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Abstract

To model the evolution of diseases with extended latency periods and the presence of
asymptomatic patients like COVID-19, we define a simple discrete time stochastic SIR-type
epidemic model. We include both latent periods as well as the presence of quarantine areas,
to capture the evolutionary dynamics of such diseases.
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1 Introduction

There exists a wide class of mathematical models that analyse the spread of epidemic diseases,
either deterministic or stochastic, and may involve many factors such as infectious agents, mode
of transmission, incubation periods, infectious periods, quarantine periods, etcetera (Allen 2003;
Anderson and May 1991; Bailey 1975; Daley and Gani 1999; Diekmann et al. 2013).

A basic model of infectious disease population dynamics, consisting of susceptible (S), infective
(I) and recovered (R) individuals were first considered in a deterministic model by Kermack and
McKendric (1927). Since then, various epidemic deterministic models have been developed, with
or without a time delay (see e.g McCluskey 2009 and Huang et al. 2010). At the same time, many
stochastic models have been considered: discrete time models (see e.g Tuckwell and Williams 2007
; Oli et al. 2006), continuous time Markov chain models and diffusion models (see e.g. Mode
and Sleeman 2000). The models obtained in these three categories are of increasing mathematical
complexity and allow to study several aspects of the epidemics.

Even if the discrete-time models are the simplest ones, they may help to better define the basic
principles of the contagion and to avoid the constraints due to the own definitions of the more
sophisticated models.

In this paper we will adapt a simple SIR-type model proposed by Ferrante et al. (2016) and
we will divide the population into several classes to better describe the evolution of the COVID
epidemic. Here we will need to include latency periods, the presence of asymptomatic patients and
different level of isolation. To model the evolution of the epidemic, we will describe the evolution
of every single individual in the population, modelling the probability on every day to be infected
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and, once infected, the exact evolution of its disease until the possible recovery or the death. The
construction of the theoretical model is carried out in Section 2, where we are able to compute the
probability of contagion and an estimate of the basic reproduction number R0. Then, in Section
3 we answer to five research questions by using a simulation of the evolution of the disease. The
use of the simulation is justified by the complexity of the model, that prevent to carry out any
further exact computation. We are able to see that to stop the epidemic is fundamental to start
early with a severe quarantine and that a late starting date or a more soft quarantine makes this
procedure almost useless. Moreover, to determine the quarantine it is very important to know the
level of infectivity of the asymptomatic, since the more infectious they are, the more important is
the quarantine. Finally, as expected, the group immunity plays a very important role to prevent
the development of the disease.

2 A SIR type discrete-time stochastic epidemic model

To model the evolution of epidemics, Tuckwell and Williams (2007) proposed a simple stochastic
SIR-type model based on a discrete-time Markovian approach, later generalized by Ferrante et al.
(2016) with a SEIHR model. These models, despite their simplicity, are very unrealistic to catch
the characteristic of the COVID-19 disease and for this reason in this paper we introduce a more
complex system, that we call SEIAHCRD, that better describes this new disease.

Assume that the population size is fixed and equal to n, and that the time is discrete, with the
unit for the duration of an epoch one day. Every individual, marked by an integer between 1 and
n, belongs to one of the following 8 classes:

• the class S includes the individuals susceptible to the disease and never infected before;

• the class E includes the individuals in a latency period, i.e. individuals that have been
infected but that are still not infectious or sick;

• the class I includes the infectious individuals, that are not yet sick, but that will develop
later the disease;

• the class A includes the infectious individuals, that are not yet sick, but that will NOT
develop later the disease, usually referred as Asymptomatic;

• the class H includes the infectious individuals, that are sick, but with light symptoms and
therefore at home quarantine;

• the class C includes the infectious individuals, that are sick and with severe symptoms, and
most of the time are hospitalized;

• the class D includes the deceased individuals;

• the class R includes the recovered individuals.

