,i )) = sγ ′γ

i ϕγ ′γ,iθ
−1
γ ′γ (c(γ ′, γ ))

= (si c(γ
′, γ )) · (γ ′γ ),

so that the action is (θ, c)-twisted. It is easy to see that the element of H1
�,θ (U ,G) cor-

responding to the class of (E, ·) is equal to the class of ( f , ϕ), so the constructed map is
surjective.

Injectivity Let (E, ·) and (E ′, ·) be two (θ, c)-twisted�-equivariantG-bundles. Take local
sections si : Ui → E and s′

i : Ui → E ′ and define ( f , ϕ) and ( f ′, ϕ′) ∈ Z1
�,θ,c(U ,G)

as above. Assume that ( f , ϕ) = ( f ′, ϕ′) · g for some g ∈ C0(U ,G). Then there is an
equivariant isomorphism h : E → E ′, defined by h(si ) = s′

i gi . This is well defined as usual,
and we need to show that it is compatible with the �-actions:

h(si · γ ) = h(sγ

i ϕγ,i ) = h(sγ

i )ϕγ,i = s′γ
i gγ

i ϕγ,i = s′γ
i ϕ′

γ,iθ
−1
γ (gi ) = (s′

i gi ) · γ = h(si ) · γ,

as required.
Refinements Thus we have obtained a bijection S(U ,G, �, θ, c) ∼= H1

�,θ,c(U ,G).
Another countable �-invariant open cover V := {Vj } j∈J of X is called a refinement
of U if there is a map t : J → I such that Vj ⊆ Ut( j) for every j ∈ J . There
are "restriction maps" C0(U ,G) → C0(V ,G) and C1(U ,G) × Fun(�,C0(U ,G)) →
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C1(V ,G) × Fun(�,C0(V ,G)) depending on t . Moreover, there is an induced map in
cohomology H1

�,θ,c(U ,G) → H1
�,θ,c(V ,G). It can be seen (for example, from geo-

metric arguments using the bijections) that this map is independent of t and so the set
{H1

�,θ,c(U ,G)}U is inductive.

Definition 6.2 The first (θ, c)-twisted �-equivariant cohomology set over X with values
in G, denoted H1

�,θ,c(X ,G), is the inductive limit of the sets H1
�,θ,c(U ,G) over the system

of �-invariant open covers U on X .

ThemapH1
�,θ,c(U ,G) → H1

�,θ,c(V ,G) induces thenatural inclusionof S(U ,G, �, θ, c)
in S(V ,G, �, θ, c). Using that S(X ,G, �, θ, c) is the inductive limit of {S(U ,G, �, θ, c)}U
given by these inclusions gives the following.

Proposition 6.3 Consider the notion of isomorphism of twisted equivariant bundles descend-
ing to the identity on X. Let U be a countable �-invariant open cover of X. Then there is
a natural bijection between the set of isomorphism classes of (θ, c)-twisted �-equivariant
principal G-bundles over X which are trivial on the open sets of U and H1

�,θ,c(U ,G). This
induces a bijection between the set of isomorphism classes of (θ, c)-twisted �-equivariant
principal G-bundles over X and H1

�,θ,c(X ,G).

6.2 Isomorphisms descending to Z(0) and reduced twisted equivariant cohomology

Recall fromSect. 4.1 thatwe also have a notion of isomorphismof twisted equivariant bundles
on X descending to an element of Z(�) (rather than the identity). We give a cohomological
interpretation of these objects and relate it to Definition 6.2.

First we define a Z(�)-action on H1
�,θ,c(U ,G) as follows: the natural left action of � on

C0(U ,G) that we have defined above determines a semidirect product C0(U ,G) � Z(�).
We extend the C0(U ,G)-action on Z1

�,θ,c(U ,G) to a right C0(U ,G) � Z(�)-action:

(C1(U ,G) × Fun(�,C0(U ,G))) × (C0(U ,G) � Z(�)) →
(C1(U ,G) × Fun(�,C0(U ,G)));
(( f , ϕ), (g, λ)) �→ ( f · (g, λ), ϕ · (g, λ)) := (gλ−1

i f λ
i j g

λ
j , g

λγ−1
i ϕλ

γ,iθ
−1
γ (gλ

i )).

The inclusion of Z(�) in C0(U ,G) � Z(�) as a set then induces a genuine Z(�)-group
action on H1

�,θ,c(U ,G), which we also denote with a dot.

Definition 6.4 We define the first (θ, c)-twisted �-equivariant reduced cohomology set
over U with values in G

H̃1
�,θ,c(U ,G) := Z1

�,θ,c(U ,G)/C0(U ,G) � Z(�) = H1
�,θ,c(U ,G)/Z(�).

The inductive structure on {H1
�,θ,c(U ,G)}U also makes {H̃1

�,θ,c(U ,G)}U inductive, and
we define the first (θ, c)-twisted �-equivariant reduced cohomology set over X with
values in G, denoted H̃1

�,θ,c(X ,G), to be the corresponding inductive limit.