Assuming that we start at time 0, we will define for any individual i ∈ {1, . . . , n} the family of
stochastic processes Y i

Ξ = {Y i
Ξ(t), t = 0, 1, 2, . . .}, such that Y i

Ξ(t) = 1 if the individual i at time t
belongs to the class Ξ, where Ξ is equal to S,E, I, A, H,C,D or R, and 0 otherwise. In this way,
the total number of individuals in the class Ξ at time t ≥ 0 will be denote by YΞ(t) and will be
equal to

∑n
i=1 Y

i
Ξ(t).

Let us now fix the main assumption on the evolution of the epidemic. At time 0 all the
individuals are in S, but one in class I or A and that the evolution of the contagion follows these
rules:

1. Daily encounters: each individual i, over (t, t+1], will encounter a number of other individuals
equal to Ni(t) which we will assume to be a deterministic value;

2. Contagion probability: if an individual who has never been diseased up to and including time
t, encounters an individual in (t, t+ 1] who belongs to the class I or A, then, independently
of the results of other encounters, the encounter results in transmission of the disease with
probability qI and qA, respectively.
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3. Permanence in the classes: any individual, but one, starts from class S. Once infected he/she
moves to class E and so on according to the graph below. The time spent in the classes E,
I and A are of rE , rI and rA consecutive days, respectively. These values can be considered
deterministic or stochastic. Any individual who enters the class H remains in this class for
rHC consecutive days with probability α or for rHR consecutive days with probability 1−α.
Any individual who enters the class C remains in this class for rCD consecutive days with
probability λ or for rCR consecutive days with probability 1 − λ. As before, the values of
these four numbers of consecutive days can be considered deterministic or stochastic. To
conclude, we assume that the individuals once in class R reamin there forever, the same as
for the class D.

4. Transitions between the classes: we assume that any individual can moves between the classes
according to the following graph

S E

I

A

H C

R

D

β

µ

1− µ

1

1

α

1− α 1− λ

λ

Here β, µ, α and λ denotes the transition probabilities and the transitions occur at the end
of the permanence time spent by the individual in the previous class. Note that µ, α, λ are
parameters that depends only on the specific nature of the disease, while β depends on this
and the number of individuals in the classes I and A.

Any individual, once infected with probability β, follows one of the four paths described here:

(a) he/she transits through the states E, I,H,C,D, where he/she remains, respectively, for
rE , rI , rHC and rCD days, after which he/she dies and moves to class D.

(b) he/she transits through the states E, I,H,C,R, where he/she remains, respectively, for
rE , rI , rHC and rCR days, after which he/she becomes immune and moves to class R.

(c) he/she transits through the states E, I,H,R, where he/she remains, respectively, for
rE , rI and rHR days, after which he/she becomes immune and moves to class R.

(d) he/she transits through the states E,A,R, where he/she remains, respectively, for rE
and rA days, after which he/she becomes immune and moves to class R.

It is immediate to see that the probability to follow any of these four paths is equal to,
respectively,

µαλ , µα(1− λ) , µ(1− α) , (1− µ) .

In order to evaluate the probability β of contagion at time t of an individual in class S, we will
start defining the probabilities of meeting an individual in the classes S,E, I, A and R as equal.
Note that the individuals in classes H and C are in total quarantine and that it is not possible to
meet them and that the individuals in class D are removed from the system. So, we will deal with
three possibly different encounter probabilities:

• pI the probability of meeting an individual belonging to the class I;

• pA the probability of meeting an individual belonging to class A;

• pS the probability of meeting an individual that is not infectious, that is he/she belongs to
the classes S,E or R.
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Assuming that the probability of meeting any individual is uniform and independent from the
above defined classes, we define these probabilities as

pI =
yI

n− yH − yC − yD − 1
, (1)

pA =
yA

n− yH − yC − yD − 1
,

pS = 1− pI − pA

when yH + yC + yD < n − 1, while pI = pA = 0, pS = 1 when yH + yC + yD = n − 1. In the
above formulas, yI , yA, yH , yC and yD denote the number of individuals in classes I, A,H,C and
D, respectively.

Denoting by jiI , jiA the number of meetings of the i-th individual at time t with individuals in
the classes I and A, respectively, the probability to meet this proportion of individuals is

Ni(t)∑
jiI ,jiA=1

Ni(t)!

jiI !jiA!(Ni(t)− jiI − jiA)!
pjiII pjiAA p

Ni(t)−jiI−jiA
S ,

where Ni(t) denotes the daily encounters of the individual i. We can easily derive the probability
of contagion

pjiI+jiA = 1− ((1− qI)jiI (1− qA)jiA)

where qI and qA denote the probability of transmission of the specific disease for individuals in
classes I and A, respectively, which are usually different. Then the probability of contagion at
time t+ 1 of a single individual is equal to

βi =

Ni(t)∑
jiI ,jiA=1

pjiI+jiA

Ni(t)!

jiI !jiA!(Ni(t)− jiI − jiA)!
pjiII pjiAA p

Ni(t)−jiI−jiA
S

= 1−
Ni(t)∑

jiI ,jiA=1

Ni(t)!

jiI !jiA!(Ni(t)− jiI − jiA)!
((1− qI)pI)jiI ((1− qA)pA)jiA

× pNi(t)−jiI−jiA
S .

Substituting (1), we then get

βi = 1−
(

1− qIpI − qApA
)Ni(t)

= 1−
(

1− qIyI − qAyA
n− yH − yC − yD − 1

)Ni(t)

when yH + yC + yD < n − 1, while βi = 0 when yH + yC + yD = n − 1. As done by Tuckwell
and Williams (2007), we can use these formulas to simulate the spread of an epidemic under these
general assumptions. Some results, similar to those presented in Tuckwell and Williams (2007),
can be found in Ferrante et al. (2016).

To conclude, let us now consider the basic reproduction number R0, i.e. the expected number
of secondary cases produced by an infectious individual during its period of infectiousness (see
Diekmann et al. 1990). In the present model, this refers to individuals that transits through the
classes I or A. Let us recall the threshold value of R0, which establishes that an infection persists
only if R0 > 1. As for the SIR-model proposed by Tuckwell and Williams we are not able to derive
the exact explicit value of R0, but it is possible to extend their results, when Ni(t) ≡ N , for all i
and t, obtaining that

R0 = µrIqIN + (1− µ)rAqAN +O

(
1

n− 1

)
.

Note that the value of R0 computed above is the basic reproduction number at the beginning of
the disease, when there is one infectious individual that has N contacts in a population with n− 1
susceptible inhabitants. When the disease is in an advanced development, keeping the total number
of contacts N some of them won’t be with susceptible individuals and the number of cases produced
by an infectious individual will be smaller. At time t, let us call S(t) the number of susceptible
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individuals (class S) and X(t) the number of individuals removed from the population (members of
the classes H, C and D). Then, given an individual in class I, set Zi(t) his number of contacts with
susceptible individuals during the day t and Qi(t) the number of individuals infected by i at the
end of day t. Clearly Zi(t) follows an hypergeomtric distribution with parameters n−X(t)−1, S(t)
and N and, given Zi(t) = z, z ∈ {0, . . . , N}, it can be seen that Qi(t) ∼ Bin(z, qI). Thus

E(Qi(t)|X(t), S(t)) = E
(

E(Qi(t)|Zi(t), X(t), S(t))|X(t), S(t)
)

= E(qIZi(t)|X(t), S(t)) = qIN
S(t)

n− 1−X(t)
.

Furthermore, using the same ideas in Ferrante et al. (2016), the number of secondary cases
corresponding to this individual will be

rIqIN
S(t)

n− 1−X(t)
+O

(
1

n− 1−X(t)

)
.