Let S̃(U ,G, �, θ, c) be the set of isomorphism classes of (θ, c)-twisted �-equivariant G-
bundles which are trivial overU , where now isomorphisms induce the action of any element
of Z(�) over X . Note that S̃(U ,G, �, θ, c) = S(U ,G, �, θ, c)/Z(�), the quotient of
S(U ,G, �, θ, c) by the pullback action of Z(�). Given a class [(E, ·)] ∈ S(U ,G, �, θ, c),
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let [( f , ϕ)] be the corresponding class in H1
�,θ,c(U ,G). It is then clear that, for each γ ∈

Z(�), the class of H1
�,θ,c(U ,G) corresponding to γ ∗ [(E, ·)] is

[

( f γ −1
, ϕγ −1

)
]

= [( f , ϕ)] · γ −1.

This shows that the natural bijection in Proposition 6.3 induces a one-to-one correspondence
S̃(U ,G, �, θ, c) ∼= H̃1

�,θ,c(U ,G). As U varies, this induces a bijection

S̃(X ,G, �, θ, c) ∼= H̃1
�,θ,c(X ,G).

Summing up, we have the following.

Proposition 6.5 LetU be a countable �-invariant open cover of X. Then there is a bijection
between the set of isomorphism classes of (θ, c)-twisted �-equivariant principal G-bundles
over X which are trivial on the open sets of U and H̃1

�,θ,c(U ,G). This induces a bijection
between the set of isomorphism classes of (θ, c)-twisted �-equivariant principal G-bundles
over X and H̃1

�,θ,c(X ,G). Here we are considering all the isomorphisms inducing the action
of elements of Z(�) on X.

6.3 Long exact sequences in twisted equivariant cohomology

In this section we use long exact sequences in twisted equivariant cohomology to test the
existence of (θ, c)-twisted �-equivariant G-bundles over X . In the process we give an alter-
native interpretation of these objects as lifts of certain twisted �-equivariant G/Z -bundles
over X .

We shall henceforth drop c from the notation whenever it is trivial.
Let H0

�,θ (X ,G) be the group of �-equivariant holomomorphic functions X → G, i.e.
functions g : X → G such that g(γ (x)) = θγ (g(x)) for each x ∈ X .

Let G ′ be a second (topological, real Lie, complex Lie) group equipped with homomor-
phisms θ ′ : � → Aut(G ′) and τ : G → G ′ satisfying τθγ = θ ′

γ τ for every γ ∈ �.

We then have induced maps H0
�,θ (X ,G) → H0

�,θ ′(X ,G ′), H1
�,θ (X ,G) → H1

�,θ ′(X ,G ′),
H1

�,θ (X ,G) → H̃1
�,θ ′(X ,G ′) and H̃1

�,θ (X ,G) → H̃1
�,θ ′(X ,G ′) sending the class of

( f , ϕ) ∈ Z1
�,θ (U ,G) to the class of (τ (g), τ (ϕ)). These are morphisms of pointed sets,

where the distinguished elements are the classes of pairs (1, 1); these correspond, under the
identification of Proposition 6.3, to the isomorphism classes of the respective trivial bundles
with the natural θ -twisted �-actions.

In particular we may consider the extension

1 → Z → G → G/Z → 1;
note that θ preserves Z , thus inducing an automorphism of G/Z which we also call θ . This
induces an exact sequence

1 → H0
�,θ (X , Z) → H0

�,θ (X ,G) → H0
�,θ (X ,G/Z);

note that these are groups and H0
�,θ (X , Z) is a normal subgroup of H0

�,θ (X ,G) (actually
it is its centre), so that exactness in the middle term is understood in the sense that the last
homomorphism induces a group embedding H0

�,θ (X ,G)/H0
�,θ (X , Z) ↪→ H0

�,θ (X ,G/Z).

In the following we emulate the usual construction of long exact sequences in Čech
cohomology, see for example [23].
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The coboundary map from sections to first cohomology To study the image of the last
homomorphism we define a right action of H0

�,θ (X ,G/Z) on H1
�,θ (X , Z) as follows: let g

be a �-equivariant holomorphic map g : X → G/Z . Given a class in H1
�,θ (X , Z), we may

find a countable invariant open cover U = {Ui }i∈I such that the class has a representative
( f , ϕ) ∈ Z1

�,θ (U , Z) and the restriction of a to Ui has a lift to a holomorphic function

gi : Ui → G for every i ∈ I . If g := (gi )i∈I ∈ C0(U ,G) then g ∈ H0
�,θ (X ,G/Z) sends

( f , ϕ) to ( f , ϕ) · g, where we regard ( f , ϕ) as an element of Z1
�,θ (U ,G) and ‘·’ denotes

the action defined in 6.2.
Note that this is an element of C1(U , Z) × Fun(�,C0(U , Z)), since g j |Ui j = gi zi j |Ui j

for some zi j ∈ C1(U , Z) and the �-equivariance of g implies that θ−1
γ (gγ

i ) = gi zi for

some zi ∈ C0(U , Z). Moreover the action of C0(U ,G) preserves Z1
�,θ (U ,G), so that

( f , ϕ) · g ∈ Z1
�,θ (U , Z). The class of ( f , ϕ) · g in H1

�,θ (U , Z) is independent of the choice

of g: another set of lifts is given by gz for a suitable z = (zi )i∈I ∈ C0(U , Z), so that

( f , ϕ) · gz = (( f , ϕ) · g) · z.
Similarly, the class of (( f , ϕ) · z) · g = (( f , ϕ) · g) · z is equal to the class of ( f , ϕ) · g for
every z ∈ C0(U , Z).