Finally, the number of secondary cases produced by one arbitrary infectious individual (that can
be in class I or A) at time t given S(t) and X(t) and that we will call R0(t), will be

R0(t) = (µrIqI + (1− µ)rAqA)N
S(t)

n− 1−X(t)
+O

(
1

n− 1−X(t)

)
.

3 Application to a COVID19 type disease

The COVID19 is a highly contagious disease that has appeared at the end of 2019. From all the
information that is published every day, often contradictory, in the media, we can extract some
properties of the disease. After the contagion, the virus remains in a latent state for 5-7 days before
the individual became infectious. Then the individual can begin with symptoms in 3 days or he
can continue asymptomatic, but probably infectious during two weeks. It is not known actually
the number of asymptomatic people, but it will be probably bigger that the number of people with
symptoms. About 75% of persons with symptoms have just light symptoms that last for two weeks
and after that they became recovered. The other 25% get sever symptoms after a first period of
7-9 days with light symptoms. A 15% of these patients with severe symptoms die in 4-6 days,
while the other 85% will recover after a period of 18-24 days.

This disease can be described by the SEIAHRCD model defined before. According to the data
above described, we can choose the deterministic values for the permanence in the classes

rE = 5, rI = 3, rA = 14, rHR = 14, rHC = 9, rCR = 20, rCD = 4

and for the probabilities
µ = 0.5, α = 0.25, and λ = 0.15.

We also have to make an assumption on the ineffectiveness of the individuals when in the classes
I and A. We assume that

qI = 0.2, and qA = 0.05.

That is, we are assuming that asymptomatic individuals are less infectious than individuals who
have symptoms.

R0, the expected number of secondary cases produced by an infectious individual, is equal with
these parameters to

R0 = N
(
0.3 + 0.35

)
+O

(
1

n− 1

)
.

We see that the threshold value R0 = 1 is obtained for N = 1.54 and that R0 = 3.5 (one of the
possible empirical values estimated on the basis of real data) for N = 5.38.

We study the spread of the contagion in a closed population of 10000 inhabitants for a period
of time of 180 days. We assume that an infectious individual (in class I) arrives to this healthy
population and he/she remains there for 3 days. We also assume that Ni(t) ≡ N for any i and
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that therefore βi is constant for any individual. This assumption is strong in the case of a possible
quarantine, but it is still reasonable.

In this paper, since the analytical approach to this model is really complicated, we focus on the
evolution of the disease by implementing a simulation using environment Maple. All the values
presented here are the mean computed over 30 repetitions of the simulation and we report also the
confidence intervals.

We know very well that our model cannot explain exactly the COVID19 epidemic, since there
are too many unknown aspects about this new disease, but we believe that the study of the
behaviour of our model can help to understand the COVID19 epidemic. More precisely, we will
answer five Research Questions regarding the dynamics of the disease depending on some of the
parameters involved. Particularly, we deal with (1) the importance of the number of contacts,
(2)-(3) the effectiveness of a quarantine depending on the moment it begins and on its duration,
(4) the role of the asymptomatic depending of their level of infectiveness and (5) what happens
with different levels of group immunization.

For each of these situations we study six quantities that we consider of major interest:

1. Class D: The number of deceased, therefore individuals in class D, after 180 days.

2. Max class C: The maximum number of individuals in class C, i.e. with severe symptoms, in
one day.

3. Total class C: The sum of all the days spent by all the individuals in the class C.

4. Max new H: The maximum number of individuals that enter in class H (people with symp-
toms) in one day.

5. Day max new H: The day when it is reached the maximum number of individuals that enter
in class H in one day.

6. Prop. infected: The proportion of the population that has been infected after 180 days.

For all these quantities we give a table with the mean and the 95% confidence interval for the
mean in several situations. We also present a plot of one simulation of the number of deaths, the
number of individuals in class C and the number of individuals that enter in class H each day
for any of these situations along the 180 days. Note that the number of deceased is considered
assuming that the health service is able to give the same level of assistance whatever the number of
patients is, but probably in the situations where the health service is more stressed the assistance
will be worse and the number of deceased may increase.

3.1 RQ1: How does the number of contacts N influence the spread of
the disease?

We consider the dependence on the number of contacts on the evolution of the disease when
N = 10, 5, 4 and 3.

Table 1: Influence of number of contacts N
N 10 5 4 3

Class D 189.16 176.03 168.56 159
(184.15,194.16) (162.97,189.08) (151.69,185.45)

Max class C 564,23 420,03 330,40 225
(557.04,571.49) (390.83,449.22) (297.70,363.09)

Total class C 12007,33 11524,13 10597,60 9571
(11847.58,12167.07) (11432.97,11595.28) (9553.21,11641.98)

Max new H 441.16 236.13 172,10 100
(432.16,449.38) (219.84,252.41) (155.18,189.01)

Day max new H 42.90 64.70 79.53 98
(41.77,44.02) (63.11,66.28) (73.87,85.18)

Prop. infected 0.9999 0.9489 0.8852 0.8274
(0.9998,0.9999) (0.8856,1) (0.7991,0.9712)
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Let us point out that when N = 5 in one of the 30 simulations the epidemic did not go forward
when N = 4 it happened in two cases. On the other hand, when N = 3 and with our initial
conditions, only in 1 of the 30 simulations the disease went on. For this reason, in the table we
only give the values of such case.

Figure 1: Evolution of the number of deceased, new individuals in H and the size of the class C when
N = 10, 5, 4 and 3.

The number of deceased and the proportion of infected population are not very different between
N = 4 and N = 10. The main difference consists in the velocity in the dissemination of the illness
and so, the maximum of individuals in class C that can require hospitalization.

3.2 RQ2: How does the beginning date of the quarantine influence the
spread of the disease?

Let us check the effects of a quarantine on the evolution of the disease. We assume that N = 10
at the beginning of the spread of the disease and we consider three levels of quarantine, defined
by the number of contacts N = 3, N = 2 or N = 0 (the total quarantine). We can also consider
what happens depending on the moment that the quarantine starts:

• when there are 10 deceased (first 10 individuals in class D),

• when there is the first deceased (first individual in class D),

• when there is the first individual with severe symptoms (first time the class C in not empty).

3.2.1 Quarantine beginning after first 10 deceased.

Let us recall that we assume that before the quarantine N = 10. We get

Table 2: Influence of a quarantine of N at 10 deaths

N 10 3 2 0

Class D 189.16 186.96 183.80 184.30
(184.15,194.16) (181.17,192.74) (178.04,189.55) (179.55,189.04)

Max class C 564.23 564.60 557.46 560.66
(557.04,571.49) (557.04,571.41) (551.60,563.31) (552.22,569.09)

Total class C 12007.33 12013.86 11887.86 11960.53
(11847.58,12167.07) (11828.88,12198.83) (11775.82,11999.89) (11823.23,12097.82)

Max new H 441.16 439.73 440.66 441.90
(432.16,449.38) (431.53,447.92) (434.07,447.24) (435.30,448.49)

Day max new H 42.90 42.56 43.93 43
(41.77,44.02) (41.70,43.41) (42.90,44.95) (42.08,43.91)

Prop. infected 0.9999 0.9984 0.9967 0.9934
(0.9998,0.9999) (0.9983,9984) (0.9965,0.9968) (0.9933,0.9934)

It is clear that the efficacy of these quarantine, including the total quarantine, is almost null,
since at this level of the disease the 99% of the population has been infected (case N = 0).

7



Figure 2: Evolution of the number of deceased, new individuals in H and the size of the class C when the
quarantine with N = 3, 2 and 0 begins with 10 deaths.