Hence we get a right action of H0
�,θ (X ,G/Z) on H1

�,θ (X , Z) which we also call ·.
Considering the action on the trivial element of H1

�,θ (X , Z) we get a coboundary map
δ : H0

�,θ (X ,G/Z) → H1
�,θ (X , Z).

Second cohomology Since Z is abelian, wemay further define a second cohomology group
with values in Z : first we define a group homomorphism

d2 : C2(U , Z) × Fun(�,C1(U , Z)) × Fun(� × �,C0(U , Z)) →
C3(U , Z) × Fun(�,C2(U , Z)) × Fun(� × �,C1(U , Z))

× Fun(� × � × �,C0(U , Z));
(u, v, w) �→ (ui jkuiklu

−1
i jl u

−1
jkl , u

γ−1
i jk θ−1

γ (ui jk)vi jv jkv
−1
ik ,

v
γ ′
i j θ

−1
γ (vγ ′,i j )v

−1
γ ′γ,i jwγ,iw

−1
γ, j , θ

−1
γ (wγ ′,γ ′′,i )wγ,γ ′′γ ′,i (wγ ′γ,γ ′′,iw

γ ′′
γ,γ ′,i )

−1).

We set Z2
�,θ (U , Z) := ker d2.

Note that the condition that the first component is equal to 1 is equivalent to u being a 2-
cocycle, and the condition that the last component is equal to 1 is equivalent to (θγ γ ′(wγ ′,γ,i ))

being an element of Z2
θ (�,C0(U , Z)), where � acts via θ and its natural action on I .

There is an action ofC1(U ,G)×Fun(�,C0(U ,G)) onC2(U , Z)×Fun(�,C1(U , Z))×
Fun(� × �,C0(U , Z)), such that the result of the action of ( f , ϕ) on (u, v, w) is equal
to d1( f , ϕ)(u, v, w). It can be seen that d2d1 is the trivial map, hence this action preserves
Z2

�,θ (U , Z).

Definition 6.6 We set H2
�,θ (U , Z) := ker d2/C1(U ,G) × Fun(�,C0(U ,G)), the second

(θ, c)-twisted �-equivariant cohomology set with values in Z . We define H2
�,θ (X , Z) to

be equal to the corresponding inductive limit.

Coboundary map from first to second cohomology We now define a coboundary map δ :
H1

�,θ (X ,G/Z) → H2
�,θ (X , Z) as follows: for each class in H1

�,θ (X ,G/Z) take a representa-

tive ( f , ϕ) ∈ Z1
�,θ (U ,G/Z), lift it to an element ( f , ϕ) ofC1(U ,G)×Fun(�,C0(U ,G))

and calculate d1( f , ϕ) (we choose the countable �-invariant open cover U so that this is
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possible). This is an element of Z2
�,θ (U , Z) (taking the quotient by Z commutes with d1 and

d2d1 = 1). Moreover, its class only depends on the class of ( f , ϕ).
Indeed, let ( f

′
, ϕ′) be another representative with a lift ( f ′, ϕ′) in the group C0(U ,G)×

Fun(�,C0(U ,G)) and consider an element g ∈ C0(U ,G/Z) with a lift g ∈ C0(U ,G)

such that ( f
′
, ϕ′) = ( f , ϕ) · g. Then there exists ( f0, ϕ0) ∈ C0(U , Z)×Fun(�,C0(U , Z))

such that ( f ′, ϕ′) = (( f , ϕ) · g)( f0, ϕ0), which implies that d1( f ′, ϕ′) = d1(( f , ϕ) ·
g)d1( f0, ϕ0). But the components of d1(( f , ϕ) · g) are
(d1(( f , ϕ) · g))1 = g−1

i fi j g j g
−1
j f jk gkg

−1
k f −1

ik gi = g−1
i fi j f jk f

−1
ik gi = fi j f jk f

−1
ik ,

(d1(( f , ϕ) · g))2 = (gγ−1
i ϕγ,iθ

−1
γ (gi ))

−1gγ−1
i f γ

i j g
γ

j g
γ−1
j ϕγ, jθ

−1
γ (g j )θ

−1
γ (g−1

i fi j g j )
−1

= θ−1
γ (gi )

−1ϕ
γ−1
γ,i f γ

i j ϕγ, jθ
−1
γ ( fi j )

−1θ−1
γ (gi ) = ϕ

γ−1
i fi jϕγ, jθ

−1
γ ( f γ

i j )
−1

and

(d1(( f , ϕ) · g))3 = gγ ′γ−1
i ϕ

γ ′
γ,iθ

−1
γ (gγ ′

i )θ−1
γ (gγ ′−1

i ϕγ ′,iθ
−1
γ ′ (gi ))(g

γ ′γ−1
i ϕγ ′γ,iθ

−1
γ ′γ (gi ))

−1

= gγ ′γ−1
i ϕ

γ ′
γ,iθ

−1
γ (ϕγ ′,i )ϕ

−1
γ ′γ,i g

γ ′γ
i = ϕ

γ ′
γ,iθ

−1
γ (ϕγ ′,i )ϕ

−1
γ ′γ,i ,

where the last equalities follow from d1(g, ϕ) ∈ Z2
�,θ (U , Z). Thus d1(( f , ϕ)·g) = d1( f , ϕ)

and so d1( f , ϕ) and d1( f ′, ϕ′) are in the same class of H2
�,θ (X , Z).