3.2.2 Quarantine beginning after the first deceased.

Table 3: Influence of a quarantine of N after the first death

N 10 3 2 0

Class D 189.16 174.50 157.60 105.83
(184.15,194.16) (168.55,180.44) (149.26,165.93) (89.12,122,53)

Max class C 564.23 433.23 386.80 365.40
(557.04,571.49) (401.39,465.06) (339.66,433.93) (311.49,419.37)

Total class C 12007.33 11176.66 10028.40 6860.66
(11847.58,12167.07) (10947.57,11405.74) (9453.42,10603.37) (5791.85,7929.46)

Max new H 441.16 347,50 343,06 367,73
(432.16,449.38) (312.17,382.82) (299.08,387.03) (324.30,407,15)

Day max new H 42.90 42.70 40.10 41.03
(41.77,44.02) (40.67,44.72) (38.41,41.78) (39.50,42.55)

Prop. infected 0.9999 0.9401 0.8412 0.5660
(0.9998,0.9999) (0.9268,0.9533) (0.7975,0.8848) (0.4769,0.6550)

Figure 3: Evolution of the number of deceased, new individuals in H and the size of the class C when the
quarantine with N = 3, 2 and 0 begins after the first death.

In this case we can note the efficacy of a quarantine if it is rigorous, with a significant difference
between N = 3 and N = 2. Note that in the total quarantine, there will be more that 100 deceased
since at this level of the disease more of the 50% of the population has been infected (case N = 0).

3.2.3 Quarantine beginning after the first individual enters in class C

In this case the quarantine is effective. For N = 2 we reduce the mortality of about 50% and for
N = 0 the number of deceased is just 20. Note that when the first individual enters in C there are
about 1000 individuals infected.
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Table 4: Influence of a quarantine of N after the first enter in C

N 10 3 2 0

Class D 189.16 162.80 106.70 20.96
(184.15,194.16) (157.16,168.43) (98.49,114,98) (15.51,26.40)

Max class C 564.23 272.93 130 75.50
(557.04,571.49) (259.34,286.51) (104.41,155.58) (56.90,94,09)

Total class C 12007.33 10382,53 6828,43 1337,87
(11847.58,12167.07) (10247.95,10517.10) (6430.56,7226.29) (1006.86,1668.87)

Max new H 441.16 149.36 96.96 117.13
(432.16,449.38) (134.02,164.69) (68.38,125.53) (92.21,143,04)

Day max new H 42.90 50.33 45.60 32.90
(41.77,44.02) (45.74,54.91) (35.97,55.22) (31.36,34.43)

Prop. infected 0.9999 0.8662 0.5709 0.1105
(0.9998,0.9999) (0.8597,0.8726) (0.5388,0.6029) (0.0839,0.1370)

Figure 4: Evolution of the number of deceased, new individuals in H and the size of the class C when the
quarantine with N = 3, 2 and 0 begins after the first enter in C.

3.3 RQ3: How does the duration of the quarantine influence the spread
of the disease?

Let us consider now the duration of the quarantine. We consider quarantines, beginning at first
individual in C, of duration 20, 60 and 120 days. We also deal with two levels of quarantine,
beginning from a number of contacts of N = 10 we pass to a quarantine with N = 3 or N = 1.

3.3.1 The case with N = 3

Table 5: Influence of a quarantine (from N = 10 to N = 3) of duration k days after the first enter in C.

k 0 20 60 120

Class D 189.16 186.50 172.26 160.43
(184.15,194.16) (181.19,191.80) (165.68,178.83) (155.63,165.22)

Max class C 564,23 459.96 272.23 254.50
(557.04,571.49) (439.43,480.48) (256.26,288.19) (245.09,263.90)

Total class C 12007,33 11869.33 11159.83 10319.40
(11847.58,12167.07) (11672.06,12066.59) (10971.99,11349.46) (10249.01,10389.78)

Max new H 441.16 370.5 146.73 131.03
(432.16,449.38) (350.32,390.67) (133.95,159.50) (124.94,137.11)

Day max new H 42.90 55.03 53.73 57.86
(41.77,44.02) (53.00,57.05) (48.46,58.99) (54.69,61.02)

Prop. infected 0.9999 0.9982 0.9274 0.8583
(0.9998,0.9999) (0.9969,0.9999) (0.9156,0.9391) (0.8527,0.8638)
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Figure 5: Evolution of the number of deaths, new individuals in H and the size of the class C when there
is a quarantine of k days.