Proposition 6.7 The sequence

1 → H0
�,θ (X , Z) → H0

�,θ (X ,G) → H0
�,θ (X ,G/Z)

δ−→
δ−→ H1

�,θ (X , Z) → H1
�,θ (X ,G) → H1

�,θ (X ,G/Z)
δ−→ H2

�,θ (X , Z) (6.5)

is exact. Moreover, given a 2-cocycle c ∈ Z2
θ (�, Z), the image of the map H1

�,θ,c(X ,G) →
H1

�,θ (X ,G/Z) induced by the quotient is equal to the preimage of the class of (1, 1, θ−1(c)) ∈
Z2

�,θ (X , Z) in H2
�,θ (X , Z)under the coboundarymap δ.Here θ−1(c)(γ, γ ′) := θ−1

γ ′γ (c(γ ′, γ ))

is regarded as a constant function from X to Z for each γ and γ ′ ∈ �.

Remark 6.8 Proposition 6.7 should be understood as follows: call Ak to the k-th term in the
sequence (A0 = 1, etc.). Then the preimage of the distinguished element of Ak+2 is equal
to the image of Ak . A stronger statement is proven whenever Ak is a group since in this
case, by the discussion above, there is an action of Ak on Ak+1: two elements in Ak+1 have
the same image if and only if they are in the same orbit. Here the action of H0

�,θ (X ,G) on

H0
�,θ (X ,G/Z) is induced by multiplication on the left.

The long exact sequence (6.5) is a twisted equivariant version of (5.4) when � acts freely.
In this case p : X → Y := X/� is an étale cover and we know by Proposition 4.3
that Ĝ-bundles over Y are in correspondence with (θ, c)-twisted �-equivariant G-bundles
over X , whose isomorphism classes are parametrized by twisted equivariant cohomology by
Propositions 6.3 and 6.5; the group Ĝ := G×θ,c � is defined in Sect. 2.1. Thus, in particular,
(6.5) answers the question of existence of Ĝ-bundles over Y with associated �-bundle equal
to X by considering them as lifts of θ -twisted �-equivariant G/Z -bundles over X , which are
in correspondence with Ǧ := Ĝ/Z -bundles over Y . We state this more precisely.

Corollary 6.9 The set of Ĝ-bundles over Y with associated �-bundle X is nonempty if and

only if (1, 1, θ−1(c)) is in the image of H1
�,θ (X ,G/Z)

δ−→ H2
�,θ (X , Z). Here, for γ and

γ ′ ∈ �, we define θ−1(c)(γ, γ ′) := θ−1
γ ′γ (c(γ ′, γ )).
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Proof of Proposition 6.7 Exactness at H0
�,θ (X , Z) is just injectivity, which is obvious.Exact-

ness at H0
�,θ (X ,G) follows the usual arguments: given a �-equivariant map X → Z , its

composition with the inclusion in G and the quotient G → G/Z is the trivial map. Con-
versely, a �-equivariant map X → G with trivial image in H0

�,θ (X ,G/Z) must come from
a �-equivariant map X → Z .

Exactness at H0
�,θ (X ,G/Z). Given an element g ∈ H0

�,θ (X ,G) with image g ∈
H0

�,θ (X ,G/Z), we know that (1, 1) · g is the class of (1, 1) · g = (g−1
i g j , g

γ−1
i θ−1

γ (gi )) =
(1, 1), where gi is the restriction of g to Ui for each i ∈ I . Therefore, for each g′ ∈
H0

�,θ (X ,G/Z),

δ(gg′) = ((1, 1) · g) · g′ = δ(g′).

For the converse, it is enough to prove that the kernel of δ is the image of H0
�,θ (X ,G) since,

if this is true, δ(g) = δ(g′) implies that gg′−1 is in the image of H0
�,θ (X ,G) for every g and

g′ ∈ H0
�,θ (X ,G/Z). Consider a �-equivariant function g : X → G/Z such that δ(g) is the

trivial class. Then there exists a �-invariant open coverU , a lift g = (gi ) ∈ C0(U ,G) of g
and an element z ∈ C0(U , Z) such that ((1, 1) · g) · z = (1, 1). Hence we conclude that gz
is an element of H0

�,θ (U ,G) whose image in H0
�,θ (X ,G/Z) coincides with g.