When the quarantine is done with N = 3, its effects in the number of deceased are not very
important although we do a long quarantine of 120 days. Nevertheless, we are able to reduce
the maximum in class C. To value the importance of the quarantine we need a more restricted
quarantine.

3.3.2 The case with N = 1

Table 6: Influence of a quarantine (from N = 10 to N = 1) of duration k days after the first enter in C.

k 0 20 60 120

Class D 189.16 189.93 190.23 32.43
(184.15,194.16) (185.02,194.83) (185.40,195.05) (23.47,41.38)

Max class C 564,23 487.40 429.60 72.00
(557.04,571.49) (465.44,509.35) (401.45,457.74) (45.05,98.94)

Total class C 12007,33 12104.66 11951.36 2044.80
(11847.58,12167.07) (11954.15,12255.16) (11794.90,12107.81) (1493.54,2596.05)

Max new H 441.16 367,03 310,90 116,63
(432.16,449.38) (347.37,386.68) (287.10,334.69) (81.11,152.14)

Day max new H 42.90 66.80 113.80 56.20
(41.77,44.02) (65.83,67.76) (106.08,121.51) (36.05,76.34)

Prop. infected 0.9999 0.9993 0.9982 0.2830
(0.9998,0.9999) (0.9990,0.9995) (0.9973,0.9990) (0.2047,0.3612)

Figure 6: Evolution of the number of deaths, new individuals in H and the size of the class C when there
is a quarantine of k days.

We can see here that with a strong quarantine (N = 1) and with a long quarantine (k = 120),
the disease can be stopped. In the two other cases, k = 20 or k = 60 the final numbers of deceased
are very similar, since after a short stop the disease returns to growth up arriving at the same
levels of the initial outbreak and having two clear peaks.
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3.4 RQ4: How does the infectivity of asymptomatic individuals influ-
ence the spread of the disease?

One of the main problems in the study of the COVID19 disease is the role of the asymptomatic.
In our general framework we have supposed that the infectivity of an asymptomatic individual
(class A) is one fourth of the infectivity of an infective individual that will have symptoms (class
I), that is, qA = 0.05 and qI = 0.2. Here we consider two other cases: in the first both probabilities
are equal (qA = qI = 0.2) and in the second case the asymptomatic individuals are not infectious
(qA = 0). We also consider the case without quarantine and the case with quarantine (from N = 10
to N = 3) after the first individual in class C.

3.4.1 The asymptomatics’ role without quarantine

Table 7: Influence of qA without quarantine

qA 0 0.05 0.2

Class D 170.93 189.16 193.13
(153.62,188.16) (184.15,194.16) (187.07,199,18)

Max class C 458.66 564.23 607.76
(412.98,504.33) (557.04,571.49) (599.55,615.96)

Total class C 11061.66 12007.33 11997.86
(9967.41,12155.90) (11847.58,12167.07) (11834.69,12161.02)

Max new H 302,73 441.16 642,76
(272.29,333.16) (432.16,449.38) (631.81,653.70)

Day max new H 52.76 42.90 35.26
(49.07,56.44) (41.77,44.02) (34.63,35.88)

Prop. infected 0.9094 0.9999 1.0000
(0.8209,0.9978) (0.9998,0.9999) 1.0000

Figure 7: Evolution of the number of deaths, new individuals in H and the size of the class C with different
qA without quarantine.

We can see that the behaviour of the disease is very similar in the three cases and the main
difference just consists in the velocity of its spread.