Exactness at H1
�,θ (X , Z). LetU be a countable �-invariant open cover and consider two

elements ( f , ϕ) and ( f ′, ϕ′) ∈ Z1
�,θ (U , Z) such that there exists g ∈ C0(U ,G) satisfying

( f , ϕ) = ( f ′, ϕ′) ·g. Had we proven that the image g of g inC0(U ,G/Z) is a �-equivariant
map X → G/Z then the class of ( f , ϕ)would be equal to the class of ( f ′, ϕ′) ·g, as required.
But the equation g−1

i f ′
i j g j = fi j on Ui j implies that the compositions of gi |Ui j and g j |Ui j

with G → G/Z are the same. Similarly, the equation gγ−1
i ϕ′

γ,iθ
−1
γ (gi ) = ϕγ,i implies that

the compositions of gi and θ−1
γ (gγ

i ) with G → G/Z are the same. Conversely, given two

elements ( f , ϕ) and ( f ′, ϕ′) ∈ Z1
�,θ (U , Z), g ∈ H0

�,θ (X ,G/Z) and a lift g ∈ C0(U ,G)

of g such that ( f ′, ϕ′) · g = ( f , ϕ), it follows by definition that the classes of ( f , ϕ) and
( f ′, ϕ′) in H1

�,θ (X ,G) are equal.

Exactness at H1
�,θ (X ,G). First note that the action of H1

�,θ (X , Z) on the set H1
�,θ (X ,G)

preserves the image in H1
�,θ (X ,G/Z). Conversely, given two elements ( f , ϕ) and ( f ′, ϕ′) ∈

Z1
�,θ (U ,G) and g ∈ C0(U ,G/Z) such that ( f , ϕ) = ( f

′
, ϕ′) · g, where overlining means

taking the composition with G → G/Z , we may take a lift g ∈ C0(U ,G) of g and we have
( f , ϕ) = (( f ′, ϕ′) ·g)( f0, ϕ0), where ( f0, ϕ0) ∈ C0(U , Z)×Fun(�,C0(U , Z)). Applying
d1 on both sides we see that the fact that both ( f , ϕ) and ( f ′, ϕ′)·g are in Z1

�,θ (U ,G) implies

that ( f0, ϕ0) ∈ Z1
�,θ (U , Z), as required.

Finally we prove that the preimage of the class [(1, 1, θ−1(c))] ∈ H2
�,θ (X , Z) is

equal to the image of H1
�,θ,c(X ,G); in particular, setting c = 1, this implies exactness

at H1
�,θ (X ,G/Z). If ( f , ϕ) ∈ Z1

�,θ,c(U ,G) and ( f , ϕ) is its image in Z1
�,θ (U ,G/Z) then

the image of the class of ( f , ϕ) under δ is represented by d1( f , ϕ) = (1, 1, θ−1(c)). Con-
versely, if ( f , ϕ) ∈ Z1

�,θ (U ,G/Z) has a lift ( f , ϕ) ∈ C1(U ,G) × Fun(�,C0(U , Z))

and d1( f , ϕ) is in the class of (1, 1, θ−1(c)) then d1( f , ϕ) = d1( f ′, ϕ′)(1, 1, θ−1(c)) for
some ( f ′, ϕ′) ∈ C1(U , Z)×Fun(�,C0(U , Z)). Hence d1( f f ′−1, ϕϕ′−1) = (1, 1, θ−1(c))
and ( f f ′−1, ϕϕ′−1) is a lift of ( f , ϕ), so that the image of the class of ( f f ′−1, ϕϕ′−1) in
H1

�,θ (X ,G) is equal to the class of ( f , ϕ) in H1
�,θ (X ,G/Z). �	
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Remark 6.10 A similar long exact sequence may be constructed using reduced twisted equiv-
ariant cohomology sets, namely

1 → H0
�,θ (X , Z) → H0

�,θ (X ,G) � Z(�) → H0
�,θ (X ,G/Z) � Z(�)

δ−→
δ−→ H1

�,θ (X , Z) → H̃1
�,θ (X ,G) → H̃1

�,θ (X ,G/Z)
δ−→ H̃2

�,θ (X , Z)

The group H̃2
�,θ (X , Z) is the quotient of H2

�,θ (X , Z) by a suitable Z(�)-action, and the

preimage of the class of (1, 1, θ−1(c)) under the coboundary morphism is equal to the image
of H̃1

�,θ,c(X ,G) in H̃1
�,θ (X ,G/Z).

Remark 6.11 There is a generalization of the long exact sequence (6.5) to the situation when
Z is replaced by a normal subgroup H ofG. When H is not abelian there is no second twisted
equivariant cohomology group with values in H , but we still have an exact sequence

1 → H0
�,θ (X , H) → H0

�,θ (X ,G) → H0
�,θ (X ,G/H)

δ−→ (6.6)

δ−→ H1
�,θ (X , H) → H1

�,θ (X ,G) → H1
�,θ (X , H).

Using reduced cohomology we also find the exact sequence

1 → H0
�,θ (X , H) → H0

�,θ (X ,G) � Z(�) → H0
�,θ (X ,G/H) � Z(�)

δ−→
δ−→ H1

�,θ (X , H) → H̃1
�,θ (X ,G) → H̃1

�,θ (X ,G/H).

6.4 The case when 0 acts freely

In this section we assume that � acts freely on X , inducing an étale morphism p : X →
Y := X/�; alternatively, p : X → Y is a principal �-bundle. According to Sect. 4.1, there
should be a relation between the twisted equivariant cohomology over X introduced in Sect.
6.1 and the non-abelian cohomology over Y defined in Sect. 5. We establish this explicitly.
We continue to drop c from the notation whenever it is trivial.

Consider the bundles of groups X(G) := X ×� G and X(Z) := X ×� Z over Y . Their
sections, which are defined using the continuous/smooth/complex structure on G, determine
sheaves of groups as in Sect. 5.1. A 2-cocycle c ∈ Z2

θ (�, Z) determines a Čech 2-cocycle
in Z2(Y , X(Z)) as follows: take a good open cover V = {Vi } of Y trivializing X , and let
si be a local trivialization on Vi . Then we define (ci jk) := (si , c(γi j , γ jk)) ∈ Z2(V , X(Z)),
where γi j ∈ � is the unique element in � such that siγi j intersects s j . We check that this is
indeed a 2-cocycle:

ci jkcikl = (si , c(γi j , γ jk))(si , c(γik, γkl)) = (si , c(γi j , γ jk)c(γlk, γki ))
(2.3)=

(si , θγi j (c(γ jk, γkl)c(γi j , γ jl)) = (s j , c(γ jk, γkl))(si , c(γi j , γ jl)) = c jklci jl .

The class of ci jk in H2(Y , X(Z)) is independent of the class of c in the second Galois
cohomology group H2

θ (�, Z) as defined at the end of Sect. 2.1: given a map a : � → Z , the
2-cocycle δa ∈ Z2

θ (�, Z) as defined in Sect. 2.1 gives

(δa)i jk = (si , θγi j (a(γ jk))a(γik)
−1a(γi j )) = (s j , a(γ jk))(si , a(γi j ))(si , a(γik))

−1,

which is the derivative of the Čech 1-cochain (si |Vi j , a(γi j ))i j . Thus we get a morphism
of pointed sets H2

θ (�, Z) → H2(V , X(Z)), and in particular a morphism H2
θ (�, Z) →
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H2(Y , X(Z)). This depends on the choice of trivializations for X . As long as there is no
ambiguity we denote the image of c in Z2(V , X(Z)) with the same letter.

Remark 6.12 The existence of the morphism above is not surprising: let E0 → B0 be the
universal �-bundle, and let Y → B0 be the map inducing the �-bundle X . There is an
isomorphism H2

θ (�, Z) ∼= H2(B0,E0×�Z0), where Z0 is the group Z equipped with the
discrete topology; this is seen using the bar resolution (see [31], Section 6.7). Composing
with the inclusion E0×�Z0 ↪→ E0×�Z and pulling back by Y → B0 provides a map
H2

θ (�, Z) → H2(Y , X(Z)). The matter of whether this map is equal to the one above will
possibly be addressed in future work.

Following [26] we define the c-twisted first cohomology set H1
c (Y , X(G)):1 given

an open cover V = (Vi )i∈J of Y trivializing X → Y (with trivializations si ) and
an element ci jk ∈ Z2(Y , X(Z)), we may define the subset Z1

c (V , X(G)) of elements
fi j ∈ C1(V , X(G)) satisfying

fi j f jkci jk = fik (6.7)

on Ui jk for every i, j and k ∈ J . If c is trivial this is the set of 1-cocycles defined in Sect.
5.1. The usual action of C0(V , X(G)) on C1(V , X(G)) preserves Z1

c (V , X(G)) and so we
may take the quotient set H1

c (V , X(G)) := Z1
c (V , X(G))/C0(V , X(G)). Finally, varying

V , we may define an inductive limit denoted by H1
c (Y , X(G)).

Theorem 6.13 There are canonical isomorphisms

H0
�,θ (X ,G) ∼= H0(Y , X(G)) and H1

�,θ (X ,G) ∼= H1(Y , X(G)).

More generally, there are (in general non-canonical) isomorphisms

H1
�,θ,c(X ,G) ∼= H1

c (Y , X(G)).

Moreover, the long exact sequence (6.5) induces the long exact sequence

1 → H0(Y , X(Z)) → H0(Y , X(G)) → H0(Y , X(G/Z)) → H1(Y , X(Z))

→ H1(Y , X(G)) → H1(Y , X(G/Z)) → H2(Y , X(Z)). (6.8)

The preimage of [c] ∈ H2(Y , X(Z)) under the coboundary map is precisely the image of
H1

�,θ,c(X ,G) under the map H1
�,θ,c(X ,G) ∼= H1

c (Y , X(G)) → H1(Y , X(G/Z)) induced

by the quotient G → G/Z. In particular, H1
�,θ,c(X ,G) (or H̃1

�,θ,c(X ,G)) is nonempty if and

only if c is in the image of H1
�,θ (X ,G/Z).