3.4.2 The asymptomatics’ role with quarantine

We can see the importance of knowing the role of asymptomatics in implementing quarantine. The
more infectious the asymptomatic are, the more effective the quarantine is.

3.5 RQ5: How does the group immunity influence the spread of the
disease?

We consider finally the group immunity. We consider three cases, where the immunity group is of
50%, 70% and 90%, respectively. We can see that an immunity of the 50% is not enough to control
the disease since almost all the individuals without immunity become infected after the 180 days.
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Table 8: Influence of qA with quarantine

qA 0 0.05 0.2

Class D 25.70 162.80 186.83
(19.43,31.96) (157.16,168.43) (181.99,191.66)

Max class C 39.00 272.93 537.93
(27.88,50.11) (259.34,286.51) (528.23,547.62)

Total class C 1504.93 10382.53 11967.33
(1102.08,1907.05) (10247.95,10517.10) (11834.69,12161.02)

Max new H 132.43 149.36 452.33
(116.75,148.10) (134.02,164.69) (409.95,494.70)

Day max new H 33.16 50.33 36.53
(30.62,35.69) (45.74,54.91) (35.03,38.02)

Prop. infected 0.1353 0.8662 0.9990
(0.1050,0.1655) (0.8597,0.8726) (0.9979,1)

Figure 8: Evolution of the number of deaths, new individuals in H and the size of the class C with different
qA with quarantine.

On the other hand, with an immunity of the 70% the disease is well controlled. Moreover if
the immunity regards the 70% of the population, in 11 over 30 trials there aren’t any deaths and
in one of the trials the disease does not infect any person.

Table 9: Influence of group immunity

Level 0% 50% 70%

Class D 189.16 90.53 18.00
(184.15,194.16) (87.07,93.98) (12.78,23.21)

Max class C 564,23 207.63 20.96
(557.04,571.49) (202.28,212) (14.95,26.96)

Total class C 12007.33 5804.80 1124.06
(11847.58,12167.07) (5680.10,5929.49) (797.15,1450.96)

Max new H 441.16 120.76 12.40
(432.16,449.38) (118.41,123.10) (9.06,15.73)

Day max new H 42.90 61.30 94.26
(41.77,44.02) (58.94,63.65) (77.36,111.19)

Prop. infected 0.9999 0.4848 0.0990
(0.9998,0.9999) (0.4842,0.4853) (0.0713,0.1266)

If we consider an immunity of the 90% only in 8 of the 30 trials there have been infected people
with a maximum of 12 individuals infected and no one deceased.
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Figure 9: Evolution of the number of deaths, new individuals in H and the size of the class C when there
is group immunity.

4 Conclusions

Like any mathematical model, the model presented in this paper does not exactly describe COVID19
disease, even if it shares with this most of its characteristic. Furthermore, for this new disease many
aspects are still unknown, such as the level of infectivity of asymptomatic patients.

Our goal is to understand how a disease similar to the COVID19 spreads over in a closed
population and to answer to some specific research questions. What we have obtained can be
summarized as follows:

1. Reducing the number of contacts of each individual the spread of the disease slows down, the
pressure on the health system reduces, but we end up with a similar number of deceased.

2. It is basic to start the quarantine at least when the first severe patient is detected. Waiting
for the first deceased leads to many more additional deceased.

3. To raise the quarantine it is very important to know the level of infectivity of the asymp-
tomatic. The more infectious they are, the more important is the quarantine.

4. To stop the disease you must perform a strict and long quarantine and you must start this
as soon as possible.

5. Group immunity is very important to prevent the development of the disease.

Even if most of the answers are the expected ones, we have obtained these through a sound
stochastic epidemic model, that despite of its simplicity probably is able to catch most of the
peculiarity of this disease.

We believe that a more sophisticated version of this model and more elaborated simulations
can allow us to answer to more complex questions, but probably it will be better to wait when a
deeper knowledge on this disease will be available.
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