Remark 6.14 Proposition 6.13 and Remark 6.9 imply that (6.8) is an alternative to (5.4) when
the associated �-bundle X is fixed. It answers the question of the existence of Ĝ-bundles E
over Y such that E(�) ∼= X by considering them as lifts of X(G/Z)-bundles, where E(�)

is the extension of structure group of E via the quotient Ĝ → �.

Proof of Theorem 6.13 We define the isomorphisms, leaving the rest to the reader. The first
one is clear, since �-equivariant sections of G over X are precisely X(G)-sections over Y .

Definition of the isomorphismsConsider a good cover V = (Vi ) of Y trivializing X → Y ,
choose a system of local trivializations (si ). LetU be the preimage of V over X ; the sections
si determine elements of U which we call Ui , assuming for simplicity J ⊂ I . Define

1 Our c-twisted 1-cocycles are actually c−1-twisted 1-cocycles in [26]. We adopt this convention to simplify
notation.
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g ∈ C0(U ,G) so that gi |si = 1 and gi |si ·γ = ϕγ,i for each γ ∈ �. Set ( f ′, ϕ′) := ( f , ϕ) ·g,
which is in the same class as ( f , ϕ) and satisfies that ϕ′

γ,i |si ·γ := 1; indeed,

(ϕ · g)γ,i = (gγ−1
i ϕγ,iθ

−1
γ (gi )) = (ϕ−1

γ,iϕγ,i ) = 1.

Moreover, since ( f ′, ϕ′) ∈ Z1
�,θ (U ,G) by construction, the set (ϕ′

γ,i )γ∈�,i∈J determines ϕ′
by (6.4): since � acts transitively on the fibres of p, every element of I is of the form i · γ

for some γ ∈ � and i ∈ J . But, for each γ ′, γ ∈ � and i ∈ J , we have

ϕ′
γ,i ·γ ′ = ϕ

′γ ′
γ,i = ϕ′

γ ′γ,iθ
−1
γ ′γ (c(γ ′, γ ))θ−1

γ (ϕ′
γ ′,i )

−1 = θ−1
γ ′γ (c(γ ′, γ )). (6.9)

In this setting the image of the class of ( f , ϕ) in Z1(V , X(G)) is defined to be
(s j |Vi j , hi j := f ′

i ·γi j , j ), where γi j is the unique element of � such that Ui ·γi j , j is nonempty

and we have also called f ′
i ·γi j , j to the composition

Vi j ∼= Ui ·γi j ∩Uj

f ′
i ·γi j , j−−−−→ G.

More explicitly, hi j = ϕ−1
γi j ,i

fi ·γi j , j . Let us check that this is in Z1
c (V , X(G)): for every three

elements i, j and k ∈ J we have

(s j , hi j )(sk, h jk) = (sk, θγk j (hi j )h jk) = (sk, θγk j ( f
′
i ·γi j , j ) f

′
j ·γ jk ,k)

(6.3)=

(sk, ϕ
′−1
γ jk ,i ·γi j f

′γ jk
i ·γi j , jϕ

′
γ jk , j f

′
j ·γ jk ,k)

(6.9)= (sk, θ
−1
ik (c(γi j , γ jk))

−1 f
′γ jk
i ·γi j , j f

′
j ·γ jk ,k) =

(sk, f ′
i ·γik ,k)(si , c(γi j , γ jk))

−1 = (sk, hik)c
−1
i jk,

as required.
Well-definedness Now we show that the class of (si , hi j ) is independent of the class of

( f , ϕ). Let g ∈ C0(U ,G) and consider ( f ′, ϕ′) = ( f , ϕ) · g, with corresponding cocycle
(si , h′

i j ) ∈ C1(V , X(G)). Without loss of generality we may assume that ϕγ,i = ϕ′
γ,i = 1

for every γ ∈ � and i ∈ J , hi j = fi ·γi j , j and h′
i j = f ′

i ·γi j , j . Then we have

1 = ϕ′
γ,i = gγ−1

i ϕγ,iθ
−1
γ (gi ) = gγ−1

i θ−1
γ (gi ),

which implies that gγ

i = θ−1
γ (gi ). Therefore,

(s j , h
′
i j ) = (s j , g

−1
i ·γi j hi j g j ) = (s j , θ

−1
γi j

(gi )
−1hi j g j ) = (si , gi )

−1(s j , hi j )(s j , g j ),

which is isomorphic to (si , hi j ).
The class of (si , hi j ) in H1(V , X(G)) does depend on the choice of local sections for X

unless c is trivial: consider another system of trivializations si ·γi . By the previous paragraph
we may assume, after changing the representative of the equivalence class in H1

�,θ,c(X ,G),
that hi j = fi ·γi j , j and (6.9) holds. From (6.3,6.9) we have

(s j · γ j , ϕ
−1
γ −1
i γi jγ j ,i ·γi f

γ j
i ·γi j , j ) =

(s j · γ j , θ
−1
γi jγ j

(c(γi , γ
−1
i γi jγ j ))

−1θ−1
γi jγ j

(c(γi j , γ j ))
−1θ−1

γ j
( fi ·γi j , j )) =

(si , c(γi , γ
−1
i γi jγ j )c(γi j , γ j ))

−1(s j , fi ·γi j , j ).
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Surjectivity Let (s j , hi j ) ∈ Z1(V , X(G)). We want an element ( f , ϕ) ∈ Z1
�,θ (U ,G)

such that fi ·γi j , j = hi j and ϕγ,i = 1 for every γ ∈ � and i and j in J . Equation (6.4)
determines ϕ, whereas (6.3) determines f .

Injectivity Let ( f , ϕ) and ( f ′, ϕ′) in Z1
�,θ (U ,G) such that the corresponding elements

(s j , hi j ) and (s j , h′
i j ) ∈ Z1(V , X(G)) are isomorphic, say

(s j , h
′
i j ) = (si , gi )

−1(s j , hi j )(s j , g j ).

We may assume that h′
i j = f ′

i ·γi j , j . Then

f ′
i ·γi j , j = θ−1

γi j
(gi )

−1 fi ·γi j , j g j .

Thus f ′ = f ·g′, where g′ is the extension of g determined by g′
i ·γ = θ−1

γ (gi ) for each i ∈ J
and γ ∈ �. The fact that ϕ′ = ϕ · g′ is checked easily using (6.9).

RefinementsFinally, it can be shown that, ifwe replaceV by a good subcover, the bijections
are compatible with the respective restriction maps and so they induce an isomorphism
H1

�,θ (X ,G) ∼= H1
c (Y , X(G)). �	

Remark 6.15 The Z(�)-action on H1
�,θ,c(X ,G) induces a Z(�)-action on H1

c (Y , X(G)).
When c is trivial this is the one given by the Z(�)-action on the left or the right factor of
X(G). According to the proof of Proposition 4.1 the group Z(�) is equal to the group of
covering transformations H0(Y , X(�)). With this interpretation, the induced action is the
one involved in the statement of Proposition 5.1 when c is trivial and EĜ is obtained from
the trivial θ -twisted �-equivariant G-bundle over X (which implies EĜ(G) ∼= X(G)).

Corollary 6.16 The set H1
�,θ,c(X , Z) is empty unless the class of c in H2(Y , X(Z)) is trivial.

In other words, there are no (θ, c)-twisted �-equivariant Z-bundles over X unless [c] ∈
H2(Y , X(Z)) is trivial.

Theorem 6.17 Let Ĝ := G ×θ,c � be the twisted product defined in Sect. 2.1. There is a
(non-canonical unless c is trivial) surjection

H1
c (Y , X(G)) → π−1(X), (6.10)

where π : H1(Y , Ĝ) → H1(Y , �) is induced by the quotient as in Sect. 5. The composition
with the isomorphism of Proposition 6.13 induces the isomorphism

H̃1
�,θ,c(X ,G) = H1

�,θ,c(X ,G)/Z(�) ∼= π−1(X) (6.11)

given by Propositions 4.3 and 6.5.

Proof Let V = (Vi )i∈J be a good cover trivializing X over Y . Consider the morphism which
sends the class of (si , hi j ) ∈ Z1

c (V , X(G)) to the class of (hi j , γi j ) ∈ Z1(Y , Ĝ). This is
well defined: we have the cocycle condition

(hi j , γi j )(h jk, γ jk) = (hi jθγi j (h jk)c(γi j , γ jk), γik) = (hik, γik),

where the last equation follows from

(si , hi jθγi j (h jk)c(γi j , γ jk)) = (si , hi j )(s j , h jk)(si , c(γi j , γ jk)) = (si , hik).

Moreover, given (si , fi ) ∈ C0(V , X(G)) we have

(si , fi )
−1(si , hi j )(s j , f j ) = (si , f −1

i hi jθi j ( f j )),
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whose image is equal to f −1
i (hi j , γi j ) f j .

To finish the proof it is left to show that the composition

H1
�,θ,c(X ,G) → H1

c (Y , X(G)) → H1(Y , Ĝ)

induces the isomorphism given by Proposition 4.3, since this implies in particular that the
image of the second map is equal to π−1(X). Let U = (Ui )i∈I := p−1(V ) and consider
an element ( f , ϕ) ∈ Z1

�,θ,c(U ,G). Let E be the (θ, c)-twisted �-equivariant G-bundle
given by Proposition 6.3, which is equipped with trivializations (ei )i∈I such that e j = ei fi j
for each i and j in I . By the proof of Proposition 6.13 we may assume that its image in
H1
c (Y , X(G)) is equal to (s j , fi ·γi j , j )i, j∈J = (si , θγi j ( fi ·γi j , j )), whose image in H1(Y , Ĝ)

is (θγi j ( fi ·γi j , j ), γi j ). Recall that Proposition 4.3 lets us regard E as a Ĝ-bundle such that,

for every γ ∈ �, the action of an element (1, γ ) ∈ Ĝ coincides with the given action of γ .
With this notation,

ei (θγi j ( fi ·γi j , j ), γi j ) = ei (1, γi j ) fi ·γi j , j = (ei · γi j ) fi ·γi j , j = e j .

This shows that the 1-cocycle (θγi j ( fi ·γi j , j ), γi j ) ∈ Z1(V , Ĝ) represents the Ĝ-bundle cor-
responding to E , as required. �	
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